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Regularities unseen, randomness observed: Levels of entropy convergence
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We study how the Shannon entropy of sequences produced by an information source converges to
the source’s entropy rate. We synthesize several phenomenological approaches to applying
information theoretic measures of randomness and memory to stochastic and deterministic
processes by using successive derivatives of the Shannon entropy growth curve. This leads, in turn,
to natural measures of apparent memory stored in a source and the amounts of information that must
be extracted from observations of a source in order for it to be optimally predicted and for an
observer to synchronize to it. To measure the difficulty of synchronization, we define thetransient
informationand prove that, for Markov processes, it is related to the total uncertainty experienced
while synchronizing to a process. One consequence of ignoring a process’s structural properties is
that the missed regularities are converted to apparent randomness. We demonstrate that this problem
arises particularly for settings where one has access only to short measurement sequences.
Numerically and analytically, we determine the Shannon entropy growth curve, and related
quantities, for a range of stochastic and deterministic processes. We conclude by looking at the
relationships between a process’s entropy convergence behavior and its underlying computational
structure. ©2003 American Institute of Physics.@DOI: 10.1063/1.1530990#
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How does an observer come to know in what internal
state a process is? We show this is related to anothe
question. How does an observer come to accurately est
mate how random a source is? We answer these question
by modeling the relationship between an observer and an
observed process as a measurement channel—an adapt
tion of Shannon’s notion of a communication channel.
Using successive derivatives of the Shannon entrop
growth curve we derive measures of the apparent
memory stored in a process and the amounts of informa-
tion that must be extracted from observations of a pro-
cess in order for it to be optimally predicted and for an
observer to synchronize to it. One consequence of ignor
ing these structural properties is that the missed regulari-
ties are converted to apparent randomness.

I. INTRODUCTION

A. Apparent randomness

Natural processes appear unpredictable to varying
grees and for several reasons. First, and most obviously,
may not know the ‘‘rules’’ or equations that govern a partic
lar system. That is, an observer may have only incomp
knowledge of the forces controlling a process. Laplace w
well aware of these sources of apparent randomness; a
commented two centuries ago in motivating hisPhilosophi-
cal Essay on Probabilities:1
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But ignorance of the different causes involved in the
production of events, . . . taken together with the im-
perfection of analysis, prevents our reaching the same
certainty about the vast majority of phenomena. Thus
there are things that are uncertain for us, things more
or less probable, and we seek to compensate for th
impossibility of knowing them by determining their
different degrees of likelihood.

Second, there may be mechanisms intrinsic to a proc
that amplify unknown or uncontrolled fluctuations to unpr
dictable macroscopic behavior. Manifestations of this sor
randomness includedeterministic chaosand fractal separa-
trix structures bounding different basins of attraction.
Poincare´ noted:2

. . . it may happen that small differences in the initial
conditions produce very great ones in the final phe-
nomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes im-
possible, and we have the fortuitous phenomenon.

Unpredictability of this kind also arises from sensitive d
pendence on parameters,3 such as that seen in nonstructura
stable systems with continuous bifurcations4 or from sensi-
tive dependence on boundary conditions. Knowledge of
governing equations of motion does little to make the
kinds of intrinsic randomness go away.

Third, and more subtly, there exists a wide array
observer-induced sources of apparent randomness. For
the choice of representation used by the observer may re
a system unpredictable. For example, representing a sq
wave in terms of sinusoids requires specifying an infin
© 2003 American Institute of Physics
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number of amplitude coefficients. Truncating the order
approximation leads to errors, even for a source as sim
and predictable as a square wave. Similarly, an observ
choice and design of its measuring instruments is an a
tional source of apparent randomness. As one example,
5 shows how irreducible unpredictability arises from a m
surement instrument’s distortion of a spatiotemporal p
cess’s internal states. For other examples, see, e.g., R
and references therein.

Fourth, the measurement process engenders app
randomness in other, perhaps more obvious ways, too. E
if one knows the equations of motion governing a syste
accurate prediction may not be possible: the measurem
made by an observer may be inaccurate, or, if the meas
ments are precise, there may be an insufficient volume
measurement data. Or, one may simply not have a s
ciently long measurement stream, for example, to disamb
ate several internal states and, therefore, their individual c
sequences for the process’s future behavior cannot
accurately accounted for. Examples of these sorts
measurement-induced randomness are considered in
7–9. In all of these cases, the result is that the process
pears more random than it actually is.

Fifth, and finally, if the dynamics are sufficiently com
plicated it may simply be too computationally difficult t
perform the calculations required to go from measureme
of the system to a prediction of the system’s future behav
The existence of deeply complicated dynamics for which t
was a problem was first appreciated by Poincare´ more than a
century ago as part of his detailed analysis of the three-b
problem.10

Of course, most natural phenomena involve, to one
gree or another, almost all of these separate source
‘‘noise.’’ Moreover, the different mechanisms interact wi
each other. It is no surprise, therefore, that describing
quantifying the degree of a process’s apparent randomne
a difficult yet essential endeavor that cuts across many
ciplines.

B. Untangling the mechanisms

A central goal here is to examine ways to untangle
different mechanisms responsible for apparent random
by investigating several of their signatures. As one step
addressing these issues, we analyze those aspects of ap
randomness over which an observer may have some con
These include the choice of how to quantify the degree
randomness~e.g., through choices of statistic or in modelin
representation! and how much data to collect. We descri
the stance taken by the observer toward the process t
analyzed in terms of themeasurement channel—an
adaptation11 of Shannon’s notion of a communication cha
nel. One of the central questions addressed in the follow
is, ‘‘How does an observer, appraised of a process’s poss
states and its dynamics, come to know in what internal s
the process is?’’ We will show that this is related to anoth
question, ‘‘How does an observer come to accurately e
mate how random a source is?’’ In particular, we shall inv
tigate how finite-data approximations converge to t
f
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asymptotic value. We shall see a variety of different conv
gence behaviors and will present several different quanti
that capture the nature of this convergence. As the title of
work suggests, we shall see that regularities that are un
are ‘‘converted’’ to apparent randomness.

It is important to emphasize, and this will be cle
through our citations, that much of our narrative about lev
of entropy convergence touches on and restates results
intuitions known to a number of researchers in informati
theory, dynamical systems, stochastic processes, and
bolic dynamics. Our attempt here, in light of this, is sever
fold. First, we put this knowledge into a single framewor
using the language of discrete derivatives and integrals.
believe this approach unifies and clarifies a number of ex
quantities. Second, and more important, by considering
merous examples, we shall see that examining levels of
tropy convergence can give important clues about the c
putational structure of a process. Finally, our view of entro
convergence will lead naturally to a new quantity, thetran-
sient informationT. We shall prove that the transient info
mation captures the total uncertainty an observer must o
come in synchronizing to a Markov process is intrins
states.

We begin in Sec. II by fixing notation and briefly review
ing the motivation and basic quantities of information theo
In Secs. III and IV we use discrete derivatives and integr
to examine entropy convergence. In so doing, we recove
number of familiar measures of randomness, predictabi
and ‘‘complexity.’’ Then, in Sec. IV C we introduce, moti
vate, and interpret a new information-theoretic measure
structure, the transient information. In particular, we shall s
that the transient information provides a quantitative meas
of the manner in which an observer synchronizes to a sou
We then illustrate the utility of the quantities discussed
Secs. III–IV by considering a series of increasingly rich e
amples in Sec. V. In Sec. VI we look at relationships betwe
the quantities discussed previously. In particular, we sh
several quantitative examples of how regularities that go
detected are converted into apparent randomness. Finally
conclude in Sec. VII and offer thoughts on possible futu
directions for this line of research.

II. INFORMATION THEORY

A. The measurement channel

In the late 1940s Claude Shannon founded the field
communication theory,12 motivated in part by his work in
cryptography during World War II.13 His attempt to analyze
the basic trade-offs in disguising information from third pa
ties in ways that still allowed recovery by the intended
ceiver led to a study of how signals could be compressed
transmitted efficiently and error free. His basic concept
was that of acommunication channelconsisting of aninfor-
mation sourcewhich producesmessagesthat are encoded
and passed through a possibly noisy and error-prone chan
A receiverthen decodes the channel’s output in order to
cover the original messages. Shannon’s main assumpt
were that an information source was described by a distr
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tion over its possible messages and that, in particular, a m
sage was ‘‘informative’’ according to how surprising or u
likely its occurrence was.

We adapt Shannon’s conception of a communicat
channel as follows: We assume that there is aprocess
~source! that produces adata stream~message!—an infinite
string of symbols drawn from some finite alphabet. The ta
for the observer~receiver! is to estimate the probability dis
tribution of sequences and, thereby, estimate how random
process is. Further, we assume that the observer does
know the process’s structure; the range of its states and
transition structure—the process’s internal dynamics—
hidden from the observer.~We will, however, occasionally
relax this assumption in the following.! Since the observe
does not have direct access to the source’s internal, hid
states, we picture instead that the observer can estima
arbitrary accuracy the probability of measurement sequen
Thus, we do not address the eminently practical issue of h
much data are required for accurate estimation of these p
abilities. For this, see, for example, Refs. 9 and 14–17
our scenario, the observer detects sequence blocks dir
and stores their probabilities as histograms. Though ap
ently quite natural in this setting, one should consider
histogram to be a particular class of representation for
source’s internal structure—one that may or may not c
rectly capture that structure.

This measurement channelscenario is illustrated in Fig
1. In this case, the source is a three-state deterministic fi
automaton. However, the observer does not see the inte
states$A,B,C%. Instead, it has access to only the measu
ment symbols$0,1% generated on state-to-state transitions
the hidden automaton. In this sense, the measurement c
nel acts like a communication channel; the channel m
from an internal-state sequence ...BCBAACBC ... to a mea-
surement sequence ...0111010... . The process shown in
1 belongs to the class of stochastic process known ashidden
Markov models. The transitions from internal state to intern
state are Markovian, in that the probability of a given tra
sition depends only upon which state the process is curre
in. However, these internal states are not seen by
observer—hence the name ‘‘hidden’’ Markov model.18,19

Given this situation, a number of issues arise for
observer. One fundamental question is how many of the
tem’s properties can be inferred from the observed bin
data stream. In particular, can the observer build a mode
the system that allows for accurate prediction? According

FIG. 1. The measurement channel: The internal states$A,B,C% of the system
are reflected, only indirectly, in the observed measurement of 1’s and 0’s
observer works with this impoverished data to build a model of the un
lying system. After Ref. 24.
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Shannon’s coding theorem, success in answering these q
tions depends on whether the system’s entropy rate falls
low the measurement channel capacity. If it does, then
observer can build a model of the system. Conversely, if
entropy rate is above the measurement channel’s capa
then the theorem tells us that the observer cannot exa
reconstruct all properties of the system. In this case, sou
messages—sequences over internal states—cannot be
coded in an error-free manner. In particular, optimal pred
tion will not be possible. In the following, we assume th
the entropy rate is less than the channel capacity and, he
that optimal prediction is—in theory, at least—possible.

Similar questions of building models from data produc
by various kinds of information sources are found in t
fields of machine learning and computational learning theo
See the appendixes in Ref. 20 for comments on the simil
ties and differences with the approach taken here. For
alternative account of the observation process see Refs
and 22, which consider measuring quantum systems,
Ref. 23, which addresses observers in the classical dom

B. Stationary stochastic processes

The measurement streams we shall consider will be
tionary stochastic processes. In this section we introduce
idea more formally, fix notation, and define a few classes
stochastic process to which we shall return when conside
examples in Sec. V.

The main object of our attention will be a one
dimensional chain

SJ[...S22S21S0S1 ... ~1!

of random variablesSt whose values range over a finite a
phabet setA. We assume that the underlying system is d
scribed by a shift-invariant measurem on infinite sequences
¯s22s21s0s1s2¯ ;stPA.25 The measurem induces a fam-
ily of distributions,$Pr(st11 ,...,st1L):stPA%, where Pr(st)
denotes the probability that at timet the random variableSt

takes on the particular valuestPA and Pr(st11 ,...,st1L)
denotes the joint probability over blocks ofL consecutive
symbols. We assume that the distribution is stationa
Pr(st11 ,...,st1L)5Pr(s1 ,...,sL).

We denote a block ofL consecutive variables bySL

[S1...SL . We shall follow the convention that a capital le
ter refers to a random variable, while a lowercase letter
notes a particular value of that variable. Thus,sL

5s1s2...sL , denotes a particular symbol block of lengthL.
We shall use the termprocessto refer to the joint distribution
Pr(SJ) over the infinite chain of variables. A process, defin
in this way, is what Shannon referred to as an informat
source.

For use later on, we define several types of proce
First, and most simply, a process with auniform distribution
is one in which all sequences occur with equiprobability. W
will denote this distribution byUL;

U~sL!51/uAuL. ~2!

n
r-



d

e
g

l
on
al

is
n

n
e
es
e

ue

o
t o

va

o
.

e
r,
le

py

non
l
s and

-

le
are
us,

er-

r

the

that

dom-
s in

28 Chaos, Vol. 13, No. 1, 2003 J. P. Crutchfield and D. P. Feldman
Next, a process isindependently and identically distribute

~IID ! if the joint distribution Pr(SJ)5Pr(...,Si ,Si 11 ,
Si 12 ,Si 13 ,...) factors in the following way:

Pr~SJ !5...Pr~Si !Pr~Si 11!Pr~Si 12!... , ~3!

and Pr(Si)5Pr(Sj ) for all i and j .
We shall call a processMarkovian if the probability of

the next symbol depends only on the previous symbol se
In other words, the joint distribution factors in the followin
way:

Pr~SJ !5...Pr~Si 11uSi !Pr~Si 12uSi 11!... . ~4!

More generally, a process isorder-R Markovianif the prob-
ability of the next symbol depends only on the previousR
symbols:

Pr~Si u...,Si 22 ,Si 21!5Pr~Si uSi 2R ,...,Si 21!. ~5!

Finally, a hidden Markov processconsists of an interna
order-R Markov process that is observed only by a functi
of its internal-state sequences. These are sometimes c
functions of a Markov chain.18,19 We refer to all of these
processes asfinitary, since there is a well-defined sense, d
cussed in the following, in which they have a finite amou
of memory.

C. Basic quantities of information theory

Here, we briefly state the definitions and interpretatio
of the basic quantities of information theory. For more d
tails, see Ref. 26. LetX be a random variable that assum
the valuesxPX, where X is a finite set. We denote th
probability thatX assumes the particular valuex by Pr(x).
Likewise, letY be a random variable that assumes the val
yPY.

The Shannon entropyof X is defined by

H@X#[2 (
xPX

Pr~x!log2 Pr~x!. ~6!

Note thatH@X#>0. The units ofH@X# arebits. The entropy
H@X# measures the uncertainty associated with the rand
variableX. Equivalently, it measures the average amoun
memory, in bits, needed to store outcomes of the variableX.
The conditional entropyis defined by

H@XuY#[2 (
xPX,yPY

Pr~x,y!log2 Pr~xuy!, ~7!

and measures the average uncertainty associated with
ableX, if we know Y.

The mutual informationbetweenX andY is defined as

I @X;Y#[H@X#2H@XuY#. ~8!

In words, the mutual information is the average reduction
uncertainty of one variable due to knowledge of another
knowingY on average makes one more certain aboutX, then
it makes sense to say thatY carries information aboutX.
Note thatI @X;Y#>0 and thatI @X;Y#50 when eitherX and
Y are independent~there is no ‘‘communication’’ betweenX
and Y) or when eitherH@X#50 or H@Y#50 ~there is no
information to share!. Note also thatI @X;Y#5I @Y;X#.
n.
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The information gainbetween two distributions Pr(x)
and Pr̂(x) is defined by

D@Pr~x!uuPr̂~x!#[ (
xPX

Pr~x!log2

Pr~x!

Pr̂~x!
, ~9!

where Pr̂(x)50 only if Pr(x)50. Quantitatively,D@PuuQ# is
the number of bits by which the two distributionsP andQ
differ.26 Informally, D@PuuQ# can be viewed as the distanc
betweenP and Q in a space of distributions. Howeve
D@PuuQ# is not a metric, since it does not obey the triang
inequality.

Similarly, theconditional entropy gainbetween two con-
ditional distributions Pr(xuy) and Pr̂(xuy) is defined by

D@Pr~xuy!uuPr̂~xuy!#[ (
xPX,yPY

Pr~x,y!log2

Pr~xuy!

Pr̂~xuy!
.

~10!

D. Block entropy and entropy rate

We now examine the behavior of the Shannon entro
H(L) of Pr(sL), the distribution over blocks ofL consecu-
tive variables. We shall see that examining how the Shan
entropy of a block of variables grows withL leads to severa
quantities that capture aspects of a process’s randomnes
different features of its memory.

The total Shannon entropyof length-L sequences is de
fined

H~L ![2 (
sLPA L

Pr~sL!log2 Pr~sL!, ~11!

whereL.0. The sum is understood to run over all possib
blocks of L consecutive symbols. If no measurements
made, there is nothing about which to be uncertain and, th
we defineH(0)[0. In the following we will show thatH(L)
is a nondecreasing function ofL; H(L)>H(L21). We shall
also see that it is concave;H(L)22H(L21)1H(L22)
<0.

Note that the maximum average information per obs
vation is log2uAu, H(1)< log2uAu, and, more generally,

H~L !<L log2uAu. ~12!

Equality in Eq.~12! occurs only when the distribution ove
L-blocks is uniform, i.e., given byUL. Figure 2 showsH(L)
for a typical information source. The various labels and
interpretation ofH(L) there will be discussed fully in the
following.

The source entropy rate hm is the rate of increase with
respect toL of the total Shannon entropy in the large-L limit:

hm[ lim
L→`

H~L !

L
, ~13!

where m denotes the measure over infinite sequences
induces theL-block joint distribution Pr(sL); the units are
bits/symbol. The limit in Eq. ~13! exists for all stationary
measuresm.26 The entropy ratehm quantifies the irreducible
randomness in sequences produced by a source: the ran
ness that remains after the correlations and structure
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longer and longer sequence blocks are taken into acco
The entropy rate is also known as thethermodynamic en-
tropy density~see, e.g., Refs. 27 and 28! in statistical me-
chanics or themetric entropy~see, e.g., Refs. 29–32! in dy-
namical systems theory.

As Shannon proved in his original work,hm also mea-
sures the length, in bits per symbol, of the optimal, uniqu
decodable, binary encoding for the measurement seque
That is, a message ofL symbols requires~as L→`) only
hmL bits of information rather than log2uAuL bits. This is
consonant with the idea ofhm as a measure of randomnes
On the one hand, a process that is highly random, and h
has largehm , is difficult to compress. On the other hand,
process with lowhm has many correlations between symbo
that can be exploited by an efficient coding scheme.

As noted earlier, the limit in Eq.~13! is guaranteed to
exist for all stationary sources. In other words,

H~L !;hmL as L→`. ~14!

However, knowing the valuehm indicates nothing about how
H(L)/L approaches this limit. Moreover, there may be—a
indeed usually are—sublinear terms inH(L). For example,
one may haveH(L);c1hmL or H(L); logL1hmL. We
shall see in the following that the sublinear terms inH(L)
and the manner in whichH(L) converges to its asymptoti
form reveal important structural properties about a proce

E. Redundancy

Before moving on to our main task—considering wh
can be learned from looking at the entropy growth cu
H(L)—we introduce one additional quantity from inform
tion theory. Since we are using an alphabet of sizeuAu, if
nothing else is known about the process or the channel
can consider the measurement channel used to observ
process to have achannel capacityof C5 log2uAu. Said an-
other way, the maximum observable entropy rate for
channel output~the measurement sequence! is log2uAu.

FIG. 2. Total Shannon entropy growth for a finitary information source
schematic plot ofH(L) vs L. H(L) increases monotonically and asymptot
to the lineE1hmL, whereE is the excess entropy~see Sec. IV B! andhm is
the source entropy rate. This dashed line is theE-memoryful Markovian
source approximation to a source with entropy growthH(L). The entropy
growth of the memoryless-source approximation of the source is indic
by the short-dashed linehmL through the origin with slopehm . The shaded
area is the transient informationT ~see Sec. IV C!.
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Frequently, however, the observedhm is less than its
maximum value. This difference is measured by theredun-
dancyR:

R[ log2uAu2hm . ~15!

Note thatR>0. If R.0, then the series of random variable
...,Si ,Si 11 ,... hassome degree of regularity: either the in
dividual variables are biased in some way or there are co
lations between them. Recall that the entropy rate meas
the size, in bits per symbol, of the optimal binary compre
sion of the source. The redundancy, then, measures
amount by which a given source can be compressed.
system is highly redundant, it can be compressed a g
deal.

For another interpretation of the redundancy, one c
show thatR is the information gain of the source’s actu
distribution Pr(sL) with respect to the uniform distribution
U(sL) in the L→` limit:

R5 lim
L→`

D@Pr~sL!uuU~sL!#

L
, ~16!

whereD is defined in Eq.~9!. Restated, then, the redundan
R is a measure of the information gained when an obser
expecting a uniform distribution, learns the actual distrib
tion over the sequence.

III. LEVELS OF ENTROPY CONVERGENCE:
DERIVATIVES OF H„L …

With these preliminaries out of the way, we are no
ready to begin the main task: examining the growth of
entropy curveH(L). In particular, we shall look carefully a
the manner in which the block entropyH(L) converges to its
asymptotic form—an issue that has occupied the attentio
many researchers.7,8,14,33–57In what follows, we present a
systematic method for examining entropy convergence.
do so, we will take discrete derivatives ofH(L) and also
form various integrals of these derivatives. This method
lows one to recover a number of quantities that have b
introduced some years ago and that can be interprete
different aspects of a system’s memory or structure. Ad
tionally, our discrete derivative framework will lead us
define a new quantity, thetransient information, which may
be interpreted as a measure of how difficult it is to synch
nize to a source, in a sense to be made precise in the fol
ing.

Before continuing, we pause to note that the represe
tion shown in the entropy growth curve of Fig. 2 of a finita
process isphenomenological, in the sense thatH(L) and the
other quantities indicated derive only from the observed d
tribution Pr(sL) over sequences. In particular, they do n
require any additional or prior knowledge of the source a
its internal structure.

A. Discrete derivatives and integrals

We begin by briefly collecting some elementary prop
ties of discrete derivatives. Consider an arbitrary funct
F:Z→R. In what follows, the functionF will be the Shan-

d
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non block entropyH(L), but for now we consider genera
functions. The discrete derivative is the linear operator
fined by

~DF !~L ![F~L !2F~L21!. ~17!

The picture is that the operatorD acts onF to produce a new
function DF, which, when evaluated atL, yields F(L)
2F(L21). Higher-order derivatives are defined by comp
sition:

DnF[~D+Dn21!F, ~18!

whereD0F[F andn>1. For example, the second discre
derivative is given by

D2F~L ![~D+D!F~L ! ~19!

5F~L !22F~L21!1F~L22!. ~20!

One ‘‘integrates’’ a discrete functionDF(L) by sum-
ming:

(
L5A

B

DF~L !5F~B!2F~A21!. ~21!

An integration-by-parts formula also holds:

(
L5A

B

L DF~L !5BF~B!2AF~A21!2 (
L5A

B21

F~L !. ~22!

Note the shift in the sum’s limits on the right-hand side.

B. DH„L …: Entropy gain

We now consider the effects of applying the discre
derivative operatorD to the entropy growth curveH(L). We
begin with the first derivative ofH(L):

DH~L ![H~L !2H~L21!, ~23!

whereL.0. The units ofDH(L) arebits/symbol. A plot of a
typical DH(L) vs L is shown in Fig. 3. We refer toDH(L)
as theentropy gainfor obvious reasons.

If a measurement has not yet been made, the appa
entropy rate is maximal. Thus, we defineDH(0)5 log2uAu.
In a maximum entropy setting this is equivalent to bei

FIG. 3. Entropy-rate convergence: A schematic plot ofhm(L)5DH(L) vs L
using the finitary process’sH(L) shown in Fig. 2. The entropy rate asymp
tote hm is indicated by the lower horizontal dashed line. The shaded are
the excess entropyE, as discussed in Sec. IV B.
-

-

nt

told only that the source hasuAu symbols and then assumin
the process is independent, identically, and uniformly distr
uted over individual symbols.

Having made a single measurement in each experim
in an ensemble or, equivalently, only looking at sing
symbol statistics in one experiment, the entropy gain is
single-symbol Shannon entropy:DH(1)5H(1)2H(0)
5H(1), since we definedH(0)50.

Let us now look at some properties ofDH(L).
Proposition 1: DH(L) is an information gain:

DH~L !5D@Pr~sL!uuPr~sL21!#, ~24!

whereL.1.
Proof: Since many of the proofs are straightforward, d

rect calculations, we have put most of them in Appendix A
as not to interrupt the flow of ideas in the main sectio
Proposition 1 is proved in Appendix A Proposition 1. h

Note that Eq.~24! is a slightly different form for the
information gain than that defined in Eq.~9!. Unlike Eq.~9!,
in Eq. ~24! the two distributions do not have the same su
port: one$sL% is a refinement of the other$sL21%. When this
is the case, we extend the lengthL21 distribution to a dis-
tribution over lengthL sequences by concatenating the sy
bols sL21 with equal probability ontos0 ,...,sL22 . We then
sum the terms inD over the set of lengthL sequences.

Note that since the information gain is a non-negat
quantity,26 it follows from Proposition 1 thatDH(L)
[H(L)2H(L21)>0, as remarked earlier. In a subseque
section, we shall see thatD2H(L)<0; hence,DH(L) is
monotone decreasing.

The derivativeDH(L) may also be written as a cond
tional entropy. Since

Pr~sL!

Pr~sL21!
5Pr~sLusL21!, ~25!

it immediately follows from Eq.~23! that

DH~L !5H@SLuSL21#. ~26!

This observation helps strengthen our interpretation ofhm .
Recall that the entropy ratehm was defined in Eq.~13! as
limL→`H(L)/L. As is well known ~see, e.g., Ref. 26!, the
entropy rate may also be written as

hm5 lim
L→`

H@SLuSL21#. ~27!

That is, hm is the average uncertainty of the variableSL ,
given that an arbitrarily large number of preceding symb
have been seen.

By virtue of Eq.~26!, we see that

hm5 lim
L→`

DH~L !. ~28!

Following Refs. 42–44, 54, 55 we denoteDH(L) by hm(L):

hm~L ![DH~L ! ~29!

[H~L !2H~L21!, L>1. ~30!

The functionhm(L) is the estimate of how random th
source appears if only blocks of variables up to lengthL are
considered. Thus,hm(L) may be thought of as a finite-L

is
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approximation to the entropy ratehm—the apparent entropy
rate at lengthL. Alternatively, the entropy ratehm can be
estimated for finiteL by appealing to its original definition,58

i.e., Eq. ~13!. We thus define another finite-L entropy rate
estimate:

hm8 ~L ![
H~L !

L
, L>1, ~31!

where we also takehm8 (0)[ log2 A. Note that while we have

lim
L→`

hm8 ~L !5 lim
L→`

hm~L !, ~32!

in general, it is the case that

hm8 ~L !Þ hm~L !, L,`. ~33!

Moreover,hm8 (L) converges more slowly thanhm(L).
Lemma 1:

hm8 ~L !>hm~L !>hm . ~34!

Proof: See Appendix A Lemma 1. h

We shall see examples of the slow convergence ofhm8 (L)
in Sec. V.

C. Entropy gain and redundancy

The entropy gain can also be interpreted as a type
redundancy. To see this, first recall that the redundancy,
~15!, is the difference between log2uAu and hm , where
log2uAu is the entropy given no knowledge of the sour
apart from the alphabet size andhm is the entropy of the
source given knowledge of the distribution of arbitrar
large L blocks. But what is the redundancy if the observ
already knows the actual distribution Pr(sL) of words up to
lengthL?

This question is answered by theL redundancy:

R~L ![H~L !2hmL. ~35!

Here,H(L) is the entropy given that Pr(sL) is known, and
the producthmL is the entropy of anL block if one uses only
the asymptotic form ofH(L) given in Eq. ~14!. Note that
R(L)<R, whereR is defined in Eq.~15!.

We now define the per-symbolL redundancy:

r ~L ![DR~L !5hm~L !2hm . ~36!

The quantity r (L) gives the difference between the pe
symbol entropy conditioned onL measurements and the pe
symbol entropy conditioned on an infinite number of me
surements. In other words,r (L) measures the extent t
which the length-L entropy-rate estimate exceeds the act
per-symbol entropy. Any difference indicates that there
redundant information in theL-blocks in the amount ofr (L)
bits. Ebeling53 refers tor (L) as the local~i.e., L-dependent!
predictability.

D. D2H„L …: Predictability gain

If we interprethm(L) as an estimate of the source’s u
predictability and recall that it decreases monotonically
hm , we can look at D2H(L)—the rate of change o
hm(L)—as the rate at which unpredictability is lost. Equiv
of
q.

r

-

l
s

o

lently, we can view2D2H(L) as the improvement in ou
predictions when one goes from (L21)- to L-blocks. This is
the change in the entropy rate estimatehm(L) and is given by
the predictability gain:

D2H~L ![Dhm~L !5hm~L !2hm~L21!, ~37!

whereL>1; the units ofD2H(L) arebits/symbol2. ~See Fig.
4.! Since we definedhm(0)[ log2uAu, we have that

D2H~1!5H~1!2 log2uAu. ~38!

The quantityD2H(0) is not defined.
A large value of uD2H(L)u indicates that going from

statistics over (L21)-blocks toL-blocks reduces the uncer
tainty by a large amount. Speaking loosely, we shall see
Sec. V that a large value ofuD2H(L)u suggests that theLth
measurement is particularly informative.

Proposition 2: D2H(L) is a conditional information
gain:

D2H~L !52D@Pr~sL21usL22!uuPr~sL22usL23!#, ~39!

for L.3.
Proof: See Appendix A Proposition 2. h

Since the information gain is non-negative, it follow
from Proposition 2 thatD2H(L)<0 and soH(L) is a con-
cave function ofL.

The observation contained in Proposition 2 first a
peared in Refs. 59 and 48. There,2D2H(L) is referred to as
the correlation information. However, we feel that the term
‘‘predictability gain’’ is a more accurate name for this qua
tity. The quantity2D2H(L) measures the reduction in pe
symbol uncertainty in going from (L21)- to L-block statis-
tics. While 2D2H(L) is related to the correlation betwee
symbolsL time steps apart, it does not directly measure th
correlation. The information-theoretic analog of the tw
variable correlation function is the mutual information b
tween symbolsL steps apart:I @St ;St1L#, averaged overt.
For a discussion of two-symbol mutual information and ho
they compare with correlation functions, see Refs. 60 and

E. Entropy-derivative limits

Ultimately, we are interested in howH(L) and its de-
rivatives converge to their asymptotic values. As we w
now show, this question is well posed because the derivat

FIG. 4. Predictability gain: A schematic plot ofD2H(L)5hm(L)2hm(L
21) vs L using the typicalhm(L) shown in Fig. 3. The shaded area is th
total predictabilityG, as discussed in Sec. IV A.
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of H(L) have well defined limiting behavior. First, as me
tioned earlier, for stationary sources, limL→` DH(L) 5 hm .
An immediate consequence of this is the following.

Lemma 2: For stationary processes, the higher deriv
tives of H(L) vanish in the L→` limit:

lim
L→`

DnH~L !50, n>2. ~40!

Proof: To see this, first recall that the limithm

5 limL→` DH(L) exists for a stationary source26 and so the
sequenceDH(0),DH(1),DH(2),... converges. It follows
from this that limL→`@DH(L)2DH(L21)#
5 limL→`D2H(L)50. This proves then52 case of Eq.~40!.
The n>3 cases of Eq.~40! then follow via identical argu-
ments. h

To recapitulate, for the finitary processes we are con
ering in theL→` limit we have that

H~L !;hmL, ~41!

plus possible sublinear terms. We also have that

lim
L→`

DH~L !5hm , ~42!

and

lim
L→`

DnH~L !50 for n>2. ~43!

IV. ENTROPY CONVERGENCE INTEGRALS

Since limits at each level of the entropy-derivative hie
archy exist, we can askhow the derivatives converge to the
limits by investigating the following ‘‘integrals’’:

In[ (
L5Ln

`

@DnH~L !2 lim
L→`

DnH~L !#. ~44!

The lower limitLn is taken to be the first value ofL at which
DnH(L) is defined. The picture here is that at eachL,
DnH(L) over- or underestimates the asymptotic va
limL→` DnH(L) by an amountDnH(L)2 limL→` DnH(L).
Summing up all of these estimates provides a measure,
haps somewhat coarse, of the manner in which an entr
derivative converges to its asymptotic value. The larger
sum, the slower the convergence. Slow convergence
DnH(L) indicates that correlations do not decay rapidly w
increasingL, suggesting that a process possesses cons
able internal structure even at large-L scales.

A. Predictability

We first examineI2 . Recall that limL→` D2H(L)50
and thatD2H(L) is defined forL>1. For reasons that wil
become clear shortly, we refer toI2 as thetotal predictability
G. It is defined as

G[I25 (
L51

`

D2H~L !. ~45!

Geometrically,G is the area above theD2H(L) curve, as
shown in Fig. 4. The units ofG arebits/symbol, as may be
inferred geometrically from Fig. 4, where the units of t
horizontal axis are bits and those of the vertical axis
-

-

-

er-
py
e
of

er-

e

bits/symbol2. Alternatively, this observation follows directly
from Eq. ~45!, when one takes into account the impliedDL
(51) in the sum. An interpretation ofG is established by the
following result.

Proposition 3:48,59 The magnitude of the total predict
ability is equal to the redundancy, Eq. (15):

G52R. ~46!

Proof: See Appendix A Proposition 3. h

This establishes an accounting of the maximum poss
information log2uAu available from the measurement chann
in terms of intrinsic randomnesshm and total predictability
G:

log2uAu5uGu1hm . ~47!

That is, the raw information log2uAu obtained when making a
single-symbol measurement can be considered to consi
two kinds of information: that due to randomnesshm , on the
one hand, and that due to order or redundancy in the pro
G, on the other hand.

Alternatively, we see thatG5 log2uAu2hm . Thus, view-
ing hm as measuring the unpredictable component of a p
cess, and recalling that log2uAu is the maximum possible en
tropy per symbol, it follows thatG measures is the source
predictable component. For this reason we refer toG as the
total predictability. Note that this result turns ondefiningthe
appropriate boundary condition ashm(0)5 log2uAu.

There is another form forG that provides an additiona
interpretation. The total predictability can be expressed as
average number of measurement symbols, or average le
where the average is weighted by the third derivati
D3H(L).

Proposition 4: The total predictability can be express
as

G52 (
L52

`

~L21!D3H~L !, ~48!

when the sum is finite.
Proof: See Appendix A Proposition 4. h

Equation~48! shows that ifD3H(L) is slow to converge
to 0, thenG will be large. One may also view this propos
tion as showing thatG can be viewed as an average
D3H(L), weighted byL.

Recently, some authors62 have viewedG as a measure o
‘‘disequilibrium,’’ since it measures the difference betwe
the actual entropy ratehm and the maximum possible entrop
rate log2uAu. The extent to whichhm falls below the maxi-
mum measures the deviation from uniform probabili
which these authors have interpreted as an equilibrium c
dition. In this vein, several have proposed complexity m
sures based on multiplyingG by hm .62,63 However, we and
others have shown that this type of complexity measure f
to capture structure or memory, since it is only a function
disorderhm .55,64,65 For additional critiques of this type o
complexity measure, see Refs. 56 and 66.

Finally, note that for any periodic process,G5 log2uAu,
sincehm50. The total predictability assumes its maximu
value for a completely predictable process. However,G does
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not tell us how difficult it is to carry out this prediction o
how many symbols must be observed before the process
be optimally predicted. To capture these properties of
system, we need to look at other entropy convergence i
grals.

B. Excess entropy

Having looked at howD2H(L) converges to 0, we now
ask: How doesDH(L)5hm(L) converge tohm? One answer
to this question is provided byI1 . For reasons that will be
discussed in the following, we refer toI1 as theexcess en-
tropy E:

E[I15 (
L51

`

@hm~L !2hm#. ~49!

The units ofE are bits. We may viewE graphically as the
area indicated in the entropy-rate convergence plot of Fig
For now, let us assume that the above-mentioned sum
finite. For many cases of interest, however, this assump
turns out to not be correct; a point to which we shall return
the end of this section.

The excess entropy has a number of different interpr
tions, which will be discussed in the following. Excess e
tropy also goes by a variety of different names. Referen
35, 47, and 54 use the term ‘‘excess entropy.’’ Reference
uses ‘‘stored information’’ and Refs. 33, 38, 48, 56, and
use ‘‘effective measure complexity.’’ References 41 and
refer to the excess entropy simply as ‘‘complexity.’’ Refe
ences 7 and 8 refer to the excess entropy as ‘‘predic
information.’’ In Refs. 40 and 49, the excess entropy is cal
the ‘‘reduced Re´nyi entropy of order 1.’’

1. E as length-weighted average D2H(L)

Proposition 5: The excess entropy may also be written

E52 (
L52

`

~L21!D2H~L !. ~50!

Proof: See Appendix A Proposition 5. h

Equation~50! shows that the excess entropy can be s
as an average ofD2H(L), weighted by the block-lengthL.

2. E as intrinsic redundancy

The length-L approximationhm(L) typically overesti-
mates the entropy ratehm at finite L. Specifically,hm(L)
overestimates the latter by an amounthm(L)2hm that mea-
sures how much more random single measurements ap
knowing the finiteL-block statistics than knowing the stati
tics of infinite sequences. In other words, this excess r
domness tells us how much additional information must
gained about the sequences in order to reveal the actual
symbol uncertaintyhm . This restates the fact that the diffe
encehm(L)2hm is the per-symbol redundancyr (L), defined
originally in Eq. ~36!. Though the source appears more ra
dom at lengthL by the amountr (L), this amount is also the
information-carrying capacity in theL-blocks that is not ac-
tually random, but is due instead to correlations. We c
clude that entropy-rate convergence is controlled by this
dundancy in the source. Presumably, this redundanc
an
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related to structures and memory intrinsic to the proce
However, specifying how this memory is organized cann
be done within the framework of information theory; a mo
structural approach based on the theory of computation m
be used. We return to the latter in the conclusion.

There are many ways in which the finite-L approxima-
tionshm(L) can converge to their asymptotic valuehm . ~Re-
call Fig. 3.! Fixing the values ofH(1) andhm , for example,
does not determine the form of thehm(L) curve. At eachL
we obtain additional information about howhm(L) con-
verges, information not contained in the values ofH(L) and
hm(L) at smallerL. Thus, roughly speaking, eachhm(L) is
an independent indicator of the manner by whichhm(L) con-
verges tohm .

Since each incrementhm(L)2hm is an independent con
tribution in the sense just described, one sums up the i
vidual per-symbolL redundancies to obtain the total amou
of apparent memory in a source.14,33,35,37,38,41,68Calling this
sum intrinsic redundancy, we have the following result.

Proposition 6: The excess entropy is the intrinsic redu
dancy of the source:

E5 (
L51

`

r ~L !. ~51!

Proof: This follows directly from inserting the definition
of intrinsic redundancy, Eq.~36!, in Eq. ~49!. h

In statistical mechanics, a variable is said to beextensive
if it is proportional to the size of the system. Variables whi
do not depend on system size areintensive. For example, the
total internal energy of an ideal gas is extensive, since i
proportional to the volume of the gas. However, the tempe
ture is an intensive variable. In our context, the block len
L plays the role of the system size. The total entropyH(L) is
extensive, growing linearly for largeL, while the entropy
densityhm is intensive, as can be seen in Eqs.~13! and~14!.
The next proposition shows thatE is thesubextensivepart of
H(L), i.e., the excess entropy is the portion ofH(L) that
grows slower than linearly.

Proposition 7: The excess entropy is the subexten
part of H(L):

E5 lim
L→`

@H~L !2hmL#. ~52!

Proof: See Appendix A Proposition 7. h

This proposition implies the following asymptotic form
for H(L):

H~L ! ; E1hmL as L→`. ~53!

This establishes a geometric interpretation ofE; we see that
E is the L50 intercept of the linear function Eq.~53! to
which H(L) asymptotes. This observation, also made
Refs. 7, 8, 14, 33, and 41, is shown graphically in Fig.
Note thatE>0, sinceH(L)>hmL. Note also that ifhm50,
thenE5 limL→` H(L).

A useful consequence of Proposition 7 is that it leads o
to use Eq.~53! instead of the original~very simple! scaling
of Eq. ~14!. Later sections address how ignoring Eq.~53!
leads to erroneous conclusions about a process’s unpre
ability and structure.
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3. E as mutual information

Yet another way to understand excess entropy is thro
its expression as a mutual information.

Proposition 8: The excess entropy is the mutual inform
tion between the left and right (past and future) semi-infin

halves of the chain SJ:

E5 lim
L→`

I @S0S1...SL21 ;SLSL11S2L21# ~54!

when the limit exists.
Proof: See Appendix A Proposition 8. h

Note thatE is not a two-symbol mutual information, bu
is instead the mutual information between two semi-infin
blocks of variables.

Equation~54! says thatE measures the amount of his
torical information stored in the present that is commu
cated to the future. For a discussion of some of the subtle
associated with this interpretation, however, see Ref.
Proposition 8 also shows thatE can be interpreted as thecost
of amnesia: If one suddenly loses track of a source, so tha
cannot be predicted at an error level determined by the
tropy ratehm , then the process appears more random b
total of E bits.

4. Finitary processes

We have argued earlier that the excess entropyE pro-
vides a measure of one kind of memory. Thus, we refe
those processes with a finite excess entropy as finite-mem
sources or, simply,finitary processes, and those with infinite
memory,infinitary processes.

Definition 1: A process isfinitary if its excess entropy is
finite.

Definition 2: A process isinfinitary if its excess entropy
is infinite.

Proposition 9: For finitary processes the entropy-rate e
timate hm(L) decays faster than1/L to the entropy rate hm .
That is,

hm~L !2hm,
A

L
, ~55!

for large L and where A is a constant. For infinitary pro
cesses hm(L) decays at or slower than1/L.

Proof: By direct inspection of Eq.~49!. h

One consequence is that the entropy growth for finit
processes scales asH(L);E1hmL in theL→` limit, where
E is a constant, independent ofL. In contrast, an infinitary
process might scale as

H~L !;c11c2 logL1hmL, ~56!

wherec1 andc2 are constants. For such a system, the exc
entropyE diverges logarithmically andhm(L)2hm;L21.

In Sec. V we shall determineE, hm , and related quanti-
ties for several finitary sources and one infinitary sour
There are, however, a few particularly simple classes of fi
tary process for which one can obtain general expression
E, which we state here before continuing.

Proposition 10: For a periodic process of period p, the
excess entropy is given by
h
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E5 log2 p. ~57!

Proof: One observes thatH(L)5 log2 p, for L.p. h

Proposition 11: For an order-R Markovian process, the
excess entropy is given by

E5H~R!2Rhm . ~58!

Recall that an order-R Markovian process was defined in E
(5).

Proof: This result will be proved in Sec. V C, when w
consider an example Markovian process. Also, see Refs.
54, and 55. h

For finitary processes that are not finite-order Marko
ian, the entropy-rate estimatehm(L) often decays exponen
tially to the entropy ratehm :

hm~L !2hm;A22gL, ~59!

for largeL and whereg andA are constants.
Exponential decay was first observed for various kin

of one-dimensional map of the interval, and a scaling the
was developed based on that ansatz.42 Later, Eq.~59! was
proven to hold for one-dimensional, fully chaotic maps w
a unique invariant ergodic measure that is absolutely c
tinuous with respect to the Lebesgue measure.50 To our
knowledge, there is not a direct proof of exponential dec
for more general finitary processes. There is, howeve
large amount of empirical evidence suggesting this form
convergence.33,36,39,42Nevertheless, several lines of reaso
ing suggest that exponential decay is typical and to be
pected. For further discussion, see Appendix B.

Corollary 1: For exponential-decay finitary processe
the excess entropy is given by

E'Eg[
H~1!2hm

1222g , ~60!

whereg is the decay exponent of Eq. (59) and H(1) is the
single-symbol entropy.

Proof: One directly calculates the area between t
curves in the entropy convergence plot of Fig. 3. The firs
the constant line athm . The second is the curve specified b
Eq. ~59! with the boundary conditionhm(1)5H(1). Alter-
natively, Eq. ~59! may be inserted into Eq.~50!; Eq. ~60!
then follows after a few steps. h

Note that Eq.~60! is an approximate result; it is exac
only if Eq. ~59! holds for all L. In practice, for smallL
hm(L)2hm is larger than its asymptotic formA22gL and,
thus,Eg gives an upper bound onE.

5. Finite-L expressions for E

There are at least two different ways to estimate
excess entropyE for finite L. First, we have the partial-sum
estimate given by

E~L ![H~L !2Lhm~L ! ~61!

5 (
M51

L

@hm~M !2hm~L !#. ~62!
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The second equality follows immediately from the integ
tion formula, Eq.~21!, and the boundary conditionH(0)
50.

Alternatively, a finite-L excess entropy can be defined
the mutual information betweenL/2-blocks:

E8~L ![I @S0S1...SL/221 ;SL/2SL/211...SL21#, ~63!

for L even. If L is odd, we defineE8(L)5E8(L21). The
expression in Eq.~63!, however, is not as good an estimat
of E as that of Eq.~62!, as established by the followin
lemma:

Lemma 3:

E8~L !<E~L !<E. ~64!

Proof: See Appendix A Lemma 3. h

C. Transient information

Thus far, we have discussed derivatives of the entr
growth curveH(L), and we have also defined and inte
preted two integrals: the total predictabilityG and the excess
entropyE. BothG andE have been introduced previously b
a number of authors.

In this section, however, we introduce a new quantity,
following the same line of reasoning that led us to the to
predictability,G5I2 , and the excess entropy,E5I1 . That
is, we ask: How doesH(L) converge to its asymptoteE
1hmL? The answer to this question is provided byI0 . For
reasons that will become clear in the following, we shall c
2I0 the transient informationT:

T[2I05 (
L50

`

@E1hmL2H~L !#. ~65!

Note that the units ofT are bits3symbols. Geometrically,
the transient information is the shaded area shown in Fig

The following result establishes an interpretation ofT.
Proposition 12: The transient information may be writ

ten as

T5 (
L51

`

L@hm~L !2hm#. ~66!

Proof: The proof is a straightforward calculation, how
ever, since it is a new result, we include it here. We begin
writing the right-hand side of Eq.~66! as a partial sum:

(
L51

`

L@hm~L !2hm#5 lim
M→`

(
L51

M

@LDH~L !2hmL#. ~67!

Using Eq.~22!, this becomes

(
L51

`

L@hm~L !2hm#

5 lim
M→`

H MH~M !2 (
L51

M21

H~L !2 (
L51

M

hmLJ . ~68!

Using MH(M )5(L50
M21 H(M ) and limM→` H(M )5E

1hmM , and rearranging slightly, we have
-

y

y
l

ll

2.

y

(
L51

`

L@hm~L !2hm#5 lim
M→`

H (
L50

M21

@E2H~L !#

1 (
L50

M21

hmM2 (
L51

M

hmLJ . ~69!

But,

(
L50

M21

hmM2 (
L51

M

hmL5hmFM22
1

2
M ~M11!G ~70!

5hm
1
2 M ~M21! ~71!

5 (
L50

M21

hmL. ~72!

Inserting Eq.~72! in Eq. ~69!, we have

(
L51

`

L@hm~L !2hm#5 lim
M→`

H (
L50

M21

@E1hmL2H~L !#J .

~73!

The right-hand side of the above equation isT, completing
the proof. h

Recall thatE1hmL is the entropy growth curve for a
finitary process, as discussed in Sec. IV B 4. Thus,T may be
viewed as a sum of redundancies, (E1hmL)2H(L), be-
tween the source’s actual entropy growthH(L) and theE
1hmL finitary-process approximation.

T and synchronization information

For finitary processesH(L) scales asE1hmL for large
L. When this scaling form is reached, we say that the
server issynchronizedto the process. In other words, whe

T~L ![E1hmL2H~L !50, ~74!

we say the observer is synchronized at length-L sequences.
As we will see in the following, observer-process synchro
zation corresponds to the observer being in a condition
knowledge such that it can predict the process’s outputs w
an uncertainty determined by the process’s entropy ratehm .

On average, how much information must an obser
extract from measurements so that it is synchronized to
process in the above-described sense? As argued in the
vious section, an answer to this question is given by
transient informationT.

We now establish a direct relationship between the tr
sient informationT and the amount of information require
for observer synchronization to block-Markovian process
We begin by stating the question information-theoretica
and fixing some notation.

Assume that the observer has a correct modelM
5$V,T% of a process, whereV is a set of states andT the rule
governing transitions between states. That is,T is a matrix
whose componentsTAB give the probability of making a
transition to stateB, given that the system is in stateA,
whereA,BPV. Contrary to the scenario shown in Fig. 1,
this section we assume that the observerdirectly measures
the process’s states. That is, we have a Markov proc
rather than ahiddenMarkov process.
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The task for the observer is to make observations
determine in which statevPV the process is. Once the ob
server knows with certainty in which state the process is,
observer issynchronizedto the source, and the average p
symbol uncertainty is exactlyhm . We are interested in de
scribing how difficult it is to synchronize to a directly ob
served Markov process.

The observer’s knowledge ofV is given by a distribution
over the statesvPV. Let Pr(vusL,M) denote the probability
that the state isv, given that the particular sequence of sym
bols sL has been observed. The entropy of this distribut
over the states measures the observer’s average uncer
in vPV:

H@Pr~vusL,M!#[2 (
vPV

Pr~vusL,M!log2 Pr~vusL,M!.

~75!

Averaging this uncertainty over the possible length-L obser-
vations, we obtain theaverage state-uncertainty:

H~L ![2(
sL

Pr~sL! (
vPV

Pr~vusL,M!log2 Pr~vusL,M!.

~76!

The quantityH(L) can be used as a criterion for synchron
zation. The observer is synchronized to the source w
H(L)50—that is, when the observer is completely certa
about in which statevPV the mechanism generating th
sequence is. And thus, when the condition in Eq.~74! is met,
we see thatH(L)50, and the uncertainty associated with t
prediction is exactlyhm .

While the observer is still unsynchronized, thoug
H(L).0. We refer to the average total uncertainty expe
enced by an observer during the synchronization proces
the synchronization informationS:

S[ (
L50

`

H~L !. ~77!

The synchronization information measures the average
information that must be extracted from measurements
that the observer is synchronized.

In the following, we assume that our model is Marko
ian of orderR. Additionally, we assume that the set of Ma
kovian statesV is associated with theuA Ru possible values of
R consecutive symbols; henceforth the latter are referre
as R-blocks. Specifically, there is a one-to-one correspo
dence between the statesv and theR-blocks, and hence ther
exists a one-to-one, invertible functionw:sR→V. This func-
tion w enables us to move back and forth between the st
v and theR-blocks. For example, we may usew to rewrite
the set of states:

V5$w~s1s2¯sR!:siPA,1< i<R%. ~78!

The matrixT gives the transition probabilities betwee
symbol blocks. Note that the Markovian states are ‘‘slidin
in the sense that a transition from one state to another co
sponds to a transition from, say, symbol blocks0s1¯sR21 to
s1s2¯sR . Thus, the transition matrixT is sparse; there ar
at mostuA R11u nonzero entries in theuA R3A Ru matrix T.
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Theorem 1: For a block-Markovian process, the syn
chronization informationS is given by

S5T1 1
2 R~R11!hm . ~79!

Proof: See Appendix C. h

Thus, the transient informationT, together with the en-
tropy ratehm and the orderR of the Markov process, mea
sures how difficult it is to synchronize to a process. If
system has a largeT, then, on average, an observer will b
highly uncertain about the internal state of the process w
synchronizing to it. The transient information measures
structural property of the system—a property not captured
the excess entropyE.

Corollary 2: For periodic processes, S5T.
Proof: For periodic processes,hm50. Plugging this into

Eq. ~79!, the corollary follows. h

In Sec. V B 2 we shall see that, while the excess entro
is the same (log2 p) for all period-p processes, the transien
informations are different. Thus, the transient informati
allows one to draw structural distinctions between differe
periodic sequences.

Corollary 3: For exponential-decay finitary processes w
have

T'Tg[
H~1!2hm

~1222g!2 . ~80!

Proof: Inserting Eq.~59! into the expression forT given
in Eq. ~66!, the result follows after several steps. h

Combining Eqs.~60! and ~80!, we arrive at an exac
relationship between the approximate expressions for the
cess entropy and the transient information:

Tg5
Eg

2

H~1!2hm
. ~81!

D. Summary

This completes our exposition of entropy convergen
and our method of differentiating and integratingH(L) to
move between levels. Table I summarizes the first levels
the entropy convergence hierarchy as investigated in the
ceding sections.

V. EXAMPLES

This section analyzes several variously structured p
cesses to illustrate a range of different entropy converge
behaviors. The results demonstrate what the preced
quantities—such as the entropy rate, the excess entropy,
the transient information—do and do not indicate abou
process’s organization.

A. Independent, identically distributed processes

We begin with the simplest stochastic process: bin
variables independently and identically distributed~IID !, as
in Eq. ~3!. Figure 5 shows the entropy growth curveH(L)
for two IID processes: a fair coin and a biased coin with
bias of 0.7.

For both coinsH(L) grows linearly. Hence,DH(L) is
constant for these and all other IID processes. Note, h



37Chaos, Vol. 13, No. 1, 2003 Regularities unseen, randomness observed
TABLE I. Moving up and down the first levels of entropy convergence. For several of the integral lower bounds (L5Ln) we have not included the initial zero
terms.

Entropy-convergence hierarchy

Level derivatives Ln L→` limit

Integrals

At level n From leveln11

0 H(L) L050 ` or log2 p T[(L50
` @E1hmL2H(L)# T5(L51

` (L)@DH(L)2hm#
1 DH(L) L150 hm E[(L51

` @DH(L)2hm# E52(L52
` (L21)D2H(L)

2 D2H(L) L251 0 G[(L51
` D2H(L) G52(L52

` (L21)D3H(L)
3 D3H(L) L352 0 I3[(L52

` D3H(L) I352(L52
` (L21)D4H(L)

¯ ¯ ¯ ¯ ¯ ¯

n DnH(L) Ln5n21 0 In[(L5Ln

` @DnH(L)2 limL→`DnH(L)# In52(L5Ln

` (L21)Dn11H(L)
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ever, that the two systems have different entropy rateshm .
The fair coin has anhm of 1 bit per symbol, while the biase
coin, being less unpredictable, hashm'0.8813. As a result,
from Eq. ~47! the total predictability G5 log2uAu2hm

50 bits for the fair coin and 0.1187 bits for the biased co
The predictability of each process is rather low, as expec

As is clear from Fig. 5, for both processes the exc
entropy E and the transient informationT are zero. This
makes sense in light of the interpretations ofE andT given
in the previous sections. Each coin flip does not depend
past flips, and so there is no mutual information between
past and the future. Thus,E50. Similarly, no information is
needed to synchronize to the source—H(L) assumes its
asymptotic form atL51—and soT50. That is, the statistics
of isolated flips are all that is required to optimally pred
both processes. Historical information does not improve p
dictability.

B. Periodic processes

1. A period-16 process

We now consider periodic processes. We begin wit
period-16 process, whoseH(L) is shown in Fig. 6~a!. The
sequence consists of repetitions of the length-16 blocks16

51010111011101110. In Fig. 6~b! we show the conver-
gence of entropy-density estimates to the asymptotic va
hm50. As for all period processes, the entropy ratehm for

FIG. 5. Entropy growth for IID processes: a fair coin~solid line! and a coin
~dashed line! with biasp50.7.
.
d.
s

n
e
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a

e,

the period-16 process is zero; at sufficiently largeL the pro-
cess is perfectly predictable. In addition tohm(L), defined
earlier asH(L)2H(L21), we showhm8 (L)5H(L)/L. The
total entropy converges atL512. The value ofH(12)
54 bits reflects the fact that there are 16 equally proba
sequences at eachL>12.

The excess entropyE for the period-16 process i
log2 1654 bits; the sequence’s past carries 4 bits of ph
information about the future. Geometrically,E is the vertical
intercept of the horizontal asymptote in Fig. 6~a! ~dashed

FIG. 6. Entropy curves for the period-16 proces
¯(1010111011101110)`

¯ . ~a! Entropy growth~solid line! and E1hmL
~dashed line!. ~b! Entropy convergence for the two estimatorshm(L) ~solid
line! andhm8 (L) ~dotted line!.
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line! or the area underhm(L) in Fig. 6~b!. The predictability
is G5 log2 251 bit per symbol; the system can be predict
perfectly. Finally, the transient information for this period-1
process isT'16.6135 bit3symbols. Since this process
Markovian, Theorem 1 applies. Thus, we conclude that,
average, an observer would measure a total uncertaintyS of
16.6135 bits during the process of synchronization.

2. T distinguishes period-p processes

For any periodic process of periodp, hm50 and E
5 log2 p. However, there are important structural differenc
between different sequences with the same period. To s
this, we consider all binary period-5 processes that are
tinct up to permutations and (0↔1)-exchanges in their tem
plate words. There are only three such processes: (1100`,
(10101)`, and (10000)`. By the symmetries of the Shanno
entropy function these processes illustrate the only th
types of entropy convergence behavior possible for perio
sequences.

Figure 7~a! shows the entropy growth curves for eac
Fig. 7~b! gives the entropy convergence curves; and Fig. 7~c!
gives the predictability gainD2H(L). By L54, H(L) con-
verges toE5 log2 5'2.321 bits. We see thathm(L)50 at
this and largerL. For all three processes,G512hm51 bit
per symbol: Again, the information in each measurem
concerns the periodic component of the process. The pre
ability gain per measurement vanishes atL56, since at that
point all length-5 templates have been completely parsed
the process appears completely predictable. It is a usefu
ercise in understandingD2H(L) to work through each tem
plate symbol-by-symbol to see which symbols are more
less informative about each template’s phase. For exam
observing the fourth symbol of the (10101)` process does
not improve predictability. However, the third symbol for th
(11000)` process is highly informative and predictability in
creases markedly.

Corollary 2 applies here and, sincehm50, says that the
synchronization informationS is equal toT. Thus, we can
directly interpretT as the synchronization information. Tab
II gives the values of the transient informationT. The values
are all different, indicating that an observer comes to s
chronize to the distinct templates differently. Table II al
gives the average number of observations required to
chronize. From this table, we see thatT is not directly pro-
portional to thenumber of measurements to synchroniz
Rather, it is the total amount ofinformation that must be
extracted to synchronize.

In summary, this example shows that there are struct
differences between different periodic processes of the s
period; a complete analysis is given in Ref. 69. The trans
information is able to capture these differences, while
excess entropy is unable to. Since many chaotic systems
example, are a combination of periodicity and randomne
one sees that the transient information is useful in detec
synchronization to the ordered component of such proces
n
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C. Markovian processes

We now consider a simple Markovian process with
nonzero entropy ratehm . ~The periodic systems of Sec. V B

FIG. 7. ~a! Entropy growth for all period-5 processes, along with the a
ymptote E1hmL5 log2 5'2.321 ~thin dashed line!. ~b! Entropy conver-
gence, for the same period-5 processes.~c! Predictability gainD2H(L).

TABLE II. Synchronizing to period-5 processes: Comparing the trans
information T to the average number of observations required to synch
nize to the three distinct period-5 sequences. Since the entropy ratehm50,
for this set of processes,T5S, as per Eq.~79!.

Template
word

Number of observations
to synchronize~symbols!

T
(bit3symbols)

11000 2.4 4.073
10000 2.8 5.273
10101 3.2 4.873
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are Markovian, but withhm50.) In particular, we shall con
sider the golden mean~GM! process, a Markov chain o
order one.

In terms of the sequences produced, the underly
golden mean system generates all binary strings with
restriction that there are never consecutive 0’s. The prob
listic version—thegolden mean process—generates 0’s and
1’s with equal probability, except that once a 0 isgenerated,
a 1 is always generated next. One can write down a sim
two-state Markov chain for this process~see, e.g., Ref. 70!.
The GM process is so named because the logarithm of
total number of allowed sequences grows withL at a rate
given by the logarithm of the golden mean,f5 1

2(11A5).
The various entropy convergence curves for the GM p

cess are shown in Fig. 8. The entropy rate of the GM proc
is hm52/3 bits per symbol and the predictability isG
51/3 bit per symbol. The convergence ofhm(L) to hm oc-
curs at sequence lengthL52. In other words, once the sta
tistics over all possible length-2 sequences are known,
gains no additional predictability by keeping track of t
occurrence of blocks of larger length. There is, howeve
large predictability gain in going from blocks of length 1
blocks of length 2. Observing that 00 is missing is the k
observation that makes this system predictable. The pre
ability gain per symbolD2H(L) is shown in Fig. 8~c!. Note
that the second measurement is more informative than
first.

We find thatE'0.2516 bits, andT5E, which can be
easily deduced from theH(L) versusL graph in Fig. 8~a!.
From these small values forE andT one concludes that no
much historical information is needed to perform optim
prediction nor is there much uncertainty associated with s
chronization.

For this system we find thatH(1)'0.9183 bits. Plug-
ging this and our result forhm into Eq. ~58!, we see that the
expression for the excess entropy of a Markovian proces
verified.

The behavior shown in Fig. 8 is typical for Markovia
processes. For an order-R Markovian process, the entrop
density estimateshm(L) will always converge exactly tohm

by L5R. This follows immediately from inserting Eq.~5!
into the expression forhm(L), Eq. ~26!. Given this, we know
that at H(R)5E1hmR. Solving this for E, we arrive at
Eq. ~58!.

D. Hidden Markov processes I. Complex transient
structure

For our next three examples, we consider three differ
finitary hidden Markov processes. Each of these exam
contains some interesting surprises. We begin by conside
a process that consists of two successive random sym
chosen to be 0 or 1 with equal probability and a third sym
that is the logical Exclusive-OR~XOR! of the two previous.
We call this the random-random-XOR~RRXOR! process.
The entropy growth and convergence plots are given in F
9~a! and 9~b!.

The entropy ratehm is 2/3 bits per symbol. To see this
note that two out of every three symbols are completely r
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dom, while one-third of the symbols are determined by
previous two. Note further that the RRXOR process has
samehm , and hence the sameG, as the GM process of Sec
V C. This serves as yet another reminder that the entropy
is not sufficient to distinguish the structural properties o
source.

At first blush, one might expect the entropy grow
curve to reach its asymptotic form atL53, just asH(L) did
at L52 for the golden mean process. However, Fig. 9~a!
shows that this is not the case. The reason that it does
converge exactly atL53 is that the RRXOR process is no
Markovian; specifically, the observed sequences of 0’s
1’s are not finite-order Markovian. The RRXOR is ahidden

FIG. 8. ~a! Entropy growth~solid line! for the golden mean process, alon
with the asymptoteE1hmL ~dotted line!. ~b! Entropy convergence, both
hm(L) ~solid line! and hm8 (L) ~dashed line!, and hm ~dotted line! for the
same.~c! Predictability gainD2H(L) vs sequence length.
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Markov process; its internal states are Markovian, but
observed sequences of 0’s and 1’s are not.

Instead of converging exactly at finiteL, the conver-
gence ofhm(L) to hm is exponential:

hm~L !2hm5A22gL, ~82!

where we findA50.6060.02 andg50.30660.004. This fit
is illustrated in Fig. 10.

The excess entropy isE52 bits: one needs to know
which of the four possible random symbol pairs has occur
before one reaches a condition of optimal predictabil
Thus, the process has log2 452 bits of memory. However, the
transient information is quite large;T'9.43 bit3symbols.
This indicates that the process is difficult to synchronize

FIG. 9. ~a! Entropy growth~solid line! for the random-random-XOR pro
cess, along with the asymptoteE1hmL ~dotted line!. ~b! Entropy conver-
gence, bothhm(L) ~solid line! andhm8 (L) ~dashed line!, andhm ~dotted line!
for the same.~c! Predictability gainD2H(L) vs sequence length.
e

d
.

:

Even after observing a large number of symbols, there is
some uncertainty about which internal, hidden state the p
cess is in. Nevertheless, the transient information is finite

For this system,H(1)51. Using Eqs.~60! and~80!, we
find Eg'1.74 bits andTg'9.12 bit3symbols. The differ-
ences from the near-exact values above indicate the am
of deviation from a pure exponential decay ofhm(L).

Intriguingly, the behavior of the predictability gai
D2H(L) of Fig. 9~c! shows strong hints of the structure o
the hidden Markov model that generates the observed
quences. At lengthsL51 andL52 symbols are not infor-
mative at all:D2H(L)50. This reflects the fact, given by th
process’s definition, that two of the symbols are produced
fair coin flips. For largerL, note thatD2H(L) shows oscil-
lations of period three. The RRXOR hidden Markov proce
also has a period-3 structure: after the two random bits
the XOR bit, the hidden Markov model always resets to
same state. Recall, however, thatD2H(L) is formed from
statistics over the observed symbols, not the hidden state
the process. Given this, it is somewhat surprising t
D2H(L) picks up the period-3 nature of the transitions b
tween hidden states.

E. Hidden Markov processes II. Measure sofic
process

We now consider another hidden Markov process:
even process,24 a stochastic process whose support~the set of
allowed sequences! is a sofic system called theeven
system.71 The even system generates all binary strings c
sisting of blocks of an even number of 1’s bounded by 0
Having observed a process’s sequences, we say that a
~finite sequence of symbols! is forbiddenif it never occurs. A
word is anirreducible forbidden wordif it contains no proper
subwords which are themselves forbidden words. A system
sofic if its list of irreducible forbidden words is infinite. The
even system is one such sofic system, since its set$012n110,
n50,1,...% of irreducible forbidden words is infinite. Note
that no finite-order Markovian source can generate this
for that matter, any other strictly sofic system. The even p
cess then associates probabilities with each of the e

FIG. 10. A least-squares fit~dashed line! to the exponential decay ofhm(L)
~squares! for the RRXOR process.
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system’s sequences by choosing a 0 or 1with fair probability
after generating either a 0 or apair of 1’s. The result is a
measure sofic process—a distribution over a sofic system
sequences. Like the RRXOR process, the even system is
Markovian, but is a hidden Markov process.

The various entropy convergence curves for the e
process are shown in Fig. 11. The entropy rate of the e
process ishm52/3 bits per symbol and the predictabilityG
is 1/3 bits per symbol. Note that these values are the sam
those for the RRXOR and GM processes, again emphasi
the poverty ofhm as a structural measure. The convergen
of hm(L) is exponential. A fit to

hm~L !2hm5A22gL, ~83!

FIG. 11. ~a! Entropy growth~solid line! for the even process, along with th
asymptoteE1hmL ~dotted line!. ~b! Entropy convergence, bothhm(L)
~solid line! andhm8 (L) ~dashed line!, andhm ~dotted line! for the same.~c!
Predictability gainD2H(L) vs sequence length.
ot
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shown in Fig. 12, yieldsA50.38860.019 andg50.501
60.007. We find thatE'0.902 bits. This is the amount o
storage required on average to hold the information tha
given observed 1 is the ‘‘even’’ or ‘‘odd’’ symbol in a block
of 1’s. The transient information isT'3.03 bit3symbols:
The even process is moderately difficult to synchronize
although it is much easier to synchronize to than the RRX
process in the previous example. SinceH(1)'0.918, we
find that Eg'0.86 andTg'2.92, both of which agree wel
with the values measured forE andT.

Again, the predictability gain per symbolD2H(L),
shown in Fig. 11~c!, oscillates as it converges to zero. Th
plot indicates that odd-length measurement sequences
more informative than even-length ones. As in the RRXO
example, the oscillation ofD2H(L) provides a strong hint as
to the underlying structure of the hidden Markov proce
responsible for the observed sequences. This process ha
states and, thus, a strong period-2 component. This peri
behavior in the hidden states is picked up inD2H(L), de-
spite the fact thatD2H(L) is based only on the statistics o
the observed, nonhidden symbols.

F. Hidden Markov processes III. The simple
nondeterministic source

We now consider a process known as thesimple nonde-
terministic source~SNS!. This process was constructed
illustrate how measurement distortion can contribute its o
kind of apparent structural complexity to a simple, but h
den, information source. In particular, the SNS describes
process obtained via a nongenerating partition of the logi
map. For an introduction to issues of measurement-indu
complexity, including the details concerning this nongener
ing partition of the logistic map, see Ref. 72, and for a f
mathematical treatment see Ref. 73. Spatial versions of
class of hidden process were introduced in Ref. 5 and a
lyzed from a computation theoretic view in Ref. 74.

The SNS, a hidden Markov process, generates sym
sequences as follows. The system has three internal, hid
states:A, B, and C. The observer, however, only sees t
binary outputs 0 and 1. The probabilities of generating

FIG. 12. A least-squares fit~dashed line! to the exponential decay ofhm(L)
~squares! for the even process.
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observed symbols 0 and 1, when the process is in each o
internal states, are given by the transition matricesT(0) and
T(1), respectively:

T(1)5F 0 0 0

0 0 1/2

0 0 0
G , ~84!

and

T(0)5F 1/2 1/2 0

0 1/2 0

1/2 1/2 0
G . ~85!

The elements of the transition matrices are identified with
set of internal states$A, B, C% in the natural way. For ex-
ample, T23

(1)51/2 indicates that the probability of being i
stateB, producing a 1, and making a transition to stateC is
1/2.

Assuming that the observer knows the internal struct
of the process—i.e.,T(0) and T(1)—then whenever a 1 is
measured the observer knows that the internal state isC.
However, for every 0 measured after this, the observer
comes and then remains uncertain as to whether the inte
state isA or B. This also explains the label ‘‘nondetermini
tic’’ for this process: the measurement of 0 does notdeter-
minethe internal state. In contrast, all the previous examp
we have considered have been deterministic, in the sense
specifying the output symbol determines the next inter
state.

A central consequence of this nondeterminism is that
number ofeffective statesseen by an observer that attemp
to reconstruct the hidden process is infinite, even though
internal process is a simple, three-state Markov chain.72,73

The SNS is arguably one of the simplest such examples
which this infinite-state divergence occurs.

The various entropy convergence curves for the S
process are shown in Fig. 13. The entropy rate, calcula
analytically, ishm'0.6778 bits per symbol and the predic
ability is G'0.3222 bits per symbol. We find thatE
'0.147 bits, there is not much mutual information betwe
the past and future, andT'0.175 bit3symbols.

Interestingly, the functional form ofhm(L)2hm is not
clear. An exponential decay,

hm~L !2hm5A22gL, ~86!

is shown as the dashed line, withA50.05 andg51.35, in
Fig. 14. One can also test a power-law entropy decay of
form

hm~L !2hm5cL2a. ~87!

This is shown as the dashed line, withc51.0 anda57.0, in
Fig. 15. Neither form is ideal: entropy convergence is slow
than exponential and faster than a power law. Based on F
14 and 15 one cannot infer a simple functional form
hm(L)2hm ; perhaps it is a stretched exponential.

In short, the simple nondeterministic source has low p
dictability and low apparent memory. Moreover, sinceT is
small, synchronizing to it entails overcoming very little u
certainty. These would seem to be in accord with the fact
he
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one can write down a compact nondeterministic represe
tion for it that has only a few hidden states. However,
perform optimal prediction, a deterministic representation
needed, and for the SNS that representation has an infi
number of states.72 This degree of complexity is not sug
gested by the relatively small values for the informati
theoretic measures of structure considered here. Thus,
ing only on information theoretic quantities, one is misled
to the process’s actual complexity. Nonetheless, the fact
entropy convergence is not clearly exponential, in contras
the even and RRXOR processes, provides indirect evide
that the SNS is different from these other finitary sources

G. Aperiodic infinitary process

We now consider an infinite-memory process that is a
riodic and has zero entropy rate. TheThue–Morse (TM) se-
quenceis the fixed point of the substitutions defined by

FIG. 13. ~a! Entropy growth~solid line! for the simple nondeterministic
source, along with the asymptoteE1hmL ~dotted line!. ~b! Entropy conver-
gence, bothhm(L) ~solid line! andhm8 (L) ~dashed line!, andhm ~dotted line!
for the same.~c! Predictability gainD2H(L) vs sequence length.
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s~0!501, ~88!

s~1!510. ~89!

For example, starting from the initial strings51, the fifth
iterate in the TM sequence is

s5~s!510010110011010010110100110010110.~90!

TheThue–Morse language LTM is the subset of all words in
the TM sequence:

LTM5sub~ lim
t→`

s t~1!!, ~91!

where sub(s) gives all of the subwords in strings. The
Thue–Morse processis then given by assigning the natur
measure—the frequency of occurrence ins`(1)—to the
words inLTM . Unlike the previous three examples we ha
considered, the Thue–Morse process isnot generated by a
finitary hidden Markov process. In fact, there is no finit
state process that can generate the Thue–Morse sequen

The various entropy convergence curves for the TM p
cess are shown in Figs. 16 and 17. These curves were c
lated using the results of Ref. 75, which show that

FIG. 14. A semilog plot to test for an exponential decay ofhm(L) ~squares!.
The latter are calculated exactly for sequences fromL52 to L525. The
dashed line represents an exponential decay.

FIG. 15. A log–log plot to test for a power-law decay ofhm(L) ~squares!.
The latter are calculated exactly for sequences fromL52 to L525. The
dashed line represents a power-law decay.
e.
-
cu-

hm~1!51, ~92!

hm~2!5 log2 32 2
3, ~93!

hm~3!5 2
3, ~94!

and, fork>1:

hm~L !5H 4/~332k! if 2 k11<L21<332k21

2/~332k! if 3 32k2111<L21<2k11. ~95!

From this, one concludes thathm50 and that the
entropy-rate estimates converge according to a power

FIG. 16. ~a! Entropy growth~solid line! for the Thue–Morse process.~b!
Entropy convergence, bothhm(L) ~solid line! andhm8 (L) ~dashed line!, for
the same. In~a! and ~b! sequence length goes up toL55000. ~c! Predict-
ability gain D2H(L) over small ranges ofL.
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hm(L)}1/L. Thus, the total entropy grows logarithmicall
H(L)} log2 L; as shown in Fig. 16~a!. Despite the slow con-
vergence tohm50, the predictability is high:G51 bit per
symbol. Each measurement gives the maximal amoun
information about the nonrandom part of the process.

Nonetheless, the excess entropy diverges;E(L)} log2 L,
indicating an infinite-memory process.@See Fig. 17~a!.# This
can also be inferred from Fig. 16~a!, whereE is simply the
height of theH(L) curve, sincehm50. Finally, the transient
information estimateT(L) also diverges, linearly, as show
in Fig. 17~b!. This linear divergence is explained by lookin
at Eq. ~66!. If one substituteshm(L);L21 and hm50 into
the expression there forT, the linear divergence follows im
mediately.

It is clear from Fig. 16~c! that there are long sequenc
of measurements that are uninformative. These are pun
ated occasionally with isolated symbols that do improve p
dictability. These occur at sequence lengthsLi5332i 23

12, i 53,4,5,... . To determine whyD2H(L) behaves in this
manner requires a computation theoretic approach, suc
that given in Ref. 76 for the symbolic dynamics produced
the period-doubling accumulation point of the logistic ma
For other, similar approaches, see Refs. 77–79.

We conclude this section by noting that, based on
results and those of several other authors,33,45,75,80this 1/L
entropy convergence is typical of aperiodic sequences ge
ated by substitutions rules like those of Eqs.~88! and ~89!.

FIG. 17. ~a! Excess entropy estimate divergence—E(L) ~solid line! and
E8(L) ~dashed line!. ~b! Transient information estimate divergence—T(L)
~solid line!. Note that the sequence length goes up toL55000 and that both
plots have large vertical scales.
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Moreover, Freund, Ebeling, and Rateitschat have given
argument for why this entropy convergence form is char
teristic of aperiodic sequences.45

H. Other infinitary processes

Before concluding Sec. V, we review the results of se
eral other investigations of entropy convergence. Sze´pfalusy
and Györgyi37 found thathm(L)2hm;L2a with a>5/2 for
a class of one-dimensional intermittent maps. Thus, this c
consists of finitary processes. However, for a different mo
of an intermittent process, Freund found a similar dec
form, but with a'0.492.45 Examining temporal-block se
quences in elementary one-dimensional cellular autom
Grassberger33 also found a power law decay, witha50.6
60.1 for rules 30 and 45 anda51.060.1 for rule 120.
These are examples of infinitary processes.

A number of researchers have examined entropy con
gence for written texts—such as The Bible, Grimms’ Tal
Moby Dick, the gnuplot manual, and Gleick’s popular bo
‘‘Chaos.’’ 52,53,81–83The picture that emerges is that entro
convergence can be fit to a power lawhm(L)2hm;La with
a ranging from 0.4 to 0.6. Interestingly, for a Beethov
sonata an exponent ofa'0.75 has been found.82 Again,
these results indicate infinitary processes.

Recently, Nemenman8 and Bialek, Nemenman, an
Tishby7 have found power-law convergences for differe
one-dimensional Ising models. For long-range coupli
where the coupling constants decay as the inverse la
separation, they founda'0.5. They also examined an Isin
model with short-range interactions, but in which the co
pling constant changes every 400 000 sites within a lattice
109 spins. The coupling constant was drawn from a Gauss
distribution with zero mean. For this system they found
power-law decay with an exponent ofa51.

I. Summary of examples

For comparison, Table III collects the various analytic
and numerical estimates of the information theoretic qua
ties for the preceding examples we analyzed.

VI. APPLICATIONS AND IMPLICATIONS

Being cognizant of various types of entropy conve
gence, of different classes of hidden processes, and of ho

TABLE III. Summary of examples.

Process hm G g E T

Fair coin 1 0 0 0
Biased coin 0.881 0.119 0 0
Period-16 0 1 4 16.6135
(11000)` 0 1 log2 5 4.073
(10000)` 0 1 log2 5 5.273
(10101)` 0 1 log2 5 4.873
Golden mean 2/3 1/3 0.252 0.252
Even 2/3 1/3 0.501 0.902 3.03
Random-random-XOR 2/3 1/3 0.306 2 9.43
Nondeterministic 0.678 0.322 1.35a 0.147 0.175
Thue–Morse 0 1 } log L }L

aThis can also be fit to a power law,L2a with a'7.
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quantitatively distinguish between them is useful gene
knowledge. To this end, we reviewed information-theore
quantities, introduced a new one, the transient informat
and put forth a unified framework for relating them all
terms of discrete derivatives and integrals. Then, in Sec
we analyzed a number of examples. We return now to the
of questions posed in Sec. I: How can we untangle differ
sources of apparent randomness? In particular, what hap
to our estimates of the entropy rate if we ignore a hidd
process’s structure?

In the following, we consider, among other things, t
effect of truncating one’s analysis at finite block lengthL.
We do not, however, consider the systematic effects of
dersampling, as often occurs when dealing with a finite d
set. For a thorough discussion of undersampling and of
proved estimators forH(L), the reader is referred to Ref. 9

Addressing these questions is the task of this last sec
Here we show that there are direct and empirically import
consequences for ignoring structural properties. We cons
several different questions:

~1! What happens when an observer ignores entropy-
convergence?

~2! What happens when the process’s apparent memor
ignored?

~3! On the one hand, what happens if the observer igno
synchronization?

~4! On the other hand, what happens if the observer assu
it is synchronized to the process?

The answers, given in the following, show that ignori
a process’s structural properties leads to a range of misl
ing inferences about randomness and organization. In a
tion to highlighting the negative consequences, we also c
ment on the fact that the associated problems can
alleviated to some extent, even in cases where data are
ited.

A. Disorder as the price of ignorance

The first two questions are closely related and rat
straightforward to answer. The preceding sections defi
several different quantities—hm , G, E, andT—that measure
randomness, predictability, memory, synchronization, a
other features of a process. For the most part, these
asymptotic quantities in the sense that they involve the
havior of the functionH(L) in the L→` limit. Thus, their
exact empirical estimation demands that an infinite num
of measurements of infinitely long sequences be made
order to form accurate estimates of sequence probabili
Obviously, other than by analytic means, it is not possible
exactly calculate such quantities. Exact,L→` results are
known for only a few special systems which are analytica
tractable.

This leads one to ask, even when sequence probabil
are accurately known, how well can these various sou
properties be estimated at finiteL? What errors are intro
duced, and are these errors related in any way?

The simplest such question, the first one listed abo
arises when one attempts to estimate source randomneshm

via the approximationhm(L). Stopping the estimate at finit
l
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L gives one a ratehm(L) that is larger than the actual rat
hm . That is, the source appearsmore randomif we ignore
correlations between variables separated by more thaL
steps. This observation follows directly from the definitio
of hm and hm(L). However, it turns out that this form o
overestimation ofhm is related to the excess entropyE. We
shall see that there is a quantitative trade-off between
domness and memory.

Assume an observer makes measurements of a pro
with entropy ratehm and excess entropyE.0. Recall the
definition, Eq.~13!, of the entropy rate. Using this definitio
to estimatehm is tantamount to assuming thatE50—see the
dashed linehmL in Fig. 2. But, by assumption,E.0. Thus,
at a givenL, we can ask what the entropy estimatehm8 (L)
5H(L)/L is. Lemma 1 established thathm8 (L).hm . But by
how much more? This is answered in a straightforward w
by the following proposition.

Proposition 13: When the observer is synchronized
the process,

hm8 ~L !2hm5
E

L
. ~96!

Proof: The claim follows immediately from the graph
cal construction given in Fig. 18. Saying that the observe
synchronized to the source means using anL such that
H(L)5E1hmL. Thus,

hm8 ~L !5
H~L !

L
5

E1hmL

L
. ~97!

Proposition 13 follows directly. h

In this way,E bits of memory are converted into add
tional, apparent randomness. The process appears more
dom due to the observer ignoring one of its structural pr
erties.

One can object to this estimate: Typically one does
know the process’s properties~e.g.,E andhm) and so even
these must be estimated. Thus, expressing the estimatohm8
in terms of the asymptotic quantitiesE and hm may not be
that useful. However,E8(L) in Eq. ~63! is a nonasymptotic,
L-dependent estimator of memory. Namely,E8(L) is a mea-
sure of the mutual information between two halves of anL
block. Using this estimator we can restate Proposition 13

Proposition 14:

FIG. 18. Ignored memory is converted to randomness: Illustration of h
ignoring memory, in this case implicitly assumingE50 as Eq.~13! implies,
when actuallyE.0, leads to an overestimatehm8 (L) of the actual entropy
ratehm . H(L) is the solid line.
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hm8 ~L !2hm~L !>
E8~L !

L
. ~98!

Proof: Again, see Fig. 18. Appealing to the monotonici
and convexity ofH(L), the monotonicity ofhm(L), and
Lemma 1, we can rewrite the definition

E~L !5H~L !2hm~L !L, ~99!

as

H~L !

L
2hm~L !5

E~L !

L
. ~100!

Since E8(L) is bounded above byE(L) by Lemma 3, we
have

hm8 ~L !2hm~L !>
E8~L !

L
, ~101!

which directly proves the claim. h

This result establishes howhm(L) lower boundshm8 (L),
as indicated by Lemma 1. In particular, it emphasizes t
their difference is controlled by the excess entropy, a m
sure of memory.

AlthoughE is anL-asymptotic quantity, the errorE/L in
the entropy-rate estimate dominates at smallL. Moreover,
being restricted to smallL is typical of experimental situa
tions with limited data or in which drift is present. That i
one cannot reliably estimate theL-block probabilities Pr(sL)
at largeL due to the exponential growth in their number
the nonstationarity of block probabilities, respectively.

B. Predictability and instantaneous synchronization

Conversely, if one knows the amount of memoryE, we
shall see that this leads to an underestimate of the ent
rate hm . Assuming one knows the excess entropy is
something one would be likely to do in the particular setti
here, in which an observer empirically measures entr
density and related quantities from observed symbol
quences. In a more general modeling setting, however,
always runs the risk of over-fitting and, in so doing, ‘‘pr
jecting’’ some particular structure—such as addition
memory capacity—onto the system. Assuming a fixed, n
zero value for the excess entropy is, in an abstract sens
example of overfitting. Given this, we ask, What is the co
sequence of assuming a fixed value forE?

Equivalently, what happens if the observer assumes
it is synchronized to the process at some finiteL, implying
that H(L)5E1hmL with E held at the correct value? Th
geometric construction for this scenario is given in Fig. 1
In effect the source is erroneously considered to be a c
pletely observable Markovian process in which, as we h
seen,H(L) converges to its asymptotic form exactly at som
finite L. If the observer then uses Eq.~58! to estimatehm

using its assumed value forE, one arrives at the estimatorhm̂

where

hm̂[
H~L !2E

L
Þhm . ~102!
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At a given L the effect is that the observer considers t
source to have a largerE than it actually has at thatL. The
line E1hm̂L is fixed at E when that intercept should b
lower. The result, easily gleaned from Fig. 19, is that t
entropy ratehm is underestimated ashm̂. In other words, the
source appears more predictable than it actually is.

Proposition 15: An observer monitors a process with e
cess entropyE.0. If the observer assumes it is synchroniz
when it is not, then

hm̂<hm . ~103!

Proof: From Fig. 19 or Eq.~102!, one sees that

hm̂5
H~L !2E

L
. ~104!

The observer is assuming that it is seeingH(L)5E1hm̂L.
But sinceH(L)<E1hmL, we have that

E1hm̂L<E1hmL, ~105!

and sohm̂<hm . h

C. Assumed synchronization implies reduced
apparent memory

In addition to analyzing the effects on the apparent
tropy rate due to assuming synchronization, we can as
complementary question: What are the effects on estim
of the apparent memoryÊ? Suppose that, due to some pri
knowledge, one knows the entropy ratehm . For example,
one could know before making any observations that
environment was periodic and, hence, had anhm of zero.
Given this situation, what happens if one prematurely
sumes synchronization? Figure 20 illustrates this situation
this case, one infers an excess entropyÊ that is less than the
true excess entropyE.

If, at a givenL, one approximates the entropy-rate es
matehm(L)5H(L)2H(L21) by the true entropyhm , then
the offset between the asymptote andH(L) is simply E
1hmL2H(L). From Fig. 20 we see that we have a reduc
apparent memoryÊ<E of

Ê5H~L !2hmL. ~106!

FIG. 19. Assumed synchronization converted to false predictability: Sc
matic illustration of how assuming one is synchronized to a process lead
an underestimatehm̂ for a source with excess entropyE.0 and entropy rate
hm .
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If, instead of using the exact entropy ratehm , one uses
the estimatehm(L), one infers an excess entropy that is ev
smaller thanÊ. To see this, note thathm(L)>hm and replace
hm by hm(L) in Eq. ~106!. Thus, assuming synchronizatio
in the special sense thathm(L)5hm , leads one to underest
mate the apparent memoryE. And so, the process appea
less structurally complex than it is.

VII. CONCLUSION

Looking back, we have introduced a variety
information-theoretic measures of a process’s randomn
and a variety of structural properties. Along the way, we
forth a new quantity, the transient informationT. One of the
central results of this work is contained in Theorem 1, wh
we proved thatT is related to the total state-uncertainty e
perienced while synchronizing to a Markov process.

We also calculated these information-theoretic quanti
for a range of differently structured processes. A natu
question, then, is: To what extent does this informatio
theoretic approach allow us to distinguish between proce
that are structured in fundamentally different ways?

A. Process classification

To summarize our results from Sec. V, we now give
rough classification of several types of information sou
based on the quantities studied here. Gaspard and Wa51

have also looked to classify processes by the form of th
entropy convergence. They consider signals that are con
ous in time and random variables that are continuous
value, in contrast to the discrete scenario we consider h
They introduce the parameterse and t which, respectively,
correspond to the bin width used when discretizing conti
ous variables and the time interval between measuremen
the continuous time signal. They then look at how the Sh
non entropy scales withe and t. A thorough analysis of a
wide range of systems reveals an interesting range of c
vergence properties. Similar, although coarser, classificat
of process’s entropy convergence behaviors have been
forth by Szépfalusy,39 Ebeling,53 Crutchfield,72 and Binder
and Plazas.57

We begin our classification with the zero entropy-ra
asymptotically predictable processes.

FIG. 20. Assumed synchronization leads to less apparent memory: S
matic illustration of how assuming synchronization to a source, in this c

implicitly assumingH(L)5E1hmL, leads to an underestimateÊ of the
actual memoryE.0.
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~1! Periodic processes: For period-p processes,H(L) be-
comes a constant andhm(L) vanishes forL>p.

~2! Aperiodic processes: These are infinitary processe
since they need, in a crude sense, an infinite amoun
memory to maintain their aperiodicity. Havinghm50,
they cannot be aperiodic by virtue of an internal sou
of randomness. The excess entropyE and the transient
informationT diverge for this class of processes.

Then we have the positive entropy rate, irreducibly unp
dictable processes.

~1! Memoryless processes: For these,H(L) scales as
hmL, andhm(L) converges immediately tohm . We haveE
50 andT50. Independent, identically distributed~IID ! pro-
cesses are examples of this class. They have no temp
memory and no structural complexity.

~2! Finitary processes: In this classH(L) scales asE
1hmL. The entropy densityhm(L) typically converges ex-
ponentially tohm . We have 0,E,` and T.0. Reference
68 established a useful connection between information
ergodic theories for this class: finiteE means that a proces
is weak Bernoulli. Within the finitary class further structur
distinctions are possible:

~a! Markov processes: The basic property of Markovian
sources is that one synchronizes to them exactly at s
finite block lengthL. For these processes, the effective sta
can be taken to be single symbols or symbol blocks of so
finite length. Once that length of sequence has been par
the observer is synchronized and can then optimally pre
the process.

~b! Deterministic hidden Markov processes: These pro-
cesses are characterized by an exponential convergenc
hm(L), in contrast to the exact convergence at finiteL ex-
hibited by a Markov process. Depending on the transit
structure of the hidden states, these processes can have
tively large values for the excess entropy and transient in
mation. Within this broad class of hidden Markov process
lies the interesting case of a measure sofic process—a sy
whose support set contains an infinite list of irreducible f
bidden words. In a limited sense, these systems have an
finite memory that keeps track of the infinite list of irredu
ible forbidden words. Nevertheless, the measure s
process considered here, the even process, had finiteE and
T. As noted earlier, the behavior ofD2H(L) for these pro-
cesses seems to provide strong hints of the structure of
hidden state transitions responsible for the infinite memo
In particular, we find thatD2H(L) oscillates with a period-
icity given by the periodic structure of the transitions b
tween hidden states.

~c! Nondeterministic hidden Markov processes: It would
appear that this class of process may not be overtly diffe
from other finitary hidden Markov processes. However,
example we considered, the simple nondeterministic sou
showed a markedly different entropy convergence beha
than the other hidden Markov examples.

~3! Infinitary sources: At this point in time, this remains
a catch-all category of processes—those falling outside
finitary classes. These include, for example, various cont
free languages, such as positive entropy-rate variations

e-
e



fro
th
dis
th
re
e

e
th

st

,
s.
tiv
s
in

en
a
rv
g

e

on

io
gn
e
th

b
u
o

es
rc
e,
m
o
ti

rg
-
fo
o
of
ca
pr

io
—

nd

ta-
of

y-

he
can
een

s is
ons
ent

of
will
o-
e is
or-

ion

s-
nts

sti-
ro-
nd
m
ia
ent
e,
en

48 Chaos, Vol. 13, No. 1, 2003 J. P. Crutchfield and D. P. Feldman
the Thue–Morse process and other stochastic analogs
higher up the Chomsky hierarchy. Presumably, within
infinitary sources there are many interesting structural
tinctions waiting to be discovered: some analogous to
automata-architectural distinctions recognized by disc
computation theory84 and some distinctions related to th
nature of the measure over the infinite sequences.

The ultimate goal of this type of classification would b
an amalgamation of the structural distinctions made in
Chomsky hierarchy of computation theory84 and statistical
categories found in the ergodic theory hierarchy of stocha
processes.85

Recent work by Nemenman8 and Bialek, Nemenman
and Tishby7 may be a helpful step in this direction. In Ref
7 and 8 they show that the excess entropy—the ‘‘predic
information’’ in their parlance—is, in some circumstance
related to the number of parameters in the model produc
the process. However, this result holds in a slightly differ
context than ours. Rather than using histograms of larger
larger blocks, they consider a procedure in which an obse
is trying to learn a distribution through successive samplin

B. Inferring models from finite resources

In Sec. VI we considered various trade-offs betwe
finite-L estimates of the excess entropyE, the transient in-
formationT, and the entropy ratehm . In particular, we have
shown that not taking one or another into account leads
to systematicallyover- or underestimatea source’s entropy
ratehm . For example, there can be an inadvertent convers
of ignored memory into apparent randomness. The ma
tude of this effect is proportional to the difference betwe
source memory and the upper bound on memory that
observer can estimate. In a complementary way, one can
advertently convert assumed memory into false predicta
ity. One eventually comes to see that a process’s struct
features must be accounted for, even if one’s focus is only
an apparently simpler question of~say! how random a pro-
cess is.86

C. Future directions

We conclude by mentioning some important open qu
tions and suggesting several directions for future resea
First, at a number of points we have referred to ‘‘structur
without actually defining it. Is there a better, more syste
atic, and principled approach for determining the structure
an information source than the pure information-theore
one just outlined? References 20 and 72, for example, a
that computational mechanicsis a viable approach to quan
tifying source structure and the patterns produced by in
mation sources, including infinitary processes. They sh
that thee-machine representation used there captures all
source’s structure. Thus, one natural question is: How
one determine entropy convergence behavior given a
cess’se-machine?

Second, it would be helpful to make a direct connect
between the source characterization developed here
terms of average source properties measured byhm , E, T,
andG—and the difficulty of estimating these quantities a
m
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of inferring models of the sources. Analyzing the compu
tional complexity of these two problems is the domain
computational learning theory.87,88

Third, establishing that the source entropy ratehm is a
metric invariant is one of the hallmarks of ergodic and d
namical systems theories.29,30,89What status doE andT hold
in the same setting?

Finally, there is, of course, the question of how t
information-theoretic approach to structure outlined here
be extended to more than one dimension. There has b
some preliminary work in this direction;33,66,67,74,90–92how-
ever, many questions remain. One of the central difficultie
that, unlike in one dimension where the various expressi
for the excess entropy are equivalent, they yield differ
results when extended to two dimensions.93 Careful defini-
tions and distinct interpretations of the different forms
two-dimensional excess entropy and related quantities
have to be given in order to develop a useful, fully tw
dimensional approach to pattern and structure. Our hop
that the preceding development is sufficiently clear and th
ough that it can serve as a firm foundation for an informat
theory of structure in higher-dimensional processes.
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APPENDIX A: PROOFS

Proposition 1: DH„L …ÄD†Pr„s L
…iPr„s LÀ1

…‡

Proof: By direct calculation we have the following.

D@Pr~sL!iPr~sL21!#

5(
$sL%

Pr~sL!log2

Pr~sL!

Pr~sL21!
~A1!

5(
$sL%

Pr~sL!log2 Pr~sL!

2 (
$sL21%

(
$sL21%

Pr~sL!log2 Pr~sL21! ~A2!

5H~L !2 (
$sL21%

log2 Pr~sL21! (
$sL21%

Pr~sL! ~A3!

5H~L !2H~L21!, ~A4!

since Pr(sL21)5($sL21% Pr(sL). h
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Proposition 2: D2H„L …
ÄÀD†Pr„s LÀ1zs LÀ2

…iPr„s LÀ2zs LÀ3
…‡

Proof: By the expressions for the second discrete deri
tive, Eqs.~20! and ~A1!, we have

D2H~L !5DH~L !2DH~L21! ~A5!

52(
$sL%

Pr~sL!log2 Pr~sL21usL22!

1 (
$sL21%

Pr~sL21!log2 Pr~sL22usL23! ~A6!

52(
$sL%

Pr~sL!log2

Pr~sL21usL22!

Pr~sL22usL23!
~A7!

52D@Pr~sL21usL22!iPr~sL22usL23!#. ~A8!

h

Proposition 3: ÀGÄR

Proof: We write the sum of Eq.~45! and use the anti-
differentiation formula Eq.~21! to get

(
L51

M

D2H~L !5DH~M !2DH~0!. ~A9!

Since limL→` DH(L)5hm and since we have define
DH(0)5 log2uAu, it follows immediately that

2G5 lim
M→`

@DH~0!2DH~M !# ~A10!

5 log2uAu2hm , ~A11!

which is R by Eq. ~15!. h

Proposition 4: G ÄÀ(LÄ2
`

„LÀ1…D3H„L …

Proof: We write Eq.~48! as a partial sum as follows:

(
L52

`

~L21!D3H~L !5 lim
M→`

F (
L52

M

LD3H~L !2 (
L52

M

D3H~L !G .

~A12!

We use Eqs.~22! and ~21! on the first and second terms o
the right-hand side and obtain, after simplifying

2 (
L52

`

~L21!D3H~L !

52 lim
M→`

FMD2H~M !2 (
L51

M

D2H~L !G . ~A13!

From the definition ofG, Eq. ~45!, and since we assume th
G is finite, limM→` MD2H(M )50. From this we see imme
diately that

2 (
L52

`

~L21!D3H~L !5 (
L51

`

D2H~L ![G. ~A14!

h

-

Proposition 5: E ÄÀ(LÄ2
`

„LÀ1…D2H„L …

Proof: Writing the right-hand side of the above
mentioned equation as a partial sum, and then using
integration-by-parts formula~22! we obtain, after some alge
bra:

2 (
L52

`

~L21!D2H~L !5 lim
M→`

H 2MDH~M !1 (
L51

M

DH~L !J .

~A15!

Recalling thatDH(L)5hm(L) and thathm(M )→hm in the
M→` limit, we see at once that

2 (
L52

`

~L21!D2H~L !5 (
L51

`

@hm~L !2hm#[E. ~A16!

The last equality follows from the definition ofE, Eq.~49!.h

Proposition 7: E Ä lim L\`†H„L …Àh mL ‡

Proof: Writing out the partial sum of the infinite sum i
Eq. ~49! and evaluating it using the integration formula, E
~21!:

(
L51

M

@DH~L !2hm#5H~M !2H~0!2hmM . ~A17!

SinceH(0)[0, it then follows immediately that

E5 lim
M→`

@H~M !2hmM #. ~A18!

h

Proposition 8: E ÄI†S¢ ;Sª ‡

Proof: We rewrite the definition so that we can use t
finite-L forms of various entropies:

I @SW ;SQ #[ lim
L→`

I @SW L;SQ L#. ~A19!

We begin with the definition of mutual information, Eq.~8!,
which expressesI as the difference between two entropies

I @SW L;SQ L#5H@SW L#2H@SW LuSQ L#. ~A20!

Recall thatH@SW L#5H(L).
Using the conditional entropy chain rule26 we have

H@SW LuSQ L#5H@S0 ,S1 ,...,SL21uS2L ,...,S21# ~A21!

5 (
i 50

L21

H@Si uS2LS2L11...Si 21#. ~A22!

Putting these together we have

I @SW ;SQ #5 lim
L→`

FH~L !2 (
i 50

L21

H@Si uS2LS2L11...Si 21#G .

~A23!

In theL→` limit, each term in the summand is equal tohm .
Thus, we see that
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I @SW ;SQ #5 lim
L→`

@H~L !2Lhm#, ~A24!

which is E by Proposition 7. h

Lemma 1: h m8 „L …Ðh m„L …Ðh m

Proof: We prove the right inequality first. Since cond
tioning reduces entropy,

hm~L !>hm~L8! for all L.L8. ~A25!

Now, recall that

lim
L→`

hm~L !5hm . ~A26!

Since, by Eq.~A25!, the hm(L)’s are nonincreasing asL
increases, it follows thathm(L)>hm .

We now prove the left inequality in the proposition,

hm8 ~L ![
H~L !

L
5

1

L (
i 51

L

H@Si uSi 21Si 22¯Si #. ~A27!

For all i ,L,

H@Si uSi 21Si 22¯Si #>H@SLuSL21SL22¯S1#. ~A28!

Thus,

hm8 ~L !>
1

L (
i 51

L

H@SLuSL21SL22¯S1# ~A29!

5
1

L
LH@SLuSL21SL22¯S1# ~A30!

5hm~L !. ~A31!

h

Lemma 3: E 8„L …ÏE„L …ÏE

Proof: We first prove the right inequality. Recall that

E~L ![H~L !2Lhm~L ! ~A32!

5 (
M51

L

~hm~M !2hm~L !!. ~A33!

SinceM<L for all terms in the summand, all elements
the sum are positive. Now, the excess entropy is defined

E[ lim
L→`

(
M51

L

~hm~M !2hm~L !!. ~A34!

Thus,E(L) is the partial sum of the above-mentioned ter
Since all terms in the sum are non-negative, it follows i
mediately that the partial sumE(L) is less than the infinite-
sumE.

We now prove the left inequality. Using stationarity,

E8~L !52H~L/2!2H~L !. ~A35!

Recall that for oddL, we definedE8(L)5E8(L21). To
prove the left inequality, it will suffice to show that

2H~L/2!2H~L !<H~L !2Lhm~L !. ~A36!

Rearranging, we have
s

.
-

2H~L/2!<2H~L !2Lhm~L !. ~A37!

By the concavity ofH(L), 2H(L/2)>H(L), and thus the
above equation becomes

H~L !<2H~L !2Lhm~L !. ~A38!

Rearranging again, we see that we need to show

H~L !>Lhm~L !. ~A39!

That this equation is true can be seen geometrically by
specting Fig. 2. Note that the inequality is saturated if a
only if the process is independent identically distributed.

To verify Eq. ~A39! algebraically, we use the chain rul
on the left-hand side and obtain

H~L !5 (
M51

L

H@SMuSM21SM22¯S1#. ~A40!

But,

(
M51

L

H@SMuSM21SM22¯S1#

> (
M51

L

H@SLuSL21SL22¯S1# ~A41!

5Lhm~L !. ~A42!

Thus, Eq.~A39! is true, and the proof is complete. h

APPENDIX B: EXPONENTIAL CONVERGENCE TO
THE ENTROPY RATE

It was claimed in the main text thathm(L)2hm often
vanishes exponentially fast for finitary sources. Why is t
behavior so common? There are several ways to argue
the ubiquity of exponential entropy convergence.

First, note that ifD2H(L) converges to 0 exponentiall
fast, thenhm(L)5DH(L) must also converge exponential
fast. Then, a direct calculation shows thatD2H(L)<I (L),
whereI (L) is the mutual information between two variable
separated byL symbols. Now, the two-variable mutual infor
mation is related to the two-variable correlation functi
C(L). In particular, I (L)}C2(L). This result was first
shown for binary sequences by Li~Ref. 60! and later gener-
alized to larger alphabets by Herzel and Grosse.61 As a result,
if the correlations decay exponentially, then the two-sym
mutual information decays exponentially. This, in turn, a
lows one to conclude that the entropy-rate estimate c
verges exponentially, and so,E is finite.

The conclusion from these observations is that expon
tial convergence of correlation functions implies the exp
nential convergence of the entropy rate. However, this o
transfers the convergence question from entropy rates to
relation functions. Sowhy is it that correlation functions
typically decay exponentially? There are several answer
this question.

Mathematically, many stochastic processes can be re
pressed as one-dimensional spin models; see, e.g., Ref
Thus, we expect that what is typical for spin systems w
also be typical for the more general stochastic processe
interest to us here. In a one-dimensional statistical mech
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cal model with finite interaction strengths, one can alwa
express the partition function as an infinite product of tra
fer matrices. The correlation function between two spinsL
lattice sites apart is proportional to (l0 /l1)L, wherel0 is
the largest eigenvalue of the transfer matrix andl1 the sec-
ond largest eigenvalue. The Perron–Frobenius theorem g
antees that the largest eigenvalue is nondegenerate, thu
tablishing the exponential decay of the correlation functi
This result is standard; see, for example, Ref. 94.

Physically, in a spin system the sum of the correlat
functions yields the magnetic susceptibilityx. The exponen-
tial decay of the correlation function thus ensures thatx is
finite. Hence, away from a critical point, where we expe
finite response functions such asx, we also expect exponen
tially decaying correlation functions—or at least correlatio
that decay faster than 1/L.

Mathematically, it has been shown that, under a fa
wide range of circumstances, a statistical mechanical sys
with an analytic partition function necessarily has correlat
functions that decay exponentially.95 Unlike the Perron–
Frobenius transfer matrix argument, the results in Ref.
hold for systems in more than one dimension.

APPENDIX C: PROOF OF THE SYNCHRONIZATION
INFORMATION THEOREM

We begin by restating the theorem:
Theorem 1: If the source is order-R Markovian, then

S5T1 1
2 R~R11!hm . ~C1!

Proof: Since the transition probabilities are normalize
T is a stochastic matrix;(b Tab51. The eigenvector corre
sponding to the eigenvalue 1 shall be denoted byp and is
normalized in probability,

(
a

paTab5pb , (
a

pa51. ~C2!

As is well known,pa gives the asymptotic probability of th
stateAPV. Equivalently, in terms of theR-blocks,

pA5Pr~w21~A!!. ~C3!

Or, simply

pA5Pr~sR!, ~C4!

wheresR is understood to correspond to theAth state.
Initially, before any measurements are made, we ass

our distribution overV is given byp;

Pr~Vul,M!5p, ~C5!

wherel is the empty string. Hence,H(0)5H@p#. Equiva-
lently, it follows from Eqs.~78! and ~C3! that

H~0!5H~R!. ~C6!

If we observe a particular symbols18 , we now know that the
process must be in one of the states that correspond to
bol blocks whose first symbol iss18 . We denote this set o
states by

V s
18
[$w~s18s2¯sR!:siPA, 2, i ,R%. ~C7!
s
-

ar-
es-
.

n

t

s

m
n

5

,

e

m-

Likewise, after we have observed the particular lengthL se-
quences8L, L,R, we know that the process must be in o
of the states that corresponds to anR-symbol block whose
first L symbols ares8L;

V s8L[$w~s8LsL11sL12¯sR!:siPA,L11, i ,R%, L<R.
~C8!

The following properties ofV s8L follow immediately from
the definition, Eq.~C8!:

V sL,V, ~C9!

V sLùV s8L5B if and only if sLÞs8L, ~C10!

and

ø
sL

V sL5V. ~C11!

Thus, the set ofL blocks$sL% induces a partition of the set o
states$V%. For a givenL there are at mostA L setsV sL, each
of which is a proper subset ofV. ~There are exactlyA L

subsets ofV if and only if there are no forbidden sequence!
The setV sL has at mostA R2L elements. So, as more an
more symbols are observed—i.e., asL grows—the subsets
V sL of V become more and more refined. For the Markov
case considered here, eventually enough symbols will be
served so that we know with probability 1 the state of t
process. Since the Markovian states are in a one-to-one
tion with theR-blocks, we are guaranteed to know the sta
with certainty afterR symbols have been observed. Henc
H(R)50. Observing subsequent symbols will not add to t
state uncertainty since each observation uniquely determ
the subsequent state. Thus,H(L)50 for L>R.

For L,R, the distribution over the Markovian state
vPV is given by

Pr~vusL,M!5
psL

Pr~sL!
, ~C12!

wherepsL
is a vector whoseuVu components are given by

~psL
!v5H pv , if vPV sL

0, otherwise.
~C13!

We are interested in calculatingH(L), the average state
uncertainty after observingL symbols. In order to perform
this calculation, the following two properties ofpsL

will be
necessary.

First, for fixedsL, observe that summing (psL
)v over its

componentsv results in Pr(sL), the probability of that par-
ticular sL. This follows from the definition of (psL

), Eq.
~C13!:

(
$v%

~psL
!v5 (

vPV sL

pv ~C14!

5 (
$sR:w(sR)PV sL%

Pr~sR! ~C15!

5 (
$sL11sL12¯sR%

Pr~sR! ~C16!

5Pr~sL!. ~C17!
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Hence, Pr(VusL,M) as given in Eq.~C12! is normalized over
sL.

Second, notice that (psL
)v has only one nonzero entr

for fixed L and fixed stateA. This follows from noting that
the particular stateAPV is associated with a particularR-
block w21(A). More formally, suppose that (psL

)v has a
nonzero entry for two differentL blocks, saysL ands8L;

~psL
!v5~ps8L

!v.0, sLÞs8L. ~C18!

Then, by Eq.~C13!, it follows that

APV sL, vPV s8L, ~C19!

which, in turn, implies that

V sLùV s8LÞB, sLÞs8L. ~C20!

Equation ~C20! contradicts Eq.~C10!. Thus, the original
proposition must be true: (psL

)v has only one nonzero
entry—namelypv—for all possiblesL’s.

We are now ready to complete our calculation ofH(L).
Plugging Eq.~C12! into Eq.~76! and simplifying slightly, we
have

H~L !52(
$sL%

(
vPV

~psL
!v log2~psL

!v

1(
$sL%

(
vPV

~psL
!v log2 Pr~sL!. ~C21!

Parenthetically, we note thatH(L) is the information gain:
H(L)5D@psL

iPr(sL)#. By Eq. ~C17!, we can perform the
sum overv in the second term on the right-hand side of t
above equation, and we obtain the entropy of anL-block,
H(L).

To evaluate the first term on the right-hand side, rec
that (psL

)v has only one nonzero entry for fixedL and fixed
v. Using this, we see that

(
sL

S 2 (
vPV

~psL
!v log2~psL

!vD 52 (
vPV

pv log2 pv

~C22!

5H@p# ~C23!

5H~R!. ~C24!

Thus, it follows that

H~L !5H H~R!2H~L ! if 0<L<R

0 if L.R.
~C25!

We now have an expression forH(L) in terms ofH(L),
and we finish the proof with a direct calculation. Looking
Eq. ~C1!, one sees that it will suffice to show that

(
L50

`

H~L !2T5
hm

2
R~R11!. ~C26!

By assumption, the process is order-R Markovian. This im-
plies thatH(L)50 andH(L)5E1hmL for all L>R. As a
result of Eq.~C26!, the summand of the infinite sum tha
definesT, Eq. ~65!, is zero for allL>R. That is, the last
ll

t

nonzero contribution to the sum comes atL5R21. As a
result, the left-hand side of Eq.~C26! can be written as

(
L50

`

H~L !2T5 (
L50

R21

@H~R!2H~L !2E2hmL1H~L !#

~C27!

5 (
L50

R21

@H~R!2E2hmL#. ~C28!

But H(R)5E1hmR, since we assume that synchroniz
tion occurs atL5R. Plugging this into Eq.~C28!, we have

(
L50

`

H~L !2T5 (
L50

R21

@E1hmR2E2hmL# ~C29!

5hm (
L50

R21

~R2L ! ~C30!

5hm~R22 1
2 R~R21!! ~C31!

5
hm

2
R~R11!. ~C32!

This last equation is Eq.~C26!, thus completing the proof.h
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