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The partial information decomposition (PID) is a promising framework for decomposing a joint
random variable into the amount of influence each source variable Xi has on a target variable Y ,
relative to the other sources. For two sources, influence breaks down into the information that both
X0 and X1 redundantly share with Y , what X0 uniquely shares with Y , what X1 uniquely shares
with Y , and finally what X0 and X1 synergistically share with Y . Unfortunately, considerable
disagreement has arisen as to how these four components should be quantified. Drawing from cryp-
tography, we consider the secret key agreement rate as an operational method of quantifying unique
informations. Secret key agreement rate comes in several forms, depending upon which parties are
permitted to communicate. We demonstrate that three of these four forms are inconsistent with the
PID. The remaining form implies certain interpretations as to the PID’s meaning—interpretations
not present in PID’s definition but that, we argue, need to be explicit. These reveal an inconsistency
between third-order connected information, two-way secret key agreement rate, and synergy. Simi-
lar difficulties arise with a popular PID measure in light the results here as well as from a maximum
entropy viewpoint. We close by reviewing the challenges facing the PID.
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I. INTRODUCTION

Consider a joint distribution over “source” variables X0
and X1 and “target” Y . Such distributions arise in many
settings: sensory integration, logical computing, neural
coding, functional network inference, and many others.
One promising approach to understanding how the in-
formation shared between (X0, X1), and Y is organized
is the partial information decomposition (PID) [1]. This
decomposition seeks to quantify how much of the infor-
mation shared between X0, X1, and Y is done so redun-
dantly, how much is uniquely attributable to X0, how
much is uniquely attributable to X1, and finally how
much arises synergistically by considering both X0 and
X1 together.

Unfortunately, the lack of a commonly accepted method
of quantifying these components has hindered PID’s
adoption. In point of fact, several proposed axioms are
not mutually consistent [2, 3]. And, to date, there is lit-
tle agreement as to which should hold. Here, we take a
step toward understanding these issues by adopting an
operational definition for the unique information. This
operational definition comes from information-theoretic
cryptography and quantifies the rate at which two parties
can construct a secret while a third party eavesdrops.
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There are four varieties of secret key agreement rate de-
pending on which parties are allowed to communicate,
each of which defines a different PID. Each variety also
relates to a different intuition as to how the PID oper-
ates. We discuss several aspects of these different meth-
ods and further demonstrate that three of the four fail to
construct an internally consistent decomposition.
Our development proceeds as follows. Section II briefly
describes the two-source PID. Section III reviews the no-
tion of secret key agreement rate and how to quantify
it in three contexts: No one communicates, only Alice
communicates, and both Alice and Bob communicate.
Section IV discusses the behavior of the PID quantified
utilizing secret key agreement rates as unique informa-
tions and what intuitions are implied by the choice of
who is permitted to communicate. Section V explores
two further implications of our primary results, first in a
distribution where two-way communication seems to cap-
ture synergistic, third-order connected information and
second in the behavior of an extant method of quantify-
ing the PID along with maximum entropy methods. Fi-
nally, Section VI summarizes our findings and speculates
about PID’s future.

II. PARTIAL INFORMATION
DECOMPOSITION

Two-source PID seeks to decompose the mutual informa-
tion I[X0X1 : Y ] between “sources” X0 and X1 and a
“target” Y into four nonnegative components. The com-
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ponents identify information that is redundant, uniquely
associated with X0, uniquely associated with X1, and
synergistic:

I[X0X1 : Y ] = I∂ [X0 ·X1 → Y ] redundant
+ I∂ [X0 → Y \X1] unique with X0

+ I∂ [X1 → Y \X0] unique with X1

+ I∂ [X0X1 → Y ] . synergistic
(1)

Furthermore, the mutual information I[X0 : Y ] between
X0 and Y is decomposed into two components:

I[X0 : Y ] = I∂ [X0 ·X1 → Y ] redundant
+ I∂ [X0 → Y \X1] . unique with X0 (2)

And, similarly:

I[X1 : Y ] = I∂ [X0 ·X1 → Y ] redundant
+ I∂ [X1 → Y \X0] . unique with X1 (3)

In this way, PID relates the four component informations.
However, since Eqs. (1) to (3) provide only three indepen-
dent constraints for four quantities, it does not uniquely
determine how to quantify them in general. That is, this
fourth constraint lies outside of the PID.
By the same logic, though, the decomposition is uniquely
determined by quantifying exactly one of its constituents.
In the case that one wishes to directly quantify the unique
informations I∂ [X0 → Y \X1] and I∂ [X1 → Y \X0]
, a consistency relation must hold so that they do not
overconstrain the decomposition:

I∂ [X0 → Y \X1] + I[X1 : Y ]
= I∂ [X1 → Y \X0] + I[X0 : Y ] . (4)

This ensures that using either Eq. (2) or Eq. (3) results
in the same quantification of I∂ [X0 ·X1 → Y ] .

III. SECRET KEY AGREEMENT

Secret key agreement is a fundamental concept within
information-theoretic cryptography [4]. Consider three
parties—Alice, Bob, and Eve—who each partially ob-
serve a source of common randomness, joint probabil-
ity distribution ABE ∼ p(a, b, e), where Alice has access
only to a, Bob b, and Eve e. The central challenge is to
determine if it is possible for Alice and Bob to agree upon
a secret key of which Eve has no knowledge. The degree
to which they may generate such a secret key immedi-
ately depends upon the structure of the joint distribution

ABE. It also depends upon whether Alice and Bob are
allowed to publicly communicate.
Concretely, consider Alice, Bob, and Eve each receiv-
ing n independent, identically distributed samples from
ABE—Alice receiving An, Bob Bn, and Eve En. A se-
cret key agreement scheme consists of functions f and
g, as well as a protocol (h) for public communication
allowing either Alice, Bob, neither, or both to commu-
nicate. In the case of a single party being permitted
to communicate—say, Alice—she constructs C = h(An)
and then broadcasts it to all parties. In the case that
both parties are permitted communication, they take
turns constructing and broadcasting messages of the form
Ci = hi(An, C[0...i−1]) (Alice) and Ci = hi(Bn, C[0...i−1])
(Bob) [5].
Formally, a secret key agreement scheme is considered
R-achievable if for all ε > 0:

KA
(1)= f(An, C) ,

KB
(2)= g(Bn, C) ,

p(KA = KB = K)
(3)
≥ 1− ε ,

I[K : CEn]
(4)
≤ ε , and

1
n

H[K]
(5)
≥ R− ε ,

where (1) and (2) denote the method by which Alice and
Bob construct their keys KA and KB , respectively, (3)
states that their keys must agree with arbitrarily high
probability, (4) states that the information about the key
which Eve—armed with both her private information En

as well as the public communication C—has access to be
arbitrarily small, and (5) states that the key consists of
approximately R bits per sample.
The greatest rate R such that an achievable scheme ex-
ists is known as the secret key agreement rate. Nota-
tional variations indicate which parties are permitted to
communicate. In the case that Alice and Bob are not
allowed to communicate, their rate of secret key agree-
ment is denoted S(A : B || E). When only Alice is al-
lowed to communicate their secret key agreement rate is
S(A → B || E) or, equivalently, S(B ← A || E). When
both Alice and Bob are allowed to communicate, their
secret key agreement rate is denoted S(A ↔ B || E).
In this, we modified the standard notation for secret key
agreement rates to emphasize which party or parties com-
municate.
In the case of no communication, S(A : B || E) is given
by [6]:

S(A : B || E) = H[AfB|E] , (5)
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where X f Y denotes the Gács-Körner common random
variable [7]. It is worth noting that this quantity does not
vary continuously with the distribution and generically
vanishes.
In the case of one-way communication, S(A→ B || E) is
given by [8]:

S(A→ B || E) = max {I[B : K|C]− I[E : K|C]} , (6)

where the maximum is taken over all variables C and
K, such that the following Markov condition holds:
C−◦−K−◦−A−◦−BE. It suffices to considerK and C such
that |K| ≤ |A| and |C| ≤ |A|2.
There is no such solution for S(A ↔ B || E); however,
various upper- and lower-bounds are known [5]. One sim-
ple lower bound is the supremum of the two one-way
secret key agreement rates, as they are both a subset
of bidirectional communication. An even simpler upper
bound that we will use is the intrinsic mutual informa-
tion [9]:

I[A : B ↓ E] = min
p(e|e)

I
[
A : B|E

]
. (7)

This effectively states that any information Eve has ac-
cess to through any local modification of her observations
cannot be secret.
The unique PID component I∂ [X0 \X1 → Y ] could be
assigned the value of a secret key agreement rate un-
der four different schemes. First, neither X0 nor Y may
be allowed to communicate. Second, only X0 can com-
municate. Third, only Y is permitted to communicate.
Finally, both X0 and Y may be allowed to communicate.
Note that the eavesdropper X1 is not allowed to commu-
nicate in any secret sharing schemes here.
Secret key agreement rates have been associated with
unique informations before. One particular upper bound
on S(A ↔ B || E)—the intrinsic mutual informa-
tion Eq. (7)—is known to not satisfy the consistency
condition Eq. (4) [10]. More recently, the relationship be-
tween a particular method of quantifying unique informa-
tion and one-way secret key agreement S(X0 ← Y || X1)
has been considered [11].

IV. CRYPTOGRAPHIC PARTIAL
INFORMATION DECOMPOSITIONS

We now address the application of each form of secret key
agreement rate as unique information in turn. For each
resulting PID, we consider two distributions. The first is
that called Pointwise Unique, chosen here to exemplify
the differing intuitions that can be applied to the PID.

Pnt. Unq.
X0 X1 Y Pr
0 1 1 1/4
1 0 1 1/4
0 2 2 1/4
2 0 2 1/4

Problem
X0 X1 Y Pr
0 0 0 1/4
0 1 1 1/4
0 2 0 1/4
1 0 1 1/4

FIG. 1. Two distributions of interest: The first, Pointwise

Unique, exemplifies the directionality inherent in the one-way
secret key agreement rates. The second, Problem, demonstrates
that the no-communication, one-way communication with the
source communicating (“camel”), and the two-way communi-
cation secret key agreement rates result in inconsistent PIDs.

The second distribution we look at is entitled Problem
as it serves as a counterexample demonstrating that three
of the four forms of secret key agreement do not result in
a consistent decomposition. Both distributions are given
in Fig. 1.
Interpreting the Pointwise Unique [12] distribution is
relatively straightforward. The target Y takes on the
values ‘1’ and ‘2’ with equal probability. At the same
time, exactly one of the two sources (again with equal
probability) will be equal to Y , while the other is ‘0’. The
mutual informations I[X0 : Y ] = 1/2 bit and I[X1 : Y ] =
1/2 bit.
The Problem distribution lacks the symmetry of
Pointwise Unique, yet still consists of four equally
probable events. The sources are restricted to take on
pairs ‘00’, ‘01’, ‘02’, ‘10’. The target Y is equal to a ‘1’ if
either X0 or X1 is ‘1’, and is ‘0’ otherwise. With this dis-
tribution, the mutual informations I[X0 : Y ] = 0.3113 bit
and I[X1 : Y ] = 1/2 bit.

A. No Public Communication

In the first case, we consider the unique information from
Xi to Y as the rate at which Xi and Y can agree upon
a secret key while exchanging no public communication:
I∂ [Xi \Xj → Y ] = S(Xi : Y || Xj). This approach has
some appeal: the PID is defined simply by a joint distri-
bution without any express allowance or prohibition on
public communication. However, given its quantification
in terms of the Gács-Körner common information, the
quantity S(Xi : Y || Xj) does not vary continuously with
the distribution of interest. Now, what is the behavior of
this measure on our two distributions of interest?
When applied to Pointwise Unique, each source and
the target are unable to construct a secret key. In turn,
each unique information is determined to be 0 bit. This
results in a redundancy and a synergy each of 1/2 bit.
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S(Xi : Y || Xj)

P
nt

.
U

nq
. I∂ [X0X1 → Y ] 1/2 bit

I∂ [X0 → Y \X1] 0 bit
I∂ [X1 → Y \X0] 0 bit
I∂ [X0 ·X1 → Y ] 1/2 bit

P
ro

bl
em

I∂ [X0X1 → Y ] 7
I∂ [X0 → Y \X1] 0 bit
I∂ [X1 → Y \X0] 0 bit
I∂ [X0 ·X1 → Y ] 7

TABLE I. Partial information decompositions of Point-
wise Unique and Problem when quantified using no-
communication secret key agreement rate. Pointwise
Unique decomposes into 0 bit for either unique information
and into 1/2 bit for both the redundancy and synergy. Prob-
lem’s redundancy and synergy cannot be quantified, since the
two secret key agreement rates result in different quantifica-
tions.

The Problem distribution demonstrates the inability of
S(Xi : Y || Xj) to construct a consistent PID. In this
instance, as in the case of Pointwise Unique, no se-
crecy is possible and each unique information is assigned
a value of 0 bit. We therefore determine from Eq. (2) that
the redundancy should be I[X0 : Y ]−I∂ [X0 \X1 → Y ] =
0.3113 bit − 0 bit = 0.3113 bit. Equation (3), however,
says the redundancy is I[X1 : Y ] − I∂ [X1 \X0 → Y ] =
1/2 bit − 0 bit = 1/2 bit. This contradiction demonstrates
that no-communication secret key agreement rate cannot
be used as a PID’s unique components.
The resulting partial information decompositions for
both distributions are listed in Table I.

B. One-Way Public Communication

We next consider the situation when one of the two par-
ties is allowed public communication. This gives us two
options: either the source Xi communicates to target Y
or vice versa. Both situations enshrine a particular di-
rectionality in the resulting PID.
The first, where Xi constructs C = h(Xn

i ) and publicly
communicates it, emphasizes the channels Xi → Y and
creates a narrative of the sources conspiring to create the
target. We call this interpretation the camel intuition,
after the aphorism that a camel is a horse designed by
committee. The committee member Xi may announce
what design constraints they brought to the table.
The second option, where Y constructs C = h(Y n)
and publicly communicates it, emphasizes the channels
Y → Xi and implies the situation that the sources are
imperfect representations of the target. We call this in-
terpretation the elephant intuition, as it recalls the para-
ble of the blind men describing an elephant for the first

S(Xi → Y || Xj)

P
nt

.
U

nq
. I∂ [X0X1 → Y ] 0 bit

I∂ [X0 → Y \X1] 1/2 bit
I∂ [X1 → Y \X0] 1/2 bit
I∂ [X0 ·X1 → Y ] 0 bit

P
ro

bl
em

I∂ [X0X1 → Y ] 7
I∂ [X0 → Y \X1] 0 bit
I∂ [X1 → Y \X0] 1/2 bit
I∂ [X0 ·X1 → Y ] 7

TABLE II. Partial information decompositions of Pointwise
Unique and Problem when quantified using one-way com-
munication secret key agreement rate with the source permit-
ted public communication: Pointwise Unique decomposes
into 1/2 bit for either unique information and into 0 bit for
both the redundancy and synergy. Problem’s redundancy
and synergy cannot be quantified.

time. The elephant Y may announce which of its features
is revealed in a particular instance.

1. Camels

The first option adopts I∂ [Xi \Xj → Y ] = S(Xi →
Y || Xj), bringing to mind the idea of sources acting
as inputs into some scheme by which the target is pro-
duced. When viewed this way, one may ask questions
such as “How much information in X0 is uniquely con-
veyed to Y ?”. Furthermore, the channels X0 → Y and
X1 → Y take center stage.

Through this lens, the Pointwise Unique distribution
has a clear interpretation. Given any realization, exactly
one source is perfectly correlated with the target, while
the other is impotently ‘0’. From this vantage, it is clear
that the unique informations should each be 1/2 bit, and
this is borne out with the one-way secret key agreement
rate. This implies that the redundancy and synergy of
this decomposition are both 0 bit.

For the Problem distribution, we find that X1 can
broadcast the times when they observed a ‘1’ or a ‘2’,
which correspond to Y having observed a ‘1’ or ‘0’, re-
spectively. In both instances X0 observed a ‘0’ and so
cannot deduce what the other two have agreed upon.
This leads to S(X1 → Y || X0) being equal to 1/2 bit. At
the same time, S(X0 → Y || X1) vanishes. However,
Problem’s redundancy and synergy cannot be quan-
tified, since the two secret key agreement schemes im-
ply different redundancies and so are inconsistent with
Eq. (4).

The resulting PIDs for both are given in Table II.
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S(Xi ← Y || Xj)

P
nt

.
U

nq
. I∂ [X0X1 → Y ] 1/2 bit

I∂ [X0 → Y \X1] 0 bit
I∂ [X1 → Y \X0] 0 bit
I∂ [X0 ·X1 → Y ] 1/2 bit

P
ro

bl
em

I∂ [X0X1 → Y ] 1/2 bit
I∂ [X0 → Y \X1] 0 bit
I∂ [X1 → Y \X0] 0.1887 bit
I∂ [X0 ·X1 → Y ] 0.3113 bit

TABLE III. PID for Pointwise Unique and Problem when
quantified using one-way communication secret key agreement
rate with the target permitted public communication: Point-
wise Unique decomposes into 1/2 bit for either unique infor-
mation, and into 0 bit for both the redundancy and synergy.
Problem admits unique informations of 0 bit and 0.1887 bit,
respectively. This results in a redundancy of 0.3113 bit and a
synergy of 1/2 bit, providing a consistent PID.

2. Elephants

When the target Y is the one party permitted communi-
cation, one adopts I∂ [Xi \Xj → Y ] = S(Xi ← Y || Xj)
and we can interpret the sources as alternate views of the
singular target. Consider, for example, journalism where
several sources give differing perspectives on the same
event. When viewed this way, one might ask a question
such as “How much information in Y is uniquely cap-
tured by X0?”. The channels X0 ← Y and X1 ← Y

are paramount with this approach. We denote these in
reverse to emphasize that Y is still the target in the PID.
Considered this way, the Pointwise Unique distribu-
tion takes on a different character. The sources each re-
ceive identical descriptions of the target—accurate half
the time and erased the remainder. The description is
identical, however. Nothing is uniquely provided to ei-
ther source. This is reflected in the secret key agreement
rates, which are 0 bit, leaving both the redundancy and
synergy 1/2 bit.
The Problem distribution’s unique informations are
S(X0 ← Y || X1) = 0 bit and S(X1 ← Y || X0) =
0.1887 bit. Unlike the prior two decompositions, these
unique informations satisfy Eq. (4). The resulting re-
dundancy is 0.3113 bit while the synergy is 1/2 bit.
Their PIDs are listed in Table III. Thus, by having Y

publicly communicate and so invoking a particular direc-
tionality we, finally, get a consistent PID.

C. Two-Way Public Communication

We finally turn to the full two-way secret key agree-
ment rate: I∂ [Xi \Xj → Y ] = S(Xi ↔ Y || Xj). This

S(Xi ↔ Y || Xj)

P
nt

.
U

nq
. I∂ [X0X1 → Y ] 0 bit

I∂ [X0 → Y \X1] 1/2 bit
I∂ [X1 → Y \X0] 1/2 bit
I∂ [X0 ·X1 → Y ] 0 bit

P
ro

bl
em

I∂ [X0X1 → Y ] 7
I∂ [X0 → Y \X1] ≤ 0.1887 bit
I∂ [X1 → Y \X0] 1/2 bit
I∂ [X0 ·X1 → Y ] 7

TABLE IV. PID for Pointwise Unique and Problem when
quantified using two-way communication secret key agree-
ment rate: Pointwise Unique decomposes into 1/2 bit for
either unique information, and into 0 bit for both the redun-
dancy and synergy. Problem’s redundancy and synergy can-
not be quantified, because the two secret key agreement rates
result in different quantifications.

approach is also appealing, as it does not ascribe any
directionality to interpreting the PID. Furthermore, it
varies continuously with the distribution, unlike the no-
communication case. However, this quantity is gener-
ally impossible to compute directly, with only upper and
lower bounds known. Fortunately, this only slightly com-
plicates the analyses we wish to make.
In the case of the Pointwise Unique distribution, it
is not possible to extract more secret information than
was done in the camel situation. Therefore, the result-
ing PID is identical: unique informations of 1/2 bit and
redundancy and synergy of 0 bit.
Problem, however, is again a problem. Upper and lower
bounds on S(X1 ↔ Y || X0) converge1 to 1/2 bit, and so
we know this value exactly. Utilizing the consistency
relation Eq. (4), we find that the other unique infor-
mation must be 0.3113 bit in order for the full decom-
position to be consistent. However, the intrinsic mu-
tual information places an upper bound of 0.1887 bit on
S(X0 ↔ Y || X1). We therefore must conclude that two-
way secret key agreement rates cannot be used to directly
quantify unique information and a consistent PID cannot
be built using them.
The resulting PIDs for both these distributions can be
seen in Table IV.

D. Summary

To conclude, then, there is only one secret-key communi-
cation scenario—Y publicly communicates—that yields a

1 In this instance, the larger of the two one-way secret key agree-
ment rates form a lower bound of 1/2 bit. While the upper bound
provided by the intrinsic mutual information is also 1/2 bit.
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consistent PID, as in Table III. While we have not proven
this, we have been unable to find a counterexample after
extensive numerical searches using the dit [13] software
package. That is, one must invoke a directionality, un-
specified by the PID, to have a consistent PID if using
secret key agreement as the basis for the PID component
of unique information.

V. DISCUSSION

We now turn to two follow-on developments arising from
the tools developed thus far. First, we define a distri-
bution whose two-way secret key agreement rates behave
in a curious manner with very interesting implications
regarding the nature of information itself. Second, we
take a closer look at an alternative proposal for quan-
tifying unique information and describe its behavior in
relationship to the camel/elephant dichotomy defined in
Section IV.

A. When Conversation is More Powerful Than a
Lecture

We now explore the PID quantified by two-way secret
key agreement further. Consider the Giant Bit distri-
bution, which exemplifies redundant information. The
distribution G.B. Erased, resulting from passing each
variable through an independent binary erasure channel
(BEC), exhibits many interesting properties. It is listed
in Fig. 2. Most notably, the one-way secret key agreement
rates between any two variables with the third eavesdrop-
ping vanish. However, the two-way secret key agreement
rate is equal to pp2 = I[Xi : Y |Xj ] [14]. Furthermore,
notice that subtracting Eq. (3) from Eq. (1) tells us that:

I[X0X1 : Y ]− I[X1 : Y ]
= I[X0 : Y |X1]
= I∂ [X0 → Y \X1] + I∂ [X0X1 → Y ] . (8)

That is, the conditional mutual information is equal to
unique information plus synergistic information.
Evaluating the PID using S(Xi ↔ Y || Xj) as unique in-
formation results, in this case, in a consistent decomposi-
tion. Furthermore, the redundant and synergistic infor-
mations are zero. This is, however, troublesome: G.B.
Erased possesses nonzero third-order connected infor-
mation [15], a quantity commonly considered a compo-
nent of the synergy [16]. Indeed, it is provably attributed
to synergy by both the Idep [16] and IBROJA [17]
methods, and likely others as well. No other proposed

Giant Bit
X0 X1 Y Pr
0 0 0 1/2
1 1 1 1/2

G.B. Erased
X0 X1 Y Pr
0 0 0 p3

/2
0 0 ε pp2

/2
0 ε 0 pp2

/2
0 ε ε p2p/2
1 1 1 p3

/2
1 1 ε pp2

/2
1 ε 1 pp2

/2
1 ε ε p2p/2
ε 0 0 pp2

/2
ε 0 ε p2p/2
ε 1 1 pp2

/2
ε 1 ε p2p/2
ε ε 0 p2p/2
ε ε 1 p2p/2
ε ε ε p3

BEC(p)

0

1

0

ε

1

p

p

p

p

FIG. 2. Distribution whose one-way secret key agreement
rates are all 0 bit, yet has nonzero two-way secret key agree-
ment rate. It is constructed from the Giant Bit distribu-
tion by passing each variable independently through a binary
erasure channel BEC(p) with erasure probability p. This
distribution has a two-way secret key agreement rate of pp2

between any two variables with the third as an eavesdropper.

method of quantifying the PID results in zero redun-
dancy or synergy. The implication here is that, if indeed
the third-order connected information is a component of
synergy, the two-way secret key agreement rate overes-
timates unique information by including some types of
synergistic effect. Therefore, we conclude that bidirec-
tional communication between two parties can, in some
instances, determine information held solely in trivariate
interactions. It remains to be understood (i) how in-
dependently and identically transforming a distribution
with no third-order connected information can result in
its creation and (ii) how only two of the variables can
recover it when allowed to communicate.

B. IBROJA , the Elephant

The measure of Bertschinger et al. [17], here referred to
as IBROJA, is perhaps the most widely accepted and used
method of quantifying the PID. Though popular, it has
its detractors [12, 18]. Here, we interpret the criticisms
leveled and IBROJA as a product of camel intuitions
being applied to an elephantesque [11] measure. In doing
so, we will primarily consider the Pointwise Unique
distribution.
As noted in Section IVB, if a source is permitted to com-
municate with the target, then a secret key agreement
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rate of 1/2 bit is achievable; while if the target communi-
cates with the source then it is impossible to agree upon
a secret key. From this camel perspective it is clear that
each source, half the time, uniquely determines the tar-
get. The elephant perspective, however, allots nothing
to unique informations as each source is provided with
identical information. This would greatly disconcert the
camel and may lead one to think that the elephant has
“artificially inflated” the redundancy. We next take a
closer look at this notion, using IBROJA.

In the course of computing IBROJA for the distribution
p(X0, X1, Y ), the set of distributions:

Q = {q(X0, X1, Y ) : ∀i, q(Xi, Y ) = p(Xi, Y )}

is considered. The (∗) assumption [17] is then invoked,
which states that redundancy and all unique informations
are constant within this family of distributions. To com-
plete the quantification, the distribution with minimum
I[X0X1 : Y ] is selected from this family. The resulting
distribution associated with the Pointwise Unique dis-
tribution can be seen in Fig. 3. Made explicit, it can now
be seen that IBROJA does indeed correlate the sources,
but under assumption (∗) this does not effect the redun-
dancy.

One aspect of IBROJA and assumption (∗) we believe
warrants further investigation is its relationship with
maximum entropy philosophy [19]. The latter is, in ef-
fect, Occam’s razor applied to probability distributions:
given a set of constraints, the most natural distribution
to associate with them is that with maximum entropy.
As it turns out, this is equivalent to the distribution
nearest the unstructured product-of-marginals distribu-
tion p(x, y, z, . . .) = p(x)p(y)p(z) . . . [20]:

arg max
q∈Q

H[q] = arg min
q∈Q

DKL [q || p] ,

where DKL [P || P ] is the relative entropy between dis-
tributions P and Q. Having briefly introduced the ideas
behind maximum entropy, we next cast their light on the
BROJA optimization employed to calculate IBROJA.

Let us first consider the distribution resulting from
BROJA optimization. Its entropy is unchanged from
the Pointwise Unique distribution indicating that it
has the same amount of structure—they are equally dis-
tant from the product distribution. The BROJA distri-
bution has a reduced I[X0X1 : Y ] mutual information,
however, indicating perhaps that the optimization has
shifted some of the distribution’s structure away from
the sources-target interaction. It is interesting that this
optimization could not simply remove the synergy from
the distribution altogether, resulting in a larger entropy.

a) BROJA
X0 X1 Y Pr
0 0 1 1/4
0 0 2 1/4
1 1 1 1/4
2 2 2 1/4

b) MaxEnt
X0 X1 Y Pr
0 0 1 1/8
0 0 2 1/8
0 1 1 1/8
0 2 2 1/8
1 0 1 1/8
1 1 1 1/8
2 0 1 1/8
2 2 2 1/8

FIG. 3. Two modified forms of the Pointwise Unique
distribution. a) Intermediate distribution resulting from the
BROJA optimization. It has the minimum sources-target mu-
tual information consistent with the source-target marginals.
b) Maximum entropy distribution consistent with the source-
target marginals. It contains no structure beyond that im-
plied by those marginals.

If one takes assumption (∗) and directly applies the max-
imum entropy philosophy, a different distribution results.
This distribution, seen in Fig. 3, has a larger entropy
than both the Pointwise Unique and the BROJA in-
termediate distribution, indicating that it in fact has less
structure than either. Under assumption (∗), the Max-
Ent distribution, also in Fig. 3, retains all the redundant
and unique informations, while under maximum entropy
it contains no structure not implied by the source-target
marginals—e.g., no synergy.
To be clear, this is not to claim that assumption (∗) or
BROJA optimization are wrong or incorrect, only that
the optimization’s behavior in light of well-established
maximum entropy principles is subtle and requires a care-
ful investigation. For example, it may be that the source-
target marginals do imply some level of triadic interac-
tion and therefore the maximum entropy distribution re-
flects this lingering synergy. At the same time, BROJA
minimization may be capable of maintaining that level of
structure implied by the marginals, but somehow shunts
it into H[Y |X0X1] .

VI. CONCLUSION

At present, a primary barrier for PID’s general adop-
tion as a useful and possibly a central tool in analyzing
how complex systems store and process information is
an agreement on a method to quantify its component
informations. Here, we posited that one reason for dis-
agreement stems from conflicting intuitions regarding the
decomposition’s operational behavior. To give an opera-
tional meaning to unique information and address these
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intuitions, we equated unique information with the abil-
ity of two parties to agree upon a secret. This leads to
numerous observations.

The first is that the PID, as currently defined, is am-
bivalent to any notion of directionality. There are, how-
ever, very clear cases in which the assumption of a
directionality—or lack there of—is critical to the exis-
tence of unique information. Consider, for example, the
case of the McGurk effect [21] where the visual stimu-
lus of one phoneme and the auditory stimulus of another
phoneme gives rise to the perception of a third phoneme.
By construction, the stimuli cause the perception, and
the channels implicit in a camel intuition are central.
If one were to study this interaction using an elephant-
like PID, it is unclear that the resulting decomposition
would reflect the neurobiological mechanisms by which
the perception is produced. Similarly, a camel-like mea-
sure would be inappropriate when interpreting simulta-
neous PET and MRI scans of a tumor.

One can view this as the PID being inherently context-
dependent and conclude that quantification requires
specifying directionality. In this case, the elephant in-
tuition is apparently more natural, as adopting closely-
related notions from cryptography results in a consistent
PID. If context demands the camel intuition, though, ei-
ther a noncryptographic method of quantifying unique
information is needed or consistency must be enforced
by augmenting the secret key agreement rate. It is ad-
ditionally possible that associating secret key agreement
rates with unique information is fundamentally flawed
and that, ultimately, PID entails quantifying unique in-
formation as something distinct from the ability to agree
upon a secret key. This missing thing has yet to be iden-
tified.

The next observation concerns the third-order connected
information. We first demonstrated that such triadic
information can be constructed from common informa-
tion from which each variable is then independently and
identically modified. Furthermore, it has been shown
that two of those three parties, when engaging in bidi-
rectional communication, can capture this triadic infor-
mation. This does not generically occur: For exam-
ple, if X0 X1 Y are related by Xor, the distribution
contains 1 bit of third-order connected information, but
S(X0 ↔ Y || X1) (or any permutation of the variables)

is equal to 0 bit. This suggests that the third-order con-
nected information may not be an atomic quantity, but
rather consists of two parts, one accessible to two com-
municating parties and one not.
Our third observation regards the behavior of the IBROJA
measure, especially in relation to standard maximum en-
tropy principles. We first demonstrated that IBROJA in-
deed correlates sources, but argued that this behavior
only seems inappropriate when adopting a camel intu-
ition. We then discussed how its intermediate distri-
bution is as structured as the initial one and so if in-
deed IBROJA is operating correctly, it must shuffle the
dependencies that result in synergy to another aspect of
the distribution. Finally, we discussed how the standard
maximum entropy approach may remove synergy from a
distribution all together. This calls for a more careful
investigation as to whether it does—and BROJA opti-
mization is incorrect—or does not—and synergistic in-
formation is implied under source-target marginals and
Occam’s razor.
Looking to the future, we trust that this exploration
of the relationship between cryptographic secrecy and
unique information will provide a basis for future efforts
to understand and quantify the partial information de-
composition. Furthermore, the explicit recognition of the
role that directional intuitions play in the meaning and
interpretation of a decomposition should reduce cross-
talk and improve understanding as we collectively move
forward.
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