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Regularities unseen, randomness observed: Levels of entropy convergence
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We study how the Shannon entropy of sequences produced by an information source converges to
the source’s entropy rate. We synthesize several phenomenological approaches to applying
information theoretic measures of randomness and memory to stochastic and deterministic
processes by using successive derivatives of the Shannon entropy growth curve. This leads, in turn,
to natural measures of apparent memory stored in a source and the amounts of information that must
be extracted from observations of a source in order for it to be optimally predicted and for an
observer to synchronize to it. To measure the difficulty of synchronization, we defireattstent
informationand prove that, for Markov processes, it is related to the total uncertainty experienced
while synchronizing to a process. One consequence of ignoring a process’s structural properties is
that the missed regularities are converted to apparent randomness. We demonstrate that this problem
arises particularly for settings where one has access only to short measurement sequences.
Numerically and analytically, we determine the Shannon entropy growth curve, and related
quantities, for a range of stochastic and deterministic processes. We conclude by looking at the
relationships between a process’s entropy convergence behavior and its underlying computational
structure. ©2003 American Institute of Physic§DOI: 10.1063/1.1530990

How does an observer come to know in what internal
state a process is? We show this is related to another
guestion. How does an observer come to accurately esti-
mate how random a source is? We answer these questions
by modeling the relationship between an observer and an
observed process as a measurement channel—an adapta-
tion of Shannon’s notion of a communication channel.
Using successive derivatives of the Shannon entropy

But ignorance of the different causes involved in the
production of events, ... taken together with the im-
perfection of analysis, prevents our reaching the same
certainty about the vast majority of phenomena. Thus
there are things that are uncertain for us, things more
or less probable, and we seek to compensate for the
impossibility of knowing them by determining their
different degrees of likelihood.

growth curve we derive measures of the apparent
memory stored in a process and the amounts of informa-
tion that must be extracted from observations of a pro-
cess in order for it to be optimally predicted and for an
observer to synchronize to it. One consequence of ignor-
ing these structural properties is that the missed regulari-
ties are converted to apparent randomness.

Second, there may be mechanisms intrinsic to a process
that amplify unknown or uncontrolled fluctuations to unpre-
dictable macroscopic behavior. Manifestations of this sort of
randomness includdeterministic chaosnd fractal separa-
trix structures bounding different basins of attraction. As
Poincarenoted?

. it may happen that small differences in the initial
conditions produce very great ones in the final phe-
nomena. A small error in the former will produce an
enormous error in the latter. Prediction becomes im-
possible, and we have the fortuitous phenomenon.

I. INTRODUCTION
A. Apparent randomness

Natural processes appear unpredictable to varying deJnpredictability of this kind also arises from sensitive de-
grees and for several reasons. First, and most obviously, orgendence on parametérsyuch as that seen in nonstructurally
may not know the “rules” or equations that govern a particu-Stable systems with continuous bifurcatibies from sensi-
lar system. That is, an observer may have only incompletéive dependence on boundary conditions. Knowledge of the
knowledge of the forces controlling a process. Laplace wagoverning equations of motion does little to make these
well aware of these sources of apparent randomness; as ki#ds of intrinsic randomness go away.

commented two centuries ago in motivating Risilosophi- Third, and more subtly, there exists a wide array of
cal Essay on Probabilities observer-induced sources of apparent randomness. For one,

the choice of representation used by the observer may render
a system unpredictable. For example, representing a square
wave in terms of sinusoids requires specifying an infinite
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number of amplitude coefficients. Truncating the order ofasymptotic value. We shall see a variety of different conver-
approximation leads to errors, even for a source as simplgence behaviors and will present several different quantities
and predictable as a square wave. Similarly, an observertat capture the nature of this convergence. As the title of this
choice and design of its measuring instruments is an addiwork suggests, we shall see that regularities that are unseen
tional source of apparent randomness. As one example, Redre “converted” to apparent randomness.

5 shows how irreducible unpredictability arises from a mea- It is important to emphasize, and this will be clear
surement instrument’s distortion of a spatiotemporal prothrough our citations, that much of our narrative about levels
cess’s internal states. For other examples, see, e.g., Ref.08 entropy convergence touches on and restates results and
and references therein. intuitions known to a number of researchers in information

Fourth, the measurement process engenders appareghtory, dynamical systems, stochastic processes, and sym-
randomness in other, perhaps more obvious ways, too. Evdiolic dynamics. Our attempt here, in light of this, is several-
if one knows the equations of motion governing a systemfold. First, we put this knowledge into a single framework,
accurate prediction may not be possible: the measurementssing the language of discrete derivatives and integrals. We
made by an observer may be inaccurate, or, if the measuréelieve this approach unifies and clarifies a number of extant
ments are precise, there may be an insufficient volume ofjuantities. Second, and more important, by considering nu-
measurement data. Or, one may simply not have a suffimerous examples, we shall see that examining levels of en-
ciently long measurement stream, for example, to disambiguropy convergence can give important clues about the com-
ate several internal states and, therefore, their individual corputational structure of a process. Finally, our view of entropy
sequences for the process’s future behavior cannot beonvergence will lead naturally to a new quantity, then-
accurately accounted for. Examples of these sorts o$ient informationT. We shall prove that the transient infor-
measurement-induced randomness are considered in Refsation captures the total uncertainty an observer must over-
7-9. In all of these cases, the result is that the process agome in synchronizing to a Markov process is intrinsic
pears more random than it actually is. states.

Fifth, and finally, if the dynamics are sufficiently com- We begin in Sec. Il by fixing notation and briefly review-
plicated it may simply be too computationally difficult to ing the motivation and basic quantities of information theory.
perform the calculations required to go from measurementi Secs. Il and IV we use discrete derivatives and integrals
of the system to a prediction of the system’s future behaviorto examine entropy convergence. In so doing, we recover a
The existence of deeply complicated dynamics for which thiswumber of familiar measures of randomness, predictability,
was a problem was first appreciated by Poincacge than a and “complexity.” Then, in Sec. IV C we introduce, moti-
century ago as part of his detailed analysis of the three-bodyate, and interpret a new information-theoretic measure of
problem?*° structure, the transient information. In particular, we shall see

Of course, most natural phenomena involve, to one dethat the transient information provides a quantitative measure
gree or another, almost all of these separate sources of the manner in which an observer synchronizes to a source.
“noise.” Moreover, the different mechanisms interact with We then illustrate the utility of the quantities discussed in
each other. It is no surprise, therefore, that describing an&ecs. llI-IV by considering a series of increasingly rich ex-
guantifying the degree of a process’s apparent randomnessasnples in Sec. V. In Sec. VI we look at relationships between
a difficult yet essential endeavor that cuts across many dighe quantities discussed previously. In particular, we show
ciplines. several quantitative examples of how regularities that go un-

detected are converted into apparent randomness. Finally, we
conclude in Sec. VIl and offer thoughts on possible future
B. Untangling the mechanisms directions for this line of research.

A central goal here is to examine ways to untangle the
different mechanisms responsible for apparent randomness
by investigating several of their signatures. As one step in|. INFORMATION THEORY
addressing these issues, we analyze those aspects of appagn{_he measurement channel
randomness over which an observer may have some control.
These include the choice of how to quantify the degree of In the late 1940s Claude Shannon founded the field of
randomnesse.g., through choices of statistic or in modeling communication theor}? motivated in part by his work in
representationand how much data to collect. We describe cryptography during World War 2 His attempt to analyze
the stance taken by the observer toward the process to like basic trade-offs in disguising information from third par-
analyzed in terms of themeasurement chanrelan ties in ways that still allowed recovery by the intended re-
adaptatioft of Shannon’s notion of a communication chan- ceiver led to a study of how signals could be compressed and
nel. One of the central questions addressed in the followingransmitted efficiently and error free. His basic conception
is, “How does an observer, appraised of a process’s possiblMas that of acommunication channe&lonsisting of arinfor-
states and its dynamics, come to know in what internal statenation sourcewhich producesmessageshat are encoded
the process is?” We will show that this is related to anotherand passed through a possibly noisy and error-prone channel.
question, “How does an observer come to accurately estiA receiverthen decodes the channel’s output in order to re-
mate how random a source is?” In particular, we shall invescover the original messages. Shannon's main assumptions
tigate how finite-data approximations converge to thiswere that an information source was described by a distribu-
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Shannon’s coding theorem, success in answering these ques-
tions depends on whether the system’s entropy rate falls be-
low the measurement channel capacity. If it does, then the
observer can build a model of the system. Conversely, if the
entropy rate is above the measurement channel's capacity,
then the theorem tells us that the observer cannot exactly
System Process Observer reconstruct all properties of the system. In this case, source
messages—sequences over internal states—cannot be de-
FIG. 1f-| T?edmerisﬂﬁ?:gttl Cf}?mz'ggzgrwgrﬁ :S‘{@:ﬁ%}xghf:gigegjs Acoded in an error-free manner. In particular, optimal predic-
g[fsé?v?vﬁo?lfs v)\//ith this ir>r/1ypoverished data to builfd a model of the underElon will not be pOSSIble. In the followmg, we assume that
lying system. After Ref. 24. the entropy rate is less than the channel capacity and, hence,
that optimal prediction is—in theory, at least—possible.
Similar questions of building models from data produced

tion over its possible messages and that, in particular, a meSY Various kinds of information sources are found in the
sage was “informative” according to how surprising or un- fields of machine learning and computational learning theory.
likely its occurrence was. See the appendixes in Ref. 20 for comments on the similari-

We adapt Shannon’s conception of a communicatiorfies and differences with the approach taken here. For an
channel as follows: We assume that there ispracess alternative account of the observation process see Refs. 21

(source that produces aata streammessage—an infinite ~ &"d 22, which consider measuring quantum systems, and
string of symbols drawn from some finite alphabet. The tasiRef. 23, which addresses observers in the classical domain.
for the observer(receivej is to estimate the probability dis-

tribution of sequences and, thereby, estimate how random the

process is. Further, we assume that the observer does Bt Stationary stochastic processes

know the process’s structure; the range of its states and their h st hall i il be st
transition structure—the process’s internal dynamics—are, € measurement streams we shall consider wilt be sta-

hidden from the observetWe will, however, occasionally tionary stochastic processes. In this section we introduce this
relax this assumption in the follo;/vin)gSince, the observer idea more formally, fix nqtation, and define a few clas_ses .Of
does not have direct access to the source’s internal, hiddeg{ochastlc process to which we shall return when considering

states, we picture instead that the observer can estimate %amples m_Sec. V . .

arbitrary accuracy the probability of measurement sequences, The_ main quect of our attention will be a one-

Thus, we do not address the eminently practical issue of ho\ﬁlmensmnal chain

much data are required for accurate estimation of these prob- _

abilities. For this, see, for example, Refs. 9 and 14-17. In  S=...5-25_15S;... (1)

our scenario, the observer detects sequence blocks directly

and stores their probabilities as histograms. Though appagf random variabless; whose values range over a finite al-

ently quite natural in this setting, one should consider thé?habet setd. We assume that the underlying system is de-

histogram to be a particular class of representation for th&cribed by a shift-invariant measugeon infinite sequences

source’s internal structure—one that may or may not cor:"*S-2S-15051Sy '+ ;Sy € A.?° The measurg. induces a fam-

rectly capture that structure. ily of distributions,{Pr(s;1,...,S+):S € A}, where Pré)
This measurement channstenario is illustrated in Fig. denotes the probability that at tintethe random variabl&,

1. In this case, the source is a three-state deterministic finit@kes on the particular valug e A and Pré;.y,....S+1)

automaton. However, the observer does not see the intern@enotes the joint probability over blocks &f consecutive

states{A,B,C}. Instead, it has access to only the measuresymbols. We assume that the distribution is stationary;

ment symbolg0,1} generated on state-to-state transitions byP(St+1,---St+1) =Pr(sy,...,s.).

the hidden automaton. In this sense, the measurement chan- We denote a block of consecutive variables bg"

nel acts like a communication channel; the channel map& S:.-.S.. We shall follow the convention that a capital let-

from an internal-state sequenc8CBAACBC... to a mea- ter refers to a random variable, while a lowercase letter de-

surement sequence ...0111010.... The process shown in FRQtes a particular value of that variable. Thus}

1 belongs to the class of stochastic process knowmidden = S1S2...S., denotes a particular symbol block of lendth

Markov modelsThe transitions from internal state to internal We shall use the terprocesdo refer to the joint distribution

state are Markovian, in that the probability of a given tran-Pr(S) over the infinite chain of variables. A process, defined

sition depends only upon which state the process is currentln this way, is what Shannon referred to as an information

in. However, these internal states are not seen by theource.

observer—hence the name “hidden” Markov modf&t® For use later on, we define several types of process.
Given this situation, a number of issues arise for theFirst, and most simply, a process withuaiform distribution

observer. One fundamental question is how many of the syss one in which all sequences occur with equiprobability. We

tem’s properties can be inferred from the observed binarill denote this distribution byJ';

data stream. In particular, can the observer build a model of

the system that allows for accurate prediction? According to  U(st) =1/ A|". 2

...001011101000...
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Next, a process ifndependently and identically distributed The information gainbetween two distributions Pxj
(ID) if the joint distribution Pré)zPr(...,& St and P(x) is defined by
Sii2,S43,...) factors in the following way:

~ Pr(x)
PIS)=...PASIPHS 1 )PI(S o). @  DPOOIPI0]= 2, Prxlogs< —, ©

Pr(x)
and Pr§)=Pr(S;)) for all i and]. —~ ) o _
We shall call a procesMarkovianif the probability of ~ Where P(x)=0 only if Pr(x) =0. QuantitativelyD[ P||Q] is
the next symbol depends only on the previous symbol seerl® number of bits by which the two distributioffsand Q

In other words, the joint distribution factors in the following differ.” Informally, D[P||Q] can be viewed as the distance
way: betweenP and Q in a space of distributions. However,

_ D[P||Q] is not a metric, since it does not obey the triangle
PIS)=...P(S11|S)PI(S 1 2|Sis1)--- - (4)  inequality.
More generally, a process @sderR Markovianif the prob- ~ Similarly, theconditional entropy gaifbetween two con-
ability of the next symbol depends only on the previgus ditional distributions Pi|y) and P¢x|y) is defined by

symbols:
PPy By = S, Proxylog,
PHS|....S-2,5-1)=PIS|S g, S-1). (5) ey IO
Finally, a hidden Markov procesgonsists of an internal (10

orderR Markov process that is observed only by a function
of its internal-state sequences. These are sometimes call@d Block entropy and entropy rate
functions of a Markov chaitf'® We refer to all of these
processes danitary, since there is a well-defined sense, dis-
cussed in the following, in which they have a finite amount
of memory.

We now examine the behavior of the Shannon entropy
H(L) of Pr(s}), the distribution over blocks df consecu-
tive variables. We shall see that examining how the Shannon
entropy of a block of variables grows withleads to several
quantities that capture aspects of a process’s randomness and
C. Basic quantities of information theory different features of its memory.

Here, we briefly state the definitions and interpretations ~ Thetotal Shannon entropgf lengthi sequences is de-
of the basic quantities of information theory. For more de-fined
tails, see Ref. 26. LeX be a random variable that assumes
the valuesxe X, where X is a finite set. We denote the H(L)=— > Prsh)log, Prist), (11
probability thatX assumes the particular valueby Pr(x). sbeat
Likewise, letY be a random variable that assumes the valuesvhereL>0. The sum is understood to run over all possible

ye). blocks of L consecutive symbols. If no measurements are
The Shannon entropgf X is defined by made, there is nothing about which to be uncertain and, thus,
we defineH (0)=0. In the following we will show thaH (L)
H[X]=— E Pr(x)log, Pr(x). (6) is a nondecreasing function bf H(L)=H(L—1). We shall
XeX

also see that it is concaved(L)—2H(L—1)+H(L—-2)

Note thatH[ X]=0. The units ofH[ X] arebits. The entropy <0. _ ) )

H[X] measures the uncertainty associated with the random Note that the maximum average information per obser-
variableX. Equivalently, it measures the average amount ovation is 10g|A|, H(1)<log,|A|, and, more generally,
memory, in bits, needed to store outcomes of the varixble H(L)<L log,|Al. (12)

The conditional entropyis defined by o o
Equality in Eq.(12) occurs only when the distribution over

@) L-blocks is uniform, i.e., given by". Figure 2 shows$i (L)
for a typical information source. The various labels and the

. : : interpretation ofH(L) there will be discussed fully in the

and measures the average uncertainty associated with Vaﬂillowing
abIeT);, i Wte klnpv;/Y. tiorbetweerX andY is defined The éource entropy rate his the rate of increase with

€ mutual informationbetween? and Y 1s defined as respect td_ of the total Shannon entropy in the largdimit:

I[X;Y]=H[X]—H[X]|Y]. (8) R

In words, the mutual information is the average reduction of h,= lim L (13
uncertainty of one variable due to knowledge of another. If Lo
knowingY on average makes one more certain abquhen  where u denotes the measure over infinite sequences that
it makes sense to say thdt carries information abouk. induces thel-block joint distribution Prg-); the units are
Note thatl[ X;Y]=0 and that [ X;Y]=0 when eitheiX and  bits/symbal The limit in Eq. (13) exists for all stationary
Y are independerithere is no “communication” betweeX measures.?® The entropy ratd,, quantifies the irreducible
and Y) or when eitherH[X]=0 or H[Y]=0 (there is no randomness in sequences produced by a source: the random-
information to share Note also that[ X;Y]=I1[Y;X]. ness that remains after the correlations and structures in

HIX|Y]=— X , Prixy)log, Pr(x|y),

xeXye
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Frequently, however, the observé is less than its
maximum value. This difference is measured by tbéun-
dancyR:

R=log,|A|—h,. (15)

Note thatR=0. If R>0, then the series of random variables
0,5, S41,... hassome degree of regularity: either the in-
dividual variables are biased in some way or there are corre-
lations between them. Recall that the entropy rate measures
the size, in bits per symbol, of the optimal binary compres-
sion of the source. The redundancy, then, measures the
0 L amount by which a given source can be compressed. If a

FIG. 2. Total Shannon entropy growth for a finitary information source: aSyStem is highly redundant, it can be compressed a great
schematic plot oH(L) vsL. H(L) increases monotonically and asymptotes deal.

to the lineE+h,L, whereE is the excess entropigee Sec. IV Bandh,, is For another interpretation of the redundancy, one can
the source entropy rate. This dashed line is Erxmemoryful Markovian show thatR is the information gain of the source’s actual

source approximation to a source with entropy growttlL.). The entropy s atrilg 4 L - . o
growth of the memoryless-source approximation of the source is indicate&jlsmburIon Pr(s ) with respect to the uniform distribution

Ly i P
by the short-dashed lirle,L through the origin with slopé,, . The shaded U(s") in the L—oo limit:
area is the transient informatioh (see Sec. IV € L L
D[Pr(sH)||U(s")]

R= lim ) , (16)

H(L)

Lo

longer and longer sequence blocks are taken into accounihereD is defined in Eq(9). Restated, then, the redundancy
The entropy rate is also known as tieermodynamic en- R is a measure of the information gained when an observer,

tropy density(see, e.g., Refs. 27 and 2B statistical me-  expecting a uniform distribution, learns the actual distribu-
chanics or themetric entropy(see, e.g., Refs. 290-Bih dy-  tjon over the sequence.

namical systems theory.
As Shannon proved in his original work,, also mea-
sures the Iength, in bits p_er symbol, of the optimal, uniquely|||_ LEVELS OF ENTROPY CONVERGENCE:
decoQabIe, binary encoding for the measurement SequengeERIVATIVES OF H(L)
That is, a message af symbols requiregas L—) only _ o
h,L bits of information rather than IggA|L bits. This is With these preliminaries out of the way, we are now
consonant with the idea df, as a measure of randomness. 'eady to begin the main task: examining the growth of the
On the one hand, a process that is highly random, and hen@tropy curveH(L). In particular, we shall look carefully at
has largeh,, , is difficult to compress. On the other hand, a the manner in which the block entropy(L) converges to its
process with lovh,, has many correlations between symbolsasymptotic form—an issue that has occupied the attention of
that can be exploited by an efficient coding scheme. many researchers’'***=*"In what follows, we present a
As noted earlier, the limit in Eq(13) is guaranteed to Systematic method for examining entropy convergence. To
exist for all stationary sources. In other words, do so, we will take discrete derivatives bf(L) and also
form various integrals of these derivatives. This method al-
H(L)~h,L asL—e. (14 |ows one to recover a number of quantities that have been

However, knowing the valuk,, indicates nothing about how introduced some years ago and that can be interpreted as
H(L)/L approaches this limit. Moreover, there may be—anddifferent aspects of a system’s memory or structure. Addi-
indeed usually are—sublinear termshi{L). For example, tionally, our discrete derivative framework will lead us to
one may haveH(L)~c+h,L or H(L)~logL+h,L. We define a new quantity, thigansient informationwhich may
shall see in the following that the sublinear termsHgL) be interpreted as a measure of how difficult it is to synchro-
and the manner in whichi(L) converges to its asymptotic hize to a source, in a sense to be made precise in the follow-
form reveal important structural properties about a processing.
Before continuing, we pause to note that the representa-

tion shown in the entropy growth curve of Fig. 2 of a finitary
E. Redundancy process iphenomenologicalin the sense thatl(L) and the
other quantities indicated derive only from the observed dis-

Before moving on to our main task—considering whatt ibution Pri- | ticular. thev d i
can be learned from looking at the entropy growth curve ribution Prs") over sequences. In particular, they do no

H(L)—we introduce one additional quantity from informa- _req.uire any additional or prior knowledge of the source and
tion theory. Since we are using an alphabet of sidg if its internal structure.

nothing else is known about the process or the channel, w
can consider the measurement channel used to observe t
process to have ehannel capacityf C=log,|.4|. Said an- We begin by briefly collecting some elementary proper-
other way, the maximum observable entropy rate for thdies of discrete derivatives. Consider an arbitrary function
channel outputthe measurement sequenizlog,|Al. F:7Z—R. In what follows, the functiorF will be the Shan-

.eDiscrete derivatives and integrals
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AH told only that the source hasl| symbols and then assuming
logylal - the process is independent, identically, and uniformly distrib-
uted over individual symbols.

H(1)--- hyu(L) Having made a single measurement in each experiment
||||||I in an ensemble or, equivalently, only looking at single-
|“|||||| symbol statistics in one experiment, the entropy gain is the

Py---} -- LI "|||||||||||||IIIIIII|||||||||||||||mmum.... single-symbol  Shannon entropyAH(1)=H(1)— H(0)

=H(1), since we definedd(0)=0.
Let us now look at some properties AH(L).
0 Proposition 2 AH(L) is an information gain

01 L
— L L-1
FIG. 3. Entropy-rate convergence: A schematic plahgfL) =AH(L) vsL AR(L)=DIPrs )| | Pr(s i 249
using the finitary processid (L) shown in Fig. 2. The entropy rate asymp- whereL > 1.
toteh,, is indicated by thg lower hqrizontal dashed line. The shaded areais  progof Since many of the proofs are straightforward, di-
the excess entropl, as discussed in Sec. IV B. rect calculations, we have put most of them in Appendix A so
as not to interrupt the flow of ideas in the main sections.
Proposition 1 is proved in Appendix A Proposition 1. [
non block entropyH (L), but for now we consider general Note that Eq.(24) is a slightly different form for the
functions. The discrete derivative is the linear operator deinformation gain than that defined in E@). Unlike Eq.(9),
fined by in Eq. (24) the two distributions do not have the same sup-
B port: one{s‘} is a refinement of the othés"~1}. When this
(AF)(L)=F(L)-F(L-1). A7 s the case, we extend the lendth- 1 distribution to a dis-
The picture is that the operatdracts onF to produce a new tribution over lengthL sequences by concatenating the sym-
function AF, which, when evaluated at, yields F(L) bols's, _; with equal probability ontc,,...,s, _». We then
—F(L—1). Higher-order derivatives are defined by compo-sum the terms irD over the set of length sequences.
sition: Note that since the information gain is a non-negative
ATF = (AeAP1)E, 19 (1u|(_31|ntity,26 it follows from Proposition 1 thatAH(L)
=H(L)—H(L—1)=0, as remarked earlier. In a subsequent
whereA°F=F andn=1. For example, the second discrete section, we shall see that?H(L)<0; hence,AH(L) is

derivative is given by monotone decreasing.
AZF(L)=(AeA)F(L) (19 _ The derlvatlyeAH(L) may also be written as a condi-
tional entropy. Since
=F(L)—-2F(L-1)+F(L—2). (20 L
_Ps) =P L-1 25
One ‘“integrates” a discrete functiodF(L) by sum- Pr(st—%) f(sels™ ), (25)
ming:
gB it immediately follows from Eq(23) that
> AF(L)=F(B)—F(A-1). (21) AH(L)=H[S|S- 1. (26)
L=A
_ _ This observation helps strengthen our interpretatio of
An integration-by-parts formula also holds: Recall that the entropy rate, was defined in Eq(13) as
B B-1 lim__, . H(L)/L. As is well known(see, e.g., Ref. 26the
E L AF(L)=BF(B)—AF(A—1)— E F(L). (22 entropy rate may also be written as
L=A L=A
- o _ _ h,= lim H[S|S-"1]. (27)
Note the shift in the sum’s limits on the right-hand side. Lo

That is, h, is the average uncertainty of the variat3g,
given that an arbitrarily large number of preceding symbols
B. AH(L): Entropy gain have been seen.

We now consider the effects of applying the discrete By virtue of Eq.(26), we see that

derivative operatoA to the entropy growth curvel(L). We h,=lim AH(L). (29
begin with the first derivative ofl (L): Lo

AH(L)=H(L)—H(L-1), (23 Following Refs. 42—-44, 54, 55 we denaiéd (L) by h ,(L):
wherel>0. The units ofAH(L) arebits/symbalA plot of a h,(L)=AH(L) (29

typical AH(L) vs L is shown in Fig. 3. We refer taH(L)
as theentropy gainfor obvious reasons.

If a measurement has not yet been made, the apparent The functionh,(L) is the estimate of how random the
entropy rate is maximal. Thus, we defidéd (0)=log,|.A|. source appears if only blocks of variables up to lergthre
In @ maximum entropy setting this is equivalent to beingconsidered. Thush,(L) may be thought of as a finite-

=H(L)—H(L—-1), L=>1. (30
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approximation to the entropy rate,—the apparent entropy
rate at lengthL. Alternatively, the entropy raté, can be
estimated for finitd. by appealing to its original definitiotf,

i.e., Eq.(13). We thus define another finite-entropy rate

estimate:

(31)

where we also takbl’L(O)Elogz A. Note that while we have

lim h/ (L)=lim h,(L), (32
L—o L—oo
in general, it is the case that
h (L)# h,(L), L<w. (33
Moreover,h/’L(L) converges more slowly tham,(L).
Lemma 1
h.(L)=h,(L)=h,. (39
Proof. See Appendix A Lemma 1. O

We shall see examples of the slow convergende,’pf_)
in Sec. V.

C. Entropy gain and redundancy
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AH(L)

FIG. 4. Predictability gain: A schematic plot aﬁZH(L):hH(L)fh#(L
—1) vsL using the typicah,(L) shown in Fig. 3. The shaded area is the
total predictabilityG, as discussed in Sec. IV A.

lently, we can view—A?H(L) as the improvement in our
predictions when one goes frorh { 1)- to L-blocks. This is
the change in the entropy rate estimatg€L ) and is given by
the predictability gain

A?H(L)=Ah,(L)=h,(L)—h,(L—1), (37

whereL=1; the units ofA?H(L) arebits/symbd. (See Fig.
4. Since we definedh,(0)=log,|.A|, we have that

A?H(1)=H(1)—log,|Al. (39

The entropy gain can also be interpreted as a type of o _ )
redundancy. To see this, first recall that the redundancy, Ed.ne quantityA“H(0) is not defined.

(19), is the difference between lIggl| and h,, where

A large value of|A%H(L)| indicates that going from

apart from the alphabet size aifdg, is the entropy of the
source given knowledge of the distribution of arbitrarily

tainty by a large amount. Speaking loosely, we shall see in
Sec. V that a large value ¢A?H(L)| suggests that theth

large L blocks. But what is the redundancy if the observermeasurement is particularly informative.

already knows the actual distribution B} of words up to
lengthL?
This question is answered by theredundancy:

R(L)=H(L)—h,L. (35)

Here,H(L) is the entropy given that Psf) is known, and
the producth L is the entropy of ai. block if one uses only
the asymptotic form oH(L) given in Eq.(14). Note that
R(L)<R, whereR is defined in Eq(15).

We now define the per-symbal redundancy:

r(L)=AR(L)=h,(L)—h,. (36)

The quantityr(L) gives the difference between the per-
symbol entropy conditioned dn measurements and the per-

Proposition 2 A2H(L) is a conditional information
gain:

APH(L)=—D[Pr(s__4|s" " )[|Pr(s__|s" 73], (39
for L>3.
Proof. See Appendix A Proposition 2. O

Since the information gain is non-negative, it follows
from Proposition 2 thatn?H(L)<0 and soH(L) is a con-
cave function ofL.

The observation contained in Proposition 2 first ap-
peared in Refs. 59 and 48. ThereA?H(L) is referred to as
the correlation information However, we feel that the term
“predictability gain” is a more accurate name for this quan-
tity. The quantity— A2H(L) measures the reduction in per-

symbol entropy conditioned on an infinite number of mea-symbol uncertainty in going fromlL(—1)- to L-block statis-

surements. In other words,(L) measures the extent to

tics. While —A2H(L) is related to the correlation between

which the lengtht entropy-rate estimate exceeds the actuaBymbolsL time steps apart, it does not directly measure their
per-symbol entropy. Any difference indicates that there iscorrelation. The information-theoretic analog of the two-

redundant information in the-blocks in the amount of(L)
bits. Ebeling® refers tor(L) as the locali.e., L-dependent
predictability.

D. A2H(L): Predictability gain

If we interpreth,(L) as an estimate of the source’s un-

predictability and recall that it decreases monotonically to

h,, we can look atA?H(L)—the rate of change of

h,(L)—as the rate at which unpredictability is lost. Equiva-

variable correlation function is the mutual information be-

tween symbold. steps apartl[S;;S;, ], averaged ovet.

For a discussion of two-symbol mutual information and how

they compare with correlation functions, see Refs. 60 and 61.

E. Entropy-derivative limits

Ultimately, we are interested in how (L) and its de-
rivatives converge to their asymptotic values. As we will
now show, this question is well posed because the derivatives
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of H(L) have well defined limiting behavior. First, as men- pits/symbof. Alternatively, this observation follows directly

tioned earlier, for stationary sources, lim, AH(L) =h,.  from Eq.(45), when one takes into account the impliad
An immediate consequence of this is the following. (=1) in the sum. An interpretation @ is established by the
Lemma 2: For stationary processes, the higher derivafollowing resuilt.
tives of HL) vanish in the L limit: Proposition 3*¢°° The magnitude of the total predict-
lim A"H(L)=0, n=2. (40) ability is equal to the redundancy, Eq. (15)
Lo G=—-R. (46)
Proof To see this, first recall that the limit, ) »
=lim_ ... AH(L) exists for a stationary soureand so the Proof. See Appendix A Proposition 3. , o
sequenceAH(0),AH(1),AH(2),... converges. It follows Thls_establlshes an accounting of the maximum possible
from this that lim _.[AH(L)—AH(L—1)] !nformatlon I.og!A|.ava|IabIe from the measureme.nt cha}nnel
=lim, _..A?H(L)=0. This proves the=2 case of Eq(40). N terms of intrinsic randomness, and total predictability
The n=3 cases of Eq(40) then follow via identical argu- G:
ments. _ N O log,|4|=|G|+h,. (47)
To recapitulate, for the finitary processes we are consid-
ering in theL —< limit we have that That is, the raw information lgg4| obtained when making a
single-symbol measurement can be considered to consist of
H(L)~h,L, (41) two kinds of information: that due to randomnésgs, on the
plus possible sublinear terms. We also have that one hand, and that due to order or redundancy in the process
: G, on the other hand.
LI[TL AHL)=h,, (42) Alternatively, we see thaB=1log,|A|—h, . Thus, view-
ing h,, as measuring the unpredictable component of a pro-
and cess, and recalling that Iggl| is the maximum possible en-
lim A"H(L)=0 for n=2. (43  tropy per symbol, it follows thaG measures is the source’s
L—oo predictable component. For this reason we refeGtas the
total predictability. Note that this result turns aefiningthe
IV. ENTROPY CONVERGENCE INTEGRALS appropriate boundary condition &g (0)=1log,|.A|.

_ o o _ There is another form fo6 that provides an additional
Since limits at each level of the entropy-derivative hier-interpretation. The total predictability can be expressed as an
archy exist, we can adkowthe derivatives converge to their average number of measurement Symbo|5, or average |ength,

limits by investigating the following “integrals™ where the average is weighted by the third derivative,
» A3H(L).
Z,= 2, [APH(L)— lim A"H(L)]. (44) Proposition 4: The total predictability can be expressed
L:Ln L—o as

The lower limitL , is taken to be the first value af at which o

A"H(L) is defined. The picture here is that at each G=-2, (L—1)A3H(L), (48
A"H(L) over- or underestimates the asymptotic value L=2

lim__... A"H(L) by an amountA"H(L)—lim ., A"MH(L).  \when the sum is finite

Summing up all of these estimates provides a measure, per- prgof See Appendix A Proposition 4. m
haps somewhat coarse, of the manner in which an entropy Equation(48) shows that ifAH(L) is slow to converge
derivative converges to its asymptotic value. The larger the, 0, thenG will be large. One may also view this proposi-

sum, the slower the convergence. Slow convergence qfy, as showing thaG can be viewed as an average of
A"H(L) indicates that correlations do not decay rapidly with A3H(L), weighted byL .

increasingL, suggesting that a process possesses consider-

‘ Recently, some authdfshave vieweds as a measure of
able internal structure even at largescales.

“disequilibrium,” since it measures the difference between
A. Predictability the actual entropy rate, and the maximum possible entropy
rate log|A|. The extent to whicth, falls below the maxi-
mum measures the deviation from uniform probability,
which these authors have interpreted as an equilibrium con-
dition. In this vein, several have proposed complexity mea-
sures based on multiplying by h,, .52 However, we and

* others have shown that this type of complexity measure fails

G=I,= >, A’H(L). (45  to capture structure or memory, since it is only a function of

L=t disorderh,, .>>*% For additional critiques of this type of
Geometrically,G is the area above thA?H(L) curve, as complexity measure, see Refs. 56 and 66.
shown in Fig. 4. The units o& are bits/symbaql as may be Finally, note that for any periodic process=log,|.A4|,
inferred geometrically from Fig. 4, where the units of the sinceh,=0. The total predictability assumes its maximum
horizontal axis are bits and those of the vertical axis arevalue for a completely predictable process. Howe@edoes

We first examineZ,. Recall that lim ... A?H(L)=0
and thatA?H(L) is defined forL=1. For reasons that will
become clear shortly, we refer 1o as thetotal predictability
G. It is defined as
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not tell us how difficult it is to carry out this prediction or related to structures and memory intrinsic to the process.
how many symbols must be observed before the process catowever, specifying how this memory is organized cannot
be optimally predicted. To capture these properties of thde done within the framework of information theory; a more
system, we need to look at other entropy convergence intestructural approach based on the theory of computation must

grals. be used. We return to the latter in the conclusion.
There are many ways in which the finiteapproxima-
B. Excess entropy tionsh,(L) can converge to their asymptotic valog. (Re-

Having looked at howA2H (L) converges to 0, we now call Fig. 3) Fixing the values oH(1) andh,, for example,

does not determine the form of tie, (L) curve. At eachL
ask: How does\H(L)=h, (L) converge tcn,? One answer we obtain additional information about how, (L) con-

to this question is provided . For reasons that will be . . . .
discuss?ed in the foFI)Iowing wbzlrefer  as theexcess en- verges, information not contained in the valuedH¢l.) and
' h,(L) at smallerL. Thus, roughly speaking, ea¢f),(L) is

tropy E: an independent indicator of the manner by whicffL) con-
* verges toh, .
EEIFLgl [h,(L)—=h,]. (49) Since each incremetit, (L) —h,, is an independent con-

tribution in the sense just described, one sums up the indi-

The units ofE are bits. We may vievE graphically as the vidual per-symbolL redundancies to obtain the total amount
area indicated in the entropy-rate convergence plot of Fig. 3of apparent memory in a sourt&333537:384L6%qling this
For now, let us assume that the above-mentioned sum isumintrinsic redundancywe have the following result.
finite. For many cases of interest, however, this assumption Proposition 6: The excess entropy is the intrinsic redun-
turns out to not be correct; a point to which we shall return atdancy of the source
the end of this section. "

The excess entropy has a number of different interpreta- E— E r(L) (51)
tions, which will be discussed in the following. Excess en- =1 '
gg%ﬁz%dggisu?é ?hgigtr?\/ ,gxggrsgin;tgigfze'?::g;igcfj . Pr.oof.: This follows directly fr_om inserting the definition
uses “stored information” and Refs. 33, 38, 48, 56, and 59Of intrinsic redundancy, E¢36), in Eq. (49). L

use “effective measure complexity.” References 41 and 67 In statistical mechanics, a variable is said toeléensive
refer to the excess entropy simply. as “complexity.” Refer- if it is proportional to the size of the system. Variables which

ences 7 and 8 refer to the excess entropy as “predictiv 0 not depend on system size arensive For example, the

information.” In Refs. 40 and 49, the excess entropy is calleomtal internal energy of an ideal gas is extensive, since it is
the “reduced Rayi entropy of order 1.” proportional to the volume of the gas. However, the tempera-

ture is an intensive variable. In our context, the block length

1. E as length-weighted average ~A°H(L) L plays the role of the system size. The total entrbify.) is
Proposition 5: The excess entropy may also be written agxtensive, growing linearly for largk, while the entropy

densityh,, is intensive, as can be seen in E(3) and(14).

o

_ The next proposition shows thitis thesubextensiveart of
E=- L—1)A2H(L). 50

LZZ ( ) L) 50 H(L), i.e., the excess entropy is the portiontéfL) that
Proof. See Appendix A Proposition 5. O grows slower than linearly.

Equation(50) shows that the excess entropy can be seen artpor]f)ﬁ'?i')t'_on /- The excess entropy is the subextensive
as an average af?H(L), weighted by the block-length. P '

E=Ilim[H(L)—h,L]. (52
2. E as intrinsic redundancy L—ee
The lengtht approximationh (L) typically overesti- Proof.: See Appendix A Proposition 7. O
mates the entropy rate,, at finite L. Specifically,h,(L) This proposition implies the following asymptotic form

overestimates the latter by an amotn{(L)—h,, that mea-  for H(L):
sures how much more random single measurements appear

knowing the finiteL-block statistics than knowing the statis- H(L) ~ E+h,L asL—e. (53)

tics of infinite sequences. In other words, this excess ranthis establishes a geometric interpretatiorEgfwve see that
domness tells us how much additional information must beE is the L=0 intercept of the linear function Ed53) to
gained about the sequences in order to reveal the actual pevhich H(L) asymptotes. This observation, also made in
symbol uncertaintyn,, . This restates the fact that the differ- Refs. 7, 8, 14, 33, and 41, is shown graphically in Fig. 2.
enceh,(L)—h, is the per-symbol redundancyL ), defined  Note thatE=0, sinceH(L)=h L. Note also that ifh,=0,
originally in Eqg. (36). Though the source appears more ran-thenE=Ilim __,.. H(L).

dom at lengthL by the amount (L), this amount is also the A useful consequence of Proposition 7 is that it leads one
information-carrying capacity in the-blocks that is not ac- to use Eq.53) instead of the originalvery simplg scaling
tually random, but is due instead to correlations. We conof Eq. (14). Later sections address how ignoring E§3)
clude that entropy-rate convergence is controlled by this releads to erroneous conclusions about a process’s unpredict-
dundancy in the source. Presumably, this redundancy iability and structure.
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3. E as mutual information E=log, p. (57)

Yet another way to understand excess entropy is through Proof One observes that(L)=log,p, for L>p. [
its expression as a mutual information. 2t

o ; ) Proposition 11 For an orderR Markovian process, the
Proposition 8: The excess entropy is the mutual informa-, g entropy is given by

tion between the left and right (past and future) semi-infinite

halves of the chain S E=H(R)—Rh,. (58

E=Iim I1[SS;...S5. - 1;S. S +1So1 - 1] (54)  Recall that an ordeiR Markovian process was defined in Eq.
L—ee (5).

when the limit exists Proof. This result will be proved in Sec. VC, when we
Proof See Appendix A Proposition 8. ] consider an example Markovian process. Also, see Refs. 34,
Note thatE is not a two-symbol mutual information, but 94> @nd 55. o u

is instead the mutual information between two semi-infinite  FOF finitary processes that are not finite-order Markov-

blocks of variables. ian, the entropy-rate estimalg,(L) often decays exponen-
Equation(54) says thatE measures the amount of his- tially to the entropy raten, :

torical information stored in the present that is communi- hﬂ(L)_hMNAZ—yL' (59)

cated to the future. For a discussion of some of the subtleties
associated with this interpretation, however, see Ref. 20for largeL and wherey andA are constants.
Proposition 8 also shows thEtcan be interpreted as tioest Exponential decay was first observed for various kinds
of amnesialf one suddenly loses track of a source, so that itof one-dimensional map of the interval, and a scaling theory
cannot be predicted at an error level determined by the erwas developed based on that anéatrater, Eq.(59) was
tropy ra_teh’u, then the process appears more random by #roven to hold for one-dimensional, fully chaotic maps with
total of E bits. a unique invariant ergodic measure that is absolutely con-
tinuous with respect to the Lebesgue meastréo our
o knowledge, there is not a direct proof of exponential decay
4. Finitary processes for more general finitary processes. There is, however, a
We have argued earlier that the excess entrépgro- Iarge amount of empirical evidence suggesting this form of
vides a measure of one kind of memory. Thus, we refer tgonvergencé®**3%4*Nevertheless, several lines of reason-
those processes with a finite excess entropy as finite-memo#§d suggest that exponential decay is typical and to be ex-
sources or, simplyfinitary processesand those with infinite  Pected. For further discussion, see Appendix B.

memory,infinitary processes Corollary 1. For exponential-decay finitary processes
Definition - A process idinitary if its excess entropy is the excess entropy is given by

finite. H(1)—h
Definition 2 A process idnfinitary if its excess entropy E~E,= —77" (60)

is infinite 1-2

Proposition 9 For finitary processes the entropy-rate es- ywhere y is the decay exponent of Eq. (59) andH is the
timate h,(L) decays faster thafi/L to the entropy rate . gingle-symbol entropy
That is Proof. One directly calculates the area between two
curves in the entropy convergence plot of Fig. 3. The first is
hu(L)—h.<, (55 the constant line &t,,. The second is the curve specified by
Eqg. (59 with the boundary conditiom ,(1)=H(1). Alter-
for large L and where A is a constant. For infinitary pro- natively, Eq.(59) may be inserted into Eq50); Eq. (60)
cesses J)(L) decays at or slower thaf/L. then follows after a few steps. O
Proof: By direct inspection of Eq(49). O Note that Eq.(60) is an approximate result; it is exact
One consequence is that the entropy growth for finitaryonly if Eq. (59) holds for all L. In practice, for smallL
processes scales BigL) ~E+h,L in theL— limit, where  h (L)—h, is larger than its asymptotic forrA2~"* and,
E is a constant, independent bf In contrast, an infinitary thus,E,, gives an upper bound dB.
process might scale as

H(L)~c,+cylogL+h,L, (56)
wherec, andc, are constants. For such a system, the excesg Finite-L expressions for E
entropyE diverges logarithmically and, (L) —h,~L™". There are at least two different ways to estimate the

In Sec. V we shall determing, h,,, and related quanti- excess entrop§ for finite L. First, we have the partial-sum
ties for several finitary sources and one infinitary sourceestimate given by

There are, however, a few particularly simple classes of fini-

tary process for which one can obtain general expressions for E(L)=H(L)—Lh,(L) (61)
E, which we state here before continuing. L
Proposition 10 For a periodic process of period,ghe _
excesspentro is gi ’ i P g B 2 [hu(M)=h,(L)]. (62)
py is given by M=1
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The second equality follows immediately from the integra-
tion formula, Eq.(21), and the boundary conditioki(0)
=0.

Alternatively, a finitek excess entropy can be defined as
the mutual information betwedn/2-blocks:

E'(L)=1[SS1.--Sti2-1:Su2St2+1---SL-1ls (63

for L even. IfL is odd, we defineE’(L)=E'(L—1). The
expression in Eq(63), however, is not as good an estimator
of E as that of Eq.(62), as established by the following
lemma:

Lemma 3
E'(L)<E(L)<E. (64)

Proof. See Appendix A Lemma 3. O

C. Transient information

Thus far, we have discussed derivatives of the entropy

growth curveH(L), and we have also defined and inter-
preted two integrals: the total predictabili® and the excess
entropyE. BothG andE have been introduced previously by
a number of authors.
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oo M—-1
>, L[h,(L)=h,]= lim [ > [E-H(L)]
(=1 M—so| L=0
M-1 M
+ > h,M—> hML]. (69)
L=0 L=1
But,
1 M
_ - 2_
2 hM= 2 hL=h,[M?=SM(M+1) (70
=h,;M(M—-1) (72)
M-1
=> h,L. (72)
£=0
Inserting Eq.(72) in Eq. (69), we have
o M-1
> Llh,(L)—h,]= lim [ > [E+hML—H(L)]].
=1 M—soo| L=0
(73

The right-hand side of the above equatiorTiscompleting
the proof. O
Recall thatE+h,L is the entropy growth curve for a

In this section, however, we introduce a new quantity, byfinitary process, as discussed in Sec. IV B 4. THuspay be

following the same line of reasoning that led us to the total
predictability, G=7,, and the excess entrop=7,. That

is, we ask: How doe#di(L) converge to its asymptote
+h,L? The answer to this question is provided &y For
reasons that will become clear in the following, we shall call
—7, the transient informationT :

©

TE—IO=LZO[E+hML—H(L)]. (65)

Note that the units off are bitsx symbols Geometrically,

Miewed as a sum of redundancie€+h,L)—H(L), be-
tween the source’s actual entropy grovii{L) and theE
+h,L finitary-process approximation.

T and synchronization information

For finitary processebl(L) scales a£+h L for large
L. When this scaling form is reached, we say that the ob-
server issynchronizedo the process. In other words, when

T(L)=E+h,L—H(L)=0, (74

the transient information is the shaded area shown in Fig. 2ve say the observer is synchronized at lerigteequences.

The following result establishes an interpretationtof
Proposition 12 The transient information may be writ-
ten as

T=L21 L[h,(L)=h,]. (66)

Proof. The proof is a straightforward calculation, how-

As we will see in the following, observer-process synchroni-
zation corresponds to the observer being in a condition of
knowledge such that it can predict the process’s outputs with
an uncertainty determined by the process’s entropy hiate

On average, how much information must an observer
extract from measurements so that it is synchronized to the
process in the above-described sense? As argued in the pre-
vious section, an answer to this question is given by the

ever, since it is a new result, we include it here. We begin eransient informationr

writing the right-hand side of Eq66) as a partial sum:
M

lim

M~>oc|-:

Z}l L[h,(L)—h,]= ] [LAH(L)—h,L]. (67
Using Eq.(22), this becomes

2 Lhu(L)=h,]

M—-1 M
= lim { MH(M)— X H(L)— > h,L;. (68)
M—c L=1 L=1
Using MHM)=3M"IH(M) and limy_..H(M)=E

+h,M, and rearranging slightly, we have

We now establish a direct relationship between the tran-
sient informationT and the amount of information required
for observer synchronization to block-Markovian processes.
We begin by stating the question information-theoretically
and fixing some notation.

Assume that the observer has a correct modél
={V, T} of a process, wherg is a set of states anithe rule
governing transitions between states. ThafTigs a matrix
whose component3 g give the probability of making a
transition to stateB, given that the system is in stafk,
whereA,B e V. Contrary to the scenario shown in Fig. 1, in
this section we assume that the obsergigectly measures
the process’s states. That is, we have a Markov process,
rather than éniddenMarkov process.
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The task for the observer is to make observations and Theorem 1 For a block-Markovian process, the syn-
determine in which state e V the process is. Once the ob- chronization informatiors is given by
server knows with certainty in which state the process is, the

observer issynchronizedo the source, and the average per- 5= 1+ zR(R+1)h,,. (79
symbol uncertainty is exactla, . We are interested in de- Proof. See Appendix C. 0
scribing how difficult it is to synchronize to a directly ob- Thus, the transient informatioh, together with the en-
served Markov process. tropy rateh,, and the ordeR of the Markov process, mea-

The observer’s knowledge ofis given by a distribution  syres how difficult it is to synchronize to a process. If a
over the states e V. Let Pr(v|s*, M) denote the probability system has a larg€, then, on average, an observer will be
that the state is, given that the particular sequence of sym-highly uncertain about the internal state of the process while
bols s* has been observed. The entropy of this distributionsynchronizing to it. The transient information measures a
over the states measures the Obsel’ver’s aVerage Uncertai%Wuctura| property of the System_a property not Captured by

invel: the excess entropk.
Corollary 2. For periodic processesS=T.
H[Prv|s", M)]=— >, Prv|s", M)log, Pr(v|st, M). Proof. For periodic processeh,, = 0. Plugging this into
vev 75 Eq. (79), the corollary follows. U

In Sec. VB 2 we shall see that, while the excess entropy
Averaging this uncertainty over the possible lengtiobser- is the same (logp) for all periodp processes, the transient

vations, we obtain thaverage state-uncertainty informations are different. Thus, the transient information
allows one to draw structural distinctions between different

H(L)E—E Pr(SL)E Pr(v|st, M)log, Pv|st, M). periodic sequences. _ .
o vev Corollary 3: For exponential-decay finitary processes we

(76 have
The quantity (L) can be used as a criterion for synchroni- H(1)—h,
zation. The observer is synchronized to the source when T*Tyz(l_Ty)z- (80

H(L)=0—that is, when the observer is completely certain _ _ _ .
about in which statey €V the mechanism generating the ~ Proof. Inserting Eq.(59) into the expression fof given

sequence is. And thus, when the condition in &) is met, N EQ. (66), the result follows after several steps. u
we see that(L)=0, and the uncertainty associated with the ~ Combining Egs.(60) and (80), we arrive at an exact
prediction is exactlyh,, . relationship between the approximate expressions for the ex-
While the observer is still unsynchronized, though,Cess entropy and the transient information:
H(L)>0. We refer to the average total uncertainty experi- E2
enced by an observer during the synchronization process as Ty:ﬁ. (81
the synchronization informatiols: (1)=h,
D. Summary

S=> H(L). (77)
L=0

This completes our exposition of entropy convergence
ﬁnd our method of differentiating and integratirtfL) to

The synchronization information measures the average tot . !
move between levels. Table | summarizes the first levels of

that the observer is synchronized.

In the following, we assume that our model is Markov-
ian of orderR. Additionally, we assume that the set of Mar-
kovian stated’ is associated with the4 | possible values of V- EXAMPLES
R consecutive symbols; henceforth the latter are referred to  This section analyzes several variously structured pro-
as R-blocks Specifically, there is a one-to-one correspon-cesses to illustrate a range of different entropy convergence
dence between the statesnd theR-blocks, and hence there pehaviors. The results demonstrate what the preceding
exists a one-to-one, invertible functigns®—V. This func-  quantities—such as the entropy rate, the excess entropy, and

tion ¢ enables us to move back and forth between the statqpe transient information—do and do not indicate about a
v and theR-blocks. For example, we may useto rewrite process’s organization.

the set of states:

ceding sections.

A. Independent, identically distributed processes

_ CSR)'S <i<R).
V={e(S18y +sp):si € AL<I<R} (78 We begin with the simplest stochastic process: binary

The matrixT gives the transition probabilities between variables independently and identically distribuiéid ), as
symbol blocks. Note that the Markovian states are “sliding” in Eq. (3). Figure 5 shows the entropy growth curkiL)
in the sense that a transition from one state to another corréer two 11D processes: a fair coin and a biased coin with a
sponds to a transition from, say, symbol blsgk;---sg_; to  bias of 0.7.
$1Sy ' *Sg. Thus, the transition matriX is sparse; there are For both coinsH(L) grows linearly. HenceAH(L) is
at most|AR*Y| nonzero entries in theARX AR matrix T.  constant for these and all other IID processes. Note, how-
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TABLE I. Moving up and down the first levels of entropy convergence. For several of the integral lower bhunts)(we have not included the initial zero
terms.

Entropy-convergence hierarchy

Integrals
Level derivatives L, L—oo limit At level n From leveln+1
0 H(L) Lo=0 « or log, p T=3[_o[E+h,L—H(L)] T=2"_;(L)[AH(L)-h,]
1 AH(L) L,=0 h, E=S={_j[AH(L)—h,] E=—37_,(L—1)AH(L)
2 AH(L) L,=1 0 G=37_;A%H(L) G=—-37_,(L—1)A%H(L)
3 ASH(L) Ly=2 0 Ta=37_,A%H(L) To=—37_,(L—1)A*H(L)
n APH(L) L,=n—1 0 T,=37_ [ATH(L)~lim__.A"H(L)] Iy=—3{. (L—=1)AM™H(L)

ever, that the two systems have different entropy raies  the period-16 process is zero; at sufficiently latgehe pro-
The fair coin has ah,, of 1 bit per symbol, while the biased cess is perfectly predictable. In addition hg(L), defined
coin, being less unpredictable, hlag~0.8813. As a result, earlier asH(L)—H(L—1), we showh,(L)=H(L)/L. The
from Eg. (47) the total predictability G=log,|.A|— h, total entropy converges at=12. The value ofH(12)

=0 bits for the fair coin and 0.1187 bits for the biased coin.=4 bits reflects the fact that there are 16 equally probable
The predictability of each process is rather low, as expectedsequences at eadh=12.

As is clear from Fig. 5, for both processes the excess The excess entropf for the period-16 process is
entropy E and the transient informatiofi are zero. This log, 16=4 bits; the sequence’s past carries 4 bits of phase
makes sense in light of the interpretationstofnd T given  information about the future. Geometrically,is the vertical
in the previous sections. Each coin flip does not depend omtercept of the horizontal asymptote in Fig@p (dashed
past flips, and so there is no mutual information between the
past and the future. Thug=0. Similarly, no information is
needed to synchronize to the sourdd{k) assumes its 45
asymptotic form at. = 1—and sol =0. That is, the statistics
of isolated flips are all that is required to optimally predict
both processes. Historical information does not improve pre- 35 |

dictability. 3t
. ~ 25}
B. Periodic processes T 51
1. A period-16 process 15} HL) ——
We now consider periodic processes. We begin with a 1} E+hl ------
period-16 process, whode(L) is shown in Fig. €a). The
sequence consists of repetitions of the length-16 b€k 05
=1010111011101110. In Fig.(lp we show the conver- 0 . L . . . . . .
gence of entropy-density estimates to the asymptotic value, 6 2 4 6 8 10 12 14 16 18
h,=0. As for all period processes, the entropy rhigfor (@) L
16
14 } H(L): Fair Coin
12} H(L): Biased Coin, p=.7 ------- -
-‘:1
10 | =
=
< 8 =
6 3
4 L
0 2 4 6 8 10 12 14 16 18
0 i : . . : . (b) L
0 2 4 6 8 10 12 14
L FIG. 6. Entropy curves for the period-16 process:

---(1010111011101110)-- . (&) Entropy growth(solid line) andE+h,,L
FIG. 5. Entropy growth for IID processes: a fair cggolid line) and a coin (dashed ling (b) Entropy convergence for the two estimatbrg(L) (solid
(dashed lingwith biasp=0.7. line) and h;(L) (dotted line.
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line) or the area undem (L) in Fig. 6(b). The predictability 25
is G=log, 2=1 bit per symbol; the system can be predicted
perfectly. Finally, the transient information for this period-16 s |
process isT~16.6135 bik symbols. Since this process is K
Markovian, Theorem 1 applies. Thus, we conclude that, on
average, an observer would measure a total uncert8iofy  __ 151
16.6135 bits during the process of synchronization. %
1} d 11000: T = 4.073 -
,_/' 10101: T =4.873 -----
st/ 10000:T =5.273 ——
//
2. T distinguishes period-p processes 7 (a)
0 . .

For any periodic process of perigd, h,=0 and E
=log, p. However, there are important structural differences
between different sequences with the same period. To shov
this, we consider all binary period-5 processes that are dis
tinct up to permutations and (91)-exchanges in their tem-
plate words. There are only three such processes: (11000) &
(10101y, and (10000j. By the symmetries of the Shannon <*
entropy function these processes illustrate the only three
types of entropy convergence behavior possible for period-£
sequences.

Figure 7a) shows the entropy growth curves for each;
Fig. 7(b) gives the entropy convergence curves; and Fig). 7
gives the predictability gaid®H(L). By L=4, H(L) con-
verges toE=log, 5~2.321 bits. We see thdt,(L)=0 at
this and largelL. For all three processe§=1—h,=1 bit
per symbol: Again, the information in each measurement
concerns the periodic component of the process. The predict
ability gain per measurement vanished.at6, since at that
point all length-5 templates have been completely parsed an
the process appears completely predictable. It is a useful ex
ercise in understanding®H(L) to work through each tem-

plate symbol-by-symbol to see which symbols are more anc 05 . 18?8? _:
less informative about each template’s phase. For example ( C) W 11000 v
observing the fourth symbol of the (10101process does -0.6

not improve predictability. However, the third symbol for the

(11000Y° process is highly informative and predictability in- 1 2 3 4 5 6
creases markedly. L

Corollary 2 applies here and, sinbg =0, says that the , _
svnchronization informatiors is equal toT. Thus. we can FIG. 7. (a) Entropy growth for all period-5 processes, along with the as-
y q ) ! ymptote E+h,L =log, 5~2.321 (thin dashed ling (b) Entropy conver-

directly interprefT as the synchronization information. Table gence, for the same period-5 procesgesPredictability gainA2H(L).

Il gives the values of the transient informatidn The values

are all different, indicating that an observer comes to syn- )

chronize to the distinct templates differently. Table Il alsoC: Markovian processes

gives the average number of observations required to syn- We now consider a simple Markovian process with a
chronize. From this table, we see tHais not directly pro- nonzero entropy rate, . (The periodic systems of Sec. VB
portional to thenumber of measurements to synchronize.

Rather, it is the total amount dhformation that must be TABLE Il. Synchronizing to period-5 processes: Comparing the transient

extracted to synChronize- information T to the average number of observations required to synchro-
In summary, this example shows that there are structuralize to the three distinct period-5 sequences. Since the entropi jate,

differences between different periodic processes of the sanfer this set of processe§,=S, as per Eq(79).

perlod, a complete analysis is given in Ref. 69. The tra_m5|em Template Number of obsarvations T
information is a_bIe to capture these d|ﬁerenc¢s, while the 5rq to synchronizesymbol3 (bitx symbols)
excess entropy is unable to. Since many chaotic systems, fer

example, are a combination of periodicity and randomness, 1(1)888 g'g gg;g
one sees that the transient information is useful in detecting 14101 39 4.873
synchronization to the ordered component of such processes
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are Markovian, but witth ,=0.) In particular, we shall con- 45 T
sider the golden meafGM) process, a Markov chain of al (a)
order one.

In terms of the sequences produced, the underlying 35t
golden mean system generates all binary strings with the 3r

restriction that there are never consecutive 0's. The probabi_ 55 |

listic version—thegolden mean processgenerates 0’s and ;‘«

1's with equal probability, except that om@ 0 isgenerated, 2

a 1 is always generated next. One can write down a simple 1.5} H(L) ——
two-state Markov chain for this proceésee, e.g., Ref. 70 1k E+hyL e

The GM process is so named because the logarithm of the
total number of allowed sequences grows wlithat a rate
given by the logarithm of the golden meap= (1+5). 0

The various entropy convergence curves for the GM pro- ‘
cess are shown in Fig. 8. The entropy rate of the GM proces: (b) hy(L) ------
is h,=2/3 bits per symbol and the predictability &
=1/3 bit per symbol. The convergence lof(L) to h, oc-
curs at sequence length=2. In other words, once the sta- I
tistics over all possible length-2 sequences are known, one &*
gains no additional predictability by keeping track of the =
occurrence of blocks of larger length. There is, however, a,f__’i
large predictability gain in going from blocks of length 1 to
blocks of length 2. Observing that 00 is missing is the key
observation that makes this system predictable. The predict
ability gain per symbolA?H(L) is shown in Fig. &). Note
that the second measurement is more informative than the 0 0 .05
first. '
We find thatE~0.2516 bits, andr =E, which can be .| ©
easily deduced from thel(L) versusL graph in Fig. 8a).
From these small values f& andT one concludes that not -0.05 |
much historical information is needed to perform optimal
prediction nor is there much uncertainty associated with syn-
chronization.

For this system we find thatl(1)~0.9183 bits. Plug-
ging this and our result fan, into Eq.(58), we see that the 02}
expression for the excess entropy of a Markovian process i L
verified. -0.25 | W

The behavior shown in Fig. 8 is typical for Markovian
processes. For an ordBr-Markovian process, the entropy
density estimateb (L) will always converge exactly th,,
by L=R. This follows immediately from inserting Ed5)
into the expression deI#(L), Eqg.(26). Given this, we know FIG. 8. (a) Entropy growth(solid line) for the golden mean process, along

that at H(R)=E+h_,R. Solving this for E, we arrive at with the asymptoteE+h,L (dotted ling. (b) Entropy convergence, both
Eq (58) © ' h,(L) (solid ling andh,(L) (dashed ling andh,, (dotted ling for the

same.(c) Predictability gainA2H(L) vs sequence length.

02Ff
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D. Hidden Markov processes |. Complex transient

dom, while one-third of the symbols are determined by the
structure

previous two. Note further that the RRXOR process has the
For our next three examples, we consider three differensameh,,, and hence the sant&, as the GM process of Sec.
finitary hidden Markov processes. Each of these example¥ C. This serves as yet another reminder that the entropy rate
contains some interesting surprises. We begin by considerinig not sufficient to distinguish the structural properties of a
a process that consists of two successive random symbo$ource.
chosen to be 0 or 1 with equal probability and a third symbol At first blush, one might expect the entropy growth
that is the logical Exclusive-ORXOR) of the two previous. curve to reach its asymptotic form at=3, just asH(L) did
We call this the random-random-XORRRXOR) process. at L=2 for the golden mean process. However, Fi¢g)9
The entropy growth and convergence plots are given in Figsshows that this is not the case. The reason that it does not
9(a) and 9b). converge exactly at =3 is that the RRXOR process is not
The entropy ratéh, is 2/3 bits per symbol. To see this, Markovian; specifically, the observed sequences of 0's and
note that two out of every three symbols are completely rani’s are not finite-order Markovian. The RRXOR ishalden
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FIG. 9. (a) Entropy growth(solid line) for the random-random-XOR pro-
cess, along with the asymptoke+h,L (dotted ling. (b) Entropy conver-
gence, botth (L) (solid ling) andh,;(L) (dashed ling andh,, (dotted ling
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for the same(c) Predictability gainA?H(L) vs sequence length.
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FIG. 10. A least-squares fitdashed lingto the exponential decay of, (L)
(squaresfor the RRXOR process.

Even after observing a large number of symbols, there is still
some uncertainty about which internal, hidden state the pro-
cess is in. Nevertheless, the transient information is finite.
For this systemH(1)=1. Using Eqs(60) and(80), we
find E,~1.74 bits andT ,~9.12 bit<symbols. The differ-
ences from the near-exact values above indicate the amount
of deviation from a pure exponential decayhof(L ).
Intriguingly, the behavior of the predictability gain
A?H(L) of Fig. 9c) shows strong hints of the structure of
the hidden Markov model that generates the observed se-
quences. At lengthe =1 andL=2 symbols are not infor-
mative at all:A2H(L)=0. This reflects the fact, given by the
process’s definition, that two of the symbols are produced by
fair coin flips. For largei, note thatA?H(L) shows oscil-
lations of period three. The RRXOR hidden Markov process
also has a period-3 structure: after the two random bits and
the XOR bit, the hidden Markov model always resets to the
same state. Recall, however, th&fH(L) is formed from
statistics over the observed symbols, not the hidden states of
the process. Given this, it is somewhat surprising that
A?H(L) picks up the period-3 nature of the transitions be-
tween hidden states.

E. Hidden Markov processes Il. Measure sofic
process

We now consider another hidden Markov process: the

Markov process; its internal states are Markovian, but theeven proces$’ a stochastic process whose supygtie set of
observed sequences of 0’s and 1's are not.

Instead of converging exactly at finite, the conver-

gence ofh (L) to h, is exponential:
h,(L)—h,=A2"",

is illustrated in Fig. 10.

(82)
where we findA=0.60+0.02 andy=0.306+ 0.004. This fit

allowed sequencgsis a sofic system called theven
systenT! The even system generates all binary strings con-
sisting of blocks of an even number of 1's bounded by 0’s.
Having observed a process’s sequences, we say that a word
(finite sequence of symbolss forbiddenif it never occurs. A
word is anirreducible forbidden wordf it contains no proper
subwords which are themselves forbidden words. A system is

The excess entropy iE=2 bits: one needs to know soficif its list of irreducible forbidden words is infinite. The
which of the four possible random symbol pairs has occurre@ven system is one such sofic system, since it§a$8f * 0,
before one reaches a condition of optimal predictability.n=0,1,..} of irreducible forbidden words is infinite. Note
Thus, the process has lpg=2 bits of memory. However, the that no finite-order Markovian source can generate this or,

transient information is quite largd;~9.43 bit< symbols.

for that matter, any other strictly sofic system. The even pro-

This indicates that the process is difficult to synchronize tocess then associates probabilities with each of the even
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FIG. 12. Aleast-squares fitdashed lingto the exponential decay of, (L)
(squaresfor the even process.

-
_C:L
= 067 shown in Fig. 12, yieldsA=0.388-0.019 andy=0.501
= oal +0.007. We find thaE~0.902 bits. This is the amount of
' storage required on average to hold the information that a
oz b given observed 1 is the “even” or “odd” symbol in a block
: (b) of 1's. The transient information i~ 3.03 bit< symbols:
0 ) ) The even process is moderately difficult to synchronize to,
although it is much easier to synchronize to than the RRXOR
o} . A —-— process in the previous example. Sind¢l)~0.918, we
001 } AN il ] find thatE,~0.86 andT ,~2.92, both of which agree well
002 | / with the values measured f& andT.

' Again, the predictability gain per symbaA?H(L),
o3¢ shown in Fig. 11c), oscillates as it converges to zero. The
% -0.04 } plot indicates that odd-length measurement sequences are
% 005}t A more informative than even-length ones. As in the RRXOR

0.06 | 4 example, the oscillation ak?H(L) provides a strong hint as

' to the underlying structure of the hidden Markov process
-0.07 Iy responsible for the observed sequences. This process has two
-0.08 } states and, thus, a strong period-2 component. This periodic
0.09 behavior in the hidden states is picked upAAH(L), de-

2 4 6 8 10 12 14 16 18 spite the fact that\?H(L) is based only on the statistics of
L the observed, nonhidden symbols.

FIG. 11. (a) Entropy growth(solid line) for the even process, along with the
asymptoteE+h, L (dotted ling. (b) Entropy convergence, both,(L)
(solid line) and h,;(L) (dashed ling andh,, (dotted ling for the same(c)
Predictability gainA?H(L) vs sequence length.

F. Hidden Markov processes lll. The simple
nondeterministic source

We now consider a process known as $iraple nonde-
terministic source(SNS. This process was constructed to
illustrate how measurement distortion can contribute its own
kind of apparent structural complexity to a simple, but hid-

measure sofic processa distribution over a sofic system’s den, informat_ion Souree. In particul_ar, the SNS describes_ the
sequences. Like the RRXOR process, the even system is nﬁ]{ocess obtal_ned via a nongt_aneratmg partition of the_loglstlc
Markovian but is a hidden Markov pr,ocess ap. Fo_r an |ntro_duct|on to issues of m_easur_ement-mduced

' ' complexity, including the details concerning this nongenerat-

proc-g;i ;?em:);l;?)vs:tirr?Fggciqve;azngﬁtrgl;yerzztgogft?hee ee\\//eerir'?g partition of the logistic map, see Ref. 72, and for a full
process ish, = 2/3 bits per symbol and the predictabili§y mathematical treatment see Ref. 73. Spatial versions of this

; : | f hi i in Ref. -
is 1/3 bits per symbol. Note that these values are the same %sgzz ?rorr:d;igrﬁ[)%(;ztsitsnnvﬁreeolrggg%?g@dir:nRef 72 and ana

those for the RRXOR and GM processes, again emphasizin The SNS, a hidden Markov process, generates symbol

the pover.ty ofh,, as a struc_tural measure. The COIWergencesequences as follows. The system has three internal, hidden
of h,(L) is exponential. A fit to

states:A, B, and C. The observer, however, only sees the
hM(L)—h#:AZ‘VL, binary outputs 0 and 1. The probabilities of generating the

system’s sequences by choagsm0 or 1with fair probability
after generating eitliea 0 or apair of 1's. The result is a

(83
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observed symbols 0 and 1, when the process is in each of th 5
internal states, are given by the transition matric€¥ and HL) ——
T, respectively: 4l Esnlo
[0 0 O
Tw=|0 0 1/2|, (84) =
L0 0 O T,
and
[1/2 1/2 O T
TO=| 0 1/2 0. (85)
[ 1/2 1/2 0

The elements of the transition matrices are identified with the
set of internal statefA, B, C} in the natural way. For ex-
ample, TSY=1/2 indicates that the probability of being in
stateB, producing a 1, and making a transition to st&tés

1/2.

L), hy(L)

Assuming that the observer knows the internal structure =
of the process—i.e.T(® and T®—then whenewvea 1 is
measured the observer knows that the internal state. is I
However, for every 0 measured after this, the observer be: (b)
comes and then remains uncertain as to whether the intern: 0
state isA or B. This also explains the label “nondeterminis- 0 [
tic” for this process: the measurement of 0 does deter-
minethe internal state. In contrast, all the previous examples /
we have considered have been deterministic, in the sense th -0.05
specifying the output symbol determines the next internal
state.

A central consequence of this nondeterminism is that the /
number ofeffective stateseen by an observer that attempts Vs
to reconstruct the hidden process is infinite, even though the o015t /
internal process is a simple, three-state Markov cFaff.
The SNS is arguably one of the simplest such examples fol (c)
which this infinite-state divergence occurs. -0.2 . .

The various entropy convergence curves for the SNS
process are shown in Fig. 13. The entropy rate, calculable
analytically, ish ,~0.6778 bits per symbol and the predict- FIG. 13. (a) Entropy growth(solid line) for the simple nondeterministic
ability is G~0.3222 bits per symbol. We find thaE source, along with the asymptdeeth L (dotted ling. (b) Entropy conver-
~0.147 bits, there is not much mutual information betweer@nce. botf, (L) (solid line) andh, (L) (dashed lin andh,, (dotted ling
the past and future, arifi~0.175 bitx symbols. for the same(c) Predictability gainA2H(L) vs sequence length.

Interestingly, the functional form oh (L)—h, is not

04}

AZH(L)

0.1 |

clear. An exponential decay, one can write down a compact nondeterministic representa-
. tion for it that has only a few hidden states. However, to
hu(L)—h,=A2"7%, (86) perform optimal prediction, a deterministic representation is

is shown as the dashed line, wi=0.05 andy=1.35, in  needed, and for the SNS that representation has an infinite
Fig. 14. One can also test a power-law entropy decay of th@umber of state&’ This degree of complexity is not sug-

form gested by the relatively small values for the information
W theoretic measures of structure considered here. Thus, rely-
hu(L)—h,=cL"% (87) ing only on information theoretic quantities, one is misled as

This is shown as the dashed line, with: 1.0 anda=7.0, in  to the process’s actual complexity. Nonetheless, the fact that
Fig. 15. Neither form is ideal: entropy convergence is slowe€Ntropy convergence is not clearly exponential, in contrast to

than exponential and faster than a power law. Based on Figile €ven and RRXOR processes, provides indirect evidence
14 and 15 one cannot infer a simple functional form forthat the SNS is different from these other finitary sources.

h,(L)—h,; perhaps it is a stretched exponential. o
m o
In short, the simple nondeterministic source has low pre-G' Aperiodic infinitary process

dictability and low apparent memory. Moreover, sSintds We now consider an infinite-memory process that is ape-
small, synchronizing to it entails overcoming very little un- riodic and has zero entropy rate. Theue-Morse (TM) se-
certainty. These would seem to be in accord with the fact thajuenceis the fixed point of the substitutiom defined by
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FIG. 14. A semilog plot to test for an exponential decaypfL) (squarek
The latter are calculated exactly for sequences ftom2 to L=25. The
dashed line represents an exponential decay.

a(0)=01, (88)
a(1)=10. (89

For example, starting from the initial string=1, the fifth
iterate in the TM sequence is

05(s)=10010110011010010110100110010110(90)

Regularities unseen, randomness observed 43

2 3
The Thue-Morse language ky, is the subset of all words in . Lx jooo .
the TM sequence: 0 y Y v
Lyv=sul(lim ¢'(1)), (91) -0.05 v ]
t—o0
where subg) gives all of the subwords in string. The 0.1
Thue-Morse processs then given by assigning the natural % -0.15
measure—the frequency of occurrence dif(1)—to the
words inLy, . Unlike the previous three examples we have 02
considered, the Thue—Morse procesig generated by a 025 H -0.35 [ N
finitary hidden Markov process. In fact, there is no finite- 5 10 15 20 25 30
state process that can generate the Thue—Morse sequence 03T (C) L
The various entropy convergence curves for the TM pro- 035 .

cess are shown in Figs. 16 and 17. These curves were calct

50 100 150

200

lated using the results of Ref. 75, which show that

L

FIG. 16. (a) Entropy growth(solid line) for the Thue—Morse procesg)
Entropy convergence, both, (L) (solid ling) andh, (L) (dashed ling for

2* - the same. Ina and (b) sequence length goes up lte=5000. (c) Predict-
o8 BN . ability gain A?H(L) over small ranges df.
12 | " .

-16 | .

&2 - h.(1)=1, (92)

- 520 .

e 524 . h.(2)=log, 3~ 3, (93
2% h.(3)=3 (94
>3 | "

" and, fork=1:
5736 , , : , = _
1 5 4 8 16 32 4/(3x2% if 2Kk+1<L—1=<3x2k1
L ha(L) (95)

FIG. 15. A log-log plot to test for a power-law decayfof(L) (squarek
The latter are calculated exactly for sequences ftom2 to L=25. The
dashed line represents a power-law decay.

Tl 2u3%x 2% if 3x2k 41 —1<2ktL

From this, one concludes tha‘aﬂ=0 and that the

entropy-rate estimates converge according to a power law:
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14 T r r r TABLE IlIl. Summary of examples.
Process h, G Y E T
Fair coin 1 0 0 0
Biased coin 0.881  0.119 0 0
-y Period-16 0 1 4 16.6135
w (11000y° 0 1 log, 5 4,073
= (10000y° 0 1 log, 5 5.273
Tl (10101y 0 1 log, 5 4.873
4 Golden mean 2/3 1/3 0.252 0.252
; Even 2/3 13 0501  0.902 3.03
E(L)------ Random-random-XOR ~ 2/3  1/3  0.306 2 9.43
2f (a) EL)—— 1  Nondeterministic 0678 0322 135 0147 0175
0 Thue—Morse 0 1 xlogL oL
7 F ’ ’ ’ ’ aThis can also be fit to a power la, @ with a~7.
6 3
Moreover, Freund, Ebeling, and Rateitschat have given an
° 5T argument for why this entropy convergence form is charac-
S a4t 1 teristic of aperiodic sequencés.
x
23t . H. Other infinitary processes
|_
o} . Before concluding Sec. V, we review the results of sev-
TL) —— eral other investigations of entropy convergence p&dasy
Tr (b) y and Gyagyi®’ found thath,, (L) —h,~L"* with a=5/2 for
. . . . a class of one-dimensional intermittent maps. Thus, this class
1 2 3 4 5 consists of finitary processes. However, for a different model
L x 1000 of an intermittent process, Freund found a similar decay

_ , o form, but with «~0.492 Examining temporal-block se-
FIG. 17. (8 Excess entropy estimate divergendgk) (solid line) and o ences in elementary one-dimensional cellular automata,

E’'(L) (dashed ling (b) Transient information estimate divergencét) S
(solid line). Note that the sequence length goes up $65000 and that both C'\"raSSbergéis also found a power law decay, with=0.6

plots have large vertical scales. +0.1 for rules 30 and 45 and=1.0+0.1 for rule 120.
These are examples of infinitary processes.

A number of researchers have examined entropy conver-
h,(L)=1/L. Thus, the total entropy grows logarithmically: gence for written texts—such as The Bible, Grimms’ Tales,
H(L)xlog, L; as shown in Fig. 1@). Despite the slow con- \johy Dick, the gnuplot manual, and Gleick’s popular book
vergence toh,=0, the predictability is highG=1bit per  «cphggs.” 525381-83The picture that emerges is that entropy
symbol. Each measurement gives the maximal amount (Eonvergence can be fit to a power lawy(L) —h,,~L® with
information about the nonrandom part of the process. « ranging from 0.4 to 0.6. Interestingly, for a Beethoven

Nonetheless, the excess entropy diverdggd;)<log,L,  sonata an exponent af~0.75 has been fourfd. Again,
indicating an infinite-memory procedSee Fig. 17).] This  these results indicate infinitary processes.
can also be inferred from Fig. (&, whereE is simply the Recently, Nemenm&nand Bialek, Nemenman, and
height of theH(L) curve, sincen,=0. Finally, the transient Tishpy have found power-law convergences for different
information estimatél (L) also diverges, linearly, as shown gne-dimensional Ising models. For long-range coupling,
in Fig. 17b). This linear divergence is explained by looking where the coupling constants decay as the inverse lattice
at Eq. (66). If one substitutes1,(L)~L"* andh,=0 into  separation, they found~0.5. They also examined an Ising
the expression there fdf, the linear divergence follows im-  model with short-range interactions, but in which the cou-
mediately. _ pling constant changes every 400 000 sites within a lattice of
Itis clear from Fig. 1€c) that there are long sequences 1¢® gpins. The coupling constant was drawn from a Gaussian
of measurements that are uninformative. These are punctyistribution with zero mean. For this system they found a
ated occasionally with isolated symbols that do improve Prépower-law decay with an exponent af=1.
dictability. These occur at sequence lengths=3x2'"3
+ 2, i = 3,4,5,. ... To determine Wh&ZH(L) behaves in this . Summary of examp|es
manner requires a computation theoretic approach, such as

that given in Ref. 76 for the symbolic dynamics produced at For comparison, Table Il collects the various analytical
the period-doubling accumulation point of the logistic map and numerical estimates of the information theoretic quanti-

For other, similar approaches, see Refs. 77-79. ties for the preceding examples we analyzed.
We conclude this section by noting that, based on our

results and those of several other autidrs:>®this 1. ¥ APPLICATIONS AND IMPLICATIONS

entropy convergence is typical of aperiodic sequences gener- Being cognizant of various types of entropy conver-
ated by substitutions rules like those of E¢83) and (89).  gence, of different classes of hidden processes, and of how to
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guantitatively distinguish between them is useful general h;l(L)L

knowledge. To this end, we reviewed information-theoretic \
guantities, introduced a new one, the transient information, E(L)+hyL)L e

and put forth a unified framework for relating them all in - H(L)
terms of discrete derivatives and integrals. Then, in Sec. V, E — !

o2
-
-
-
-
-
- .
- %
- g
-
-
-
-

L~

we analyzed a number of examples. We return now to the set

of questions posed in Sec. I: How can we untangle different E(L) -
sources of apparent randomness? In particular, what happens
to our estimates of the entropy rate if we ignore a hidden E-0

process’s structure?

In the following, we consider, among other things, the
effect of truncating one’s ana|ysis at finite block |eng1h FIG. 18. Ignored memory is converted to randomness: lllustration of how
We do not, however, consider the systematic effects of uni_qnoring memory, in this case implicitly a_ssumiEgO as Eq.(13) implies,
dersampling, as often occurs when dealing with a finite datWhen actuaIIyE>0, Iea(_js t_o an overestimalg (L) of the actual entropy

! . ; ; . "Flateh . H(L) is the solid line.
set. For a thorough discussion of undersampling and of im-*
proved estimators fo (L), the reader is referred to Ref. 9.

Addressing these questions is the task of this last sectior. gives one a raté (L) that is larger than the actual rate
Here we show that there are direct and empirically important,,. That is, the source appeamsore randomif we ignore
consequences for ignoring structural properties. We considesorrelations between variables separated by more than
several different questions: steps. This observation follows directly from the definitions

of h, andh,(L). However, it turns out that this form of

. f
(1) What happens when an observer ignores entrOpy'r"’ltgverestimation oh, is related to the excess entrofy We
convergence? iy

(2) What h ns when the or , rent memor IshaII see that there is a quantitative trade-off between ran-
igngredzppe S when the processs appare EMorY Bomness and memory.

(3) On the one hand, what h ns if the observer ianor Assume an observer makes measurements of a process
€ one hand, what happens € ODSEIVer Ignoreg;im, entropy rateh, and excess entropg>0. Recall the
synchronization? ®

. definition, Eq.(13), of the entropy rate. Using this definition
(4) On the other hand, what happens if the observer assum : . . .
it is synchronized to the process? % esUmgtehM is ftantgmount to assuming tﬂﬁt:O see the
dashed lineh L in Fig. 2. But, by assumptiorE>0. Thus,

The answers, given in the following, show that ignoring & @ givenL, we can ask what the entropy estimétg(L)

a process’s structural properties leads to a range of mislead: 1 (L)/L is. Lergma_l established thaf,(L)>h, . But by
ing inferences about randomness and organization. In addii?" Mmuch more? This is answered in a straightforward way

tion to highlighting the negative consequences, we also compy the foIIo_V\_/ing proposition. ) ,
ment on the fact that the associated problems can be Proposition 13: When the observer is synchronized to

alleviated to some extent, even in cases where data are linf2€ Process
ited.

0 L-1L

A. Disorder as the price of ignorance Mu(b)=hy L %9

The first two questions are closely related and rather ~Proof The claim follows immediately from the graphi-
straightforward to answer. The preceding sections definegal construction given in Fig. 18. Saying that the observer is
several different quantitiesh; , G, E, andT—that measure ~Synchronized to the source means using larsuch that
randomness, predictability, memory, synchronization, andi(L)=E+h,L. Thus,
other features of a process. For the most part, these are H(L) E+h,L
asymptotic quantities in the sense that they involve the be- hl’L(L)z T £
havior of the functionH(L) in the L—oe limit. Thus, their
exact empirical estimation demands that an infinite numbeProposition 13 follows directly. O
of measurements of infinitely long sequences be made in In this way, E bits of memory are converted into addi-
order to form accurate estimates of sequence probabilitiesional, apparent randomness. The process appears more ran-
Obviously, other than by analytic means, it is not possible tadlom due to the observer ignoring one of its structural prop-
exactly calculate such quantities. Exatt—« results are erties.
known for only a few special systems which are analytically =~ One can object to this estimate: Typically one does not
tractable. know the process’s propertiés.g.,E andh,) and so even

This leads one to ask, even when sequence probabilitiehese must be estimated. Thus, expressing the estirhgtor
are accurately known, how well can these various sourcén terms of the asymptotic quantiti€s andh, may not be
properties be estimated at finite? What errors are intro- that useful. However’ (L) in Eq. (63) is a nonasymptotic,
duced, and are these errors related in any way? L-dependent estimator of memory. Namety(L) is a mea-

The simplest such question, the first one listed abovesure of the mutual information between two halves ofLan
arises when one attempts to estimate source randonhness block. Using this estimator we can restate Proposition 13.
via the approximatiom ,(L). Stopping the estimate at finite Proposition 14

(97
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, E'(L)
Proof Again, see Fig. 18. Appealing to the monotonicity P ,
and convexity ofH(L), the monotonicity ofh,(L), and '__:_._;;_‘_.'. ----- e H(L)
Lemma 1, we can rewrite the definition E> 0__"&.—.:-'-’- """ E+hyL
E(L)=H(L)—h,(L)L, (99)
as E-0
H(L) E(L) 0 L
— —hu(L)=——. (100 . S
L L FIG. 19. Assumed synchronization converted to false predictability: Sche-

. , . matic illustration of how assuming one is synchronized to a process leads to
SinceE'(L) is bounded above b¥(L) by Lemma 3, we an underestimath;, for a source with excess entrofg>0 and entropy rate

have h,.
E'(L)
h;(L)—h#(L)ET. (101
At a given L the effect is that the observer considers the
which directly proves the claim. O source to have a largé than it actually has at that. The
This result establishes hol, (L) lower boundsh,’L(L), line E+ﬁ;L is fixed atE when that intercept should be

as indicated by Lemma 1. In particular, it emphasizes thalower. The result, easily gleaned from Fig. 19, is that the

their difference is controlled by the excess entropy, a meaentropy rateh,, is underestimated eﬁ;; In other words, the

sure of memory. source appears more predictable than it actually is.
AlthoughE is anL-asymptotic quantity, the err@/L in Proposition 15: An observer monitors a process with ex-

the entropy-rate estimate dominates at smallMoreover, cess entrop¥>0. If the observer assumes it is synchronized

being restricted to small is typical of experimental situa- when it is not, then

tions with limited data or in which drift is present. That is, <h (103

one cannot reliably estimate theblock probabilities Prg") poR

at largeL due to the exponential growth in their number or Proof. From Fig. 19 or Eq(102), one sees that

the nonstationarity of block probabilities, respectively. H(L)—E

Fa=—— (104
The observer is assuming that it is seelglL) =E+h L.

But sinceH(L)<E+h L, we have that

Conversely, if one knows the amount of memdaywe
shall see that this leads to an underestimate of the entropy E+ﬁ;LSE+hML' (109
rate h,,. Assuming one knows the excess entropy is notand soﬁ;s h,. O
something one would be likely to do in the particular setting
here, in which an observer empirically measures entropy
density and related quantities from observed symbol sec aAssumed synchronization implies reduced
quences. In a more general modeling setting, however, ongyparent memory
always runs the risk of over-fitting and, in so doing, “pro- . .
jecting” some particular structure—such as additional " @ddition to analyzing the effects on the apparent en-
memory capacity—onto the system. Assuming a fixed, nontropy rate due to assuming synchronization, we can _ask a
zero value for the excess entropy is, in an abstract sense, gAMPlementary question: What are the effects on estimates
example of overfitting. Given this, we ask, What is the con-0f the apparent memory? Suppose that, due to some prior
sequence of assuming a fixed value &t knowledge, one knows the entropy rdtg. For example,

Equivalently, what happens if the observer assumes th&ne could know before making any observations that the
it is synchronized to the process at some fiiteimplying ~ environment was periodic and, hence, hadhgnof zero.
that H(L)=E+h,L with E held at the correct value? The Given this situation, what happens if one prematurely as-
geometric construction for this scenario is given in Fig. 19.sumes synchronization? Figure 20 illustrates this situation. In
In effect the source is erroneously considered to be a conthis case, one infers an excess entré&piat is less than the
pletely observable Markovian process in which, as we havérue excess entroply.
seenH(L) converges to its asymptotic form exactly at some  If, at a givenL, one approximates the entropy-rate esti-
finite L. If the observer then uses E(p8) to estimateh, mateh ,(L)=H(L)—H(L—1) by the true entropy,, , then
using its assumed value f&r;, one arrives at the estimatﬁﬁ the offset between the asymptote aHqL) is simply E

B. Predictability and instantaneous synchronization

where +h,L—H(L). From Fig. 20 we see that we have a reduced
B H(L)—E h Loz apparent memorfE<E of
I L e (102 E=H(L)—h’uL. (106
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(1) Periodic processesFor periodp processesH(L) be-
comes a constant arfg,(L) vanishes fol.=p.
E+hul (2) Aperiodic processesThese are infinitary processes,
________ since they need, in a crude sense, an infinite amount of

,,,,,,,, memory to maintain their aperiodicity. Havirlg, =0,
........... H(L) they cannot be aperiodic by virtue of an internal source
1 of randomness. The excess entrdpyand the transient
informationT diverge for this class of processes.

------ WE +4,L

0 L Then we have the positive entropy rate, irreducibly unpre-
o dictable processes.
FIG_. 2_0. Ass_umed synchronlzz'_itlon leads tc_) Ie_ss apparent memory: Sche- (1) Memoryless processegor these,H(L) scales as
matic illustration of how assuming synchronization to a source, in this cas?] L dh (L . di v i We h E
implicitly assumingH(L)=E+h,L, leads to an underestimate of the L, andh,(L) converges Imme late Y_t - YV have
actual memonE=0. =0 andT =0. Independent, identically distributédD ) pro-
cesses are examples of this class. They have no temporal

memory and no structural complexity.

If, instead of using the exact entropy rdtg, one uses (2) Finitary processesin this classH(L) scales as
the estimaté, (L), one infers an excess entropy that is eventh,L. The entropy density, (L) typically converges ex-
smaller tharE. To see this, note that,(L)=h, and replace Ponentially toh,,. We have G<E<c and T>0. Reference
h, by h,(L) in Eq. (106). Thus, assuming synchronization, 68 es'.tabhshe.d a usefl_JI connec’qqn between information and
in the special sense that,(L)=h,, leads one to underesti- ergodic theories for this class: finii means that a process
mate the apparent memoB. And so, the process appears is weak Bernoulli. Within the finitary class further structural

less structurally complex than it is. distinctions are possible: . _
(a) Markov processesThe basic property of Markovian

sources is that one synchronizes to them exactly at some
VIl. CONCLUSION finite block lengthL. For these processes, the effective states
Looking back, we have introduced a variety of c@n be taken to be single symbols or symbol blocks of some

information-theoretic measures of a process's randomnediite length. Once that length of sequence has been parsed,
and a variety of structural properties. Along the way, we putthe observer is synchronized and can then optimally predict
forth a new quantity, the transient information One of the ~ e process.

central results of this work is contained in Theorem 1, where  (P) Deterministic hidden Markov processeghese pro-

we proved thafl is related to the total state-uncertainty ex- CESS€S are characterized by an exponential convergence of
perienced while synchronizing to a Markov process. h,(L), in contrast to the exact convergence at finitex-

We also calculated these information-theoretic quantitiedliPited by a Markov process. Depending on the transition
for a range of differently structured processes. A naturaptructure of the hidden states, these processes can have rela-

question, then, is: To what extent does this informationlively large values for the excess entropy and transient infor-
theoretic approach allow us to distinguish between processdgation. Within this broad class of hidden Markov processes

that are structured in fundamentally different ways? lies the interesting case of a measure sofic process—a system
o whose support set contains an infinite list of irreducible for-
A. Process classification bidden words. In a limited sense, these systems have an in-

To summarize our results from Sec. V, we now give afinitt memory that keeps track of the infinite list of irreduc-
rough classification of several types of information sourceble forbidden words. Nevertheless, the measure sofic
based on the quantities studied here. Gaspard and Wangprocess considered here, the even process, had Eréted
have also looked to classify processes by the form of theifl . As noted earlier, the behavior &f?H(L) for these pro-
entropy convergence. They consider signals that are contingesses seems to provide strong hints of the structure of the
ous in time and random variables that are continuous ifiidden state transitions responsible for the infinite memory.
value, in contrast to the discrete scenario we consider her#n particular, we find than®H(L) oscillates with a period-
They introduce the parameteesand 7 which, respectively, icity given by the periodic structure of the transitions be-
correspond to the bin width used when discretizing continutween hidden states.
ous variables and the time interval between measurements of (c) Nondeterministic hidden Markov processksvould
the continuous time signal. They then look at how the Shanappear that this class of process may not be overtly different
non entropy scales witle and 7. A thorough analysis of a from other finitary hidden Markov processes. However, the
wide range of systems reveals an interesting range of corexample we considered, the simple nondeterministic source,
vergence properties. Similar, although coarser, classificatiorshowed a markedly different entropy convergence behavior
of process’s entropy convergence behaviors have been ptitan the other hidden Markov examples.
forth by Szefalusy®® Ebeling®® Crutchfield’? and Binder (3) Infinitary sourcesAt this point in time, this remains
and Plazas’ a catch-all category of processes—those falling outside the

We begin our classification with the zero entropy-rate finitary classes. These include, for example, various context-
asymptotically predictable processes. free languages, such as positive entropy-rate variations on



48 Chaos, Vol. 13, No. 1, 2003 J. P. Crutchfield and D. P. Feldman

the Thue—Morse process and other stochastic analogs froof inferring models of the sources. Analyzing the computa-
higher up the Chomsky hierarchy. Presumably, within thetional complexity of these two problems is the domain of
infinitary sources there are many interesting structural discomputational learning theofy:®

tinctions waiting to be discovered: some analogous to the Third, establishing that the source entropy rajgis a
automata-architectural distinctions recognized by discretenetric invariant is one of the hallmarks of ergodic and dy-
computation theof# and some distinctions related to the namical systems theorié$2°8What status d& andT hold
nature of the measure over the infinite sequences. in the same setting?

The ultimate goal of this type of classification would be Finally, there is, of course, the question of how the
an amalgamation of the structural distinctions made in thenformation-theoretic approach to structure outlined here can
Chomsky hierarchy of computation theftyand statistical be extended to more than one dimension. There has been
categories found in the ergodic theory hierarchy of stochastisome preliminary work in this directioft;5%:67:7490-%% .-
processe& ever, many questions remain. One of the central difficulties is

Recent work by Nemenmé&rand Bialek, Nemenman, that, unlike in one dimension where the various expressions
and Tishby may be a helpful step in this direction. In Refs. for the excess entropy are equivalent, they yield different
7 and 8 they show that the excess entropy—the “predictiveesults when extended to two dimensidA<Careful defini-
information” in their parlance—is, in some circumstances,tions and distinct interpretations of the different forms of
related to the number of parameters in the model producingvo-dimensional excess entropy and related quantities will
the process. However, this result holds in a slightly differenthave to be given in order to develop a useful, fully two-
context than ours. Rather than using histograms of larger andimensional approach to pattern and structure. Our hope is
larger blocks, they consider a procedure in which an observehat the preceding development is sufficiently clear and thor-
is trying to learn a distribution through successive samplingsough that it can serve as a firm foundation for an information

theory of structure in higher-dimensional processes.

B. Inferring models from finite resources
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APPENDIX A: PROOFS
™ . = L L-1

We conclude by mentioning some important open quesPrOpOS'tlon L AH(L)=DLPr(sD)[Pr(s*™5)]
tions and suggesting several directions for future research. Proof By direct calculation we have the following.
F|.rst, at a number o_f pom_ts we have referred to “structure, DPI(sY)|Pr(s-~1)]
without actually defining it. Is there a better, more system-
atic, and principled approach for determining the structure of Pr(s")

- : : - = PrsHlogy=—r—1- (A1)
an information source than the pure information-theoretic - 2pr(st—1)
one just outlined? References 20 and 72, for example, argue =
that computational mechanids a viable approach to quan- . L L
tifying source structure and the patterns produced by infor- _g} Pi(s™)log, Pr(s™)
mation sources, including infinitary processes. They show

C. Future directions

that thee-machine representation used there captures all of a L L—-1
o — Pr(s-)log, Pr(s A2
source’s structure. Thus, one natural question is: How can {SLZl} {El} f(s7)log, Pr( ) (A2)
one determine entropy convergence behavior given a pro-
cess'se-machine? _ L-1 L
. i ) =H(L)— log, Pr(s Pr(s (A3)
Second, it would be helpful to make a direct connection L {SLE—:l} % Pr ){gl} s")
between the source characterization developed here—in —H(L)—H(L—1), (Ad)

terms of average source properties measureth pyE, T,
andG—and the difficulty of estimating these quantities andsince Pré-~*)=3;, ,Pr(s"). O
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Proposition 2:  AZH(L)
—DPr(s,_1|s"7?)|Pr(s,_,|s*7%)]
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Proposition 5: E =—37_,(L—1)A%H(L)
Proof. Writing the right-hand side of the above-

Proof. By the expressions for the second discrete derivamentioned equation as a partial sum, and then using the

tive, Egs.(20) and (A1), we have

A’H(L)=AH(L)—AH(L-1) (A5)
=2, Prsh)log, Pr(s, 4|s"?)
{sh}
+ 2 Prs"hlog, Pris,o[s"°) (A6)
C
B Pr(s_4s" %)
= —g} P(SL)logzm (A7)
= —DIPr(s__1|s" " ?)|[Pr(s _5|s" )] (A8)
O

Proposition 3: —G=R

Proof. We write the sum of Eq(45) and use the anti-
differentiation formula Eq(21) to get
M

> AZH(L)=AH(M)—AH(0).
[=1

(A9)

Since lim_.,AH(L)=h, and since we have defined
AH(0)=log,|A|, it follows immediately that

—G= lim[AH(0)—AH(M)] (A10)
M — oo
=log,| A|—h,, (A11)
which isR by Eq. (15). O

Proposition 4: G =—37_,(L—1)A3H(L)

Proof. We write Eq.(48) as a partial sum as follows:
M M

> LA3H((L)- D A3H(L)}
L=2 L=2
(A12)

We use Egs(22) and (21) on the first and second terms on
the right-hand side and obtain, after simplifying

> (L—1)A3H(L)= lim
L=2

M—o

]

> (L—1)A%H(L)

M
— lim | MA2H(M) - >, AZH(L)}
L=1

M—o

(A13)

From the definition of3, Eq. (45), and since we assume that
G is finite, limy_... MA2H(M)=0. From this we see imme-
diately that

©

—LZZ (L—l)A3H(L)=L21 A2H(L)=G. (A14)

O

integration-by-parts formulé22) we obtain, after some alge-
bra:

o0 M
— D (L=1)A2H(L)= lim { =MAH(M)+ >, AH(L)}.

L=2 M0 [=1

(A15)

Recalling thatAH(L)=h (L) and thath,(M)—h, in the
M—oo limit, we see at once that

[’

_LZZ (L—l)AZH(L):;l [h,(L)—h,]=E. (A16)

The last equality follows from the definition &, Eq.(49).]

Proposition 7: E =lim,_ . [H(L)—h,L]

Proof. Writing out the partial sum of the infinite sum in
Eqg. (49) and evaluating it using the integration formula, Eq.
(21):

M
;1 [AH(L)—h,]=H(M)—H(0)—h,M.

(A17)
SinceH(0)=0, it then follows immediately that
E= lim [H(M)—h,M]. (A18)
M —o
d

Proposition 8: E =/[S5; 5]

Proof. We rewrite the definition so that we can use the
finite-L forms of various entropies:

I[S;S]= lim I[S-;8].

L—oo

(A19)

We begin with the definition of mutual information, E@®),

which expresses as the difference between two entropies:
I[S" S ]=H[S-]-H[SS"].

Recall thatH[ S ]=H(L).
Using the conditional entropy chain réfeve have

(A20)

H[§L|§L]:H[Soysl!'--asL*l|S*L1'--1871] (AZl)
L-1

=2, HISIS.1S 11§l (A22)

Putting these together we have
L-1

I[S;S]= lim | H(L) = 2, HIS|S (S 1118 4]).

L—o =

(A23)

In theL —co limit, each term in the summand is equaltg.
Thus, we see that
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I[S;S]= lim[H(L)—Lh,], (A24)
Lo
which is E by Proposition 7. O

Lemma 1: h,(L)=h,(L)=h,

Proof. We prove the right inequality first. Since condi-

tioning reduces entropy,

h,(L)=h,(L") for all L>L". (A25)
Now, recall that
lim h,(L)=h,. (A26)

L—oo

Since, by Eq.(A25), the h,(L)’s are nonincreasing ak
increases, it follows that ,(L)=h,, .
We now prove the left inequality in the proposition,

HL) 1&
h;(L)E(T=E§1 HISIS 1S 2 -S].

(A27)
For alli<L,
H[S|S-1S -2 "SI=H[S|S.-1S > ~"S1].  (A298)
Thus,
1L
h(L)=1 2 HISIS 18 28] (A29)
1
:ELH[SL|SL718L72"'81] (A30)
=h,,(L). (A31)
O

Lemma 3: E'(L)<E(L)<E
Proof. We first prove the right inequality. Recall that
E(L)=H(L)—Lh,(L) (A32)

L
=ME:1 (h,(M)=h,(L)). (A33)

SinceM <L for all terms in the summand, all elements of
the sum are positive. Now, the excess entropy is defined 3§ the correlations decay exponentially

L
E= lim El (h,(M)—h,(L)).

L—oo M=

(A34)

Thus,E(L) is the partial sum of the above-mentioned term.
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2H(L/2)<2H(L)—Lh,(L). (A37)
By the concavity ofH(L), 2H(L/2)=H(L), and thus the
above equation becomes

H(L)<2H(L)—Lh,(L).
Rearranging again, we see that we need to show

H(L)=Lh,(L). (A39)

That this equation is true can be seen geometrically by in-
specting Fig. 2. Note that the inequality is saturated if and
only if the process is independent identically distributed.
To verify Eq. (A39) algebraically, we use the chain rule
on the left-hand side and obtain
L

(A38)

H(L):'\Zl H[Su[Su-1Sm-2"""S1]- (A40)
But,
L
> HISulSu-1Su-2S1]
M=1
L
>ME:1 H[SLIS.-1SL 2 "Si] (A41)
=Lh,(L). (A42)

Thus, Eq.(A39) is true, and the proof is complete. O

APPENDIX B: EXPONENTIAL CONVERGENCE TO
THE ENTROPY RATE

It was claimed in the main text that,(L)—h, often
vanishes exponentially fast for finitary sources. Why is this
behavior so common? There are several ways to argue for
the ubiquity of exponential entropy convergence.

First, note that ifA?H(L) converges to 0 exponentially
fast, thenh,(L)=AH(L) must also converge exponentially
fast. Then, a direct calculation shows thstH(L)<I(L),
wherel (L) is the mutual information between two variables
separated by symbols. Now, the two-variable mutual infor-
mation is related to the two-variable correlation function
C(L). In particular, 1(L)*<C?(L). This result was first
shown for binary sequences by (Ref. 60 and later gener-
alized to larger alphabets by Herzel and Grd&s&s a resuilt,
then the two-symbol
mutual information decays exponentially. This, in turn, al-
lows one to conclude that the entropy-rate estimate con-
verges exponentially, and sh, is finite.

The conclusion from these observations is that exponen-

Since all terms in the sum are non-negative, it follows im-tial convergence of correlation functions implies the expo-

mediately that the partial suB(L) is less than the infinite-

SUmE.
We now prove the left inequality. Using stationarity,

E’(L)=2H(L/2)—H(L). (A35)

Recall that for oddL, we definedE’'(L)=E’'(L—1). To
prove the left inequality, it will suffice to show that

2H(L/2)—H(L)<sH(L)—Lh,(L). (A36)

Rearranging, we have

nential convergence of the entropy rate. However, this only
transfers the convergence question from entropy rates to cor-
relation functions. Sowhy is it that correlation functions
typically decay exponentially? There are several answers to
this question.

Mathematically, many stochastic processes can be reex-
pressed as one-dimensional spin models; see, e.g., Ref. 27.
Thus, we expect that what is typical for spin systems will
also be typical for the more general stochastic processes of
interest to us here. In a one-dimensional statistical mechani-



Chaos, Vol. 13, No. 1, 2003 Regularities unseen, randomness observed 51

cal model with finite interaction strengths, one can alwayd.ikewise, after we have observed the particular lergtse-
express the partition function as an infinite product of transquences’", L<R, we know that the process must be in one
fer matrices. The correlation function between two sgins of the states that corresponds to Rfsymbol block whose
lattice sites apart is proportional ta{/\;)", where\y is  first L symbols ares’t;

the largest eigenvalue of the transfer matrix andthe sec- _ L ) .

ond largest eigenvalue. The Perron—Frobenius theorem guay-s'Lz{‘p(S SLeaSLez Se):sie ALT1<I<R}, L$(Ré.8)
antees that the largest eigenvalue is nondegenerate, thus es-

tablishing the exponential decay of the correlation function.The following properties oV follow immediately from

This result is standard; see, for example, Ref. 94. the definition, Eq(C8):

Rhysice_xlly, in a spin sy_stem the sum of the correlation VaCV, (C9)
functions yields the magnetic susceptibiljpy The exponen-
tial decay of the correlation function thus ensures thas VeNVgL= if and only if st#s't, (C10

finite. Hence, away from a critical point, where we expect, g
finite response functions such gswe also expect exponen-
tially decaying correlation functions—or at least correlations ~ UVg=V. (C1)
that decay faster thanll/ st

Mathematically, it has been shown that, under a fairlyThus, the set of blocks{s"} induces a partition of the set of
wide range of circumstances, a statistical mechanical systegtates{)}. For a givenL there are at mostl" setsV ., each
with an analytic partition function necessarily has correlationof which is a proper subset of. (There are exactly4"
functions that decay exponentiaffy.Unlike the Perron— subsets ol if and only if there are no forbidden sequenges.
Frobenius transfer matrix argument, the results in Ref. 95 he setVy has at most4R~" elements. So, as more and
hold for systems in more than one dimension. more symbols are observed—i.e., laggrows—the subsets
V4 of V become more and more refined. For the Markovian
case considered here, eventually enough symbols will be ob-
served so that we know with probability 1 the state of the
process. Since the Markovian states are in a one-to-one rela-

APPENDIX C: PROOF OF THE SYNCHRONIZATION
INFORMATION THEOREM

We begin by restating the theorem: tion with the R-blocks, we are guaranteed to know the state
Theorem 1 If the source is ordeR Markovian, then with certainty afterR symbols have been observed. Hence,

L H(R)=0. Observing subsequent symbols will not add to the
S=T+2R(R+1D)h,. (C)  state uncertainty since each observation uniquely determines
Proof. Since the transition probabilities are normalized,the subsequent state. Thas(L)=0 for L=R.

T is a stochastic matrixS, Ta,=1. The eigenvector corre- For L<R, the distribution over the Markovian states
sponding to the eigenvalue 1 shall be denotedrbgnd is U €V is given by
normalized in probability, s
Pr(v|sh, M) = i) (C12)
é Talap= Tp» ; ma=1. (C2

where " is a vector whosé)| components are given by
As is well known, 7, gives the asymptotic probability of the

stateA e V. Equivalently, in terms of th&-blocks, (7%), = my, i veVy (C13
. .
1 0, otherwise.
A= PIe A 9 W interested in calculating(L), th tat
or, simply e are interested in calculating/(L), the average state-

uncertainty after observing symbols. In order to perform
ma=Pr(sY), (C4  this calculation, the following two properties af" will be

wheresR is understood to correspond to tA¢h state. necessay. - o .
Initially, before any measurements are made, we assume First, for fixeds-, observe that summinga€ ), over its

our distribution over) is given by, components results in Pré‘), the probability of tLhat par-
PIOVIA,M) =, (C5) ?(C:Lilé)lr st. This follows from the definition of £57), Eq.

where\ is the empty string. Hencé{(0)=H[ 7]. Equiva-

lently, it follows from Egs.(78) and (C3) that 2} (WSL)U=U€VSL , (C14)
H(0)=H(R). (Co)

If we observe a particular symbs] , we now know that the - 2 PI(s") (C19

. {SRizp(SR) eVgl}
process must be in one of the states that correspond to sym-

bol blocks whose first symbol is;. We denote this set of R
states by = > Pr(s™) (C16

{SL+1SL+2 "R}

VsiE{go(sisz---sR):si e A, 2<i<R}. (C7) —Pr(sb). (€17
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Hence, Pry|st, M) as given in Eq(C12) is normalized over
L
s .

Second, notice thatr(SL)U has only one nonzero entry

for fixed L and fixed staté\. This follows from noting that
the particular staté\ e V is associated with a particuld-
block ¢~ 1(A). More formally, suppose thatﬂ(SL)U has a
nonzero entry for two different blocks, says- ands’’;

(7%),=(7%"),>0, st#s'L. (C18
Then, by Eq.(C13), it follows that

AeVgy, veVgr, (C19
which, in turn, implies that

VaNVgL#&, st#s't, (C20
Equation (C20) contradicts Eq.(C10. Thus, the original

proposition must be true: n(SL)U has only one nonzero
entry—namelyr,—for all possibles’s.

We are now ready to complete our calculatiorHfL).
Plugging Eq(C12) into Eq.(76) and simplifying slightly, we
have

HL)=—>, > (7%),logy(7%),

{SL} veV

+> Y, (7%),log, Pr(st).

{sL} veV

(C21

Parenthetically, we note th&{(L) is the information gain:
H(L)=D[7TSL||Pr(sL)]. By Eq. (C17, we can perform the
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nonzero contribution to the sum comeslatR—1. As a
result, the left-hand side of EQC26) can be written as

£ R-1
20 H(L)—Tzzo [H(R)—H(L)—E—h,L+H(L)]
(C27)
R—-1
:LZO [H(R)—E—h,L]. (C29

ButH(R)=E+h,R, since we assume that synchroniza-
tion occurs alL =R. Plugging this into Eq(C28), we have

o0 R—-1
LZO H(L)—T=L20 [E+h,R—E—h,L] (C29
R—-1
:hﬂz,o (R—L) (C30
=h,(R*~ 3R(R-1)) (C31)
=%R(R+ 1). (C32

This last equation is EqC26), thus completing the prodil
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