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If an experimentalist observes a sequence of emitted quantum states via either projective or
positive-operator-valued measurements, the outcomes form a time series. Individual time series are
realizations of a stochastic process over the measurements’ classical outcomes. We recently showed
that, in general, the resulting stochastic process is highly complex in two specific senses: (i) it is
inherently unpredictable to varying degrees that depend on measurement choice and (ii) optimal
prediction requires using an infinite number of temporal features. Here, we identify the mechanism
underlying this complicatedness as generator nonunifilarity—the degeneracy between sequences of
generator states and sequences of measurement outcomes. This makes it possible to quantitatively
explore the influence that measurement choice has on a quantum process’ degrees of randomness
and structural complexity using recently introduced methods from ergodic theory. Progress in this,
though, requires quantitative measures of structure and memory in observed time series. And, success
requires accurate and efficient estimation algorithms that overcome the requirement to explicitly
represent an infinite set of predictive features. We provide these metrics and associated algorithms,
using them to design informationally-optimal measurements of open quantum dynamical systems.
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I. INTRODUCTION

Time series of controlled quantum states are essential to
quantum physics, quantum information and computing,
and their implementations in novel technologies. More-
over, as quantum technologies scale to larger qubit collec-
tions that evolve coherently over increasingly longer times,
fault-tolerant design and error correction of quantum-state
time series become increasingly necessary.
Several fault-tolerant systems and diagnostic tools have
been developed assuming quantum processes with uncorre-
lated noise [1–5]. Unfortunately, progressing beyond those
assumptions to more physically realistic non-Markovian,
correlated processes has been challenging. To date, error
correction for non-Markovian quantum processes can be
deployed only in specific cases. Moreover, contemporary
theory offers a restricted toolset for quantum process
identification and control [6–8].
The following explores one reason for these challenges
and limited progress. In short, there is substantially
more-complicated statistics and correlational structure
embedded in non-Markovian quantum processes and in
the classical stochastic processes that result from mea-
surement than currently appreciated. We show how to
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identify the signatures of these complexities and how to
constructively address the challenges they pose.
To ameliorate historical inconsistencies, along the way
we give unified definitions of Markov and non-Markov
processes. Said most simply, these address the role of
memory in a structurally consistent way—a way that also
gives access to modern multivariate information theory.
Clarity in this is essential to appreciating the structural
varieties of complex quantum processes. Lasting progress
in complex quantum processes depends on this clarity.
Explicating the structures embedded in quantum pro-
cesses requires stepping back, to revisit a basic question:
How to characterize the stochastic process that results
from measuring sequential quantum states? The answer
is found in a recently-introduced framework for correlated
and state-dependent quantum processes [9]. Notably, its
toolkit relies only on classical dynamical systems. The
turn to the latter is perhaps unexpected from the perspec-
tive of quantum physics, but makes sense given that the
goal is to describe the classical data an experimentalist has
in hand in the laboratory. Specifically, the tools rely on
fundamental results that both reach back more than half
a century to early ergodic and stochastic process theories,
but also call on contemporary mathematics of dynamical
systems—specifically, iterated function systems and their
stable asymptotic invariant measures [10–12].
Thus, the objects of study here are time series of sequential
quantum systems and the stochastic processes that result
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FIG. 1. A general controlled quantum source (CQS) as a discrete-time quantum dynamical system (black box) that stochastically
generates a time series of quantum states ρt−2ρt−1ρt . . . (density matrices). Measuring each state in the sequence realizes a
classical stochastic process over random variables . . . X1X2X3X4X5 . . ..

from sequentially measuring the state of each one.
Generating a time series of sequential quantum states
usually occurs under the control of an experimental ap-
paratus. If control over the apparatus is not perfect or if
it undergoes dynamics that are unstable or not fully un-
derstood, then the time series of emitted quantum states
can be profitably regarded as a stochastic process. It may
also be desired for a given application, such as quantum
cryptography, that a quantum state process be stochastic.
Figure 1 illustrates this with a black box quantum sys-
tem that emits a quantum state ρt (density matrix) at
each time t. We refer to this source as a controlled quan-
tum source (CQS) and to its output as a quantum-state
stochastic process (QSSP). It is important to note here,
that a distinct quantum state is emitted at each timestep
and the object of study is the time series of these states.
To emphasize, we are not investigating the dynamical
evolution of an individual quantum state or individual
quantum system.
Continuing from left to right in Fig. 1, measurement of a
quantum-state time series results in a stochastic process of
classical measurement outcomes. Of that classical process
we then ask:

• Statistics: What are the properties of this observed
classical process—its randomness, correlation, mem-
ory?

• System identification: What properties of the under-
lying quantum stochastic generator hidden in the
black box can be reconstructed from the observed
classical process?

• Measurement choice: How does measurement affect
the observed statistics and controller identification?

Computational mechanics [13–15] was originally intro-
duced to constructively answer these questions for purely-
classical hidden processes. To do this, it extracts the
“effective theory” from a time series of observations and
provides measures of the time series’ randomness and
structure. In particular, a process’ statistical complexity
Cµ quantifies how much structure or memory is required to
do optimal prediction. And, the entropy rate hµ quantifies

a process’ intrinsic randomness—the rate of information
production.
This toolset, together with the fact that measuring a
quantum time series results in a classical time series, mo-
tivates our approach. We adapt these classical measures
of intrinsic randomness and structure to describe the clas-
sical time series observed when applying measurement
operators to a time series of quantum states. This pro-
vides a description of relevant properties of a stochastic
process of quantum states—properties that have proven
usefully diagnostic and descriptive in the classical setting.
The following endeavors to show that they are for quan-
tum processes. Moreover, our approach allows analyzing
the effects that measurement choice has on the observed
complexity of a quantum dynamical process.
This serves as a starting point to more fully appreci-
ating the complicatedness of quantum dynamical pro-
cesses and the role that measurement plays. Over the
longer term, building on this, the goal is to characterize
stochastic quantum processes beyond being Markovian or
non-Markovian—memoryless or memoryful—to arrive at
understanding of their informational and statistical prop-
erties. These metrics can then support more informed
approaches to error correction and to potentially lever-
aging noise for particular tasks, just as their classical
analogs have for thermodynamic computing [16, 17].
Our agenda is as follows. Section II motivates the set-
up and places the results in the context of the observed
stochasticity of quantum systems. It introduces the no-
tion of quantum stochastic processes and information and
correlations in quantum time series. The next two sec-
tions go into detail on the technical problem statement.
First, Sec. III describes the general type of QSSP that
we study and how we model them. Second, Sec. IV de-
tails how we measure a QSSP and describes the classical
stochastic process that results. Section V identifies gener-
ator nonunifilarity as the mechanism by which quantum
measurement induces varying randomness and correlation
in the resulting classical process. Section VI then gives a
short summary of the tools required to analyze measured
QSSPs. Following that, Sec. VII applies the methods to
example QSSPs and their corresponding measured pro-
cesses. Section VII E, in particular, highlights the general
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properties that can be extracted. Section VIII, by way of
illustrating the general results, applies the previously in-
troduced metrics to particular examples and investigates
their dependence on measurement choice and discusses
alternative measurement protocols. This serves as a way
to introduce notions of measurement optimality in Sec.
IX.

II. BACKGROUND

To start, let’s locate our development in contrast to other
quantum settings.
Perhaps the most common setting for quantum processes
investigates a single quantum system evolving in time. In
this, stochasticity in the system’s state evolution arises
from its interaction with an environment. Within this set-
ting stochasticity in temporal evolution can also arise from
inherent nonlinear dynamics or repeated measurement
and other state mappings.
Historically, though, there is a longstanding effort to char-
acterize stochasticity in quantum dynamics as a means to
manage quantum noise [18, 19]. Much of the machinery de-
veloped to describe quantum stochastic phenomena arose
from open quantum systems, seeded around quantum
master equations and relying heavily on assuming process
Markovity [20, 21]. More recently, an effort emerged to un-
derstand, detect, and quantify non-Markovity, and many
examples of specific non-Markovian quantum dynamics
have been analyzed in detail [6, 7, 22, 23].
From the perspective of Markov’s original concept of “com-
plex chains” [24, 25] and the modern theory of (classical)
Markov processes, though, these approaches rely on an
unnecessarily-varied set of Markovity definitions. One
consequence is that, most basically, they do not agree
on what process memory and correlation are. This also
makes comparing results across investigations challenging.
And so, we give and apply a unified definition of memory
that addresses classical and measured quantum processes.
Appendix B discusses this in more detail, noting the
conflicting definitions one finds.
Directly importing the concept of classical stochastic pro-
cesses to the quantum domain has proved challenging,
as Ref. [26] discusses in detail. While there are several
causes, the primary difficulty is that the Kolmogorov Ex-
tension Theorem—specifying event-sequence probabilities
and measures—breaks down when the random variables
are quantal and are generated by quantum mechanisms.
Recently, process tensors were introduced to treat such
quantum stochastic processes [27–29]. They promise a
gateway to probe quantum stochasticity beyond the bi-
nary distinction of Markov versus non-Markov. Modeling

correlations beyond merely Markovian will allow analyz-
ing a broader class of quantum processes. That said, the
endeavor is new.
While there are parallels with process-tensor represen-
tations, the following focuses on a different type of dy-
namical process—different also from individual quantum-
system temporal evolution. It considers a sequence of
distinct entities, in which the quantum state of each is
a random variable at each time step. In this, there is a
rough parallel to quantum spin chains. Notably, these
variables can be correlated by the physical mechanism
that sequentially generates them.
Consider a physical system that emits qubits, each in a
state that is noisy or stochastic; for instance, photons em-
anating from a blinking quantum dot [30]. The difference
between these processes and the more-familiar evolving
single-system dynamics is that, at each time step, the
quantum state of the emitted qubit is its own random
variable. That is, each successive random variable lives
in its own Hilbert space. The associated random variable
takes on a specific qubit state, and measuring these states
does not interfere with the quantum process generator nor
with other prior or future qubits. In short, as the quan-
tum source emits quantum states the dimension of the
product Hilbert space grows. As a consequence, address-
ing time-asymptotic properties requires working with an
infinite product state space. And, these change the kind
of investigation we pursue. We investigate time series of
quantum states emitted by a physical system in the spirit
of analyzing the multivariate statistical and informational
properties of the system’s dynamics as developed in Ref.
[31].
Specifically, Ref. [9] recently introduced a framework
for such quantum-state stochastic processes. It casts the
problem of quantum processes in a way that is amenable to
directly applying the tools of classical stochastic processes
to characterize the informational and structural properties
of QSSPs. It showed that a qubit time series, when
observed through projective measurements, generically
results in a highly complex classical stochastic process.
Highly complex here means that the observed process has
positive entropy rate and requires an infinite number of
temporal features to optimally predict future outcomes. It
also demonstrated that measurement choice—the manner
in which an observer interacts with a qubit stream—can
drive a quantum process appear more or less complex.
To accomplish this, the prequel adapted the metrics of
computational mechanics to describe randomness and
structure in the measured processes. Section VI sum-
marizes these metrics. The following takes those results
further by introducing an analytical framework to describe
stochastic processes over quantum states. It provides a



4

more thorough-going exploration and isolates the physical
mechanism—generator nonunifilarity—responsible for the
observed complexity. It analyzes a variety of examples
that span the possible types of dynamics and offers sev-
eral avenues for future explorations, including outlining
how to optimize measurements of quantum processes to
various ends.

III. QUANTUM-STATE STOCHASTIC
PROCESSES

The following introduces the main objects of study—
quantum-state stochastic processes—and the information
sources that generate them. It then moves on to explain
how the classical processes that emerge “in the lab” are
produced through measurement of individual quantum
states in QSSP realizations. With the latter processes in
hand, it then shows how to quantify their randomness and
structure using metrics available from information theory
and explores how those properties vary as a function of
measurement choice.

A. Quantum Processes

Consider a given quantum source that emits a sequence
of individual quantum states. At each time step, the
quantum state it emits takes on a value from a finite
set. We refer to these sources as controlled quantum
sources (CQSs) and, in their operation, they generate
quantum-state stochastic processes. We will now define
quantum-state stochastic processes.
Let Rt denote the random variable for the quantum state
emitted at time t. The realization of Rt as a particular
quantum state is ρt ∈ AQ, where AQ is the set of available
quantum states in a Hilbert space. The random variable
for a sequence of quantum states emitted between times t
and t+ ℓ is denoted by the block random variable Rt:t+ℓ
(inclusive on the left, exclusive on the right). Then ρt:t+ℓ
denotes the realized sequence of quantum states.

Definition 1 (Homogeneous Quantum-State Stochastic
Process). Let AQ ⊆ Hd be the set of available quantum
states in the d-dimensional Hilbert space Hd. Ω = AZ

Q

is then the space of bi-infinite sequences over AQ. Con-
sider the probability space P = (Ω,F , P ), where F is the
σ−algebra on the cylinder sets of Ω and P a probabil-
ity measure over the cylinder sets. R−∞:∞ denotes the
discrete-time random-variable sequence of quantum states
described by the quantum-state stochastic process P. It
comprises the sequences of random variables that take on

values according to a measurable function Tt : Ω→ AtQ:

Rt = Tt(R−∞:∞) ,

for t ∈ Z.

To emphasize again, we work with distinct physical objects
at each time step. That is, each random variable Rt takes
a value on its own Hilbert space Hdt . In a homogeneous
process the Hilbert spaces are of the same type. Think,
for example, of a time series of photons, each photon
emitted by a source at a certain time step, in this or that
quantum state.
We restrict our study to stationary and ergodic QSSPs.

Definition 2 (Stationarity). A stationary QSSP is one
in which the probability of observing a particular sequence
of quantum states is independent of the time at which
the observation is made. That is, the probability of an
observed quantum sequence is time-translation invariant:

Pr(Rt:t+ℓ = ρt:t+ℓ) = Pr(R0:ℓ = ρ0:ℓ) , (1)

for all t ∈ Z, ℓ ∈ Z, and ρ0:ℓ.

Definition 3 (Ergodicity). A QSSP is ergodic if all long
realizations obey the QSSP’s statistical properties. That
is, given a long realization R0:n = ρ0:n, the probability of
observing a finite realization of R0:ℓ of length ℓ ≪ n in
ρ0:n is the same as observing that same block in multiple
realizations of length ℓ drawn from the QSSP.

The following considers only QSSPs satisfying these three
definitions. It also imposes two more restrictions. First,
it focuses on stochastic processes of qubits, since they
are the basic carriers of quantum information. Second, it
focuses on processes in which for all t: ρ2

t = ρt. That is,
the quantum states realized by the Rts are strictly pure
states, lying on the surface of the Bloch sphere. This
rules out (for now) the presence of entanglement within
quantum state blocks. And, in practical terms, it means
the joint variable over qubits emitted in a time interval
can be represented as:

Rt:t+ℓ = Rt ⊗Rt+1 ⊗ . . .⊗Rt+ℓ−1 (2)

and a realization is both a pure state and the tensor
product of the individual pure quantum states:

ρt:t+ℓ = ρt ⊗ ρt+1 ⊗ . . .⊗ ρt+ℓ−1 .

Again, together these definitions describe a setup in which
a quantum system emits individual qubits at each time
step. The latter are in pure quantum states. The quantum
system that emits the qubits is the controlled qubit source
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(CQS). Occasionally, this is abbreviated as the controller
to make reference to an experimenter having some level
of control, perhaps through design, over qubit emission,
which can be stochastic.

B. Quantum Sources and Generator Presentations

In short, quantum sources generate quantum processes.
Here, we concentrate on a particular implementation of
CQSs—those that generate QSSPs via a classical con-
troller with a finite memory in the form of a hidden
Markov chain (HMC) [32–34]. (Appendix C provides
a short refresher on HMCs.) To illustrate, this means
that the black box in Fig. 1 is reified as in the white
box shown in Fig. 2: a HMC controlling what the box
emits. Correspondingly, we refer to this qubit source as a
classically controlled qubit source (cCQS).
The choice of finite-state HMC controller to model a cCQS
is natural, in that HMCs are a standard representation
of finite-memory stochastic processes, are widely used to
model noisy classical sources and communication channels,
and can be fully analyzed [35, 36]. Also, once we complete
appropriately developing the present framework, HMCs
are easily extended to represent more general sources,
such as those driven by quantum controllers [37].

Definition 4 (Classically-Controlled Quantum Source).
A cCQS is a tuple (S,AQ, {Tρ}) where:

1. S is the set of hidden states of the HMC controller.
2. Alphabet A is a finite set of symbols in one-to-one

correspondence with the set AQ of available qubit
quantum states. The latter are emitted by the cCQS
when a symbol is encountered on a transition. To
simplify notation, both a symbol and its qubit state
are denoted by a density matrix ρ ∈ H2.

3. {Tρ : ρ ∈ AQ} is a set of quantum-state labeled
transition matrices of size |S| × |S|. Tρσσ′ is the
probability of transitioning from internal state σ to
internal state σ′ (both in S) while emitting symbol
(or, effectively, quantum state) ρ.

The labeled transition matrices {Tρ} sum to the internal-
state stochastic transition matrix over hidden states:
T =

∑
ρ∈AQ

Tρ. This, in turn, determines the HMC’s sta-
tionary internal-state distribution π as the left eigenvector
of T with eigenvalue 1: π = πT. π is then a vector of
size |S| in which the entry πσ represents the asymptotic
probability of the HMC being in internal state σ ∈ S.
For an example, see the cCQS in Fig. 3, where:

1. S = {A,B}.

2. AQ = {ρψ = |ψ⟩ ⟨ψ| , ρφ = |φ⟩ ⟨φ|}. Here, |ψ⟩ and
|φ⟩ are pure quantum states.

3. {Tρ} = {Tρφ ,Tρψ}, where:

Tρφ =
(

0 1/2
0 0

)
Tρψ =

(
1/2 0
0 1

)
.

4. π =
(
2/3 1/3

)
, the left eigenvector of:

T = Tρφ + Tρψ

=
(

1/2 1/2
0 1

)
.

The following implements cCQSs with finite-memory
HMC controllers: |S| < ∞. It also specifies that HMC
controller transitions are unifilar : The current internal
hidden state and emitted quantum state uniquely deter-
mine the next internal hidden state.
Section V B gives a more general and detailed account
of unifilarity. Section VI then highlights several of its
consequences. As will become clear, the distinction be-
tween unifilar and nonunifilar HMCs plays a large role
in driving the complexity of quantum processes on their
own and when measured.
These choices ensure that the cCQS’s randomness and
complexity can be directly calculated. And so, the effects
of measurement on the quantum process are made most
explicit. That said, the analysis below can be applied
directly to nonunifilar controllers, with the caveat that
the controller’s structure and randomness are more com-
plicated to quantify as will be made clear in the following
sections.

IV. MEASURED QUANTUM-STATE
STOCHASTIC PROCESSES

A central aspect of the process realized in the laboratory
is how an observer interacts with the QSSP. Naturally, in-
teractions occur via quantum measurement, but there are
multiple options for both measurement type and imple-
mented protocol. We now set the stage for measurement
protocols and define the specific measurements and pro-
tocols used.

A. Measurement Protocols

We view a measurement protocol as a communication
channel between the quantum stochastic process R−∞:∞
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FIG. 2. Classically-Controlled Quantum Source and its Emitted Process: (Left) As the internal hidden Markov controller
operates, at each time t the emitted symbols A (not shown) determine the qubit’s quantum state ρt ∈ AQ. As shown, the latter
are realized as density matrices ρ′, ρ′′, and ρ′′. (For simplicity the controller’s emitted symbols A are not explicitly shown, only
the resulting quantum states ρ ∈ AQ.) (Middle) The resulting output quantum process is a sequence of distinct H2 Hilbert
spaces, displayed as a series of Bloch spheres with realized state vectors displayed inside. (Right) Measuring each qubit realizes
a classical stochastic process . . . 011100.

A B|ψ〉 〈ψ| :1/2

|ϕ〉 〈ϕ| :1/2

|ψ〉 〈ψ| :1

FIG. 3. cCQS Operation: If the HMC controller is in state
A the cCQS has equal probabilities of remaining there or
transitioning to state B. If a transition to state B then occurs,
the system emits a qubit in the pure state |φ⟩ ⟨φ|. In the next
time step the cCQS must transition to state A and it then
emits a qubit in state |ψ⟩ ⟨ψ|. That is, the edge labels ρ : p
indicate taking the state-to-state transition with probability p
and emitting quantum state ρ. As the cCQS operates, a qubit
is output at each time step, over time the result is a qubit
time series.

and its measured companion—a classical stochastic pro-
cess X−∞:∞. Denote the relationship between the QSSP
random variables and those of the measured process by:

Xt = It(Rt) . (3)

Where It represents the action of a measurement on the
quantum state ρt output at time t. The set I = {It} for
all t defines a measurement protocol. In a slight abuse
of notation, we use the variable It to represent both the
measurement channel and the particular measurement
operator applied at time t. For short, we refer to the
measurement protocol as just I and denote the relation-
ship between the QSSP and its corresponding measured
stochastic process by:

X−∞:∞ = I(R−∞:∞) . (4)

To recapitulate the notation, at each time step the random
variable Rt takes on the value of a particular quantum
state ρt. That, in turn, is measured with operator It. The
resulting measurement outcome is denoted by the random
variable Xt, which takes on a particular value xt ∈ AM ,
with AM the set of possible measurement outcomes.
We now define the basic measurement protocol used.

Definition 5 (Single State Constant-Measurement Pro-

tocol). As a QSSP is output, each quantum state passes
through a measurement channel It = E, for all t. That is,
the same measurement E is applied to each output state
individually: Xt = E(Rt).
Though the following employs only this protocol, we note
that it is straightforward to work with measurement pro-
tocols for which It depends on time. For example, a
measurement scheme in which the measurements alter-
nated between a measurement along the z-axis and a
measurement along the x-axis. Or, a potentially more
useful protocol is one in which measurements are adap-
tive, and the Its are chosen given the outputs of a subset
of past measurements. One approach to the adaptive
measurement protocols is described in Ref. [38].

B. Projective Measurements

At each time-step, the observer performs a single measure-
ment E on the quantum state ρ emitted by the controller.
This measurement consists of a finite set of nonnegative
operators {Ex}, in which the index x ∈ AM labels the
measurement outcomes. The measurement operators sum
to the identity:

∑
x∈AM

Ex = I. The probability of mea-
surement outcome x after measuring quantum state ρ is
given by Pr(x|ρ) = Tr(Exρ), where Tr(·) is the trace.
We concentrate our analysis on single-state projective
measurements, in which the operators are orthogonal.
This simplifies the basic framework, for now. That said,
Section VIII B 1 briefly considers single-state protocols
with more-general positive operator-valued measurements
(POVMs).

Definition 6 (Projective Measurement on a QSSP). A
projective measurement E in a dimension d Hilbert space
Hd consists of a set of mutually orthogonal projectors
{Ex}, with x ∈ {0, 1, . . . d− 1}, such that ExEy = Exδxy
and

∑
xEx = Id. When the measurement E acts on a

quantum system in state ρt, emitted by the QSSP, the
outcome is xt with probability Pr(xt|ρt) = Tr(Extρt). Ap-
plying a projective measurement to every state emitted
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by the QSSP yields a classical stochastic process over the
values of x. We call the set of possible values of x the
measured process alphabet AM .
For example, consider a projective measurement of a
qubit consisting of two orthogonal measurement operators
{E0, E1}. Without loss of generality these can be written
as:

E0 = |ψ0⟩ ⟨ψ0|
E1 = |ψ1⟩ ⟨ψ1| .

Later, we refer to the set E = {Ei : i = 0, 1, 2, . . .} of
such measurement operators as the observation basis.
Let |ψi⟩ ∈ H2 and ⟨ψ0|ψ1⟩ = 0. When working with qubit
projective measurements, it is convenient to parametrize
them using Bloch angles as follows:

|ψ0⟩ = cos θ2 |0⟩+ eiϕ sin θ2 |1⟩ (6a)

|ψ1⟩ = sin θ2 |0⟩ − e
iϕ cos θ2 |1⟩ . (6b)

The resulting measurements are labeled 0 or 1, respec-
tively. Let Xt denote the random variable for the out-
come of measuring the state ρt at time t and xt the real-
ized value. In the case of qubit projective measurements
xt ∈ {0, 1}. In this way, applying projective measurement
protocol to a QSSP produces a binary classical stochas-
tic process. Knowledge of the CQS’s controller and the
measurement protocol are the basic ingredients needed
to analyze the mechanism that generates these classical
stochastic processes—the measured processes.

C. Measured Processes

By Eq. (4) the classical stochastic process that is re-
alized by measuring the QSSP is the joint distribution
Pr(X−∞:∞). The specific value xt taken on by the random
variable Xt depends both on the measurement protocol
I = {It} with measurement operators {Ext} and the
QSSP and its HMC controller. That is, if the random
variable Rt takes on the particular value ρt at time t,
then:

Pr(Xt = x|Rt = ρt, It) = Tr(Extρt) . (7)

Both the measurement protocol and the QSSP can intro-
duce correlations within the classical stochastic process.
That is, even if applying a time-independent measurement
protocol, such as a constant single-state measurement pro-
tocol, the correlations in R−∞:∞ will yield correlations

in X−∞:∞. However, even if R−∞:∞ is an independent,
identically distributed (IID) process, a time-correlated
measurement protocol I can yield a correlated classical
stochastic process.

D. Measured Process Presentations

Importantly, in cases where the QSSP is generated by a
cCQS, the measured quantum process can be modeled
with a unique HMC, as the following demonstrates.

Proposition 1. Applying a projective measurement pro-
tocol E to a QSSP R−∞:∞ generated by a finite-state
cCQS M results in a measured process X−∞:∞ given by
a finite-state HMC.

Proof. We establish this by directly constructing the HMC
presentation. The HMC M = {S,AM , {T x}, π} that gen-
erates the measured process has the following components:

1. The same set S of internal states as the HMC that
generated the QSSP.

2. A finite alphabet A consisting of each possible mea-
surement outcome.

3. A set of labeled transition matrices {T x}with x ∈
AM such that:

T x =
∑
ρ∈AQ

Tρ Pr(x|ρ, E) (8)

with:

Pr(x|ρ, E) = Tr(Exρ) . (9)

4. The same stationary distribution π as the HMC that
generated the QSSP.

Definition 7. We refer to the resulting HMC as a mea-
sured cCQS.

V. EMERGENT QUANTUM COMPLEXITY

In this way, fixing a cCQS and a measurement basis de-
termines a unique measured cCQS. This HMC accurately
describes the classical stochastic process resulting in the
lab.
One would hope to directly analyze the statistical prop-
erties of the classical process using that HMC. Or, more
modestly, to better and more accurately analyze the clas-
sical process using the HMC than by simulating repeated
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realizations over long times to obtain statistics for estima-
tion. The HMC, after all, exactly describes the process,
being a presentation.
We demonstrate that this analysis is very far from a
straightforward procedure. Moreover, the difficulties are
(i) inherent and (ii) generic to quantum measurement.
Despite the challenges, though, with care and the right
tools in hand one can fully characterize the measured
process’ properties.
We introduce two classes of HMCs—those that are unifilar
(already peripherally introduced above) and those that
are not. The following then explains why measurement
induces complex statistics. Specifically, the following es-
tablishes that (i) nonunifilarity arises in the measured
process HMC, (ii) this is generic for projective measure-
ments, and (iii) complex statistics arise in the measured
process due to an exponential explosion of the predictive
feature set. Along the way, we introduce generative and
predictive presentations—those that can be used to pro-
duce process realizations and those that, in addition, can
be used to optimally predict realizations.

A. Presentations

A given stochastic process can be generated by many
different HMCs. Each is called a presentation of the given
process. The essential requirement is that a presentation
describes all and only a process’ realizations and their
probabilities. HMC presentations are either unifilar or
nonunifilar. Unifilarity controls how useful a presentation
is to quantitatively analyzing a process.

B. Presentation Unifilarity

Definition 8 (Unifilarity). An HMC transition is unifi-
lar if the current internal state σ and the emitted sym-
bol x uniquely determine the next internal state σ′:
Pr(σ′|x, σ) = 1, for at most one x. That is, there is
at most one transition leaving a state for each symbol.
An HMC is unifilar if all its transitions are.
When an HMC is nonunifilar there is ambiguity in the
next state for at least one transition.
It is a notable fact—one motivating the distinction in
the first place—that processes generated by finite unifilar
HMCs are less (typically much less) complex than those
that can be generated only by finite nonunifilar HMCs.
An intuitive way to see why this occurs is the following.
Consider a realization of a given process. If it was emitted
by a unifilar HMC the realization has a one-to-one or at

most one-to-finite correspondence between the observed
symbol series and sequences of hidden-state transitions.
In contrast, a realization generated by a nonunifilar HMC
has a one-to-infinite correspondence between observed
symbols and hidden state transitions. The result in this
case is that the number of possible of sequences of hidden
states that emit a particular sequence of observed symbols
grows exponentially with sequence length. In general, a
significantly more complex hidden structure is required
to optimally predict processes generated by nonunifilar
HMCs.

C. Predictors, Generators, and Irreducible
Nonunifilarity

A stochastic process’ unifilar presentation, up to redun-
dancies in states or transitions, is an optimal predictor.
That is, given an HMC hidden state, the probabilities of
the next observed symbols are the optimal, most informed
prediction of what that next observed symbol will be.
Unifilar HMCs being process predictors contrasts with
nonunifilar HMCs which are not predictors. The latter are
only generators of process realizations. Moreover, their
states are typically poor predictors.
One way to restate the distinction between process pre-
dictors (unifilar presentations) and process generators
(nonunifilar presentations) is the following. On the one
hand, for a unifilar presentation, there is a deterministic
relation between the past x−∞:t and the current hidden
state σt. That is, σt = f(x−∞:t), where f(·) is a function;
while many pasts x−∞:t may lead to σt. Moreover, for all
such pasts, σt must have the same conditional distribu-
tion Pr(Xt:∞|σt) = Pr(Xt:∞|x−∞:t) of future sequences
given the observed past. Since we can use Pr(Xt:t+1|σt)
to predict future observations, we say that the hidden
states in a unifilar presentation are predictive.
On the other hand, when employing a process’ nonunifilar
presentation to predict its future Pr(Xt:t+1|·) requires a
mixture of distributions Pr(Xt:t+1|σt) over the presenta-
tion’s states {σt}. In this sense, nonunifilar states are
not predictive. Nonunifilar presentations still generate
the process accurately, since the states and transitions
explicitly provide a probabilistic procedure for eventually
emitting all of a process’ realizations with the correct
probabilities.
Starting with any unifilar HMC presentation for a stochas-
tic process, one can eliminate redundancies in information
about the past by merging states σt with identical future
probability distributions Pr(Xt:∞|σt). Eliminating these
redundancies gives a unique minimal optimal predictive
HMC for a stochastic process. This canonical presentation
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is called a process’ ϵ-machine [13, 15]. The ϵ-machine’s
states are a process’ causal states. They are causal is the
sense that they give the minimal mechanism that allows
one to exactly predict process realizations.
Looking ahead, we must distinguish between processes
with finite predictive presentations and those without.
And, this we can now do.

Definition 9. A stochastic process is irreducibly nonunifi-
lar if it is generated by a finite nonunfilar HMC, but there
exists no finite unifilar HMC presentation that predicts it.

D. Measurement-induced Nonunifilarity

With this background, the tools are in place to address the
origins of measurement-induced complexity in observed
quantum-state stochastic processes. First, we identify
the emergence of nonunifilarity. Second, we argue this
happens frequently and, in fact, is generic in measured
QSSPs. Third, we explore the consequence—explosive
complexity. Finally, we identify the underlying mechanism
driving this in quantum state indistinguishability.

Proposition 2. Quantum measurement of a QSSP gener-
ated by a cCQS can lead to a classical process represented
by a nonunifilar measured cCQS.

Proof. Consider cCQS hidden state σ with outgoing tran-
sitions to two distinct hidden states σI and σII . The first
transition emits quantum state ρ′ and the second, ρ′′.
Now, performing a measurement {E0, E1} on the emitted
quantum states, both measured transitions have nonzero
probability of emitting the same symbol. Recall from Eq.
(8):

T xσσ′ =
∑
ρ∈AQ

Tρσσ′ Pr(x|ρ) .

Note that above and in what follows we suppress explicit
mention of the measurement protocol in the conditional
probabilities, simplifying Pr(x|ρ, E) to Pr(x|ρ) for ease
of notation. Now, consider a ρ that gives a nonzero
probability of obtaining measurement outcome x. Note
that this is the case for σ′ = σI and σ′ = σII . Then, as
long as Tρσσ′ is nonzero for this ρ, both T xσσI and T xσσII
will be nonzero. This makes the observed transition out of
state σ nonunifilar and, thus, makes the measured cCQS
nonunifilar.
The implications become more apparent later, when dis-
cussing how HMC nonunifilarity almost always implies
that the process it generates is irreducibly nonunifilar.
In this way, measurement can—and as discussed later,
almost always will—induce irreducible nonunifilarity of
the measured process.

E. Nonunifilarity is Generic

We say a property is measurement generic over a
set of measurements—for instance, qubit projective
measurements—if it holds true for almost all measure-
ments but a measure zero subset. Similarly, a property
is source generic if it holds true for the QSSPs generated
by almost all cCQSs.

Proposition 3. A measured cCQS HMC is generically
nonunifilar. This is true both source generically and mea-
surement generically over the set of projective measure-
ments.

Proof. Consider the constraints that give rise to unifilar
transitions. Recall the entries of the labeled-transition
matrices for a measured cCQS, as defined in Eq. (8):

T xσσ′ =
∑
ρ∈AQ

Tρσσ′ Pr(x|ρ) .

Each entry is composed of a sum of terms. For the mea-
sured cCQS to maintain unifilarity there should be at most
one nonzero term per row of each labeled transition matrix.
That is, for each x ∈ A and σ ∈ S pair, the term T xσσ′ is
nonzero for at most one value of σ′.
For unifilarity to hold, the following conditions on the
underlying cCQS and measurement must be satisfied:

1. A hidden state with an outgoing transition to only
one other hidden state maintains unifilarity.

2. All cCQS hidden states can have at most two out-
going transitions (to distinct states). Denote the
quantum states emitted on the outgoing edges ρa
and ρb and the two destination states σa and σb,
respectively. Thus, for each cCQS hidden state σ
there are at most two nonzero transition elements:
Tρaσσa and Tρbσσb , say. When determining the mea-
sured cCQS’s labeled transitions T xσσ′ , for each σ

and x, there will be at most two contributions. The
following condition ensures that these two contribu-
tions do not result in two or more nonzero values
for each σ.

3. If the state has two outgoing transitions then, to
maintain unifilarity, it must satisfy:

• The two emitted quantum states ρa and ρb on
the outgoing transitions must be orthogonal to
each other.

• The measurement basis must be aligned with ρa
and ρb. That is, each measurement operator
must project into the quantum states that the
process emits—ρa and ρb.
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For a given pair of x and σ, these ensure that the
only potentially nonzero terms are T ρaσσa and T ρbσσb .
If the projective measurement with outcome x is
aligned with either ρa or ρb, however, then only one
of the terms of the form Tρσσ′ Pr(x|ρ) can be nonzero
for a given ρ. And so, there will be at most one
nonzero term in the σ row of transition matrix T x.
This guarantees that the measured cCQS remains
unifilar.

Conditions 1, 2, and 3 are highly restrictive in the space
of cCQSs. That is, almost none of the possible labeled
transition matrices Tρ satisfy them. In turn, this means
that measured cCQSs are source-generically nonunifilar.
For a given cCQS, Condition 3 is highly restrictive in
the set of projective measurements and is only satisfied
for one measurement choice out of a continuous set of
possible measurement choices. Therefore, the measured
cCQS is measurement-generically nonunifilar.
It is also important here to note that Conditions 2 and 3
refer to the case in which the cCQS emits qubits. For a
cCQS that emits qudits, these conditions can be general-
ized to allow for d distinct transitions to other states. The
generalization is straightforward: To maintain unifilarity
the output quantum states associated with those d transi-
tions must be mutually orthogonal and the measurement
chosen must be able to distinguish perfectly between those
d states.
As Sec. V G develops in more detail, Prop. 3 says that
measured processes are typically highly complex, in the
sense that they generically have an uncountable infinity
of predictive features (causal states), divergent statistical
complexity, and a positive entropy rate.

F. Variations

Several observations are in order on generic nonunifilarity
for qubit processes and how generic nonunifilarity trades-
off against the Hilbert space dimension of the QSSP’s
quantum states.
Structurally, a binary alphabet highly restricts the possi-
bilities for a particular HMC’s topology to support unifilar-
ity. This could lead to a rushed conclusion that restricting
to projective measurements plays a determinant role in
nonunifilarity of measured quantum processes. In fact,
however, allowing for POVMs does not change this aspect.
Suppose a particular cCQS hidden state has two outgoing
edges with nonorthogonal quantum states ρa and ρb. In
any POVM with two or more measurement operators at
least one has a nonzero probability of being an outcome
when applied to both ρa and ρb. This means that in the

measured cCQS there are at least two distinct outgoing
transitions with the same symbol. And, this again yields
nonunifilar dynamics. Section VIII B 1 explores this for
an example POVM measurement protocol.

In general, when the quantum states emitted by the cCQS
are restricted to qubits, the relatively low dimensionality
of the Hilbert space means that we generically recover
nonunifilar machines. This is due to the fact that the only
case in which a measurement with two or more operators
(not necessarily projectors) can perfectly distinguish be-
tween two quantum states is when they are orthogonal.
(Distinguishing quantum states here means that none of
the operators have nonzero probability to be the measured
outcome on both of the quantum states.) And, even in
this case, distinguishability holds only for a particular
measurement basis that aligns with the two orthogonal
states to measure.

The second observation concerns a potentially-useful gen-
eralization of how to reduce nonunifilarities in higher
dimension. The preceding establishes that irreducible
nonunifilarity dominates in measured QSSPs, and this is
true generically. However, if the quantum states emitted
by the cCQS are qudits, there is more “room” to reduce
the nonunifilar transitions in the measured cCQSs when
the Hilbert space dimension is larger than d = 2. For
instance, when the number of outgoing transitions from
one hidden state to distinct hidden states is at most d,
one can partition the set of quantum states emitted in
those transitions into mutually orthogonal subsets. In
that case one can devise a measurement that captures
each orthogonal subset as a distinct measurement out-
come. This, in a sense, constrains the nonunifilarities
to be only in the outgoing transitions that have output
quantum states with nonzero overlap. Effectively, the
measured cCQS loses information about which specific
state was output within each orthogonal subset by turn-
ing those into nonunifilar transitions, but maintains the
information about which output states where mutually
orthogonal. This somewhat reduces the complexity of the
measured cCQS.

As a simple example, consider a cCQS that outputs qutrits.
A particular hidden state has three outgoing edges to
distinct states, each outputting qutrits in states |0⟩, |+⟩,
and |2⟩. One can devise a measurement that outputs 0 if
the qutrit is in the subspace spanned by |0⟩ and |1⟩, and
outputs 1 if the qutrit is orthogonal to that subspace. In
this case the measured cCQS has nonunifilarity only in the
|0⟩ and |+⟩ transitions. This reduction of nonunfilarity is
only viable as long as there is an orthogonal subset within
the set of possible output states AQ. So, it is still rare,
but the larger the Hilbert space of output states is, the
more opportunities there are for reducing nonunifilarity.



11

Naturally, these measurements should also be physically
motivated by the information the experimenter is trying
to extract from the underlying quantum dynamic. Thus,
when working with quantum information from a classical
reality, there is a tradeoff between the complexity of the
observed dynamics and how coarsely or finely one probes
the quantum state through measurement. Compared to
general qudits, the space of qubits offers much less room
for coarser measurements.
The practical upshot of these arguments is that analyz-
ing a measured cCQS requires working with nonunifilar
presentations of the observed classical stochastic process.

G. Explosive Complexity

Consider a process that is generated by a finite nonunifilar
presentation. One can construct a unifilar presentation
for it. The reasons for doing so will become abundantly
clear shortly. For now, say a predictive presentation
is needed. The states of the unifilar presentation are
Blackwell’s mixed states [39]. These are identified using
the Mixed State Algorithm introduced in Refs. [40, 41] and
explained in detail in Ref. [10]. Said simply, by tracking
the “states of knowledge” about an HMC’s internal states
as revealed indirectly by emitted symbols, one builds a
unifilar hidden Markov chain whose states are the mixed
states and whose transitions are the mixed-state to mixed-
state transitions. The result is known as the process’
mixed state presentation (MSP). The MSP then provides
an insightful and calculationally efficient way to determine
many, if not all, of a process’ statistical and informational
properties.
Appendix E reviews MSP construction and its prop-
erties, here we summarize. Given a process’ N -state
HMC presentation M , one constructs M ’s set R of
mixed states as the conditional probability distributions
η(x−ℓ:0) = Pr(S0 = σ|X−ℓ:0 = x−ℓ:0) over the HMC’s hid-
den states σ ∈ S given all possible sequences x−ℓ:0 ∈ Aℓ.
Given M and an observed symbol sequence x−ℓ:0, there
is a unique mixed state η(x−ℓ:0) that represents the best
guess as to M ’s current internal state. Moreover, the
set of the process’ allowed sequences of all lengths ℓ ∈ N
induces a invariant measure µ on the state distribution
(N − 1)-dimensional simplex. We simply denote this as
the mixed state distribution µ(R). An HMC’s mixed state
set R together with the transition dynamic W between
mixed states induced by observed sequences form the
HMC’s MSP: MSP(M) = {R,W}.
Importantly, by construction an HMC’s MSP is a unifilar
presentation of the stochastic process generated by the
HMC. Additionally, the set of mixed states R corresponds

to the process’ set of causal states. The consequence is
that the MSP, up to minimizing state redundancies, is
the unique optimally predictive model of the stochastic
process—its ϵ-machine [11].

Conjecture. A process generated by a nonunifilar presen-
tation generically is an irreducibly nonunifilar stochastic
process. That is, it requires an infinite number of predic-
tive features (causal states) for optimal prediction.
Blackwell introduced this conjecture in his seminal 1957
work on classical stochastic processes [39]. There, he
developed several of the first information-theoretic results
for what he called functions of Markov chains. These are
equivalent to what are nowadays called hidden Markov
chains. Moreover, for very specific cases Blackwell showed
that the set of (predictive) features that a process stores
from observed sequences can be finite or countable. In all
other instances, the predictive features set is uncountably
infinite. These predictive features are equivalent to the
process’ MSP mixed states R. The primary lesson is
that the predictive complexity of irreducibly nonunifilar
processes explodes, despite them being generated by a
finite mechanism—a finite-state HMC.
Long experience and extensive explorations of HMC space
support Blackwell’s claims and this conjecture, which has
also been recorded elsewhere [9–11, 42, 43]. Reference
[12] goes into great detail about the mechanisms by which
these stochastic processes generate and process informa-
tion. It reviews the arguments and evidence that the
conjecture holds quite broadly. Finally, for measured
cCQSs we have not encountered a single violation. That
said, establishing the conjecture for the general or the
quantum settings remain open problems.

H. Quantum State Indistinguishability

Section V E detailed the structural reasons that make
measured cCQSs generically nonunifilar. Behind these
lies a simple physical property that is responsible for irre-
ducible nonunifilarity and, thus, explosion in complexity
of measured quantum processes. When applying a mea-
surement to a QSSP that emits qubits in two or more
distinct quantum states, a single measurement will gen-
erally have a nonzero probability of not being able to
distinguish which quantum state it measured. This in-
distinguishability between quantum states therefore acts
as a source of noise. And, this makes direct reading of
the QSSP’s underlying structure markedly more memory
intensive. This, in turn, radically increases the predictive
complexity of the measured process with respect to the
QSSP.
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One can quantify how distinguishable or indistinguishable
two quantum states are using the trace distance [44]
for instance. If a particular hidden state in a cCQS
has outgoing transitions to two distinct hidden states
that emit two different quantum states, a measurement
makes the distinction ambiguous (noisy) unless the trace
distance between the two quantum states is unity. In
that case, the quantum states have orthogonal supports.
Moreover, there is the further requirement for not inducing
nonunifilarity that the measurement distinguish between
the two states. If these criteria are met, then nonunifilarity
in the measured process is not created and there is no
explosion in predictive complexity. However, these criteria
are very restrictive and so explosive complexity is to be
expected in measured cCQSs.

VI. MEASURED QUANTUM PROCESS
RANDOMNESS AND STRUCTURE

Simply establishing explosive complexity is insufficient.
One needs yardsticks for analysis and comparison. This
section introduces metrics for quantifying randomness and
structure in the classical stochastic processes resulting
from measured QSSPs. The mathematics for these metrics
depend critically on the stochastic process presentation,
whether it is unifilar or nonunifilar. The latter is partic-
ularly relevant, as the above showed that the measured
processes are overwhelmingly irreducible nonunifilar. We
begin introducing entropy rate and statistical complexity
and how to compute them from unifilar HMCs. The bulk
of the effort and interest, though, arise in adapting these
to nonunifilar presentations, which follows shortly.

A. Unifilar Generators

When an HMC is unifilar, there is a one-to-one or one-
to-finite correspondence between a sequence of observed
symbols and the sequence of hidden states that generated
it. This allows direct, closed-form calculation of process
intrinsic randomness and predictive memory from the
HMC’s internal Markov chain.

1. Information Creation

Process randomness—the rate at which the process gen-
erates information—is quantified through the Shannon
entropy rate hµ. It is defined directly for a process, but
the useful goal is to obtain short cuts—expressions in
terms of a presentation’s states and transitions.

Definition 10. A process’ entropy rate is [45]:

hµ = lim
ℓ→∞

H[X0:ℓ]
ℓ

, (10)

where H[X] = −∑
x Pr(X = x) log2 Pr(X = x) is the

Shannon block entropy [31].
That is, hµ is the average uncertainty per observed symbol.
Or, said differently, it quantifies how much information an
observer gains asymptotically with each newly measured
symbol.
Reference [10] explores in detail how to compute the
entropy rate of a process generated by a given HMC.
Here, we summarize.
For unifilar HMCs, Shannon [45] showed the entropy rate
is exactly computable in closed-form from the HMC’s
transition matrices and stationary state distribution π:

hµ = −
∑
σ∈S

πσ
∑
x∈A

∑
σ′∈S

T
(x)
σσ′ log T (x)

σσ′ . (11)

This is the state-averaged transition uncertainty. The
stationary state distribution is determined by the left
eigenvector (associated with eigenvalue 1 and normalized
in probability) of the internal state transition matrix
T = Σx∈AT

(x).

2. Information Storage

To quantify the structure of a process’ presentation M ,
the most straightforward measure is its number |S| of
hidden states. Beyond that, a more insightful metric
is the amount of historical memory or information the
presentation states contain. This is given by the Shannon
entropy of the state distribution:

H[S] = −
∑
σ∈S

πσ log2 πσ . (12)

It quantifies how much information the hidden states
store about past observations. That is, it measures how
much memory a given HMC has. And, since unifilar
presentations are predictors, H[S] is an upper bound on
the amount of information one must maintain on average
to optimally predict the process. This upper bound will
typically overestimate the memory of the process unless
M is a minimal optimal predictive presentation.
For these metrics to describe actual properties of the
stochastic process in question and not those of a particular
HMC presentation—that, say, could have an overly-large
and redundant set of states—we use a process’ ϵ-machine,
reviewed in App. D. In brief, a process’ ϵ-machine is its
minimal optimal predictive HMC [13–15].
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The ϵ-machine’s hidden states are a process’ causal states
since they optimally capture the process’ causal structure.
With them one can make the most accurate predictions
of future symbols and their associated probabilities while
using minimal memory. The memory in the causal states
is then the minimal amount of information from the past
that must be stored in hidden states to optimally predict
the future.

Definition 11. A stochastic process’ statistical complex-
ity Cµ is the Shannon entropy of its ϵ-machine’s causal
states S:

Cµ = H[S]

= −
∑
σ∈S

Pr(S = σ) log2 Pr(S = σ) . (13)

Cµ is the minimal memory required to optimally predict
the future.

B. Nonunifilar Generators

If the only description available for a measured QSSP
is a nonunifilar HMC presentation, though, then quan-
tifying the process’ stochasticity and structure becomes
markedly more complicated due to the explosive com-
plexity demonstrated above. And, this has substantial
practical consequences. In the case of intrinsic random-
ness, Eq. (11) overestimates the entropy rate. In the
case of structure, the Shannon entropy of the nonunifilar
HMC’s hidden states only quantifies the memory used by
that particular (likely nonunique) presentation. More to
the point, it does not provide information on how much
memory is minimally required to optimally predict the
process.
And, if these challenges were not enough, there is yet
another complication at this stage. While constructing
the MSP from a process’ nonunifilar HMC produces a
unifilar HMC, it is rarely finite-state. As we showed, the
typical case is an infinite-state HMC, generically with
uncountably infinite states [10, 42, 43]. Generally then,
the ϵ-machine, the minimized MSP, has an uncountable
set of causal states. As a consequence, the statistical
complexity of Eq. (13) diverges and the expression for
entropy rate in Eq. (11) becomes inadequate.

1. Information Creation

Reference [10] showed that the correct expression for
the process’ entropy rate is an integral of the transition

uncertainty over the mixed-state simplex R weighted by
the invariant measure µ(η):

hBµ = −
∫

R
dµ(η)

∑
x∈A

Pr(x|η) log2 Pr(x|η) . (14)

(The B superscript here is a nod to Blackwell’s contribu-
tion.)
As introduced in Ref. [10], general contractivity of the
MSP dynamic W on the simplex and ergodicity allow
accurately evaluating the integral expression. This is
implemented by taking an average over a time series of
mixed states ηt, rather than integrating over the Blackwell
measure µ(η). This yields the process’ entropy rate:

ĥBµ = − lim
ℓ→∞

1
ℓ

∑
x∈A

ℓ∑
i=0

Pr(x|ηi) log2 Pr(x|ηi) , (15)

where Pr(x|ηi) = η(x0:i) · T (x) · 1, x0:i represents the first
i symbols of an arbitrarily long sequence x0:ℓ generated
by the process’ MSP, and 1 is a column vector of all ones.

2. Information Storage

To quantify the structure and memory in these infinite-
state processes, not all is lost due to Cµ’s divergence.
While the latter is generally the case, we can quantify the
divergence rate with the statistical complexity dimension
dµ of the Blackwell measure µ(η) on R [11]:

dµ = − lim
ϵ→0

Hϵ[R]
log2 ϵ

. (16)

This tracks the rate at which the memory requirements
for optimal prediction grow with increasing precision
− ln ϵ. Specifically, Hϵ[Q] is the Shannon entropy of the
continuous-valued random variable Q coarse-grained at
size ϵ. Evaluating dµ is not a simple matter, though.
The procedure is presented in detail in Refs. [11, 12]. In
particular, Ref. [12] introduces the ambiguity rate, which
quantifies the rate at which optimal predictive models
discard information by introducing uncertainty over the
infinite past. The difference between the entropy rate
and the ambiguity rate in a process is fundamental to
determine its statistical complexity dimension, as well as
the cardinality of its set of mixed states R. The follow-
ing sections use these methods, suitably adapted to the
present quantum setting.
To give a firmer, even visual, grounding to the preceding
results and metrics, the next section explores three exam-
ples representative of distinct classes of measured cCQSs
and how the above metrics characterize them.
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VII. CLASSIFYING MEASURED QUANTUM
PROCESSES

The metrics for randomness and structure of a measured
quantum process depend on the cardinality of the mixed
state set R generated by the measured cCQS. There are
three distinct classes: processes for which the number of
mixed states is finite, countably infinite, and uncountably
infinite. The following examples illustrate processes in
these classes.

A B|1〉〈1| : 1
2

|0〉〈0| : 1
2

|1〉〈1| : 1

FIG. 4. Unifilar presentation for the Observation Basis Golden
Mean (OB-Golden Mean) process: A simple cCQS.

A. Finite-State

The first quantum process is generated by the unifilar
cCQS shown in Fig. 4. It consists of all random sequences
without consecutive |0⟩ ⟨0|s. Measuring in the observation
basis E0 = |0⟩ ⟨0| and E1 = |1⟩ ⟨1|) yields a unifilar HMC
that generates the Golden Mean Process consisting of all
random sequences without consecutive 0s. Figure 5 shows
its minimal presentation—its ϵ-machine: a unifilar HMC
with two states. Being unifilar one readily calculates that
it has an entropy rate of hµ = 2/3 bits/symbol from Eq.
(11) and a statistical complexity of Cµ = 0.918 bits from
Eq. (13).

A B1 : 1
2

0 : 1
2

1 : 1

FIG. 5. Measured cCQS of the stochastic process resulting
from measuring the quantum process generated in Fig. 4 in
the observation basis.

Although unnecessary in this case, computing the MSP
of this presentation—or any other finite unifilar HMC,
for that matter—results in an HMC with a finite number
of states. In the present case both the measured process’
entropy rate and the statistical complexity are finite. They
are readily computed via Eqs. (11) and (13), respectively.
Section V E showed that quantum processes in this class
are relatively rare in the space of measured cCQSs. They
occur only under very constrained circumstances. This ob-

servation will become clearer as we consider more complex
classes.

B. Countably-Infinite-State

The next quantum process is generated by the cCQS in Fig.
6. This is a seemingly slight variation on the previous
example. Now, the quantum alphabet AQ consists of
nonorthogonal states. Instead of emitting quantum states
in the observation basis, this cCQS emits qubits in state
|0⟩ ⟨0| and others in state |+⟩ ⟨+|. In this, we define |+⟩
and |−⟩ in the conventional way: |±⟩ = (1/

√
2)(|0⟩ ± |1⟩).

When the process generated by this cCQS is measured in
the basis E0 = |+⟩ ⟨+| and E1 = |−⟩ ⟨−|, the measured
cCQS has the HMC presentation shown in Fig. 7.

A B|+〉〈+| : 1
2

|0〉〈0| : 1
2

|+〉〈+| : 1

FIG. 6. Structurally, this cCQS is similar to that in Fig. 4.
However, not all emitted quantum states are orthogonal. This
guarantees that the measured process is more complex, as Fig.
7 shows.

Notice, though, that Fig. 7’s measured cCQS is nonunifi-
lar. Specifically, knowledge of being in state A and emit-
ting a 0 does not determine the next HMC state. The
next state could be either A or B. Thus, to compute the
entropy rate for this process one must construct its MSP.
The latter is shown in Fig. 8. It has a countable infinity
of causal states. Helpfully, as annotated there, the state
transition probabilities can be parametrized analytically.

A B0 : 1
2

0 : 1
4

1 : 1
4

0 : 1

FIG. 7. Measured cCQS for the process generated by mea-
suring the quantum process generated by the cCQS in Fig. 6.
This HMC is nonunifilar: if in state A and emitting a 0, the
next hidden state may be A or B.

Using Fig. 7 one can follow the logic for constructing the
MSP. Independent of any knowledge of the HMC state,
seeing symbol 1 the observer concludes with absolute
certainty that the measured cCQS is in state B. This is
what we referred to previously as a state of knowledge
(or a mixed state) represented by hidden state I in Fig.
8. In point of fact, the mixed state associated with state
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I is η(1) = (0, 1). After that, observing symbol 0 or
a sequence of 0s means that the measured cCQS has
a certain probability of being in each cCQS state A or
B. Each additional observation of a 0 then updates the
present state of knowledge to one of the mixed states II
= η(10), III = η(100), IV = η(1000), . . . depending on
how many 0s are observed before seeing a 1, when the
MSP resets to state I = η(100 . . . 01).

II

I

III IV · · ·
0 : 3

4

1 : 1
4

0 : 1

0 : 5
6

1 : 1
6

0 : 4
5

1 : 1
5

FIG. 8. Mixed state presentation of the process generated by
Fig. 7’s measured cCQS.

The measured process’ entropy rate can be computed
from the HMC in Fig. 7 using the methods for nonunifilar
HMCs described in Sec. VI B. Note, though, that for
processes whose MSP has a countable infinity of states,
as here, a more rudimentary, though convergent and
accurate, approach is available.
When observing the stochastic process, the probability of
observing consecutive 0s diminishes with the length of the
observed sequence. One then approximates the process’
HMC by truncating the MSP at a finite number N of
mixed states and then exploring the limiting behavior of
both hµ and Cµ from those unifilar machines as N →∞.
For the example in question, this analysis is illustrated
in Fig. 9. One finds that hµ = 0.599 bits/symbol and
Cµ = 3.69 bits. Note that, although infinite state, the
process statistical complexity is finite. This is due to
the fact that the asymptotic state distribution π decays
exponentially fast for mixed states reached via increasingly
more 0s.

C. Uncountably-Infinite-State

The preceding two processes are relatively simple, in that
they all exhibit a finite or countable set of mixed states.
In the typical case, as argued in Sec. V, the measured
cCQS has an HMC presentation that is nonunifilar and
an MSP with an uncountable infinity of states. Section
V E established that this is the typical case for processes
generated by cCQSs of two or more states.
To illustrate, consider the cCQS of Fig. 10, chosen to have
three states principally to aid visualizing the MSP’s com-
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FIG. 9. Entropy rate hµ (blue) and statistical complexity
Cµ (orange) of N -state HMC approximations of the MSP
shown in Fig. 8. Notice that hµ converges rapidly, while
Cµ has a stronger dependence on the number of states, but
stabilizes around N = 25. The values obtained are hµ = 0.599
bits/symbol and Cµ = 3.69 bits.

plexity. The cCQS is then measured in the observation
basis, which yields the measured cCQS of Fig. 11.

A

B

C|+〉〈+| : 1
2

|0〉〈0| : 1
2 |0〉〈0| : 1

|0〉〈0| : 1
2

|+〉〈+| : 1
2

FIG. 10. Nonorthogonal Nemo Quantum Process: Three-state
cCQS that emits qubits in states |0⟩ ⟨0| and |+⟩ ⟨+|.

Note that, as in the example of the countably-infinite state
process, the measured cCQS has only a single source of
nonunifilarity: the successor state is ambiguous when
observing symbol 0 with the HMC in state A. More
generally, however, none of the symbols 0 or 1 allow the
observer to “synchronize” to the process. That is, obser-
vation of a particular symbol does not give an observer
certainty in the measured cCQS’s state. As argued above
mathematically and as is now constructively clear in Fig.
12, this effectively translates into the fact that the MSP
of the measured quantum process has an uncountable
infinity of mixed states. The MSP—these states together
with their transition probabilities—are a markedly less
tractable presentation than in the previous two quantum
processes.
The MSP with all of its states and state transitions can-
not be explicitly displayed as with the previous HMCs.
Nonetheless, Fig. 12 gives a sense of the MSP’s structure
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A

B

C0 : 1
2

0 : 1
4

1 : 1
4

0 : 1
2

1 : 1
2

0 : 3
4

1 : 1
4

FIG. 11. Measured cCQS presentation of the stochastic process
produced when measuring the quantum process generated by
Fig. 10’s cCQS measured in the observation basis.

and complexity. It presents a plot of 2× 106 MSP states
in the mixed-state simplex R. In fact, it shows µ(η) and
its variation in probability density via a histogram with
a coarse-graining of 1000× 1000 bins.

FIG. 12. MSP’s asymptotic invariant measure µ(η) in the
mixed-state simplex µ(η). Each mixed state is a point of the
form (pA, pB , pC) with pσ the probability of being in state σ
of the measured cCQS in Fig. 11.

The measured process’ entropy rate is computed using
Eq. (15) and has a value of hµ = 0.8896 bits/symbol.
The statistical complexity dimension dµ of Eq. (16) is
computed as described in Refs. [11, 12]: dµ = 1.38.

D. Remarks

As seen from the three examples above, the cardinality
of the mixed state set of the distinct measured stochastic
processes can vary from a finite state set to a countable
infinity of states and on to an uncountable infinity of
states. This cardinality affects the way in which the

metrics of randomness and structure for the process are
computed, but also the values they can take.
For processes with finite sets, the statistical complexity
and the entropy rate will generally be finite positive values.
This implies that these processes have a certain degree
of stochasticity, but that they can be optimally predicted
with finite memory resources.
Notably, excepting very special cases, this is also true for
processes whose mixed state set has a countably-infinite
number of states, as in the second example. These pro-
cesses have positive entropy rate, signaling that they have
an intrinsic degree of randomness. And, while they do
require an infinite number of causal states to optimally
predict, these states are structured such that one can
simulate an optimal predictor of arbitrary precision with
a finite amount of memory.
The third case is significantly more complicated than
the previous two. A mixed-state presentation with an
uncountable infinity of states implies that the statistical
complexity of the process diverges. This means that it
takes infinite memory to optimally predict these processes.
That said, there is an asymptotic invariant measure over
the mixed states in R. And, by being able to compute
these measures, one can then estimate the process’ en-
tropy rate hµ and also the growth rate dµ of the memory
required for optimal prediction.
This third case, of processes with MSPs that have an
uncountably infinite number of states, turns out to be
the norm for MSPs of measured cCQSs, as argued above
and as we elaborate shortly below. The implications of
this are that, in general, the classical processes that we
recover from measuring QSSPs generated by cCQSs are
highly complex and require infinite memory for optimal
prediction. That is, measuring a QSSP greatly obscures
the underlying quantum stochastic process. Fortunately,
we have metrics to characterize these processes and to
develop a quantitative understanding of how measurement
affects the measured quantum processes.

E. Genericity of Complexity

The tools are in place now to quantitatively analyze the
measured QSSPs that are represented by measured cC-
QSs. Here, we use the tools to draw broader conclusions
about what one should expect and how measurement
choice changes the randomness and complexity of mea-
sured quantum processes.
The main lesson from the preceding is that one expects ex-
plosive complexity and this is reflected in the information-
theoretic metrics of the measured process.
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Proposition 4. A measured quantum process, with a
measured cCQS presentation, generically is highly com-
plex in two specific ways: it has nonzero entropy rate
and statistical complexity dimension. That is, it requires
uncountably infinite states to optimally predict.

Proof. This follows as a corollary of Sec. V’s structural
propositions—specifically Props. 2 and 3 and Sec. V G’s
conjecture—though translated into the information metrics
of Sec. VI.
As discussed above and extensively in Refs. [10–12, 43],
nonunifilar HMCs lead to causal state sets of uncountably
infinite cardinality and divergent statistical complexity.
As the preceding demonstrated, measured quantum pro-
cesses have presentations that fall into this class.

VIII. APPLICATIONS

Having laid out the progression from quantum sources
to quantum state processes and their presentations to
measured processes and their metrics, we are now ready
to illustrate uses and benefits. The following does these
via three applications: measurement choice, alternate
measurement protocols, and optimal measurements.

A. Measurement Variation and Choice

Equations (6) and (8) directly show that choice of mea-
surement basis changes the observed process. This, in
turn, means that process’ entropy rate and its MSP’s
statistical complexity dimension also depend on measure-
ment choice. Fortunately, the changes are well behaved.

Conjecture. Measured process complexity depends piece-
wise smoothly on both the underlying QSSP and choice of
measurement.

A

B

C|a〉〈a| : 1
2

|0〉〈0| : 1
2 |0〉〈0| : 1

2

|a〉〈a| : 1
2

|a〉〈a| : 1

FIG. 13. cCQS that generates a quantum process with qubits
in quantum states |0⟩ and |a⟩ = cosπ/5 |0⟩ + sinπ/5 |1⟩.

Remark. Given the extensive development up to this
point, the following refrains from presenting formal proofs.
These will appear elsewhere. Nonetheless, it is worthwhile
to illustrate how the results can be used to outline a con-
struction that supports observed behavior and is backed by
formal proofs in parallel problem settings.
Note that:

1. The measured process’ entropy rate and statistical
complexity dimension depend smoothly on its MSP’s
invariant measure, as can be seen from Eqs. (14)
and (16).

2. Equations (6) and (8) state that the parameters
(transition probabilities) of the measured cCQS
HMC depend smoothly on the underlying QSSP and
measurement operator parameters.

Therefore, if the MSP’s invariant measure depends
smoothly on the parameters of the measured cCQS HMC,
then the entropy rate and statistical complexity dimension
of the measured process depend smoothly on the underlying
QSSP and measurement parameters.
Smoothness dependence of the MSP’s invariant measure
with respect to HMC parameters is not only consistent
with observation, which is illustrated shortly, but has been
established for many classes of iterated function system
(IFS). For more detail, Ref. [10] outlines how any HMC
can be cast as an IFS—a stochastic dynamical system
with a unique attractor (equivalent to an HMC’s MSP)
that has an invariant measure. Both the attractor and
the invariant measure vary smoothly as a function of
IFS parameters under contractivity conditions [46–48].
These conditions are generally satisfied by HMCs, thus
indicating that both the MSP and invariant measure of
an HMC depend smoothly on the HMC parameters. The
caveat of piecewise smoothness as opposed to smoothness
stems from the fact that the MSP can have abrupt jumps
in cardinality for a finite set of parameters, potentially
causing finite discontinuities in the statistical complexity
dimension, as will be illustrated in the examples of the
following section.
Beyond smooth dependence, we ask more specifically,
How do the mixed-state invariant measure and the asso-
ciated complexity measures change as a function of the
measurement angles θ and ϕ? To answer these questions,
we explore two specific examples. For each we choose a
quantum process generated by a particular cCQS. We
then obtain the measured cCQSs resulting from measur-
ing the quantum process with bases in which one of the
angles is held fixed and the other sweeps across its range
of possible values.
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FIG. 14. Mixed-state presentation of the process resulting from measuring the quantum process generated by the cCQS in Fig.
13 in the measurement bases parametrized by (ϕ, θ), as indicated in each subfigure. For each value of the parameters 30000
mixed states are plotted.

The two example processes below were chosen since to-
gether they illustrate the general properties of measure-
ment dependence of QSSPs. The first example is the
three-hidden-state cCQS depicted in Fig. 13, which is
then measured in many different qubit bases, holding
ϕ = 0 and varying θ. The second example is the two-
hidden-state quantum process generated by the cCQS
in Fig. 6, which is then measured following the same
procedure.
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FIG. 15. Entropy rate of the measured cCQSs resulting from
measuring the quantum process generated by the cCQS of Fig.
13 as a function of measurement angle θ, as in Eq. (6) at 300
θ values with the value ϕ = 0 fixed. Entropy rate hg

µ (black
line) of the cCQS that generates the measured process.

1. Random Insertion Process

First, we track changes in the invariant measure on the
mixed-state simplex. Figure 14 shows these for the mea-
sured process generated by the cCQS of Fig. 13 in 10
different measurement bases (ϕ, θ), as noted there. The
structure of the invariant sets R varies substantially with
measurement basis. For most (but one, discussed below)
measurement bases the set has an uncountable infinity of
states, yet these states have distinct structures that vary
smoothly with choice of measurement basis.
Second, we determine the entropy rate as a function of
measurement basis in Fig. 15. The process is measured
in 300 different bases, holding the value of ϕ = 0 and
varying θ ∈ [0, π]. By comparing to the entropy rate hgµ
of the cCQS that generates the underlying QSSP, Fig. 15
clearly demonstrates that measurement both increases
and decreases the randomness (hµ).
While this example serves to graphically illustrate the
high complexity of predicting the classical stochastic pro-
cesses measured from the QSSP, there are limitations to
estimating the MSP’s statistical complexity dimension.
For reasons explained in detail in Ref. [11], estimating the
statistical complexity dimension for measured cCQSs with
MSPs in two and higher dimension simplices is computa-
tionally intensive and there is as yet no efficient algorithm.
To illustrate the behavior of the statistical complexity
dimension in these stochastic processes, though, we turn
to an example of a QSSP generated by a two-state cCQS
with an MSP in the 1-simplex.
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FIG. 16. Mixed-state presentations of the processes resulting from measuring the quantum process generated by the cCQS in
Fig. 6 in the bases parametrized by (ϕ = 0, θ). Each vertical line represents the 1D simplex R and the points in it are the
mixed states corresponding to the measured cCQS at that particular value of θ.

2. Golden Mean Process

This example analyzes the QSSP generated by the cCQS
in Fig. 6. It is measured in different qubit bases holding
ϕ = 0 fixed and varying θ uniformly from 0 to π. Each
measurement yields a measured cCQS that is nonunifilar,
the MSP is then computed. Figure 16 displays its invari-
ant measures. Each vertical unit interval corresponds to
a 1-simplex that shows the MSP at that particular value
of θ. From the figure we observe that the majority of
the MSPs have a complex fractal-like structure. However,
what the figure makes evident is that this structure varies
smoothly with respect to the measurement parameter θ,
consistent with Sec. VIII A’s Conjecture.
Figures 17 and 18 track how both entropy rate hµ and
statistical complexity dimension dµ vary with respect to
measurement basis.
As with the previous example, we see that hµ of the
measured process both increases and decreases with re-
spect to hgµ—that of the original QSSP—depending on
measurement basis.
The statistical complexity diverges for most, in contrast
with the finite statistical complexity of the underlying
QSSP. That said, the statistical complexity dimension
dµ smoothly varies. To a certain extent this reflects
what is see from the MSPs in Fig. 16. Figure 18 also
reveals four values of θ for which dµ = 0. These are are
θ ∈ {0, π/4, π/2, π}. When θ takes the values 0 or π the
measurement is in the observation basis and one of the
measurement operators aligns with the quantum state
|0⟩. This simplifies the process and thus the measured
cCQS has a countably infinite number of mixed states.

FIG. 17. Entropy rate of the measured cCQSs resulting from
measuring the quantum process generated by the cCQS of Fig.
6 as a function of measurement angle θ, as in Eq. (6) with
the value ϕ = 0 fixed, at 100 θ values. Entropy rate hg

µ (black
line) of the cCQS that generates the underlying QSSP.

This also happens at the value of θ = π/2, in which one
of the measurement operators aligns with the quantum
state |+⟩ that is output by the cCQS. Notice that in these
three cases, dµ = 0 is reached smoothly.
The exception to smoothness is the discontinuous jump
to dµ = 0 when the process is measured at θ = π/4.
This special case is discussed more, shortly. In general
terms, though, for that particular basis the measurement
does not distinguish between the two distinct emitted
qubit states |0⟩ and |+⟩. And so, all of the structural
information about the underlying quantum process is lost,
except for the probability of obtaining one measurement
outcome or the other. The process becomes memoryless
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FIG. 18. Statistical complexity dimension dµ of the measured
cCQSs resulting from measuring the quantum process gen-
erated by the cCQS of Fig. 6 as a function of measurement
angle θ, as in Eq. (6) with the value ϕ = 0 fixed, at 100 θ
values.

and so has a single-state presentation.

3. General Features

With the previous two examples in hand, and after an ex-
haustive exploration of example processes in this fashion,
we review several common characteristics. Of particu-
lar interest are the smooth behaviors of hµ and dµ with
well defined maxima and minima. It is also apparent
that the MSP invariant sets exhibit marked structural
variations. However, in agreement with Sec. VIII A’s
Conjecture, they appear to vary smoothly with respect
to measurement change.
A feature that immediately warrants attention in Fig.
14 is the drop in structural complexity of the MSP at
θ = π/5. With that particular measurement basis, the
statistical complexity dimension vanishes, indicating that
the measured cCQS is finite. On closer inspection, the
HMC corresponding to the measured cCQS is not only
finite, but has a single causal state. This indicates that
the measured process consists of independent identically
distributed (i.i.d.) random variables. At each time step,
the observed symbols are 0 with probability p0 = cos2 π/5
and 1 with probability p1 = sin2 π/5. This seemingly
special case is not a fluke.

Proposition 5 (Memoryless measurements). For any
cCQS with quantum alphabet AQ consisting of two distinct
quantum states ρa and ρb, there exists a set of measure-
ment bases for which the resulting measured process is
memoryless and Cµ = 0.

Proof. We establish this by construction. Without loss

of generality and for ease of notation we align both quan-
tum states with the zx-plane, such that one of the quan-
tum states ρa is at the top of the Bloch sphere. We
further denote the angle between the two states by α.
We then write ρa = |0⟩ ⟨0|, and ρb = |b⟩ ⟨b| such that
|b⟩ = cosα/2 |0⟩+ sinα/2 |1⟩.
Consider the projective measurement bases for which one
measurement operator projects onto a state |ψ0⟩, such that
| ⟨ψ0|0⟩ | = | ⟨ψ0|b⟩ |. That is, |ψ0⟩ lies in the Bloch sphere
circumference that bisects the angle between |0⟩ and |b⟩.
Then, the set of measurements that project onto |ψ0⟩ and
|ψ⊥

0 ⟩ ≡ |ψ1⟩ are such that the probability distributions over
measurement outcomes are the same whether the measured
qubit state was ρa or ρb. That is, for this particular set
of measurements, we have Pr(i|ρj) = pi for i ∈ {0, 1} and
for all ρj with pi a constant and p0 + p1 = 1.
Together with Eq. (8), this observation says that the
measured cCQS transition matrices are, for i ∈ {0, 1}:

T i = TρaPr(i|ρa) + TρbPr(i|ρb)
= pi(Tρa + Tρb)
= piT . (17)

That is, both labeled transition matrices are proportional
to each other and to T. Note also that T = T 0 + T 1 = T,
so for simplicity we refer to the internal Markov chain
transition matrix as T .
Both labeled transition matrices being proportional to T
implies that the MSP yields a biased coin process with
biases p0 and p1, respectively. There is a single recurrent
mixed state, namely π. This follows by definition, since π
is an eigenvector of T . And so, evolving the mixed state
ηt = π gives:

ηt+1 = π · T i
pi

= π · T
= π .

Physically, memoryless measurements project states onto
a basis whose components are symmetric with respect to
the pure states in AQ. Consequently, the measurement
cannot distinguish between the pure states and so the
act of measurement effectively leads to a complete loss of
information about the cCQS’s internal structure.
The fact that these memoryless measurements maximize
the loss of information about the cCQS’s internal struc-
ture, naturally leads to the question of whether there
exists a set of measurements that maximally preserves
information about the cCQS’s internal structure. These
would be measurements that optimally distinguish be-
tween the quantum states. In the case of POVMs these
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measurements are well studied for the case of distinguish-
ing between 2 or 3 states. And, as explored in Sec. VIII B 1
they in fact yield special measured processes.
Shortly, we return to explore the issue of optimal and
extremizing measurement bases.
Another point to make is that in all of the examples above,
only the θ parameter of the measurement bases was varied,
and the phase ϕ was fixed to zero. This choice was for
simplicity and visualization purposes only. The variation
of ϕ does not change the analysis or the conclusions in any
way. The only notable point is that when the measurement
parameters both define a measurement basis that is not
close to being aligned with any of the output quantum
states and is poor at distinguishing between them, then
that will in general result in processes that have hµ larger
than the underlying cCQS, and as is generally the case,
divergent memory.
Appendix F graphically demonstrates this with two ani-
mations that sweep the angles θ and ϕ while monitoring
entropy rate and mixed states. One animation shows how
the mixed state presentation and hµ vary a function of
parameter θ. The other animation shows hµ(θ) plots as
in Fig. 15 while sweeping ϕ from 0 to 2π.
In general, as seen from Fig. 15, different choices of mea-
surement increase or decrease the randomness of the mea-
sured quantum process. Furthermore, even if the general
case is that quantum measurement dramatically increases
the structural complexity of the measured stochastic pro-
cess with respect to the underlying quantum process, the
existence of memoryless measurements shows that par-
ticular choices of measurement, in fact, can mask the
quantum process’ structural complexity.

B. Alternate Measurement Protocols

While simplicity dictated that the preceding concentrate
on protocols in which the same projective measurement
is applied at every time step, there are many alternative
protocols to explore. As an example, the following con-
siders processes that result from applying more general
measurements to each emitted qubit.

1. Positive Operator-Valued Measurements

The development to this point investigated the conse-
quences for the observed classical stochastic process of
employing only projective measurements. However, the
natural generalization is to more flexible positive operator-
valued measurements.

Definition 12 (Positive Operator-Valued Measurement
on a QSSP). A positive operator-valued measurement
(POVM) I, consists of a finite set of positive semi-definite
operators {Ex}, on the Hilbert space Hd of dimension d.
The operators satisfy the condition

∑
xEx = Id. When

measurement I acts on a quantum system in state ρt,
emitted by a QSSP, the outcome is xt, corresponding to
operator Ex, with probability:

Pr(xt|ρt) = tr(ρExt) .

Applying a POVM to every quantum state emitted by the
QSSP yields a classical stochastic process over the values
of x ∈ AM—the alphabet of the measured process.
When the measurement I consists of a POVM, the num-
ber of operators {Ej} and possible outcomes can be any
positive integer. This increase in possible measurement
outcomes results in a larger alphabet for the classical
measured quantum process. At first glance, this suggests
finding a wider range of unifilar measured HMCs, but it
is not. This is a direct result of indistinguishability.
Generally, when performing a POVM on any two qubit
states (even distinguishable ones), at least one of the
measurement outcomes has a nonzero probability of being
observed on both of the quantum states. This is due
to the fact that POVMs generally have nonorthogonal
measurement operators.
When measuring with a POVM, consider a cCQS hidden
state with two outgoing transitions on distinct quantum
states. Applying the POVM on those transitions means
that at least one of the symbols in the classical alpha-
bet AM is present in two outgoing transitions for the
same hidden state in the measured cCQS. This makes
the dynamic of the measured cCQS nonunifilar. Thus, in
general when using POVMs, measured processes are also
highly complex, akin to those obtained when applying
projective measurements.
That said, the measured processes produced using POVMs
reveal a new collection of notable special cases, which
remain to be broadly explored. To illustrate just one,
the following develops a simple but illuminating example
using the unambiguous state discrimination POVM. The
resulting flexibility then leads, in the following section,
into the challenge of optimizing measurement protocols
to achieve various ends.

2. Unambiguous State Discrimination

Recall that when measuring qubits either in state |ψ⟩
or |ϕ⟩, the POVM yielding the highest probability of
unambiguously distinguishing between them is given by
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[49–51]:

Eψ = 1
1 + | ⟨ϕ|ψ⟩ | |ϕ

⊥⟩ ⟨ϕ⊥| (18a)

Eϕ = 1
1 + | ⟨ϕ|ψ⟩ | |ψ

⊥⟩ ⟨ψ⊥| (18b)

E? = I− Eψ − Eϕ . (18c)

Applying this measurement scheme to the quantum
process generated by the cCQS in Fig. 3 produces
the classical process emitted by the HMC of Fig. 19.
There {Eψ, Eϕ, E?} are relabeled {E0, E1, E2}, pψ =
Tr(E0 |ψ⟩ ⟨ψ|), and pϕ = Tr(E1 |ϕ⟩ ⟨ϕ|).
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2 :
1−pψ

2

1 :
pφ
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2 :
1−pφ
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0 : pψ
2 : 1−pψ

FIG. 19. HMC presentation of the process resulting from
measuring the QSSP depicted in Fig. 3 with the POVM in
Eq. (18).

Note that symbol 2, corresponding to an inconclusive
measurement, is present in all transitions. Yet observing
0 or 1 is synchronizing since they each determine the next
HMC state. This property is preserved from the cCQS
that is being measured and need not occur generally. That
said, if the cCQS under study outputs only two distinct
quantum states, then measuring it with the unambigu-
ous state discrimination POVM in Eq. (18) results in
an HMC presentation that preserves the internal topol-
ogy. However, each HMC transition is corrupted with a
nonzero probability of observing symbol 2, rendering an
inconclusive measurement.
For this example, constructing the MSP for the process
generated the cCQS in Fig. 19 produces the presentation
depicted in Fig. 20, where transition probabilities are not
shown to reduce clutter.
There is a subset of MSP states with topology similar to
the original cCQS, but augmented with the mixed states
that capture the observation of 2s. This generally holds
when the generator is a unifilar cCQS that emits two
distinct nonorthogonal quantum states if the process is
measured via the POVM in Eqs. (18). In the measured
cCQS, there will be a subset of MSP states that mimic the
cCQS’s internal dynamics, but the latter is augmented
by inconclusive measurement outcomes. And, there are
chains of mixed states that drive the process away from
the original dynamic whenever a sequence of “inconclusive
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FIG. 20. State transition diagram of the MSP constructed
from the HMC in Fig. 19. Transition probabilities omitted
for clarity. Observing 1s (blue transitions) leads to state B;
observing 0s (red transitions) to state A. Both cases are
synchronizing.

results” or a nonsynchronizing symbol is observed.
To explore this process further set:

|ϕ⟩ = |0⟩
|ψ⟩ = cos (α/2) |0⟩+ sin (α/2) |1⟩ ,

with α ∈ (0, π). Then, pψ = pϕ = 1 − cos (α/2). When
constructing the MSP of Fig. 20, all transitions that emit
a 2 (black) have an associated probability of cos (α/2),
while the probabilities of the blue and red transitions
depend on the specific transition. As the number of 2s
observed approaches infinity, the mixed states visited
approach the stationary state distribution π = (2/3, 1/3)
of the nonunifilar measured cCQS.
This MSP, while requiring a countable infinity of states, is
so well behaved that it allows for direct calculation of the
mixed states and the numerical computation of both its
entropy rate and statistical complexity by approximating
the MSP with a finite but sufficiently large set of mixed
states. Figure 21 plots both the entropy rate and statisti-
cal complexity when the processes are approximated by a
MSP with 500 hidden states.
Figure 21 reveals edge cases that match expectations. At
one extreme, when α = 0, the process reduces to a se-
quence of qubits in state |0⟩. Thus, both process random-
ness and structure vanish. At the other extreme, when
α = π, the alphabet emitted by the cCQS is orthogonal
{|0⟩ , |1⟩}. Hence, the unambiguous state discrimination
POVM reduces to the projective measurement aligned
with the observation basis. This means that the measured
process is true to the original quantum source and both its
entropy rate and statistical complexity coincide with hgµ
and Cgµ, respectively. The plots also highlight that both
entropy rate and statistical complexity coincide with the
generator values with different nonorthogonal alphabets
and that their maximum values are attained for different
alphabets as well. While both randomness and structure
of the measured process depend on the cCQS’s quantum
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FIG. 21. (Top) Randomness hµ and (bottom) statistical
complexity Cµ as a function of the angle α between the two
states emitted by the cCQS in Fig. 3, with |ϕ⟩ = |0⟩ and
|ψ⟩ = cos(α/2) |0⟩ + sin(α/2) |1⟩. The horizontal black lines
show the values of hg

µ and Cg
µ of the cCQS that generates the

original quantum state process.

FIG. 22. Complexity-entropy diagram capturing the purely
informational character of the measured quantum-state pro-
cess: Parametric plot of hµ(α) and Cµ(α) over α ∈ [0, π]
illustrating how the intrinsic informational properties depend
on each other without reference to model parameter α. Cf.
complexity-entropy plots in Ref. [52].

alphabet, they both have distinct meanings and, thus, the
dependencies are not equivalent.
When varying the quantum alphabets and exploring α’s
whole range, it becomes apparent that the values of both
entropy rate and statistical complexity can be lower or
higher than those of the original cCQS. This means that
for a given cCQS and a given measurement both the
randomness and structure of the measured process with
respect to the QSSP can be reduced or increased. This
makes plain the possibly ambiguous effects of measure-
ment and what the latter can add to or remove from the
underlying quantum process.
Figure 22’s complexity-entropy diagram [52] offers a more
concise display of the QSSP’s achievable information gen-
eration and storage—its intrinsic computation—when
measured in this particular POVM across the range of
alphabets. Notice that for small hµ the system’s structure
or memory requirements Cµ are low. Then memory in-
creases with increased randomness until a peak is reached
at about hµ = 0.4 bits/symbol. Above this, increased
randomness requires fewer memory resources and a given
randomness can be achieved at more than one memory
value Cµ.
Overall, this example illustrates a situation in which a
particular choice of measurement protocol leads to a very
tractable measured process. While the statistical complex-
ity diverges for most measured processes, this example
shows that tailoring measurement schemes still leads to
complex, but more tractable dynamics. That is, the ob-
served dynamics can be leveraged to better understand
the dynamic that produces the underlying QSSP.

IX. OPTIMAL MEASUREMENTS

The previous sections established the two main characters
of measured quantum processes—their unpredictability
and temporal correlation. And, they demonstrated how
measurement can increase or decrease observed random-
ness and structure. These metrics naturally broach the
challenge of defining and demonstrating the existence of
informationally-optimal measurements. The possibility of
these optimizations is greatly facilitated by the piecewise
smooth dependence of the informational metrics on the
QSSP and on measurement operators.
Eschewing details, the following lays out several avenues
for future exploration, illustrating various kinds of op-
timality using the tools now in hand. We consider, in
turn, measurements that lead to minimal structural com-
plexity and to various forms of maximal informativeness.
The following cases only address projective measurements,
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though extension to POVMs is in some cases straightfor-
ward and of interest in general.
Developing algorithms and calculational methods to find
and implement these optimal measurements is left to the
future.
Let’s briefly recall relevant notation. A given projec-
tive measurement protocol is denoted E . Given a QSSP
R−∞:∞ and a measurement protocol E , the corresponding
measured process is X−∞:∞ = E(R−∞:∞). To simplify
the notation the following introduces E(M)—the MSP of
the measured cCQS of X−∞:∞ for a given cCQS M .
The following treats the alternative informational metrics
as operators themselves. So that for HMC M , hµ(M) is
that HMC’s entropy rate, Cµ(M) is its statistical com-
plexity, and dµ(M) its statistical complexity dimension.

A. Minimal Structural Complexity

There are settings where it is useful to identify and use
measurements that lead to the least complex, smallest-
memory observed process. Such measurement schemes
are specified as follows.

Definition 13 (Minimal Structural Complexity Measure-
ment). Given a cCQS M , the projective measurement
ECµ that leads to the measured process with the minimal
structural complexity is, when E(M) is finite state:

ECµ = arg min
{E}

Cµ(E(M))

and when E(M) uncountably infinite state:

ECµ = arg min
{E}

dµ(E(M)) .

While this kind of measurement is the least informa-
tive about the underlying quantum dynamics, it has also
proven in multiple examples to be the measurement that
yields a classical process requiring the least memory re-
sources to simulate and predict. This remains to be proven
but is consistent with the fact that the measurement ef-
fectively is the most efficient at discarding information
about the structure of the underlying process, which need
not be stored to represent the resulting measured process.

B. Maximally Informative Measurements

Perhaps most naturally, one can employ a measurement
scheme that maximizes the amount of information per
symbol in the measured process. Such measurement
schemes are specified as follows.

Definition 14 (Maximally Informative Measurement).
Given a cCQS M , the projective measurement Ehµ that
leads to the measured process with maximally informative
measurement outcomes is:

Ehµ = arg max
{E}

hµ(E(M)) .

Recalling basic dynamical systems, this is a natural choice
of optimal measurement in that it mimics the essence of
what a generating partition is, as defined by Kolmogorov
and proven by Sinai [53]. In this case, each observation
of a measurement outcome Xt results in the maximum
possible amount of new information.

C. Maximally Mutually-Informative Measurements

One is often interested in monitoring how measurement
outcomes reveal (or not) the internal generating mecha-
nism. This suggests the following measurement.

Definition 15 (Maximally Mutually-Informative Mea-
surement). Given a QSSP R−∞:∞, the measurement pro-
tocol ER:X is the maximally mutually informative mea-
surement when:

ER:X = arg max
{E}

I(R−∞:∞ : X−∞:∞) ,

where I(R−∞:∞ : X−∞:∞) is the mutual information [54]
between the QSSP and the measured process.
This measurement maximizes the information shared be-
tween the quantum-state stochastic process and the mea-
sured quantum process. That is, observation of the classi-
cal process maximally reduces uncertainty of the quantum
process. In contrast to the maximally informative mea-
surement, the maximally mutually-informative measure-
ment does not yield the maximal amount of information
learned per observation of the measured process. Rather,
it provides the maximal amount of information learned
about the QSSP given observation of the measured pro-
cess.

D. Dynamically Informative Measurements

Finally, one may be interested in finding the measure-
ment that yields a stochastic process most similar to the
underlying QSSP. This requires adhering to a particu-
lar definition of distance or similarity between stochastic
processes. One option when working with a particular
cCQS and its corresponding measured cCQS is to use a
measure of distance between HMCs. The measurement
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that minimizes the distance between two HMCs is the
most informative about the internal structure of the QSSP
generated by the cCQS. Said simply, it is the measure-
ment yielding a classical stochastic process that is most
informative about the QSSP’s dynamical structure.
Selecting an appropriate measure of distance between
HMCs is not a straightforward problem. Many have been
proposed [55–57], each with their own nuances. Deter-
mining which distance measure better suits the problem
at hand is left for future work.
This and the above notions of optimality are distinct and
so are of interest in different operational settings. It is
important to emphasize that, what differentiates these
optimality criteria from other notions of measurement
optimality is that they depend on the QSSP’s time corre-
lations and not only on the particular quantum state of a
single quantum system or its evolution.

X. CONCLUSION

To investigate temporal complexity—unpredictability and
structure—in quantum dynamics we developed an inten-
tionally simplified setting—one that excluded sequential
qubit entanglement. This allowed deploying classical mul-
tivariate information theory as a quantitative analysis
tool. And, this led directly to isolating the problem of
how measurement affects the appearance of quantum
processes—processes to which one must apply a quan-
tum measurement to observe. The simple lesson is that
measurement can both increase or decrease randomness
and structure. In point of fact, and somewhat unantici-
pated, observing a quantum process through projective
measurements results in an observed classical process of
explosively high structural complexity. The detailed anal-
ysis enriched this by identifying the mechanisms through
which this complexity arises.
In general, quantum-state stochastic processes observed
through projective measurements result in observed clas-
sical processes that require storing an infinite number of
predictive features to allow for optimal prediction. The
sets of predictive features for most processes are rich in
structure and, making use of that, we implemented newly
developed tools to quantify their structural complexity
and the intrinsic randomness of the measured process. In
addition, the development shed light on the influence that
the chosen measurement basis has on the complexity of
the observed process.
Irreducible nonunifilarity was identified as the driving
mechanism of these features. The low dimensionality of
the quantum state Hilbert space is the physical cause.

Nonalignment between the measurement basis and emit-
ted quantum states of the cCQS is the root physical
mechanism that leads to induced indistinguishability of
quantum states.
Even allowing for the framework’s simplifications, the
typical complexity of the measured process complicates
not only its study, but also makes the task of learning
about the underlying quantum process a difficult one. We
made progress in understanding why that is and how to
characterize the measured processes. That progress came
from adapting new methods from ergodic theory and
random dynamical systems to this setting. The result is
a powerful toolset for quantitatively analyzing measured
quantum processes.
We showed that the underlying cCQSs have distinct sig-
natures of structure and randomness as a function of the
measurement parameters and that dependence is system-
atic and smooth. One remaining task is to characterize
the possible underlying quantum sources that generate a
given measured cCQS or, at the very least, their statistical
properties.
In this way, the results lay a path to fully characterizing
quantum state stochastic processes. However, many steps
remain unexplored. We conjecture that success in these
will have broad impacts. One of those steps is to find
the spectral decompositions of the processes by use of
meromorphic functional calculus [58]. While these tools
are not engaged here, they will be necessary when studying
CQSs generated by purely quantum controllers. Another
essential step is to model the internal controller in such
a way that it generates entangled QSSPs. There are
helpful starting points for this in both finite-memory
classical controllers [59] and quantum protocols [60, 61]
for sequential generation of matrix product states. The
latter are of particular interest in the study of many-body
entangled states.
We only briefly explored a measurement protocol that
used single qubit POVM measurements. This showed
that exploring different measurement protocols has the
potential to bring novel results and to move closer to
more physically realistic settings. For example, Ref. [38]
looks at measurements that allow synchronization to the
underlying QSSP in a setting similar to that explored
here. As in the study of classical dynamical systems,
though, understanding the informational and statistical
effects of choosing a particular measurement instrument or
protocol can aid in optimizing particular tasks. The study
of optimal quantum measurements for QSSPs remains as
a challenging open problem.
A major challenge is to extend the current setting to
quantally-controlled qubit sources (qCQS), as just noted.
And, then, from there to develop a quantum communica-
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tion channel setting in which qubits are input, quantally
processed, and then output. Advances in this will more
directly impact information processing and computing
performed by quantum dynamical systems. Beyond that,
qubit source timing issues should be addressed, moving
away from the admittedly simple use of discrete time
here to continuous-time processes. Fortunately, the cCQS
model can easily be extended to discrete-event continuous-
time hidden semi-Markov models using the methods of
Ref. [62]. This will immediately give metrics of quantum
randomness and structure, paralleling the development
here.
Extending the present results along these lines will natu-
rally complement existing quantum descriptions of classi-
cal stochastic processes [63–65]. They also flag a starting
point from which to understand the statistical and struc-
tural properties of quantum-state time series. That step
will provide tools necessary not only for furthering our un-
derstanding of fundamental quantum dynamics, but also
grasping the operational meaning of their informational
properties in the context of quantum computation.
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Appendix A: Stochastic Processes

The Appendices provide a summary of and an introduc-
tion to the classical theory that is the foundation for
the main development. They cover basic notation and
definitions, as well as hidden Markov chains and their
properties and uses that are most relevant.
A classical stochastic process X is a bi-infinite series of in-
dexed observables produced by a system and is defined by
the probability measure over the random variables corre-
sponding to the observables: Pr(. . . Xt−1, Xt, Xt+1 . . . =
. . . xt−1, xt, xt+1 . . .). In this, the random vari-
ables corresponding to the observables are denoted
with capital letters . . . Xt−2, Xt−1, Xt, Xt+1, Xt+2 . . . and
their realizations are denoted by lowercase letters
. . . xt−2, xt−1, xt, xt+1, xt+2 . . ., with the xt values drawn
from a discrete alphabet A. The label t in the indexing is
chosen to evoke the traditional time-indexing of stochastic
processes in which the random variables are sequential
measurements of a physical system. Random variable
blocks are denoted Xt:t+l = Xt, Xt+1, . . . Xt+l−1, with
the left index inclusive and the right exclusive.
For present purposes, we concentrate on stationary
stochastic processes, in which the joint distribution for a
block of length l is time (or index)-translation invariant:

Pr(Xt:t+l = xt:t+l) = Pr(X0:l = x0:l) ,

for all t and l. A wide class of stationary stochastic
processes can be modeled with Hidden Markov Chains
(HMCs) [32, 33, 42]. Appendix C describes these in detail,
reviewing how they facilitate calculating various metrics
for the stochastic processes they generate.

Appendix B: Process Markovity

Given that the present setting considers both classical
stochastic process theory and quantum phenomena, it is
helpful to comment on the concept of Markovianity.

Definition 16. A Markov process or Markov chain of
order R is a stationary stochastic process X in which the
probability distribution satisfies the following:

Pr(Xt = xt|X−∞:t = x−∞:t)
= Pr(Xt = xt|Xt−R:t = xt−R:t)
= Pr(Xt = xt|Xt−1 = xt−1 . . . Xt−R = xt−R), (B1)

for all t ∈ Z and R ∈ N.
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That is, the probability distribution of a particular ran-
dom variable conditioned on the past depends only on
the value of the previous R random variables.
From this definition, we emphasize the following:

• Memoryless or independent identically distributed
(i.i.d.) processes are stochastic processes with R = 0.
We also refer to them as Markov processes of order
0.

• Stochastic processes with 1 ≤ R <∞ are memory-
ful. We refer to them as Markov processes of order
R.

• Memoryful stochastic processes that do not satisfy
the Markov condition in Eq. (B1) for finite R, but
require R =∞ are infinite-order Markov processes.
The latter is a surprisingly common property [66].
They are the best candidates for the descriptor
“non-Markov processes”.

These points are necessary as there is contradictory use
of the terminology in the quantum non-Markovianity
literature. In particular, there is extensive use of the
descriptor “memoryless” to refer to Markov processes with
Markov order R = 1 and “non-Markovian” to refer to
processes with finite Markov order R > 1 [6, 23, 27, 67, 68].
While those use cases are in dynamical settings distinct
from the one we address here it is pertinent to clarify our
nomenclature.
To avoid confusion, the nomenclature above is directly
derived from the definition of Markov property, consis-
tent with A. A. Markov’s original motivations to study
“complex chains”, his phrase for memoryful stochastic
processes [24, 25, 69, 70]. Memoryless is R = 0, Markov
is 1 ≤ R < ∞, and infinite Markov or non-Markov is
R = ∞. Reference [71]’s introduction reviews this and
the early history of probabilistic chains.

Appendix C: Hidden Markov Chains

Definition 17. A hidden Markov chain (HMC) is a tuple
(S, A, {T x}) that consists of:

• Set S of hidden states σ ∈ S.
• Discrete alphabet A: a set of symbols that the HMC

emits on state-to-state transitions at each time step.
• {T (x)}, x ∈ A is the set of symbol-labeled transition

matrices such that T (x)
σσ′ = Pr(x, σ′|σ) with σ, σ′ ∈

S.

The tuple directly defines the dynamic over the hid-
den states, which is itself Markovian (order R = 1).

That Markov chain’s transition matrix is given by T =∑
x∈A T

x. In turn, T defines the stationary state distri-
bution π over hidden states, such that π · T = π. That is,
π is a row vector such that πσ = Pr(σ) with σ ∈ S.
See, for example, Fig. 5, where S = {A,B} and A =
{0, 1}.
An HMC then is a model for a stochastic process con-
sisting of the set of emitted symbol sequences and their
associated probabilities. It is important to note here
that, even if the dynamic over hidden states is Markovian,
HMCs generate a more general class of stochastic pro-
cesses that includes non-Markovian processes. While the
hidden states give an explicit mechanism for producing a
stochastic process, the stochastic process itself is defined
only over the set of symbols x ∈ A.
HMCs are useful in that they specify a finite mechanis-
tic procedure to produce the correct probabilities for a
stochastic process. There is an infinite family of distinct
HMCs that model a given process. These are called a
process’ presentations. For each process, though, there
is a unique presentation with specific properties that,
beyond merely generating the correct probabilities, cap-
tures the minimal conditional distributions needed for
optimal prediction. This presentation is called a process’
ϵ-machine, and it allows for efficient exact computation of
a process’ randomness and structure metrics. Appendix
D summarizes what an ϵ-machine is and why it is such
an important tool when modeling a stochastic process.
In point of fact, the development here works with edge-
labeled HMCs. There are also state-labeled HMCs that
emit symbols on entering a state. Both presentation
classes generate the same class of stochastic processes.
They are equivalent in this sense and they can be directly
interconverted. Edge-labeled presentations, though, do
offer computational advantages when calculating informa-
tional properties and in interpreting the functionality of
their operation.

Appendix D: Computational Mechanics

This section briefly reviews the main results of computa-
tional mechanics [13–15].
For ease of notation, we refer here to the past sequences
of a process as ←−X = X−∞:t and the future sequences
as −→X = Xt:∞. For finite futures of length ℓ we use
Xt:t+ℓ = −→X ℓ.
As addressed in the main text, the hidden states in a
unifilar presentation must satisfy the condition that, given
an observed past sequence ←−x , all the allowed hidden
states induced by that observation must have the same
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distribution of futures Pr(←−X |←−x ). If every observed past
induces a unique allowed state in a unifilar presentation,
we call that a causal state.

Definition 18. Causal states are the equivalence classes
of pasts determined by the equivalence relation ∼ϵ. The
latter defines two infinite past sequences ←−x and ←−x ′ as
equivalent—←−x ∼ϵ ←−x ′—if and only if they have the same
conditional distribution of futures:

ϵ(←−x ) =
{←−x ′|

Pr(−→X ℓ = −→x ℓ|←−X =←−x ) = Pr(−→X ℓ = −→x ℓ|←−X =←−x ′)
}
,

where −→x ℓ ∈ −→X ℓ, ←−x ′ ∈ ←−X , and ℓ ∈ Z+. We denote a
causal state random variable by S, a particular causal
state of an HMC by σ, and the set of causal states by S.
As Ref. [14] details, a given causal state and the next
observed symbol of a process determine a unique next
causal state. A given causal state σ also provides a well-
defined conditional probability Pr(−→X |σ) for all possible
future sequences −→X . These two facts together mean there
is a well-defined set of labeled transition matrices {T (x)}
that describe the probabilities of transition between causal
states given an observed symbol x.

Definition 19. The causal state set S, together with
the labeled transition matrices {T (x) : x ∈ A} define a
process’ ϵ-machine.
For any given stochastic process, its ϵ-machine is unique.
It is also the process presentation with maximally accurate
prediction of minimal statistical complexity. This makes
the ϵ-machine a natural canonical HMC for a process.

Appendix E: Mixed-State Presentations

The following introduces the Mixed State Algorithm
(MSA) that converts a nonunifilar presentation to a unifi-
lar presentation.
Assume that an observer has an HMC presentation M for
a process P that emits symbols x ∈ A. Before making any
observations, it has probabilistic knowledge of the current
state η0 = Pr(S). We call this a state of knowledge
or belief distribution. Typically, the best guess for an
observer prior to observing any output of the system is
η0 = π.
Once M generates a word w = x0x1 . . . xℓ the observer’s
state of knowledge of M ’s current state can be updated
to η(w), that is:

η(w)σ ≡ Pr(Sℓ = σ|X0:ℓ = w,S0 ∼ π) . (E1)

The collection of possible states of knowledge η(w) forms
M ’s set R of mixed states:

R = {η(w) : w ∈ A+,Pr(w) > 0} ,

where A+ is the set of all words with positive length.

There is also the mixed-state measure µ(η)—the proba-
bility of being in a particular mixed state:

Pr(η(w)) = Pr(Sℓ|X0:ℓ = w,S0 ∼ π) Pr(w) .

From this follows the probability of transitioning from
η(w) to η(wx) on observing symbol x:

Pr(η(wx)|η(w)) = Pr(x|Sℓ ∼ η(w)) .

This defines the mixed-state dynamic W, in terms of the
original process not in terms of an HMC presentation of
the latter.

Given any presentation M of a process, we can calculate
a new presentation for the process with important prop-
erties as follows. The probability of generating symbol x
when in mixed state η is:

Pr(x|η) = η · T (x) · 1 , (E2)

where 1 is a column vector of ones. Upon seeing symbol
x, the current mixed state ηt is updated:

ηt+1(x) = ηt · T (x)

Pr(x|η) . (E3)

Thus, given an HMC presentation we calculate the mixed
state of Eq. (E1) via:

η(w) = π · T (w)

π · T (w) · 1 .

And the mixed-state transition dynamic is then:

Pr(ηt+1, x|ηt) = Pr(x|ηt)
= ηt · T (x) · 1 ,

since Eq. (E3) says that, by construction, the MSP is
unifilar. That is, the next mixed state is a function of the
previous and the emitted (observed) symbol.

Together the mixed states and their dynamic give the
HMC’s mixed-state presentation (MSP) U = {R,W}, a
unifilar presentation for the process generated by presen-
tation M .
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Appendix F: Measurement Angle Dependence

Two animations illustrate the measurement angle depen-
dence of the MSP; see:
https://csc.ucdavis.edu/~cmg/compmech/pubs/qdic.htm.

The first animation shows shows how the mixed state
presentation and hµ vary as a function of parameter θ.
The second animation shows plots like that in Fig. 15,
while sweeping ϕ from 0 to 2π.
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