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Biological sensors must often predict their input while operating under metabolic constraints.
However, determining whether or not a particular sensor is evolved or designed to be accurate
and efficient is challenging. This arises partly from the functional constraints being at cross pur-
poses and partly since quantifying the prediction performance of even in silico sensors can require
prohibitively long simulations, especially when highly complex environments drive sensors out of
equilibrium. To circumvent these difficulties, we develop new expressions for the prediction ac-
curacy and thermodynamic costs of the broad class of conditionally Markovian sensors subject to
complex, correlated (unifilar hidden semi-Markov) environmental inputs in nonequilibrium steady
state. Predictive metrics include the instantaneous memory and the total predictable information
(the mutual information between present sensor state and input future), while dissipation metrics
include power extracted from the environment and the nonpredictive information rate. Success in
deriving these formulae relies on identifying the environment’s causal states, the input’s minimal
sufficient statistics for prediction. Using these formulae, we study large random channels and the
simplest nontrivial biological sensor model—that of a Hill molecule, characterized by the number
of ligands that bind simultaneously, the sensor’s cooperativity. We find that the seemingly impov-
erished Hill molecule can capture an order of magnitude more predictable information than large
random channels.
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I. INTRODUCTION

To perform functional tasks, synthetic nanoscale ma-

chines and their macromolecular cousins simultaneously

manipulate energy, information, and matter. They are

information engines—systems that operate by synergis-

tically balancing the energetics of their physical sub-

strate against required information generation, storage,

loss, and transformation to support a given functional-

ity. Classically, information engines were conceived as

either potential computers [1]—that is, physical systems

that can compute anything given the right program—or

as Maxwellian-like demons that use information as a re-

source to convert disordered energy to useful work [2–11].

Recently, investigations into functional computation [12]

embedded in physical systems led to studies of the ther-

modynamics of various kinds of information processing

[13], including the thermodynamic costs of information

creation [14], noise suppression [15], error correction and

synchronization [6], prediction [16–18], homeostasis [7],

learning [19], structure [20], and intelligent control [21].
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Due to its broad importance to the survival of biological

organisms, here we focus on a specific functional compu-

tation in information engines: how sensors predict their

environment.

Evolved and designed sensory systems can be tasked

with at least two, potentially competing, objectives: ac-

curately predicting inputs [22, 23] and contending with

metabolic constraints [24, 25] [26]. Accurate and energy-

efficient predictive feature extraction can be used to reap

increased rewards from the environment, no matter the

particular “reward function” [27–30].

Optimizing such sensors requires a nontrivial match-

ing of sensory statistics and sensor structure [7, 31]. Un-

daunted, much effort has been invested to find energet-

ically efficient and maximally predictive sensors, often

simplifying the challenges by ignoring action policies—

how the sensed information is used. Some seek sensor

models that maximize a combination of prediction power

and (energetic) efficiency; e.g., as in Refs. [17, 31]. Oth-

ers validate learning rules based on whether or not they

maximize the aforementioned objective function [32, 33].

Finally, others compare real biological sensors to in silico

null models; e.g., as in Ref. [23].

All these efforts require estimating prediction and dis-

sipation metrics of given sensors. Doing so can be surpris-
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ingly difficult. Consider the total predictable information

captured by a sensor [23, 34], which we take to be the

mutual information between the present sensor state and

the future of the sensory input. There are uncountably

infinite possible futures. How, then, are we to estimate

the total predictable information from simulations given

that we are always in the undersampled limit?

One approach is to simulate and employ sophisticated

techniques for estimating entropy in the undersampled

limit; e.g., as in Ref. [35]. However, even estimating the

joint probability distribution of environment and sensor

states from simulations can require long simulations, as

we find in one example below. Alternatively, one can

rewrite prediction and dissipation metrics in terms of

generators of the environment and sensor, similar to how

the predictive information bottleneck can be recast in

terms of forward- and reverse-time causal states [36]. The

following pursues this second line of inquiry by solving a

Chapman-Kolmogorov equation that yields a partial dif-

ferential equation for the joint probability distribution of

forward-time causal states and channel state. We find

new closed-form expressions for total predictable infor-

mation, power consumption, instantaneous memory, and

nonpredictive information rate in nonequilibrium steady-

state sensors. The challenge to this analytical approach,

of course, is that it requires accurate models of the envi-

ronment and sensor dynamics.

We address a very general class of environments and

sensors: conditionally Markovian channels subject to a

realization of a stationary unifilar hidden semi-Markov

process [37] with an energy function associated to each

environment and channel state combination. This setting

is sufficiently general that it allows nonequilibrium sens-

ing. The latter is crucial for accurate sensing [38–42], in

that the Boltzmann distribution need not be equivalent

to the steady-state distribution over sensor states for a

frozen environment. Unlike previous treatments, we do

not explicitly demarcate a separate memory or energy

source accessed by the sensor [41, 43, 44], but include

components as part of the sensor. Our framework allows

for nondetailed balance dynamics. A lack of detailed bal-

ance in sensor dynamics is a reminder of the presence of

such a reservoir. Finally, the environment is assumed to

be unaffected by the sensor. That is, either there is no

feedback or the environment is infinitely large. After all

of these assumptions, we calculate the power consumed

from the environment by the sensor.

For illustration, we study both large random chan-

nels (randomly-wired channels with a large number of

states) and an “optimal” Hill molecule, which is a sim-

ple model of a ligand-gated channel; see Fig. 1. For

these examples, we assume that the ligand concentra-

tion is a realization of a semi-Markov process—a gener-
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FIG. 1. Hill molecule: (Top) Ion channel in a membrane in
the open (left) and closed (right) states in which ions can and
cannot travel through. (Below) Ligand concentrations during
the open-closed cycle of the molecule.

alization over previous efforts that assumed Markovian

[17, 45] or Gaussian [31] processes. This generalization

is necessary when, for instance, the Hill molecule repre-

sents a nicotinic acetylcholine receptor on a synapse and

ligands are acetylcholine molecules since, as a practical

matter, neuronal dynamics are often non-Markovian and

non-Gaussian [46].

We find that (i) increases in cooperativity (sharpness of

response) of the Hill molecule lead to increases in both

prediction power and heat dissipation rate, (ii) a large

fraction of the heat dissipation rate comes from ineffi-

cient prediction, and (iii) simple gradient-based adapta-

tion rules lead to hysteresis. Furthermore, we find that

the total predictable information captured by this seem-

ingly impoverished Hill molecule exceeds the total pre-

dictable information captured by large random channels

by an order of magnitude, despite the latter’s ability to

capture potentially useful information about the past of

the stimulus. This latter result would be impossible to

obtain via interactions with a continuous-time Markovian

environment.

II. BACKGROUND

Central to our analysis is an appreciation of causal

states (minimal sufficient statistics of prediction or retro-

diction), unifilar hidden semi-Markov processes, and con-

ditionally Markovian channels. We review these concepts

here, simultaneously introducing relevant notation.
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A. Environment

Input symbols x take on any value in the observation

alphabet A. We code the past of the input time series

as←−x = . . . (x−2, τ−2), (x−1, τ−1), (x0, τ+) and the input’s

future as −→x = (x0, τ−), (x1, τ1), (x2, τ2), . . ., where τi is

the total dwell time for symbol xi. To ensure a unique

coding, we stipulate that xi 6= xi+1. Note that symbol

x0 is seen for a total dwell time of τ+ + τ− = τ0; that is,

the present splits the dwell time τ0 in two.

As is typical,
←−
X is the random variable corresponding

to semi-infinite input pasts and
−→
X the random variable

corresponding to semi-infinite input futures. We now

briefly review the definition of causal states, as described

in Ref. [47]. Forward-time causal states S+, the minimal

sufficient statistics for prediction, are defined via the fol-

lowing equivalence relation: two semi-infinite pasts, ←−x
and ←−x ′, are considered “predictively” equivalent if:

←−x ∼ε+ ←−x ′ ⇔ Pr(
−→
X |←−X =←−x ) = Pr(

−→
X |←−X =←−x ′) .

The relation partitions the set of semi-infinite pasts

into clusters of pasts. Each cluster is a forward-time

causal state σ+, a realization of the random variable

S+. Reverse-time causal states S−, the minimal suf-

ficient statistics for retrodiction, are defined similarly.

Two semi-infinite futures, −→x and −→x ′, are considered

“retrodictively” equivalent if:

−→x ∼ε− −→x ′ ⇔ Pr(
←−
X |−→X = −→x ) = Pr(

←−
X |−→X = −→x ′) .

This equivalence relation partitions the set of semi-

infinite futures into clusters, each cluster being a reverse-

time causal state σ−, a realization of the random variable

S−.

Forward- and reverse-time causal states are useful in

the ensuing calculations due to the following Markov

chains. First, forward-time causal states are a deter-

ministic function of the input past (σ+ = ε+(←−x )), and

reverse-time causal states are a deterministic function of

the input future (σ− = ε−(−→x )). Hence, we have the

Markov chains S+ → ←−X → −→X and S− → −→X → ←−X ; so

that, for instance:

p(−→x , σ+|←−x ) = p(−→x |←−x )p(σ+|←−x ),

where we introduce a simplified notation for the probabil-

ity distributions; e.g., p(σ+|←−x ) = Pr(S+ = σ+|←−X =←−x ).

Note that p(σ+|←−x ) is singly supported– that is, a Kro-

necker delta, δσ+,ε+(←−x ). However, causal states are min-

imal sufficient statistics of the past relative to the fu-

ture and vice versa. And so,
←−
X → S+ → −→

X and−→
X → S− → ←−X are also valid Markov chains; so that,

for instance:

p(−→x ,←−x |σ+) = p(−→x |σ+)p(←−x |σ+).

Invoking these Markov chains is called causal shielding.

For the discussion that follows, we must define hid-

den Markov models and unifilarity. We first do so in the

case of discrete-time, discrete-event processes. A hidden

Markov model is equipped with hidden states and la-

beled transition probabilities that give the probability for

emitting a particular symbol and transitioning to a new

particular hidden state. (These are edge-emitting hidden

Markov models, which are completely general and equiv-

alent to the likely more familiar state-emitting hidden

Markov models.) In a unifilar hidden Markov model, the

state to which you transition is determined by the state

that you’re in and the symbol that you emit. These

are less general instantiations than nonunifilar hidden

Markov models in the following sense: the unifilar hidden

Markov model corresponding to most nonunifilar hidden

Markov models has uncountably infinite states. However,

the process generated by a finite unifilar hidden Markov

model has a finite number of causal states.

Now we turn our attention to continuous-time,

discrete-event processes. Let’s first address the more gen-

eral case of unifilar hidden semi-Markov input, as in Ref.

[37], which explains that the causal state information has

three distinct components. Unifilar hidden semi-Markov

processes have a causal structure that looks a little like

state- and symbol-dependent conveyor belts which tran-

sition into one another. Each conveyor belt is labeled by

a forward-time hidden state g+. The forward-time hid-

den state is analogous to hidden states in unifilar hidden

Markov models, except that forward-time hidden states

now emit both symbols and dwell times. Dwell times are

drawn from φg(τ); emitted symbols are chosen with prob-

ability p(x|g); and g = ε+(g′, x′) is the next hidden state

given that the current hidden state is g′ and the current

emitted symbol is x′. In other words, x′ is emitted upon

transition from g′ to g. The last of these properties is

called unifilarity ; here, both the entire model is unifilar

and the underlying hidden states exhibit the unifilarity

property as well.

Having set up this machinery, forward-time causal

states are labeled by σ+ = (g+, x+, τ+). That is, the

forward-time hidden state g+, current emitted symbol

x+, and time since last symbol τ+ together comprise

the forward-time causal states for unifilar hidden semi-

Markov processes. Similarly, the reverse-time causal

state σ− = (g−, x−, τ−) for a unifilar hidden semi-Markov

process is a combination of reverse-time hidden state g−,

current emitted symbol x−, and time to next symbol τ−.

The joint probability distribution p(σ+, σ−) of forward-
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time and reverse-time causal states for unifilar hidden

semi-Markov processes can be obtained from formulae in

Ref. [37].

While Ref. [37]’s hidden semi-Markov processes are

completely general, they are restricted in that the unifilar

hidden semi-Markov process corresponding to a particu-

lar nonunifilar hidden semi-Markov process might have

unordered uncountably infinite states. That said, we be-

lieve that any continuous-time, discrete-event process can

be approximated arbitrarily well by a countable unifilar

hidden semi-Markov process. (Alas, a proof of this is still

lacking.) As such, we do not believe that restricting our-

selves to finite unifilar hidden semi-Markov processes is

limiting.

In examples, we focus on semi-Markov input. This

greatly constrains the forward- and reverse-time causal

states. The forward-time causal states are now described

by the pair (x+, τ+), where x+ is the input symbol in-

finitesimally prior to the present and τ+ is the time since

last symbol—i.e., since x−1. The reverse-time causal

states are similarly described by the pair (x−, τ−), where

x− is the input symbol infinitesimally after the present

and τ− is the time to next symbol—i.e., until x1. Let

T± be the random variable describing time since (to) last

(next) symbol. The dwell time of symbol x has proba-

bility density function φx(τ), and the probability of ob-

serving symbol x after x′ is q(x|x′). By virtue of how we

have chosen to encode our input: q(x|x) = 0.

Finally, the development to come requires finding the

joint density ρ(σ+, σ−) of forward- and reverse-time

causal states. Let:

Φx+
(τ+) =

∫ ∞

τ+

φx+
(t)dt, µx+

= 1/

∫ ∞

0

tφx+
(t)dt ,

where p(x+) is the probability of observing symbol x+.

As detailed in Ref. [37], for the conditional density we

can say:

ρ(σ−|σ+) = ρ(g−, x−, τ−|g+, x+, τ+)

= δx+,x−

φg+
(τ+ + τ−)

Φg+
(τ+)

p(g+|g−, x−) .

For semi-Markov input, this simplifies the density:

ρ(σ+, σ−) = ρ((x+, τ+), (x−, τ−)). As described in Ref.

[37], we have:

ρ(x+, τ+) = µx+
Φx+

(τ+)p(x+) . (1)

The probability p(x+) is given by:

p(x+) = (diag(1/µx) eig1(q))x+
,

where diag(1/µx) is a diagonal matrix and eig1(q) is the

eigenvector of q(·|·) associated with eigenvalue 1. The

conditional density of reverse-time causal states given

forward-time causal states is then:

ρ(σ−|σ+) = ρ((x−, τ−)|(x+, τ+))

=
φx+(τ+ + τ−)

Φx+(τ+)
δx+,x− . (2)

Together, Eqs. (1) and (2) give the joint density

ρ(σ+, σ−) = ρ(σ+)ρ(σ−|σ+).

B. Sensory channel

We assume the channel is conditionally Markovian.

As such, its dynamics are fully specified by input state-

dependent kinetic rates. More precisely, the channel state

y, with corresponding random variable Y , can take on

any value in Y, and the rate at which channel state y

transfers to channel state y′ when the input has value x

is given by ky→y′(x). Probability conservation dictates

that:

ky→y(x) := −
∑

y′

ky→y′(x) .

Then, the probability p(y, t) of being in channel state y

at time t evolves as:

ṗ(y, t) =
∑

y′

ky′→y(x(t)) p(y′, t) ,

where x(t) is the input symbol at time t.

To simplify notation and ease computation, we write

dynamical evolution rules in matrix-vector form. Let

~p(y, t) be the column vector of probabilities that the

channel is in a particular state y at time t, and let M(x)

be a matrix of rates: My′,y(x) = ky→y′(x). Then, we

have:

~̇p(y, t) = M(x(t)) ~p(y, t) . (3)

With this, it is clear that ~p(y, t) can oscillate or decay to a

steady state. The Perron-Frobenius theorem guarantees

that:

peq(x) := eig0(M(x)) ,

the probability distribution over channel states when lig-

and concentration is set to x, is unique. This need not

be the Boltzmann distribution.
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FIG. 2. Sensor information diagram [48] giving the rela-
tionship between prediction metrics and nonpredictive infor-
mation rate. Instantaneous memory is Imem = I[X0;Y0] =
b + d + f + h and total predictable information Ifut =
lim∆t→0 I[Y0;X0:] = lim∆t→0(b + c + d + e + f + g + h),
while the lower bound on power consumption, the nonpre-
dictive information rate is İnp = lim∆t→0(b + h − c − e)/∆t.
Recall a = H[Y0|X0, X∆t,

−→
X 2∆t], b = I[Y0;X0|X∆t,

−→
X 2∆t],

f = I[Y0;X0;X∆t;
−→
X 2∆t], and so on.

III. PREDICTION AND DISSIPATION

METRICS

We employ several metrics to quantify the sensor’s

prediction performance and its energetic efficiency. In-

stantaneous memory Imem [16] and total predictable in-

formation Ifut [33, 49] characterize prediction power,

while the nonpredictive information rate İnp [16–18] and

temperature-normalized power consumption βP monitor

dissipation. In nonequilibrium steady state, when de-

tailed balance holds, heat dissipation rate and power

consumption are equivalent. Figure 2 uses an infor-

mation diagram [48, 50] to illustrate the relationships

between the various information-theoretic quantities in

terms of the elementary information atoms—entropies,

conditional entropies, and mutual informations—out of

which they are constructed.

In defining the sensor, we grouped into a single sen-

sor what might separately be called sensor, memory, and

internal energy source(s). This allows us to consider ac-

tive sensors with memory. However, reading the sensor

by other downstream parts of an organism might entail a

different grouping. In any case, since we use information-

theoretic quantities to define prediction metrics, the Data

Processing Inequality employed below guarantees that we

establish a (not necessarily tight) upper bound on the

instantaneous memory and total predictable information

when reading a sensor.

Our selection of metrics is inspired by previous efforts

to characterize prediction and dissipation in sensors. In-

stantaneous memory and nonpredictive information were

first defined in Ref. [16]. Reference [18] also focused on

nonpredictive information rate and power consumption,

but did not calculate total predictable information or a

more standard prediction-related metric. Reference [17]

used the ratio of nonpredictive information rate to en-

tropy production to characterize learning, though non-

predictive information rate is not necessarily an intuitive

metric for learning. Moreover, this ratio can be greater

than unity when nonpredictive information rate is nega-

tive. Finally, Ref. [31] focused on metrics for prediction,

including a natural continuous-time extension of instan-

taneous predictive information, but not on metrics for

dissipation.

A. Prediction metrics

Instantaneous memory and total predictable infor-

mation are far from being the only metrics useful for

characterizing a sensor’s prediction capability. One

could instead study instantaneous predictable informa-

tion, I[Yt;Xt+∆t] [16, 23], which requires choosing a rele-

vant ∆t. Or, following the echo-state network literature,

one might instead calculate “memory capacity” [51] or

“prediction capacity” [52]. Or, if a reward function is

known [27], then the relevant metric would depend on

the reward function and the organism’s action policy.

Interestingly, information-theoretic prediction metrics

might have more relevance to biology than, say, the so-

called prediction capacity. In a discrete-time setting, ex-

tending Kelly’s classic bet-hedging analysis shows that

increases in expected log-growth rate via increases in sen-

sory information is equal to the instantaneous predictable

information I[Y0;X∆t] [53].

The total predictable information Ifut, defined as:

Ifut := I[Y ;
−→
X ] ,

is an upper bound on this increase in expected log-growth

rate. (Note that we dropped time subscripts t due to

stationarity.) This is the mutual information between

present channel state and the input’s future. It is the

amount of information that is predictable about the input

future from the present channel state. We merely assert

that on ontogenetic timescales total predictable informa-

tion constitutes a reasonable reward function [54, 55].

Even in a discrete-time setting, calculating the total

predictable information appears intractable, as there is

an uncountable infinity of possible input futures. To

cope, we employ the causal shielding relations specified

in Sec. II. Due to the feedforward nature of the channel-



6

input setup—that is, the channel’s state does not affect

the input—and the Markov chains given earlier—e.g., see

Ref. [56]—we have the Markov chain Y → S+ → S− →−→
X and the Markov chain Y → S+ → −→X → S−. Two

applications of the Data Processing Inequality yield:

Ifut = I[Y ;S−] = I[Y ;X−, T−,G−] ,

which decomposes into:

Ifut = I[Y ;X−] + I[Y ; T−,G−|X−] .

The term I[Y ;X−] is called the instantaneous memory

Imem [16], since it is the amount of information available

from the channel state about the just-seen input symbol.

Rewriting we have:

Ifut = Imem + I[Y ; T−,G−|X] .

Thus, the total predictable information is the sum of in-

stantaneous memory and information that is truly about

the future, which here is the combined time-to-next-

symbol and reverse-time hidden state. For the special

case of semi-Markov input, the reverse-time hidden state

is equivalent to the present observed symbol and so:

Ifut = Imem + I[Y ; T−|X] .

The difference between the total predictable information

and instantaneous memory for semi-Markov input is the

information that the present sensor state captures about

the time to next observed symbol.

B. Dissipation metrics

Next, we quantify the power extracted from the en-

vironment by the sensor system. Note that this does

not include the power required to maintain the sensor in

nonequilibrium steady state, even at fixed environment,

due to the violation of detailed balance. Assuming access

to a temperature-normalized “energy function” βE(x, y),

the temperature-normalized power βP is given by:

βP = lim
∆t→0

〈βE(xt+∆t, yt)〉 − 〈βE(xt, yt)〉
∆t

. (4)

In effect, we group any internal energy sources into the

sensor state, so that we calculate the work done by the

environment on the entire sensor and its internal energy

sources. Given an energy function, we do not assume

that the distribution over sensor states reached, if the

environment is fixed, is identical to the Boltzmann dis-

tribution.

If determining an energy function is not possible, we

can calculate a lower bound using a continuous-time

adaptation of the inequality in Ref. [16]:

İnp := lim
∆t→0

I[Yt;Xt]− I[Yt;Xt+∆t]

∆t
≤ βP , (5)

with an alternate equivalent definition in Ref. [18]. Note

that Eq. (5) only holds in nonequilibrium steady state.

See App. A.

İnp is called the nonpredictive information rate since

it loosely corresponds to how much of the instantaneous

memory is useless for predicting the next input. Refer-

ence [17] viewed İnp/βP as a learning efficiency, though

see Ref. [45]. We take the view that İnp is a po-

tentially useful lower bound on temperature-normalized

power consumption and use Imem and Ifut instead to char-

acterize learning. Any differences between the formulae

shown here and in Ref. [16, Eq. (2)] are superficial; we

merely adapted the derivation for continuous-time pro-

cesses. Unfortunately, the nonpredictive information rate

is not necessarily a tight lower bound on temperature-

normalized power. When the environment is Markovian,

there is another lower bound on the heat dissipation rate

that is proportional to the instantaneous memory [57],

but we focus mainly on non-Markovian environments

here.

IV. RESULTS

Given a known environment and sensor, two ap-

proaches to evaluate the aforementioned prediction and

dissipation metrics present themselves:

• First, simulate the environment and sensor and ap-

proximate prediction and dissipation metrics based

on observed frequencies;

• Or, second, find (new) closed-form expressions for

prediction and dissipation metrics in terms of the

environment generators (φx(τ), ε+(g, x), p(x|g))

and sensor M(x).

The first can lead to prohibitively long simulations for

accurate estimates. The following pursues the second.

This requires solving a Chapman-Kolmogorov equation

that turns into partial differential equations with cou-

pled boundary conditions. The explicit derivations are

lengthy and therefore are relegated to the appendices.

The appropriate equations there are referenced here,

where relevant.

That said, let’s briefly expand upon the first ap-

proach to highlight its several potential difficulties. To

calculate prediction and dissipation metrics other than

the total predictable information Ifut, one can esti-

mate p(xt, yt) and p(xt+∆t, yt) for some small ∆t from
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simulation and then use standard formulae (I[U ;V ] =∑
u,v p(u, v) log (p(u, v)/p(u)p(v))) and Eqs. (6) and (9)

to calculate Imem, İnp, and βP . More sophisticated algo-

rithms for calculating prediction metrics would directly

approximate I[Xt, Yt] [35] instead of “plugging-in” esti-

mates of the corresponding probability distribution. As

total simulation time T increases, estimates of the var-

ious probability distributions from empirical frequencies

become more and more accurate and our corresponding

estimates of prediction and dissipation metrics also be-

come more accurate. As discussed in Sec. V, this might

require surprisingly long times T to obtain accurate esti-

mates.

Using the first approach to calculate the total pre-

dictable information Ifut from simulations is difficult for

two reasons. Both imply that we are always in the under-

sampled limit. First, we are working with a continuous-

time system. As such, input futures −→x are described by

lists of dwell times, and so to calculate Ifut we are implic-

itly estimating probability density functions ρ(·) rather

than probability distributions p(·). Second, we decided to

consider semi-infinite input futures, rather than input fu-

tures of some finite time. Even for discrete-time systems,

there are an uncountable infinity of possible semi-infinite

input futures. The combination of these two challenges

is so daunting that we will not calculate Ifut from simu-

lations.

Notably, from the closed-form expressions of Sec. IV

later on we find that Ifut is close to Imem for random chan-

nels and the simple Hill molecule. This result, though,

will likely not hold for the interesting case of highly pre-

dictive sensors in complex environments [34].

A. Calculating prediction metrics

Ifut and Imem can be analytically calculated, though,

once ρ(σ+, y) = Pr(S+ = σ+, Y = y) is in hand. This fol-

lows, in turn, by manipulating a Chapman-Kolmogorov

equation, shown in App. B. Set any ordering on the pairs

(g, x); e.g., the ordering (g1, x1), (g1, x2), . . . , (g|G|, x|A|).

An expression for p(y|σ+) = p(y|g, x, τ) is given by a

combination of Eqs. (B5) and (B9):

p(y|g, x, τ) =
(
eM(x)τeig1(C)(g,x)/µgp(g)

)
y
,

where C is a block matrix with entries:

C(g,x),(g′,x′) = δg,ε+(g′,x′)p(x
′|g′)

∫ ∞

0

φg′(t)e
M(x′)tdt .

And so, eig1(C) is a vector. Normalization forces
~1>eig1(C)(g,x) = µgp(g).

We then find the joint probability density as ρ(y, σ+) =

p(y|σ+)ρ(σ+), which enables computation of all pre-

diction metrics. Instantaneous memory is given by

Imem = I[X;Y ], whereas Ifut = I[Y ;S−]. All the rele-

vant probabilities—namely, p(x, y) and ρ(σ−, y)—are ob-

tained from the previously derived density ρ(σ+, y). For

instance, to calculate ρ(σ−, y), we employ the Markov

chain Y → S+ → S− to find:

ρ(σ−, y) =
∑

σ+

ρ(σ−|σ+)p(y|σ+)ρ(σ+) .

And, to calculate p(x, y), we recall that σ− =

(g−, x, τ−), so we only need marginalize the joint den-

sity ρ((g−, x, τ−), y).

B. Calculating dissipation metrics

Additionally, dissipation metrics can be calculated

once:

δp(x, y)

δt
= lim

∆t→0

(
Pr(Xt+∆t = x, Yt = y)

− Pr(Xt = x, Yt = y)
)
/∆t

is obtained. (Note that this is not the total time deriva-

tive dp/dt.) An expression for δp/δt in terms of input

and channel properties is given in Eq. (B11):

δp

δt
=

∑

g′,x′ 6=x

∫
dτ ′ p(x|ε+(g′, x′))p(x′|g′)φg′(τ ′)

×
(
eM(x′)τ ′eig1(C)(g′,x′)

)
y

−
∑

g′

∫
dτ ′ p(x|g′)φg′(τ ′)

(
eM(x)τ ′eig1(C)(g′,x)

)
y
,

where normalization again requires ~1>eig1(C)(g,x) =

µxp(g). Then, from earlier, we find that:

İnp = lim
∆t→0

H[Yt, Xt+∆t]−H[Yt, Xt]

∆t

= lim
∆t→0

(∑

x,y

(
p(x, y) +

δp

δt
∆t

)
log

1

p(x, y) + δp
δt∆t

−
∑

x,y

p(x, y) log
1

p(x, y)

)
/∆t

= −
∑

x,y

δp(x, y)

δt
log p(x, y) . (6)
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If there is an energy function E(x, y), then it is straight-

forward to show that power can be obtained from:

βP =
∑

x,y

δp(x, y)

δt
E(x, y). (7)

For passive sensors, despite lacking direct access to an

energy function, we find βP by calculating the steady-

state distribution over channel states with fixed input:

~peq(y|x) = eig0(M(x))

=
e−βE(x,y)

Zβ(x)
,

where the partition function is Zβ(x) :=
∑
y e
−βE(x,y).

Hence:

βE(x, y) = log
1

peq(y|x)
− logZβ(x) . (8)

Recalling Eq. (4) and invoking stationarity—that

Pr(Xt = x) = Pr(Xt+∆t = x)—yields:

βP = lim
∆t→0

(〈
log

1

peq(x, y)

〉

Pr(Xt+∆t=x,Yt=y)

−
〈

log
1

peq(x, y)

〉

Pr(Xt=x,Yt=y)

)
/∆t

=
∑

x,y

δp(x, y)

δt
log

1

peq(y|x)
. (9)

The distributions Pr(Xt+∆t = x, Yt = y) and Pr(Xt =

x, Yt = y) can be obtained from M(x). In other

words, for passive sensors, we can calculate βP directly

from the kinetic rates ky→y′(x) and input generator

(φg(τ), ε+(g, x), p(x|g)) alone.

V. EXAMPLES

Using this theory we now study four sensor-

environment examples. The first two—a two-state sensor

channel in a binary environment—serves to both check

our formulae and quantify the gains in computational ef-

ficiency that result from using these formulae. The third

studies the performance of large random sensor channels

at lossy prediction. The fourth example is a Hill molecule

sensor in a fluctuating environment. In this, we wish to

find Hill molecules that “optimally” balance the need to

predict sensory input with constraints on heat dissipa-

tion. Thereafter we compare to prior results on optimized

biochemical sensors.

A. Two-state sensors in Markovian environments

When the environment is Markovian, we can check our

formula for p(x, y) in two ways. First, we can analytically

calculate (using similar ideas) a seemingly different ex-

pression for p(x, y). Though an analytical match between

the formula given here and the formulae shown below is

not obvious, there is an exact numerical match for all

tested randomly chosen sensor channels. Next, we sim-

ulate the system using the temporal Gillespie algorithm

[58], and this results in a nearly exact numerical match

with simulations.

The Markovian environment that we consider has two

observed symbols with dwell time densities of φA(t) =

4e−4t and φB(t) = 5e−5t. This implies that the kinetic

rate at which one moves from A to B is kA→B = 4 and

that at which one moves from B to A is kB→A = 5.

For a Markovian environment, only the present envi-

ronmental symbol is needed to predict future environ-

mental states. In the language above, the present en-

vironmental symbol is the causal state. As a result, to

calculate p(x, y), we need only find the stationary dis-

tribution of a master equation with kinetic rates given

by:

k(x,y)→(x′,y′) =





0 x 6= x′, y 6= y′

k
(x)
y→y′ x = x′, y 6= y′

kx→x′ x 6= x′, y = y′

−k(x)
y→y − kx→x x = x′, y = y′

.

(10)

We use these kinetic rates to analytically characterize the

system’s steady state probability p(x, y) as:

dp(x, y)

dt
=
∑

x′,y′

k(x′,y′)→(x,y)p(x
′, y′) . (11)

That is, the steady state p(x, y) is an eigenvector of eigen-

value 0 of the kinetic-rate matrix k(x,y′)→(x,y). Using this

technique, we get an exact match with Eqs. (B5) and

(B9) for all randomly chosen two-state channels with the

Markovian environment listed above. Ideally, we would

find an analytic match in the case of Markovian environ-

ments between the two analytic methods. However, we

could not find an obvious mapping. The exact numerical

match is good evidence that it exists, though.

Finally, we compare theory to simulation using the

temporal Gillespie algorithm [58]. The standard Gillespie

algorithm [59] assumes constant environments in which

the waiting time density to the next transition between

sensor states is a simple exponential. When the environ-

ment fluctuates, the waiting time density changes from
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FIG. 3. Two-state sensor in Markov environment—theory
versus simulation: (Top) Comparing total variational distance∑
x,y |p(x, y) − psim(x, y)| between analytic estimate p(x, y)

from App. B and simulation estimate psim(x, y) as a function
of simulation time. (Bottom) The corresponding difference

Îmem−Imem between estimates of the instantaneous memory
also decreases as simulation time increases. A random two-
state sensor is chosen, such that k

(A)
B→A = 0.711, k

(A)
A→B =

0.341, k
(B)
B→A = 0.928, and k

(B)
A→B = 0.101. As time increases,

error between the true p(x, y) and psim(x, y) decreases.

a simple exponential to the exponential of an integral

of the time-varying kinetic rate out of the current sensor

state. In the present case, this time-varying kinetic rate is

piecewise-constant. We first generate exponentially dis-

tributed random numbers that correspond to the dwell

times in the environment and, then, simulate transitions

between sensor states using this temporal Gillespie algo-

rithm. The convergence to agreement with analytics is

shown in Fig. 3. Error is less than 10−3.

B. Two-state sensors driven by semi-Markov

environments

The advantages of the analytic approach championed

here are not clear when considering a Markovian envi-

ronment. There, the more typical analytic approach is

faster and more accurate as it requires no integrals.

To illustrate the advantages, we now consider a ran-

dom two-state sensor channel driven by a semi-Markov

environment in which the dwell-time density for sym-

bol A is φA(t) = 16te−4t and the dwell-time density for

symbol B is φB(t) = 25te−5t. Figure 4 compares the

aforementioned temporal Gillespie algorithm to the for-

mulae developed above. In particular, it shows that as

time increases, the simulation becomes more accurate, as

expected.

The temporal Gillespie simulation takes a surprising

amount of time relative to the formulae developed here.

The bottleneck comes not in simulating the sensor’s re-

sponse to the environment, but rather, in simulating the

environment itself. It takes roughly eight hours to simu-

late the environment for the total time shown.

C. Random multistate sensors driven by

semi-Markov environments

Now consider lossy prediction—in which not all pre-

dictive information is captured—by large (multistate)

random sensor channels in a semi-Markov environment.

Since random channels can achieve coding-theoretic lim-

its [60], random sensors are a class worth exploring. On

the one hand, in principle they potentially can store in-

formation about an environment’s past that is useful for

prediction. On the other, they cannot store all the infor-

mation about the past necessary to predict the future as

well as possible [37]. As such, large random sensors are

lossy predictors.

We ask two questions. First, how well do random

sensors perform relative to the optimal possible perfor-

mance? One can calculate bounds on lossy prediction

[36] using a combination of causal-state machinery and

the generalized Blahut-Arimoto algorithm. Second, are

larger random sensors better or worse at lossy prediction?

Potentially, larger sensor channels have more capacity to

store information about the environment’s past [52], but

whether or not they deploy this capacity well is still un-

determined.

We subjected random sensors of varying number of

states N ∈ {3, 6, 10, 20, 30, 40, 50, 60, 100, 300, 1000} to a

semi-Markov environment in which the dwell-time den-

sity of symbol A is φA(τ) = 16τe−4τ and the dwell-time

density of symbolB is φB(τ) = 25τe−5τ . The kinetic rate
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FIG. 4. Two-state sensor in a semi-Markov environment—
theory versus simulation: (Top) Total variational distance∑
x,y |p(x, y)−psim(x, y)| between true p(x, y) and simulation

estimate psim(x, y) as a function of simulation time. As time
increases, error between the true p(x, y) and psim(x, y) de-

creases. (Bottom) The corresponding difference Îmem− Imem
between estimates of the instantaneous memory also decreases
as simulation time increases. Same kinetic rates as in Fig. 3.

k
(x)
y→y′ between one sensor state y and another y′, condi-

tioned on observing a particular environmental symbol

x, is drawn uniformly from the unit interval.

Figure 5 (Top) shows that random sensors are not

good lossy predictors in that their total predictable in-

formation I[Y ;
−→
X ] falls three orders of magnitude be-

low the maximal achievable total predictable informa-

tion for their coding rate I[Y ;S+]. In using this bound

on I[Y ;
−→
X ], we assumed that one recodes the dynamical

system’s state so as to eliminate extraneous information

about the past using the procedure outlined in the proof

of Theorem 1 of Ref. [36]. This achieves a coding rate of

I[Y ;S+] rather than one of I[Y ;
←−
X ].

Perhaps more interestingly, Fig. 5 (Top) also shows

that as sensor size grows, large random sensors become

worse lossy predictors, in that they store information

about the environment’s forward-time causal states that

is not the “right” information to remember for predict-

ing environment futures. This result is only potentially

true in a non-Markovian environment, as in a continuous-

time Markovian environment every bit stored about the

forward-time causal states is useful for understanding

environmental futures. Typically, both prediction and

memory capacity of random sensors increase with in-

creasing channel size [52]. And so, the lack of efficacy

of random sensors is somewhat surprising.

In addition, random sensors at fixed size tend to

have similar achievable coding rates I[Y ;S+] and total

predictable informations I[Y ;
−→
X ], despite differences be-

tween random instantiation. Likely, this results from

central limit theorem-like behavior. Though, proving as

much in even simpler settings can be difficult [61].

In a semi-Markov environment, the total predictable

information Ifut is the shared information between our

sensor’s representation and both the present symbol and

the time to next symbol, and the dynamical system (sen-

sor) obtains information about the time to next symbol

from the time since last symbol. In particular, the time

since last symbol can be used to better predict the time

to next symbol, as the time between successive symbols is

nonexponential [37]. Figure 5 (Bottom) shows that ran-

dom channels essentially are sensitive only to information

about the current environmental symbol, which is predic-

tive of immediately following environmental symbols.

If large random dynamical systems had been “good

enough”, then evolutionary search to find predictive sen-

sors would not be needed. Naturally, such a result flies

in the face of current thinking [23]. Though many more

examples need be considered, the present results for this

class demonstrate that one cannot reliably design good

lossy predictors simply by generating large randomly

wired sensors. This hints at the challenge faced in the

evolution of biological sensors.

Note that these results hold no matter the energy func-

tion. To better understand their thermodynamic effi-

ciency, we now assume that they are passive sensors, so

that the steady-state probability distribution in a fixed

environment is equivalent to the Boltzmann distribu-

tion. We then calculate both nonpredictive information

rate İnp and power consumption βP . While we average

the dissipation metric over many channels of the same

size, we track the standard deviations in Fig. 6. The

mean nonpredictive information rate varies nonmonoton-

ically with channel size, peaking at around N = 30.

The heat dissipation rate (equivalent to power consump-

tion in nonequilibrium steady state) decreases monoton-

ically with channel size. Therefore, larger channels have
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FIG. 5. (Top) Random sensors are not good lossy pre-
dictors of semi-Markov stimuli: Blue solid curve is the
theoretical bound on total predictable information I[Y ;

−→
X ]

for a given constraint on mutual information I[Y ;S+] be-
tween past and representation, calculated using the algo-
rithm described in Ref. [36]. Blue dots represent realiza-
tions of prediction performance and compression for ran-
domly generated channels with states sets of size N ∈
{3, 6, 10, 20, 30, 40, 50, 60, 100, 300, 1000} from left to right,
with 25 random channels per size. (Bottom) Most predic-
tion power comes from correctly storing information about
the present environmental symbol: Each dot indicates the
combination of instantaneous memory I[Yt;Xt] and total pre-
dictable information I[Yt;

−→
X ] of a random channel. The solid

line corresponds to their equality.

smaller entropy production rates, even though they are

emphatically not at equilibrium, as shown by Fig. 5

(Top). The sensory capacity—the ratio of the nonpre-

dictive information rate or learning rate to entropy pro-

duction rate—increases monotonically with channel size.

This qualitatively agrees with Ref. [17] which claimed

that adding memory to a sensor increases its sensory ca-

pacity. Similar to Ref. [45], then, we find that maximiz-

ing sensory capacity and maximizing prediction metrics
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FIG. 6. Dissipation metrics for random channels vary
with channel size: Mean nonpredictive information rate
İnp and mean power consumption βP (equivalent to heat
dissipation rate in nonequilibrium steady state) averaged
over 25 random channels at each of several sizes: N ∈
{3, 6, 10, 20, 30, 40, 50, 60, 100, 300, 1000}. Error bars give
standard deviations across these 25 realized random chan-
nels. Higher sensory capacity—larger ratio of nonpredictive
information rate to power consumption İnp/βP—is attained
with larger random channels, even though this yields the lower
prediction metrics shown in Fig. 5 (Top).

are at odds. Maximizing sensory capacity yields large

random channels, while maximizing prediction metrics

from Fig. 5 yields small random channels.

D. Hill molecule interacting with a semi-Markov

environment

The Hill molecule—a common fixture in theoretical

biochemistry—is the simplest mechanistic model of bind-

ing cooperativity [62]. Recall Fig. 1. A Hill molecule can

be in one of two states, open or closed. When open,

n ligand molecules are bound; when closed, no ligand

molecules are bound. Hence, the Hill molecule state

carries information about the number of bound ligand

molecules. In other words, Hill molecules sense their

environment’s ligand concentration. Though they seem

impoverished in their simplicity, the following concludes

that they are sensitive to an order-of-magnitude more to-

tal predictable information in their environment than the

large random sensors just studied.

Let us outline a simple dynamical model of the Hill

molecule’s operation. The transition rate from closed C
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to open O given a ligand concentration x is:

kC→O = kOx
n , (12)

while the rate from open O to closed C is:

kO→C = kC . (13)

Given fixed ligand concentration, the steady-state distri-

bution is familiar:

Preq(Y = O|X = x) =
kOx

n

kC + kOxn

=
xn

(kC/kO) + xn
.

Thus, the rates are determined by the number n of lig-

ands that bind simultaneously—this is called the coop-

erativity. Although the mechanistic model makes sense

only when n is a nonnegative integer, this model is often

used when n is any nonnegative real number; increases

in n can still be thought of as increases in cooperativity.

Equations (12) and (13) constitute a complete character-

ization of its channel properties.

Note that these dynamics obey detailed balance, so

no power is required to sustain operation out of equilib-

rium in a fixed environment. This is a passive sensor for

which the power extracted from the environment is iden-

tical to the heat dissipation rate, according to the first

law of thermodynamics. It may seem a priori that sen-

sor designers should not care how much energy a sensor

must draw from its environment. However, the power ex-

tracted from the environment is dissipated as heat, and

increased heat dissipation can require additional biologi-

cal machinery. With this in mind, it would seem that bi-

ology should favor sensors with smaller power consump-

tion.

Increasing the cooperativity n increases the steepness

of the molecule’s sigmoidal “binding curve”—the prob-

ability of being “on” as a function of concentration. In

other words, the sensor becomes more switch-like and less

a proportionately-responding transducer of the input. If

the concentration is greater than (kC/kO)
1/n

, the switch

is essentially “on” if n is high. A more switch-like sen-

sor is useful if the optimal phenotype depends only upon

the condition “ligand concentration greater than X”. A

less switch-like, smoother-responding sensor helps if the

optimal phenotype depends on ligand concentration in a

more graded manner.

The concentration scale is set by (kC/kO)
1/n

, while

the time scale is set by 1/kC ; as such, we set both to

kO = kC = 1 without loss of generality. We imagine that

the ligand concentration alternates between high and low

values: xl and xh, respectively. When there is less ligand
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FIG. 7. (Top) Hill molecule prediction-related metrics: In-
stantaneous memory Imem and total prediction power Ifut, as
functions of n in nats. (Bottom) Hill molecule temperature-
normalized dissipation-related metrics: Nonpredictive infor-
mation rate İnp and temperature-normalized power βP , both
in nats per unit time. Ligand concentrations take one of two

values, xl = 0.5 and xh = 2.0, in units of (kC/kO)1/n. Dwell-

time densities are parametrized as φx(t) = λ(x)2te−λ(x)t with
λ(xl) = 5 and λ(xh) = 4 in units of 1/kC . Hill molecule pa-
rameters are set to kO = kC = 1, with varying cooperativity
n.

(x ≈ xl), the Hill molecule reverts to and stays in the

closed state. When there is ligand (x ≈ xh > xl), it

reverts to and stays in the open state. With no particular

application in mind, we again imagine that the dwell-

time densities take the form φx(τ) = λ(x)2τe−λ(x)τ with

λ(xl) = 5 and λ(xh) = 4.

We now deploy the earlier formulae to study the pre-

diction capabilities and dissipation tendencies of a Hill

molecule subject to semi-Markov input. Previous stud-
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ies of biological sensors found that increases in coopera-

tivity accompanied increases in channel capacity [63–65]

and sensor accuracy [39] in equilibrium systems. Others

studied the thermodynamics of prediction of cooperative

biological sensors [17, 31], but did not use the more gen-

eral class of semi-Markov input which, we argued, is more

typical of real environmental stimuli. They also did not

calculate the total predictable information.

In the absence of a reward function, we assert that

energetic rewards are proportional to Ifut [54, 55]. Al-

together, this argues that α Ifut−βP is a reasonable ob-

jective function for sensor design, similar to that of Ref.

[42]. However, unlike there, we hold the environment

fixed and do not consider the scenario in which the en-

vironment tries to adversely impact the total predictable

information captured by the sensor. The proportional-

ity constant α is a conversion factor between information

and energy units. It is ultimately set by the type of en-

vironment in which the sensor finds itself. It determines

the energetic reward for prediction. All said, a sensor

that maximizes this objective is predictive of its input

and does not dissipate much heat.

An example—xl = 0.5, xh = 2.0, kO = kC = 1.0, and

n = 2—illustrates that roughly 99% of Ifut is devoted

to capturing instantaneous memory Imem and roughly

25% of βP is devoted to İnp. That is, the inefficiency

in choosing what information to store about the present

input contributes greatly to energetic inefficiency. These

results hold qualitatively even when the dwell-time den-

sities are log-normal; i.e., heavier-tailed.

Figure 7 shows that increased cooperativity—that is,

increases in n—lead to increases in prediction perfor-

mance, qualitatively in line with Refs. [42, 65]. Addi-

tionally, the larger the cooperativity, the higher the frac-

tion Imem / Ifut. Larger cooperativity, however, leads to

roughly linear increases in the power consumption and

nonpredictive information rate. Whereas, increases in

prediction power take a more sigmoidal shape. The cor-

relation between prediction power and power consump-

tion are qualitatively in line with the results of Ref. [38].

This suggests a preference for intermediate values of

cooperativity (e.g., n ≈ 5) over larger values of coopera-

tivity (e.g., n ≥ 10). This is qualitatively similar to the

results of Refs. [63, 64] in that physical constraints force

optimal information transmission at intermediate levels

of cooperativity. Notice that instantaneous memory and

total predictable information sit at around 0.05 bits for

Hill factors n ≈ 4. This is an order of magnitude higher

than the instantaneous memory and total predictable in-

formation of the large random sensors above.

The sensor’s objective function αIfut−βP is optimized

by the cooperativity n̂ = arg maxn (αIfut − βP ). As

both Ifut and βP increase monotonically with n, there
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FIG. 8. (Top) “Lagrangian” αIfut + βP for several α—that
represent the energy rewards of Ifut—as a function of coop-
erativity n. Notice that a particular α singles out a particular
optimal n̂. (Bottom) Optimal cooperativity n̂ as a function
of conversion factor α. Circles (solid blue) are the values of
the global maximum n̂ and circles (solid green) are local max-
ima. Arrows indicate the directionality in the hysteresis loop:
n̂ jumps up at the upper value αh, if starting at low α, and
jumps down at the lower value αl, if starting at high α.

is generically only one such cooperativity n̂. At lower α,

though, there are two local maxima of the function of n

given by αIfut − βP , as shown at Fig. 8 (Top). Let’s

pursue the consequences of this regime dependence.

There are rules for how sensor biochemical parameters

adapt to the present environment. If adaptation rules for

cooperativity of a Hill molecule increase the total energy

budget by gradient descent then, for a range of α, we

expect cooperativity to be in either of the two local max-

ima of α Ifut−βP just noted. Let’s assume a separation

of timescales—namely, that cooperativity adapts much

more slowly than the longest environmental timescale
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and that the sensor does not adapt quickly enough to

always find the global maximum in cooperativity space.

Figure 8 (Bottom) shows the optimal cooperativity n̂

as a function of conversion factor α. As expected from

the presence of two local maxima at lower α, there is a

discontinuity (supercritical bifurcation [66]) in the func-

tion of α given by n̂ = arg maxn(αIfut− βP ). Thus, ini-

tially, if the energetic reward α for prediction increases,

the cooperativity discontinuously jumps to a higher n̂ at

a critical αh. From there, if one decreases α, optimal

cooperativity slowly decreases, but stays high well be-

low αh, suddenly decreasing to zero cooperativity at the

lower value αl. Thus, there is a substantial hysteresis

loop built into the optimal trade-off between energy and

sensitivity.

What could be the functional benefit of this hysteresis?

Recall that in switching circuits hysteresis is essential to

adding stability to a switch’s response. Hysteresis stops

“race” conditions in which the switch oscillates wildly

just as the threshold is passed, amplifying any noise in

the control and internal dynamics. In the Hill molecule,

hysteresis is helpful if a memory of past environmental

conditions (α) provides insight into future conditions (fu-

ture α). For example, the environment might shift α sud-

denly to being low, but there is a replenishment mech-

anism for the available energy that will soon increase α

again. Thus, we see that robustness to environmental

noise emerges naturally if a Hill molecule sensor adapts

to and anticipates changing external conditions.

VI. CONCLUSION

We provided closed-form expressions for instantaneous

memory, total predictable information, nonpredictive in-

formation rate, and power extracted from the environ-

ment for a conditionally Markovian channel subject to

the broad class of very complex environments described

by unifilar hidden semi-Markov input. The information-

theoretic quantities among that list are best motivated

by Refs. [16, 53].

We showed that determining these closed-form ex-

pressions requires knowledge of the environment’s causal

states. In some cases, one has generated the environment,

and so a reasonable model for its dynamics is known. In

other cases, the environment in question is well-studied

and a reasonable model for its dynamics is known. Causal

states can be straightforwardly derived from these mod-

els. In other cases, though, reasonable dynamical models

might need to be inferred from data. This is quite a dif-

ficult problem on which much work has been done, e.g.

Refs. [67–69].

It is not necessary to use the closed-form expressions in

Sec. IV to calculate prediction and dissipation metrics.

Instead, one may numerically estimate them as follows:

1. Generate a realization of the environment, and

2. Simulate transitions between states using the tem-

poral Gillespie algorithm [58].

This approach has its challenges, though. Generating

realizations of non-Markovian environments, as consid-

ered here, is straightforward but quite compute inten-

sive, if one desires accurate simulations. (The computa-

tional bottleneck arises in determining the waiting time

density whose average is some randomly chosen num-

ber.) Simulating transitions between Hill molecule states

given an environmental realization is straightforward,

too. However, surprisingly long simulation times were re-

quired to match analytic results for even two-state chan-

nels to two significant-digit accuracy in p(x, y). These

challenges speak to the difficulty of studying the sec-

ond two examples—large random channels and the Hill

molecule—through simulation.

This highlights the benefits of Sec. IV’s closed-form

expressions. Their accuracy, though, is limited by that

of the numerical algorithms for calculating integrals and

finding eigenvectors. Available routines exhibit several

weaknesses in accurately evaluating the requisite inte-

grals when, for instance, φx(τ) is heavy-tailed. For the

dwell-time densities considered here, there were no such

issues.

All in all, the ease with which the sensor metrics were

numerically estimated masks the difficulty of deriving the

underlying closed-form expressions in the first place. Ap-

pendices B and C give those derivations. That said,

leveraging this one-time calculation effort, we provided

universal estimators of prediction and dissipation met-

rics for conditionally Markovian channels. The univer-

sality claimed here arises from the fact that unifilar hid-

den semi-Markov processes are very general memoryful

processes that capture highly complex environmental be-

haviors.

One practical consequence going forward is that an-

alyzing sensor prediction and dissipation no longer re-

quires simulating arbitrarily long trajectories. Instead,

one can now validate or invalidate predictive learning

rules and sensor designs using the universal estima-

tors. This will also greatly accelerate searching through

parameter space for “optimal” (predictive and energy-

efficient) sensors. In addition, given that the theories of

random dynamical systems and of input-dependent dy-

namical systems are still under development [70], we be-

lieve the formulae presented here will eventually lead in

those domains to a precise generalization of time-scale

matching for nonlinear systems [31]. Finally, we hope

to extend these new calculational techniques to nonsta-
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tionary environments and thereafter to analyze sensory

adaptation in more familiar scenarios, as in Refs. [43, 44].
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Appendix A: Revisiting the Thermodynamics of Prediction

For completeness, we review the derivation of Eq. (5). Let xt represent the input at time t, yt represent the

sensor state at time t, and E(x, y) the system’s energy function. We assume constant temperature. The system’s

temperature-normalized nonequilibrium free energy Fneq is given by:

βFneq[p(y|x)] = β〈E(x, y)〉p(y|x) −H[Y |X = x] . (A1)

Even if this is not a valid expression for nonequilibrium free energy, the validity of Ref. [16]’s derivation only rests

on this expression being a Lyapunov function for the dynamics. Intuitively, this corresponds to an assumption

that the system reduces its nonequilibrium free energy when the sensor thermalizes to its attached thermal bath.

(Accordingly, the β in the above expression refers to the temperature of the sensor when the environment is fixed,

indirectly circumventing the difficulty with defining a nonequilibrium temperature [71].) If so, then:

βFneq[p(yt|xt+∆t)] ≥ βFneq[p(yt+∆t|xt+∆t)] ,

giving:

0 ≤ βFneq[p(yt|xt+∆t)]− βFneq[p(yt+∆t|xt+∆t)]

≤
(
β〈E(xt+∆t, yt)〉p(yt|xt+∆t) −H[Yt|Xt+∆t = xt+∆t]

)
− (β〈E(xt+∆t, yt+∆t)〉p(yt+∆t|xt+∆t) −H[Yt+∆t|Xt+∆t = xt+∆t])

≤ β lim
∆t→0

( 〈E(xt+∆t, yt)〉p(yt|xt+∆t)

∆t
− 〈E(xt+∆t, yt+∆t)〉p(yt+∆t|xt+∆t)

∆t

)

+ lim
∆t→0

(
H[Yt+∆t|Xt+∆t = xt+∆t]

∆t
− H[Yt|Xt+∆t = xt+∆t]

∆t

)
.

Finally, we average over possible environmental realizations, equivalent in nonequilibrium steady states (NESSs) to

averages over time, to find:

0 ≤ β lim
∆t→0

〈E(xt+∆t, yt)〉 − 〈E(xt+∆t, yt+∆t)〉
∆t

+ lim
∆t→0

H[Yt+∆t|Xt+∆t]−H[Yt|Xt+∆t]

∆t
.

The former term could be called −Q̇—the negative of the sensor’s heat dissipation rate—and the latter İlost—the rate

of lost information. And so:

0 ≤ −βQ̇+ İlost . (A2)

This is valid even outside of NESSs. In a NESS, though, we can invoke stationarity, concluding that:

Q̇ = −P , (A3)
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where P is the power extracted by the sensor from the environment. Furthermore, İlost reduces to the negative of the

nonpredictive information rate, since H[Yt+∆t|Xt+∆t] = H[Yt|Xt], giving:

İlost = lim
∆t→0

H[Yt|Xt]−H[Yt|Xt+∆t]

∆t
.

Calling on a standard information theory identity [72]—H[U |V ] = H[U ]− I[U ;V ]—leads to:

İlost = lim
∆t→0

I[Yt;Xt+∆t]− I[Yt;Xt]

∆t
.

We recognize this as the continuous-time version of the nonpredictive information rate İnp; also called the learning rate.

Hence, the nonpredictive information rate is the increase in unpredictability of sensor state Yt given a slightly-delayed

environmental state:

İnp = lim
∆t→0

H[Yt|Xt+∆t]−H[Yt|Xt]

∆t
. (A4)

In a NESS, then:

İlost = −İnp . (A5)

Outside of NESSs, these terms are augmented by the time-derivative dH[Yt|Xt]/dt of the conditional entropy. This

leads to the addition of an Landauer-erasure information [73] when integrated. One of Ref. [16]’s main results follows

directly from Eqs. (A2), (A3), and (A5):

İnp = lim
∆t→0

I[Yt;Xt]− I[Yt;Xt+∆t]

∆t
≤ βP . (A6)

In contrast to Ref. [16]’s implication, this is true only in a NESS and Eq. (A2) should be used otherwise.

Differences in presentation between the derivation here and that of Ref. [16] come from the difference between

discrete- and continuous-time formulations. To make this clear, we present a continuous-time formulation of the same

result, following Ref. [18]. We start from βFneq[p(yt′ |xt)] being a Lyapunov function in t′:

0 ≥ β ∂Fneq[p(yt′ |xt)]
∂t′

= β
∂

∂t′
〈E(xt, yt′)〉p(yt′ |xt)

∣∣∣
t′=t
− ∂

∂t′
H[Yt′ |Xt = xt]|t′=t

= β

〈
∂E(xt, yt)

∂yt
ẏt

〉

p(yt′ |xt)

− ∂

∂t′
H[Yt′ |Xt = xt]|t′=t .

Next, as before, we average over protocols (or, equivalently in NESS, over time) to find:

0 ≥ β
〈
∂E(xt, yt)

∂yt
ẏt

〉

p(xt,yt)

− ∂

∂t′
H[Yt′ |Xt]|t′=t

We then recognize β
〈
∂E(xt,yt)

∂yt
ẏt

〉
p(xt,yt)

as the temperature-normalized rate of heat dissipation βQ̇, so that:

βQ̇ ≤ ∂

∂t′
H[Yt′ |Xt]|t′=t .

The quantity on the righthand side is simply the rate İlost of information loss, defined earlier. In NESS, d〈E〉/dt and

dH[Yt|Xt]/dt vanish. As a result, βQ̇+ βP = 0 and:

∂

∂t′
H[Yt′ |Xt]|t′=t = − ∂

∂t′
H[Yt|Xt′ ]|t′=t ,
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giving:

βP ≥ ∂

∂t′
H[Yt|Xt′ ]|t′=t . (A7)

We recognize this as the continuous-time formulation of Eq. (A4). Again invoking stationarity, dH[Xt]/dt vanishes

and so:

βP ≥ − ∂

∂t′
I[Xt′ ;Yt]|t′=t , (A8)

the continuous-time formulation of Eq. (A6). We have, in Eqs. (A4), (A6), (A7), and (A8), four equivalent definitions

for the nonpredictive information rate in the NESS limit.

Appendix B: Closed-form Expressions for Unifilar Hidden Semi-Markov Environments

To find ρ(σ+, y), we start with the following:

Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y)

=
∑

g′,x,′,τ ′,y′

Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y|S+

t = (g′, x′, τ ′), Yt = y′) Pr(S+
t = (g′, x′, τ ′), Yt = y′) . (B1)

We decompose the transition probability using the lack of feedback as:

Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y|S+

t = (g′, x′, τ ′), Yt = y′)

= Pr(S+
t+∆t = (g, x, τ)|S+

t = (g′, x′, τ ′)) Pr(Yt+∆t = y|S+
t = (g′, x′, τ ′), Yt = y′) .

From the setup, we have:

Pr(Yt+∆t = y|S+
t = (g′, x′, τ ′), Yt = y′) =

{
ky′→y(x′)∆t y 6= y′

1− ky′→y′(x′)∆t y = y′
,

with corrections of O(∆t2).

Now split this into two cases. As long as τ > ∆t, so that x = x′, we have:

Pr(S+
t+∆t = (g, x, τ)|S+

t = (g′, x′, τ ′)) =
Φg(τ)

Φg(τ ′)
δ(τ − (τ ′ + ∆t))δx,x′δg,g′ .
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Then, Eq. (B1) reduces to:

Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y)

=
∑

y′

Pr(S+
t+∆t = (g, x, τ)|S+

t = (g, x, τ −∆t)) Pr(Yt+∆t = y|S+
t = (g, x, τ −∆t), Yt = y′)

× Pr(S+
t = (g, x, τ −∆t), Yt = y′)

=
∑

y′ 6=y

Pr(S+
t+∆t = (g, x, τ)|S+

t = (g, x, τ −∆t)) Pr(Yt+∆t = y|S+
t = (g, x, τ −∆t), Yt = y′)

× Pr(S+
t = (g, x, τ −∆t), Yt = y′)

+ Pr(S+
t+∆t = (g, x, τ)|S+

t = (g, x, τ −∆t)) Pr(Yt+∆t = y|S+
t = (g, x, τ −∆t), Yt = y)

× Pr(S+
t = (g, x, τ −∆t), Yt = y)

=
∑

y′ 6=y

Φg(τ)

Φg(τ −∆t)
ky′→y(x) Pr(S+

t = (g, x, τ −∆t), Yt = y′)∆t

+
Φg(τ)

Φg(τ −∆t)
(1− ky→y(x)∆t) Pr(S+

t = (g, x, τ −∆t), Yt = y) , (B2)

plus terms of O(∆t2). We Taylor expand Φg(τ + ∆t) = Φg(τ)− φg(τ)∆t to find:

Φg(τ)

Φg(τ −∆t)
= 1− φg(τ)

Φg(τ)
∆t‘,

plus terms of O(∆t2). And, similarly, assuming differentiability, we write:

Pr(S+
t = (g, x, τ −∆t), Yt = y′) = Pr(S+

t = (g, x, τ), Yt = y′)− d

dτ
Pr(S+

t = (g, x, τ), Yt = y′)∆t‘,

plus terms of O(∆t2). Substitution into Eq. (B2) then gives:

Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y) =


∑

y′ 6=y

ky′→y(x) Pr(S+
t = (g, x, τ), Yt = y′)


∆t+ Pr(S+

t = (g, x, τ), Yt = y)

− dPr(S+
t = (g, x, τ), Yt = y)

dτ
∆t− φg(τ)

Φg(τ)
Pr(S+

t = (g, x, τ), Yt = y)∆t

− ky→y(x) Pr(S+
t = (g, x, τ), Yt = y)∆t ,

plus terms of O(∆t2). For notational ease, we denote:

ρ((g, x, τ), y) := Pr(S+
t = (x, τ), Yt = y) ,

which is equal to Pr(S+
t+∆t = (g, x, τ), Yt+∆t = y) since we assumed the system is in a NESS. Then we have:

ρ((g, x, τ), y) =


∑

y′ 6=y

ky′→y(x)ρ((g, x, τ), y′)


∆t+ ρ((g, x, τ), y)− dρ((g, x, τ), y)

dτ
∆t

− φg(τ)

Φg(τ)
ρ((g, x, τ), y)∆t− ky→y(x)ρ((g, x, τ), y)∆t

plus corrections of O(∆t2). We are left equating the coefficient of the O(∆t) term to 0:

dρ((g, x, τ), y)

dτ
=
∑

y′ 6=y

ky′→y(x)ρ((g, x, τ), y′)− φg(τ)

Φg(τ)
ρ((g, x, τ), y)− ky→y(x)ρ((g, x, τ), y) . (B3)
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Our task is simplified if we separate:

ρ((g, x, τ), y) = p(y|g, x, τ)ρ(g, x, τ)

and if we recall that:

ρ(g, x, τ) = µgΦg(τ)p(g)p(x|g) .

These give:

dρ(g, x, τ)

dτ
= −µgφg(τ)p(x)p(x|g). (B4)

Plugging Eq. (B4) into Eq. (B3) yields:

dp(y|x, τ)

dτ
ρ(g, x, τ)− µgφg(τ)p(g)p(x|g)p(y|g, x, τ)

=
∑

y′ 6=y

ky′→y(x)ρ(g, x, τ)p(y′|g, x, τ)− φg(τ)

Φg(τ)
ρ(g, x, τ)p(y|g, x, τ)− ky→y(x)ρ(g, x, τ)p(y|g, x, τ) ,

where we note that:

µgφg(τ)p(g)p(x|g)p(y|g, x, τ) =
φg(τ)

Φg(τ)
ρ(g, x, τ)p(y|g, x, τ) .

Hence, we are left with:

dp(y|g, x, τ)

dτ
=
∑

y′ 6=y

ky′→y(x)p(y′|g, x, τ)− ky→y(x)p(y|g, x, τ) .

We can summarize this ordinary differential equation in matrix-vector notation as follows. Let ~v(g, x, τ) be the

vector:

~v(g, x, τ) :=



p(y1|g, x, τ)

...

p(y|Y||g, x, τ)


 .

We have:

d~v

dτ
= M(x)~v ,

with solution:

~v(g, x, τ) = eM(x)τ~v(g, x, 0) . (B5)

The structure of M(x) guarantees that probability is conserved, as long as 1>~v(g, x, 0) = 1 for all x ∈ A.

Our next task is to find expressions for ~v(g, x, 0). We do this by considering Eq. (B1) in the limit that τ < ∆t.

More straightforwardly, we consider the equation:

ρ((g, x, 0), y) =
∑

g′,x′

∫ ∞

0

dτ
φg′(τ)

Φg′(τ)
δg,ε+(g′,x′)p(x|g)ρ((g′, x′, τ), y) , (B6)

which is based on the following logic. For probability to flow into ρ((g, x, 0), y) from ρ((g′, x′, τ), y′), we need the dwell

time for symbol x′ to be exactly τ and for y′ = y. (The latter comes from the unlikelihood of switching both channel
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state and input symbol at the same time.) Again decomposing:

ρ((g′, x′, τ), y) = p(y|g′, x′, τ)ρ(g′, x′, τ)

= µg′Φg′(τ)p(g′)p(x′|g′)p(y|g′, x′, τ) (B7)

and, thus, as a special case:

ρ((g, x, 0), y) = p(y|g, x, 0)p(g)p(x|g)µg . (B8)

Plugging both Eqs. (B7) and (B8) into Eq. (B6), we find:

µgp(g)p(x|g)p(y|g, x, 0) =
∑

g′,x′

∫ ∞

0

µg′p(g
′)p(x′|g′)φg′(τ)δg,ε+(g′,x′)p(x|g)p(y|g′, x′, τ)dτ

µgp(g)p(y|g, x, 0) =
∑

g′,x′

∫ ∞

0

µg′p(g
′)p(x′|g′)φg′(τ)δg,ε+(g′,x′)p(y|g′, x′, τ)dτ .

Using Eq. (B5), we see that p(y|g′, x′, τ) =
(
eM(x′)τ~v(g′, x′, 0)

)
y

and p(y|g, x, 0) = (~v(g, x, 0))y. So, we have:

µgp(g)~v(g, x, 0) =
∑

g′,x′

µg′δg,ε+(g′,x′)p(g
′)p(x′|g′)

(∫ ∞

0

φg′(τ)eM(x′)τdτ

)
~v(g′, x′, 0) .

If we form the composite vector:

~U =




~u(g1, x1)

~u(g1, x2)
...

~u(g|G|, x|A|)




=




µg1p(g1)~v(g1, x1, 0)
...

µg|G|p(g|G|)~v(g|G|, x|A|, 0)




and the matrix (written in block form) as:

C :=



C(g1,x1)→(g1,x1) C(g1,x2)→(g1,x1) . . .

C(g1,x1)→(g1,x2) C(g1,x2)→(g1,x2) . . .
...

...
. . .


 ,

with:

C(g′,x′)→(g,x) = δg,ε+(g′,x′)p(x
′|g′)

∫ ∞

0

φg′(t)e
M(x′)tdt ,

we then have:

~U = eig1(C) . (B9)

Finally, we must normalize ~u(x) appropriately. We do this by recalling that 1>~v(g, x, 0) = 1, since ~v(g, x, 0) is a vector

of probabilities. Then we have:

~u(g, x)→ ~u(g, x)

1>~u(g, x)
µgp(g) .
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for each g, x.

To calculate prediction metrics—i.e., Imem and Ifut—we need p(x, y) and p(y, σ−). The former is a marginalization

of p(σ+, y) that we just calculated. The second can be calculated via:

p(σ−, y) =
∑

σ+

p(σ−|σ+)p(y, σ+) ,

where:

p(σ−|σ+) = p((g−, x−, τ−)|(g+, x+, τ+))

= δx+,x−p(g−|g+, x+)µg+
φg+

(τ+ + τ−) .

Hence, we turn our attention to calculating dissipation metrics, for which we only need:

δp

δt
= lim

∆t→0

Pr(Xt+∆t = x, Yt = y)− Pr(Xt = x, Yt = y)

∆t
.

Moreover, we can use the Markov chain Yt → S+
t → Xt+∆t to compute it:

Pr(Xt+∆t = x, Yt = y) =
∑

σ+

Pr(Xt+∆t = x|S+
t = σ+) Pr(Yt = y,S+

t = σ+) .

We have:

Pr(Xt+∆t = x|S+
t = σ+) = Pr(Xt+∆t = x|S+

t = (g′, x′, τ ′))

=





Φg′ (τ
′+∆t)

Φg′ (τ
′) x = x′

φg′ (τ
′)

Φg′ (τ
′)p(x|ε+(g′, x′))∆t x 6= x′

.

This, combined with p(σ+, y), gives:

Pr(Xt+∆t = x, Yt = y) =
∑

g′,x′ 6=x

∫
dτ ′ ρ((g′, x′, τ ′), y)

φg′(τ
′)

Φg′(τ ′)
∆t p(x|ε+(g′, x′))

+
∑

g′

∫
dτ ′

Φg′(τ
′ + ∆t)

Φg′(τ ′)
ρ((g′, x′, τ ′), y)

= Pr(Xt = x, Yt = y) + ∆t
( ∑

g′,x′ 6=x

∫
dτ ′p(x|ε+(g′, x′))

φg′(τ
′)

Φg′(τ ′)
ρ((g′, x′, τ ′), y)

−
∑

g′

∫
dτ ′

φg′(τ
′)

Φg′(τ ′)
ρ((g′, x, τ ′), y)

)
,

correct to O(∆t). Recalling that:

ρ((g′, x′, τ ′), y) = ρ(g′, x′, τ ′)p(y|g′, x′, τ ′)
= p(x′|g′)Φg′(τ ′)

(
eM(x′)τ ′~u(g′, x′)

)
y
,
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gives:

δp

δt
= lim

∆t→0

Pr(Xt+∆t = x, Yt = y)− Pr(Xt = x, Yt = y)

∆t

=
∑

g′,x′ 6=x

∫
dτ ′p(x|ε+(g′, x′))

φg′(τ
′)

Φg′(τ ′)
ρ((g′, x′, τ ′), y)−

∑

g′

∫
dτ ′

φg′(τ
′)

Φg′(τ ′)
ρ((g′, x, τ ′), y) (B10)

=
∑

g′,x′ 6=x

∫
dτ ′ p(x|ε+(g′, x′))p(x′|g′)φg′(τ ′)

(
eM(x′)τ ′~u(g′, x′)

)
y

−
∑

g′

∫
dτ ′ p(x|g′)φg′(τ ′)

(
eM(x)τ ′~u(g′, x)

)
y
. (B11)

From this, Eqs. (6) and (9) can be used to calculate İnp and βP .

Appendix C: Specialization to Semi-Markov Input

Up to this point, we wrote expressions for the general case of unifilar hidden semi-Markov environment inputs to

the sensor. We now specialize to the semi-Markov input case: the environment’s states are directly observed, not

hidden. Not surprisingly, a great simplification ensues: hidden states g are the current emitted symbols x. Recall

that, in an abuse of notation, q(x|x′) is now the probability of observing symbol x after seeing symbol x′.

Hence, forward-time causal states are given by the pair (x, τ). The analog of Eq. (B5) is:

~p(y|x, τ) = eM(x)τ~p(y|x, 0) ,

and we define vectors:

~u(x) := µxp(x)~p(y|x, 0) .

The large vector:

~U :=



~u(x1)

...

~u(x|A)




is the eigenvector eig1(C) of eigenvalue 1 of the matrix:

C =




0 q(x1|x2)
∫∞

0
φx2(τ)eM(x2)τdτ . . .

q(x2|x1)
∫∞

0
φx1

(τ)eM(x1)τdτ 0 . . .
...

...
. . .


 ,

where normalization requires 1>~u(x) = µxp(x).

We continue by finding p(y), since from this we obtain H[Y ]. We do this via straightforward marginalization:

p(y) =
∑

σ+

ρ(σ+, y) =
∑

σ+

p(y|σ+)ρ(σ+)

=
∑

x

∫ ∞

0

p(y|x, τ)ρ(x, τ) dτ

=
∑

x

∫ ∞

0

(
eM(x)τ~v(x, 0)

)
y
µxp(x)Φx(τ)dτ

=
∑

x

((∫ ∞

0

eM(x)τΦx(τ)dτ

)
~u(x)

)

y

.
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This implies that:

~p(y) =
∑

x

(∫ ∞

0

eM(x)τΦx(τ)dτ

)
~u(x) .

From earlier, recall that ~u(x) := µxp(x)~p(y|x, 0).

Next, we aim to find p(x, y), again via marginalization:

p(x, y) =

∫ ∞

0

ρ((x, τ), y)dτ

=

∫ ∞

0

µxp(x)Φx(τ)p(y|x, τ)dτ

=

∫ ∞

0

µxp(x)Φx(τ)
(
eM(x)τ~v(x, 0)

)
y
dτ

=

((∫ ∞

0

eM(x)τΦx(τ)dτ

)
~u(x)

)

y

. (C1)

From the joint distribution p(x, y), we easily numerically obtain I[X;Y ], since |A| <∞ and |Y| <∞.

For notational ease, we introduced Tt in this section as the random variable for the time since last symbol, whose

realization is τ . Finally, we require p(y|σ−) to calculate H[Y |S−], which we can then combine with H[Y ] to get an

estimate for Ifut. We utilize the Markov chain Y → S+ → S−, as stated earlier, and so have:

p(y|σ−) =
∑

σ+

ρ(y, σ+|σ−)

=
∑

σ+

p(y|σ+, σ−)ρ(σ+|σ−)

=
∑

σ+

p(y|σ+)ρ(σ+|σ−) .

Eq. (B5) gives us p(y|σ+) as:

p(y|σ+) = p(y|x+, τ+)

=
(
eM(x+)τ+~v(x+, 0)

)
y

and Eq. (2) gives us ρ(σ+|σ−) after some manipulation:

ρ(σ+|σ−) = ρ((x+, τ+)|(x−, τ−))

= δx+,x−

φx−(τ+ + τ−)

Φx−(τ−)
.

Combining the two equations gives:

p(y|x−, τ−) =
∑

x+

∫ ∞

0

δx+,x−

φx−(τ+ + τ−)

Φx−(τ−)

(
eM(x+)τ+~v(x+, 0)

)
y
dτ+

=
1

Φx−(τ−)

((∫ ∞

0

φx−(τ+ + τ−)eM(x−)τ+dτ+

)
~v(x−, 0)

)

y

.

From this conditional distribution, we compute H[Y |S− = σ−], and so H[Y |S−] = 〈H[Y |S− = σ−]〉ρ(σ−). In more

detail, define:

Dx(τ) :=

∫ ∞

0

φx(τ + s)eM(x)sds ,
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and we have:

~p(y|x−, τ−) = Dx−(τ−)~u(x−)/µx−p(x−)Φx−(τ−) .

This conditional distribution gives:

H[Y |X− = x−, T− = τ−] = −
∑

y

p(y|x−, τ−) log p(y|x−, τ−)

= −1>
(

Dx−(τ−)~u(x−)

µx−p(x−)Φx−(τ−)
log

(
Dx−(τ−)~u(x−)

µx−p(x−)Φx−(τ−)

))

= − 1

µx−p(x−)Φx−(τ−)

(
1>
(
(Dx−(τ−)~u(x−)) log(Dx−(τ−)~u(x−))

)

− 1>(Dx−(τ−)~u(x−)) log(µx−p(x−)Φx−(τ−))
)
.

We recognize the factor µx−p(x−)Φx−(τ−) as ρ(x−, τ−) and so we find that:

H[Y |X−, T−] =
∑

x−

∫ ∞

0

ρ(x−, τ−) H[Y |X− = x−, T− = τ−]dτ−

= −
∫ ∞

0


∑

x−

1>
(
(Dx−(τ−)~u(x−)) log(Dx−(τ−)~u(x−))

)

 dτ−

+

∫ ∞

0


∑

x−

1>Dx−(τ−)~u(x−) log(µx−p(x−)Φx−(τ−))


 dτ− .

This, combined with earlier formula for H[Y ], gives Ifut.

Finally, we wish to find an expression for the nonpredictive information rate İnp. We review the somewhat compact

derivation of δp/δt in the more general case, specialized for semi-Markov input. This requires finding an expression

for Pr(Yt = y,Xt+∆t = x) as an expansion in ∆t. We start as usual:

Pr(Yt = y,Xt+∆t = x) =
∑

x′

∫ ∞

0

Pr(Yt = y,Xt+∆t = x,Xt = x′, Tt = τ)dτ

and utilize the Markov chain Yt → S+
t → Xt+∆t, giving:

Pr(Yt = y,Xt+∆t = x) =
∑

x′

∫ ∞

0

Pr(Yt = y|Xt = x′, Tt = τ) Pr(Xt+∆t = x|Xt = x′, Tt = τ)ρ(x′, τ)dτ . (C2)

We have Pr(Yt = y|Xt = x, Tt = τ) from Eq. (B5). So, we turn our attention to finding Pr(Xt+∆t = x|Xt = x′, Tt = τ).

Some thought reveals that:

Pr(Xt+∆t = x|Xt = x′, Tt = τ) =

{
∆tq(x|x′)φx′(τ)/Φx′(τ) x 6= x′

Φx′(τ + ∆t)/Φx′(τ) x = x′
, (C3)

plus corrections of O(∆t2). We substitute Eq. (C3) into Eq. (C2) to get:

Pr(Yt = y,Xt+∆t = x) =


∑

x′ 6=x

∫ ∞

0

Pr(Yt = y|Xt = x′, Tt = τ)q(x|x′) φx′(τ)

Φx′(τ)
ρ(x′, τ)dτ


∆t

+

∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)
Φx(τ + ∆t)

Φx(τ)
ρ(x, τ)dτ ,
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plus corrections of O(∆t2). Recalling:

Φx(τ + ∆t)

Φx(τ)
= 1− φx(τ)

Φx(τ)
∆t ,

plus corrections of O(∆t2), we simplify further:

Pr(Yt = y,Xt+∆t = x) =


∑

x′ 6=x

∫ ∞

0

Pr(Yt = y|Xt = x′, Tt = τ)q(x|x′) φx′(τ)

Φx′(τ)
ρ(x′, τ)dτ


∆t

+

∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)ρ(x, τ)dτ

−
(∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)
φx(τ)

Φx(τ)
ρ(x, τ)dτ

)
∆t ,

plus O(∆t2) corrections. We notice that:

∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)ρ(x, τ)dτ = Pr(Yt = y,Xt = x) ,

so that:

lim
∆t→0

Pr(Yt = y,Xt+∆t = x)− Pr(Yt = y,Xt = x)

∆t
=
∑

x′ 6=x

∫ ∞

0

Pr(Yt = y|Xt = x′, Tt = τ)q(x|x′) φx′(τ)

Φx′(τ)
ρ(x′, τ)dτ

−
∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)
φx(τ)

Φx(τ)
ρ(x, τ)dτ .

Substituting Eqs. (B5) and (1) into the above expressions yields:

∑

x′ 6=x

∫ ∞

0

Pr(Yt = y|Xt = x′, Tt = τ)q(x|x′) φx′(τ)

Φx′(τ)
ρ(x′, τ)dτ =

∑

x′

q(x|x′)
((∫ ∞

0

φx′(τ)eM(x′)τdτ

)
~u(x′)

)

y

and:

∫ ∞

0

Pr(Yt = y|Xt = x, Tt = τ)
φx(τ)

Φx(τ)
ρ(x, τ)dτ =

((∫ ∞

0

φx(τ)eM(x)τdτ

)
~u(x)

)

y

,

so that we have:

lim
∆t→0

Pr(Yt = y,Xt+∆t = x)− Pr(Yt = y,Xt = x)

∆t

=
(∑

x′

q(x|x′)
(∫ ∞

0

φx′(τ)eM(x′)τdτ

)
~u(x′)−

(∫ ∞

0

φx(τ)eM(x)τdτ

)
~u(x)

)
y
.

For notational ease, denote the lefthand side as δp(x, y)/δt. The nonpredictive information rate is given by:

İnp = lim
∆t→0

I[Xt;Yt]− I[Xt+∆t;Yt]

∆t

= lim
∆t→0

(H[Xt] + H[Yt]−H[Xt, Yt])− (H[Xt+∆t] + H[Yt]−H[Xt+∆t, Yt])

∆t

= lim
∆t→0

H[Xt+∆t, Yt]−H[Xt, Yt]

∆t
,
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where we utilize stationarity to assert H[Xt] = H[Xt+∆t]. Then, correct to O(∆t), we have:

H[Xt+∆t, Yt] = −
∑

x,y

(
p(x, y) +

δp(x, y)

δt
∆t

)
log

(
p(x, y) +

δp(x, y)

δt
∆t

)

= −
∑

x,y

p(x, y) log p(x, y)−
∑

x,y

p(x, y)
δp(x, y)/δt

p(x, y)
∆t−

∑

x,y

δp(x, y)

δt
log p(x, y)∆t

= H[Xt;Yt]−
∑

x,y

δp(x, y)

δt
log p(x, y)∆t ,

which implies:

İnp =
∑

x,y

δp(x, y)

δt
log p(x, y) ,

with:

δp(x, y)

δt
=

(∑

x′

q(x|x′)
(∫ ∞

0

Φx′(τ)eM(x′)τdτ

)
~u(x′)−

(∫ ∞

0

φx(τ)eM(x)τdτ

)
~u(x)

)

y

(C4)

and p(x, y) given in Eq. (C1).
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