arxiv:1808.08606

A Perspective on Unique Information:
Directionality, Intuitions, and Secret Key Agreement

Ryan G. James,* Jeffrey Emenheiser,! and James P. Crutchfield*
Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: August 27, 2018)

Recently, the partial information decomposition emerged as a promising framework for identifying
the meaningful components of the information contained in a joint distribution. Its adoption and
practical application, however, have been stymied by the lack of a generally-accepted method of
quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information
decomposition and two implicitly directional interpretations used to intuitively motivate alternative
component definitions. Drawing parallels with secret key agreement rates from information-theoretic
cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that
this underlies the persistence of competing definitions and interpretations. Having highlighted this
hitherto unacknowledged issue, we outline several possible solutions.
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I. INTRODUCTION

Consider a joint distribution over “source” variables Xg
and X; and “target” Y. Such distributions arise in many
settings: sensory integration, logical computing, neural
coding, functional network inference, and many others.
One promising approach to understanding how the in-
formation shared between Xy, X7, and Y is organized
is the partial information decomposition (PID) [1]. This
decomposition seeks to quantify how much of the infor-
mation shared between Xy, X1, and Y is done so redun-
dantly, how much is uniquely attributable to Xy, how
much is uniquely attributable to X, and finally how
much arises synergistically by considering both X, and
X, together.

Unfortunately, the lack of a commonly accepted method
of quantifying these components has hindered PID’s
adoption. In point of fact, several proposed axioms are
not mutually consistent. And, to date, there is little
agreement as to which should hold. Here, we take a
step toward rectifying these issues by bringing to light
a potentially fundamental inconsistency in the intuitions
commonly and often implicitly brought to bear upon in-
formation decomposition. We make the intuitions quan-
titative by appealing to information-theoretic cryptogra-
phy. Taken together, our observations suggest that the
context in which PID is applied should determine how
its components are quantified.

Our development proceeds as follows. Section II briefly
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describes the two-source PID. Section III calls out the
two distinct intuitions often used in interpreting PID.
Section IV introduces a prototype distribution that high-
lights the issues and we interpret it through the lenses of
the two intuitions. Section V defines secret key agree-
ment rates and computes them for the prototype distri-
bution. Section VI then discusses how the two intuitions
relate to secret key agreement rates and identifies when
the latter result in viable decompositions. Finally, Sec-
tion VII summarizes our findings and speculates as to
how future developments can bring consistency to PID.

II. PARTIAL INFORMATION
DECOMPOSITION

Two-source PID seeks to decompose the mutual infor-
mation I[XoX; : Y] between “sources” Xy and X; and a
“target” Y into four nonnegative components. The com-
ponents identify information that is redundant, uniquely
associated with X, uniquely associated with X, and
synergistic:

I[XoX;: Y] =I5 [Xo- X1 — Y]
+15[Xo = YV \ X1
+1o[X1 = Y\ X
+15[Xo X, — Y] .

redundant
unique from Xg
unique from X

synergistic

Furthermore, the mutual information between Xy and Y
is decomposed into two components:

I[X()Y] :Ia [Xo'Xl %Y}
+Ia[X0—>Y\X1] .

redundant

unique with Xo



And, similarly:

I[X,:Y]=15[Xo - X1 = Y] redundant
+1g[X1 = Y\ Xo] . unique with X;
In this way, PID relates the four component informations.
However, it does not uniquely determine how to quantify
them. To do this, a definition must be supplied for one
of them and then the others follow.

This allows for a range of choices. In the case that
one wishes to directly quantify the unique informations
Ip [Xo = Y\ X4] and Iy[X; — Y\ Xo], a consistency
relation must hold when they are computed indepen-
dently:

IB [X0*>Y\X1}+I[X1Y}

III. THE CAMEL AND THE ELEPHANT

There are two common ways of thinking about PID.
These approaches differ only in the (implied) direction-
ality of cause and effect—a property unspecified by PID.

In the first approach, one thinks of X and X; as “inputs”
that, when combined, produce Y, a “output”. While
seemingly helpful labels, their use already imports an
unwarranted semantics to the relationship between the
three random variables. In this, it inadvertently begs
the main issue we wish to raise here, while at the same
time illustrating the issue.

When taking this view of PID, one generally asks ques-
tions such as “How much information in X is uniquely
conveyed to Y?”. From this vantage, considering the role
of the individual channels Xy — Y and X; — Y might or
might not help develop intuition. Recalling the aphorism
“a camel is a horse designed by committee”, we call this
the camel intuition as particular input events Xy and X1
come together to describe an output Y.

In the second approach, one considers Xy and X; as
“noisy observations” or “representations” of a single un-
derlying object Y. When taking this view, one might
ask a question such as “How much information in Y is
uniquely captured by Xy?”. Under this, the individual
channels Y — Xy and Y — X; take on primary impor-
tance. After the parable of the blind men describing an
elephant, we call this the elephant intuition since par-
ticular objects Y may be described by various, possibly
partial, representations, Xy and Xj.

PNT. UNQ.
XO X1 Y Pr
0 1 114
1 0 114
0 2 2 1/s
2 0 214

TABLE I. The pointwise unique distribution.

IV. THE POINTWISE UNIQUE DISTRIBUTION

The pointwise unique distribution [2] is given by the
events and probabilities displayed in Table I: at any time
exactly one of Xy or X7 is a ‘1’ or ‘2’ and matches Y,
while the other is ‘0. Let’s now interpret this distribu-
tion by adopting the camel and elephant intuitions in
turn. We will see that they provide contradictory inter-
pretations of the relationships between the variables.

Adopting the camel intuition, we consider the ways in
which X influences Y. It is easy to see that half of the
time (Table I's 15* and 3¢ rows) X is unable to say any-
thing about the state of Y. The other half of the time
(the 2°d and 4*® rows) X, and Y are perfectly correlated,
while X is ignorant as to their state. Analogously, this is
true when considering how X7 influences Y. In this way,
we interpret the distribution’s PID as consisting entirely
of unique informations. The camel intuition is summa-
rized in Table II.

When adopting the elephant intuition, however, a strik-
ingly different picture emerges. Taking the viewpoint
of Y, both single channel distributions p(Xy|Y) and
p(X1]Y) are identical. So, any information shared with
one must be redundantly shared with the other. These
channels do not allow one to determine the states of ei-
ther Xy or X;. What is learned, however, is that exactly
one of them matches Y, while the other is ‘0’ Further-
more, removing the remaining uncertainty in the values
of Xo and X requires observing one of them—a syn-
ergistic effect. The resulting elephant analysis is also
summarized in Table II.

In short, the two directional PID interpretations lead
to contradictory quantifications. From the viewpoint of
camels, elephant approaches create redundancy where
there is none. From the vantage of elephants, camels
draw distinctions where none exist. This has been dis-
cussed by Ref. [3] regarding whether or not unique infor-
mation should depend on I[X( : X;] . From the camel’s
point of view, ignoring this as a constraint may “artifi-
cially correlate” Xy and X; and thereby inflate redun-
dancy. This viewpoint can be more directly illustrated
by considering the intermediate distribution from which
Igrosa [4]—an elephant—computes unique information



Decompositions by Intuition

camel elephant

Ip[Xo- X1 — Y] Obit 1/2bit
Ip[Xo — Y\ Xi] Yabit  Obit
Ip[X; — Y\ Xo] Yabit  Obit
Ip[XoX; — Y] Obit 1/2bit

TABLE II. Camel and elephant intuitions applied to Table I’s
pointwise unique distribution. The camel intuition takes the
view that Xo and X; supply Y with unique informations,
though only one of them at a time. The elephant intuition
takes the view that Y provides both Xy and X; with the same
information, but it gets erased on the way to exactly one of
them.

for the pointwise unique distribution:

X()XlYPI‘
0 0 114
0 0 21/
1 1 114
2 2 21

From the elephant’s view, I[X{: X;] is irrelevant.

V. SECRET KEY AGREEMENT

Secret key agreement is a fundamental concept within
information-theoretic cryptography [5]. The central idea
is that if three parties, Alice, Bob, and Eve, observe some
joint probability distribution ABE ~ p(a, b, e) where Al-
ice has access only to a, Bob b, and Eve e, is it possible
for Alice and Bob to agree upon a secret key of which
Eve has no knowledge. The degree to which they may
generate such a secret key immediately depends upon the
structure of the joint distribution ABE. It also depends
upon whether Alice and Bob are allowed to publicly com-
municate.

Concretely, consider Alice, Bob, and Eve each receiv-
ing n independent, identically distributed samples from
ABE—Alice receiving A™, Bob B", and Eve E". A se-
cret key agreement scheme consists of functions f and
g, as well as a protocol for public communication (h)
allowing either Alice, Bob, neither, or both to commu-
nicate. In the case of a single party being permitted
to communicate—say, Alice—she constructs C' = h(A")
and then broadcasts it to all parties. In the case that
both parties are permitted communication, they take
turns constructing and broadcasting messages of the form
Ci = hi(An,C[Q___i_l]) (Ahce) and Cz = hi(Bn,C[O___i_l])
(Bob) [6].

Formally, a secret key agreement scheme is considered

R-achievable if for all € > 0:

K42 pan, o)

2
K 2 g(B",0)

3

O]
I[K:CE"] <€

where (1) and (2) denote the method by which Alice and
Bob construct their keys K4 and Kp, respectively, (3)
states that their keys must agree with arbitrarily high
probability, (4) states that the information about the key
which Eve—armed with both her private information E™
as well as the public communication C—be arbitrarily
small, and (5) states that the key consists of approxi-
mately R bits per sample.

The greatest rate R such that an achievable scheme ex-
ists is known as the secret key agreement rate. Nota-
tional variations indicate which parties are permitted to
communicate. In the case that Alice and Bob are not
allowed to communicate, their rate of secret key agree-
ment is denoted S(A : B || E). When only Alice is al-
lowed to communicate their secret key agreement rate
is S(A — B || E). And, similarly, if only Bob is per-
mitted to communicate. When both Alice and Bob are
allowed to communicate, their secret key agreement rate
is denoted S(A4 <> B || E). In this, we modified the stan-
dard notation for secret key agreement rates to emphasize
which party or parties communicate.

In the case of no communication, S(A : B || E) is given
by [7]:

S(A: B || E) = H[A A B|E] (2)

where X A Y denotes the Gacs-Koérner common random
variable [8]. It is worth noting that this quantity does not
vary continuously with the distribution and generically
vanishes.

In the case of one-way communication, S(A — B || E) is
given by [9]:

S(A— B || E) = max{I[B : K|C] —1[E : K|C]} (3)

where the maximum is taken over all variables C' and
K, such that the following Markov condition holds:
C—o-K—o-A—o-BE. It suffices to consider K and C such
that |K| <|A| and |C] < |A|?.

There is no such solution for S(A < B || E), however
both upper- and lower-bounds are known [6].



Secret Key Agreement Rates

S(Y—>X0 || Xl) 0 bit
S(Y—>X1 || Xo) 0 bit
S(XO —-Y || Xl) 1/2bit
S(Xl —Y || Xo) 1/2bit
S(X() Y || Xl) 1/2bit
S(Xl <Y || Xo) 1/2bit

TABLE III. The variety of secret sharing schemes and their
rates for the pointwise unique distribution of Table I.

Let us now consider the pointwise unique distribution of
Table I and the ability of Xy and Y to agree upon a secret
key while X; eavesdrops.! This can be interpreted four
different ways. First, neither Xy nor Y may be allowed to
communicate. Second, only Y can communicate. Third,
only Xy is permitted to communicate. Finally, both X
and Y may be allowed to communicate. Note that the
eavesdropper X7 is not allowed to communicate in any
secret sharing schemes here. Looking at this distribution,
a general strategy becomes clear: both Xy and Y need
some scheme to determine when they agree (the 2" and
4™ rows).

Broadly, the only way in which both Xy and Y can
come to understand if they match or not is if Xy is per-
mitted to broadcast whether she observed a 0 or not.
Therefore, in the instances where X, is not communi-
cating there is no ability to agree upon a key: S(Xj :
Y || X1) = S(Y — Xo || X1) = 0bit. However, when
Xy is allowed communication a key can be agreed upon:
S(X() —Y || Xl) = S(XO ~Y || Xl) = 1/2bit.2 These
rates are summarized in Table III.

VI. DIRECTIONALITY, NATURALNESS, AND
CONSISTENCY

We are now in a position to integrate the two intuitions
with the results of secret key agreement rates. The camel
intuition, with the channels Xy — Y and X; — Y
taking center stage, most closely aligns with the one-
way secret key agreement rates S(Xo — Y || X1) and

1 Secret key agreement rates have been associated with unique

informations before. An upper bound on S(A <+ B || E)—the
intrinsic mutual information [10]—is known to not satisfy the
consistency condition Eq. (1) [11]. More recently, the relation-
ship between a particular method of quantifying unique informa-
tion and one-way secret key agreement has been considered [12].

2 Tt is known that S(Xo ¢+ Y || X1) = 1/2bit due to the conver-
gence of upper and lower bounds in this instance.

4

S(X1 — Y || Xp). This also agrees with Section IV’s
quantification (compare Tables IT and III):

Is [XO —)Y\Xl] ZS(XO —Y H Xl) and
IB[Xl —)Y\Xo]ZS(Xl —Y H XQ) .

The elephant intuition, with its focus on the channels
Y — Xy and Y — X; is more naturally aligned with the
one-way secret key agreement rates S(Y — Xy || X1) and
S(Y — Xo || X1). This again accords with Section IV’s
quantification:

Ip[Xo — Y\ X1] = S(Y = X, || X1) and
Ia[Xl —)Y\Xo]:S(Y—)X1 H Xo) .

There are, however, difficulties with these approaches.

The first difficulty concerns the camel intuition. If the
one-way secret key agreement rates S(Xo — Y || X1)
and S(X; — Y || Xo) are used to quantify the unique
informations Iy [Xo — Y \ Xi] and Ip[X; — Y \ Xo],
respectively, the consistency relation given by Eq. (1) is
not necessarily satisfied. Importantly, though, if S(Y —
Xo || X1) and S(Y — X || Xo) are used, the resulting
PID is always consistent. One concludes that the ele-
phant intuition is the more natural of the two when using
one-way secret key agreement rates to quantify unique
informations.

There is another difficulty. PID is defined to be agnos-
tic to directionality. Furthermore, only one of the myr-
iad proposed PID axioms is contingent on any inherent
directionality—the Blackwell Property [13] and it is an
elephant. In this sense, neither the camel nor the ele-
phant intuitions are consistent with PID. Again relating
to secret key agreement, this implies that unique infor-
mations should more closely align with either the pair
S(Xo : Y || X1) and S(X; : Y || Xo) or with the pair
S(Xo + Y || X1) and S(X; + Y || Xo); neither of which
adopt any sort of directionality.

Both approaches bring their own further difficulties. On
the one hand, the no-communication secret key agree-
ment rate is not continuous in the space of distributions,
whereas PID is generally considered to vary continuously.
On the other hand, the two-way secret key agreement
rate S(Xop « Y || X1) has no known closed-form solu-
tion, only upper and lower bounds, and so it cannot be
practically computed. Furthermore and perhaps more
fundamentally, whether or not the two-way secret key
agreement rate results in a consistent decomposition is
not known. That said, our extensive searches of exam-
ples for which the upper and lower bounds converge are
encouraging—they have not resulted in any violations of

Eq. (1).



VII. CONCLUSION

At present, a primary barrier for PID’s general adop-
tion as a useful and possibly a central tool in analyzing
how complex systems store and process information is
an agreement on a method to quantify its component
informations. Here, we posited that one reason for dis-
agreement stems from conflicting intuitions regarding the
decomposition’s operational behavior. This suggests sev-
eral possibilities.

The first is that PID is inherently context-dependent and
quantification depends on a notion of directionality. In
this case, the elephant intuition is apparently more nat-
ural, as adopting closely related notions from cryptog-
raphy results in a consistent PID. If context demands
the camel intuition, though, either a noncryptographic
method of quantifying unique information is needed or
consistency must be enforced by augmenting the secret
key agreement rate.

The second possibility suggested by our observations is
that intuitions which project a directionality on the de-
composition are inherently flawed and that any correct
quantification must be independent of direction. Inter-
estingly, cryptographic notions may still play a role here.
Though, since there is as yet no known way to compute
the two-way secret key agreement rate, its application
remains open.

A final possibility is that associating secret key agreement

rates with unique information is fundamentally flawed
and that, ultimately, PID quantifies unique information
as something distinct from the ability to agree upon a
secret key.

Given that one of the main factors driving PID’s cre-
ation was the need for interpretability, ensuring that the
intuitions brought to bear are consistent with the quanti-
tative values is of the utmost importance. We described
three quantitative regimes, each corresponding to a spe-
cific directionality or the lack thereof. While it is possible
that each can play a distinct role in the understanding
of complex systems, our hope is that a single method
will emerge as the most useful and accepted approach to
understanding the organization of information within a
joint probability distribution.
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