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Computational mechanics is a method for discovering, de-
scribing and quantifying patterns, using tools from statistical
physics. It constructs optimal, minimal models of stochastic
processes and their underlying causal structures. These mod-
els tell us about the intrinsic computation embedded within
a process—how it stores and transforms information. Here
we summarize the mathematics of computational mechanics,
especially recent optimality and uniqueness results. We also
expound the principles and motivations underlying compu-
tational mechanics, emphasizing its connections to the mini-
mum description length principle, PAC theory, and other as-
pects of machine learning.
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I. INTRODUCTION

All students of machine learning are familiar with pat-
tern recognition; in this paper we wish to introduce a new
term for a related, relatively under-recognized concept,
pattern discovery, and a way of tackling such problems,
computational mechanics.

The term pattern discovery is meant to contrast with
both pattern recognition and pattern learning. In pattern
recognition, the goal of the system is to accurately assign
inputs to pre-set categories. In most learning systems,
the goal is to determine which of several pre-set cate-
gorization schemes is correct. (Naturally, the two tasks
are closely connected (Vapnik, 1995).) In either case, the
representations used have been, as it were, handed down
from on high, due to choices external to the recognition
and learning procedures.

In pattern discovery, however, the aim is to avoid, so
far as possible, such a priori assumptions about what
structures are relevant. This is, of course, an ancient
problem, and one which has not been ignored in ma-
chine learning. While there are ingenious schemes for
pattern discovery via trial and error, some even informed
by empirical psychology (Holland et al., 1986), we be-
lieve that a more direct approach is not only possible
but also illuminates the ideal results and the limitations
of all pattern-discovery methods.

Computational mechanics originated in physics as a
complementary approach to statistical mechanics for
dealing with complex, organized systems (Crutchfield,
1994). In such systems the “forward” approach of sta-
tistical mechanics—deriving macroscopic properties from
the interactions of microscopic components—is often in-
tractable, though data can be had in abundance.! Com-
putational mechanics follows an “inverse” strategy, ex-
tending the idea of extracting “geometry from a time se-
ries” (Packard et al., 1980). It builds the simplest model

'But see Chaikin and Lubensky (1995) and Cross and Ho-
henberg (1993) for organized systems where the “forward”
approach works.



capable of capturing the patterns in the data—a repre-
sentation of the causal structure of the hidden process
which generated the observed behavior.? In a sense that
will be made clear as we go on, this representation—
the e-machine—is the unique maximally efficient model
of the observed data-generating process. The basic ideas
of computational mechanics were introduced in Crutch-
field and Young (1989). Since then they have been used
to analyze dynamical systems, cellular automata, hidden
Markov models, evolved spatial computation, stochas-
tic resonance, globally coupled maps, and the dripping
faucet experiment; see Shalizi and Crutchfield, (1999,
Sec. 1) for references.

This paper is arranged as follows. First we examine
some conceptual issues about pattern discovery and the
way they are addressed by computational mechanics. We
devote the bulk of this paper to a summary of the mathe-
matical structure of computational mechanics, with par-
ticular attention to optimality and uniqueness theorems.
Results are stated without proof; readers will find a full
treatment in Shalizi and Crutchfield (1999). Then we
discuss the ties between computational mechanics and
several approaches to machine learning. Finally, we close
by pointing out directions for future theoretical work.

II. CONCEPTUAL ISSUES

Any approach to handling patterns should, we claim,
meet a number of criteria; the justifications for which
are given in Shalizi and Crutchfield (1999) in detail. It
should be at once

1. Predictive, i.e., the models it produces should allow
us to predict the original process or system we are
trying to understand; and, by that token, provide
a compressed description of it;

2. Computational, showing how the process stores,
transmits, and transforms information;

3. Calculable, analytically or by systematic approxi-
mation;

4. Causal, telling us how instances of the pattern are
actually produced; and

5. Naturally stochastic, not merely tolerant of noise
but explicitly formulated in terms of ensembles.

In any modeling approach, the two (related) problems
are to devise a mapping from states of the world (or,
more modestly, states of inputs) to states of the model,

?See Feldman and Crutchfield (1998) for an example of using
both statistical and computational mechanics to analyze the
same physical system.

and to accurately and precisely predict future states of
the world on the basis of the evolution of the model.
(Cf. Holland et al. (1986) on “g-morphisms”.) The key
idea of computational mechanics is that the information
required to do this is actually in the data, provided there
is enough of it. In fact, if we go about it right, the key
step is getting the mapping from data to model states
right—equivalently, the problem is to decide which data-
sets should be treated as equivalent and how data should
be partitioned. Once we have the correct mapping of
data into equivalence classes, accurate prediction is ac-
tually fairly simple. That the correct mapping should
treat as equivalent all data-sets which leave us in the
same degree of knowledge about the future has a certain
intuitive plausibility, but also sounds hopelessly vague.
In fact, we can specify such a partition in a precise, op-
erational way, show that it is the best one to use, and
determine it empirically. We call the function which in-
duces that partition €, and its equivalence classes causal
states. In fact, the model we get from using such a par-
tition — the e-machine — meets all the criteria stated
above. It is because the e-machine shows, in a very direct
way, how information is stored in the process, and how
that stored information is transformed by new inputs and
by the passage of time, that computational mechanics is
about computation.

III. MATHEMATICAL DEVELOPMENT
A. Note on Information Theory

The bulk of the following development will be con-
sumed with notions and results from information theory.
We follow the standard definitions and notation of Cover
and Thomas (1991), to which we refer readers unfamil-
iar with the theory. In particular, H[X] is the entropy of
the discrete random variable X, interpreted as the uncer-
tainty in X, measured in bits.> H[X|Y] is the entropy of
X conditional on Y, and I[X; Y] the mutual information
between the two random variables.

B. Hidden Processes

We restrict ourselves to discrete-valued, discrete-time
stationary stochastic processes. (See Sec. V A for discus-
sion of these restrictions.) Intuitively, such processes are
sequences of random variables S;, the values of which
are drawn from a countable set A. We let i range
over all the integers, and so get a bi-infinite sequence

3Here, and throughout, we follow the convention of using
capital letters to denote random variables and lower-case let-
ters their particular values.



>
S=...5_150S] .... In fact, we define a process in terms
of the distribution of such sequences.

Given that S is well-defined, there are probablhty dis-

tributions for sequences of every finite length. Let S ; be
the sequence of S¢, S¢y1,...,St4r—1 of L random vari-
-0

ables beglnnlng at S;. StE A, the null sequence. Like-

wise, St denotes the sequence of L random variables
L
going up to S¢, but not including it: St =S,_r- Both

S, and G, take values from st e AL, Similarly, St
<
and S are the semi-infinite sequences starting from and

. . - — .
stopping at t and taking values s and s, respectively.
Requiring the process S; to be stationary means that

L

P(S, = s) = P(§g =54, 1)

forall t € Z, L € Z*, and all s* € A*. (A stationary
process is one that is time-translation invariant.) Conse-

— — — —
P(S;=5)=P(So=5) and P(S;= s) = P(So=
?), and so the subscripts may be dropped.

quently,

C. Effective States

N
Our goal is to predict all or part of S using some func-

tion of some part of § We begin by taking the set § of
all pasts and partitioning it into mutually exclusive and
jointly comprehensive subsets. That is, we make a class
R of subsets of pasts. (See Fig. 1.) Each p € R will
be called a state or an effective state. When the current
history s is included in the set p, we will say the process
is in state p. Thus, there is a function from histories to
effective states:

—

n:S—R. (2)

-
An individual history Ses maps to a specific state

p € R; the random variable E for the past maps to the
random variable R for the (?_ffective states.

Any function defined on S will serve to partition that
set: we just assign to the same p all the histories s on
which the function takes the same value. (Similarly, any

equivalence relation on § partitions it.) Each effective
state has a well-defined conditional distribution of fu-
tures, though not necessarily a unique one. Specifying
the effective state thus amounts to making a prediction
about the process’s future. In this way, the framework
formally incorporates traditional methods of time-series
analysis.

FIG. 1.

set § of all histories into some class of effective states:
R ={R; :i=1,2,3,4}. Note that the R; need not form
compact sets; we simply draw them that way for clarity. One
should have in mind Cantor sets or other more pathological
structures.

A schematic picture of a partition of the

D. Patterns in Ensembles

It will be convenient to have a way of talking about
the uncertainty of the future. We do not want to use

.
HJ[S], since that is infinite in general. Instead, we will
L

N
work with H[S ], the uncertainty of the next L symbols,
treated as a function of L.

Definition 1 (Capturing a Pattern) R captures a
pattern iff there exists an L such that

HIS |R] < LH[S] . 3)

R captures a pattern when it tells us something about
how the distinguishable parts of a process affect each
other: R exhibits their dependence. (We also speak of

n as capturing a pattern.) The smaller H[S [ |R] the
stronger the pattern captured by R. Our first result
bounds how strongly R can capture a process’s pattern.

Lemma 1 For all R and for all L € Z7,

—L —L
H[S |R] = H[S | S]. (4)

E. Minimality and Prediction

Let’s invoke Occam’s Razor: “It is vain to do with
more what can be done with less”. To use the razor, we
have to fix what is to be “done” and what “more” and
“less” mean. The job we want done is accurate predic—

tion; i.e., to reduce the conditional entropies H[S [ |R] as



far as possible, down to the bound set by Lemma 1. But
we want to do this as simply as possible, with as few re-
sources as possible. To meet both constraints—minimal
uncertainty and minimal resources—we will need a mea-

+—
sure of the second. Since P(S= ?) is well defined, it
induces a probability distribution on the 7-states, and
we can set up the following measure of resources.

Definition 2 (Complexity of State Classes) The
statistical complexity of a class R of states is

Cu(R) = H[R] (5)

=-> P(R=p)log P(R=p) ,
PER

when the sum converges to a finite value.

C,(R) is the average uncertainty in the process’s cur-
rent state R. This is the same as the average amount of
memory (in bits) that the process appears to retain about
the past, given the chosen state class R. We wish to do
with as little of this memory as possible. Our objective,
then, is to find a state class which minimizes C},, subject
to the constraint of maximally accurate prediction.

F. Causal States

Definition 3 (A Process’s Causal States) The
causal states of a process are the members of the range

— < —
of the function € : S + 25 —the power set of S:

(

— /!
S

)= {5 |P(s=

N — = !
S 5|

15=5)=P(5=5 | 5=5%),
5.5 €sy, (6)

for all ?ES, s
that maps from histories to classes of histories. We write
the ith causal state as S; and the set of all causal states as
S; the corresponding random variable is denoted S and
its realization o.

The cardinality of & is unrestricted. & can be finite,
countably infinite, a continuum, a Cantor set, or some-
thing stranger still.*

We could equally well define an equivalence relation
~¢ such that two histories are equivalent iff they have
the same conditional distribution of futures, and define
causal states as the equivalence classes of ~.. (In fact,
this was the original approach gf Crutchfield and Young

(1989).) Either way, we break S into parts that leave us
in different conditions of ignorance about the future.
Each causal state S; has a conditional distribution of

futures, P(§ |S;). It follows directly from Def. 3 that no

*Examples of all of these are given in Crutchfield (1994) and
Upper (1997).

two states have the same distribution of futures; this is
not true of effective states in general. Another immediate
consequence of that definition is that

P(5=5 |S=e(5))=P(S=5|5=5). (7

Again, this is not generally true of effective states.

G. Causal State-to-State Transitions

The causal state at any given time and the next value
of the observed process together determine a new causal
state (Lemma 2 below, which doesn’t rely on the fol-
lowing). Thus, there is a natural relation of succession
among the causal states.

Definition 4 (Causal Transitions) The labeled transi-

(s

tion probability Tij) is the probability of making the tran-

sition from state S; to state S; while emitting the symbol

s € A:

T =P(S' =8, § =35 =
ij = (§'= j;5—5|8—3i), (8)
where S is the current causal state and S' its successor
on emitting s. We denote the set {Ti(js) :se A} by T.

H. e-Machines

Definition 5 (An e-Machine Defined)

The e-machine of a process is the ordered pair {e, T},
where € is the causal state function and T is set of the
transition matrices for the states defined by e.

Lemma 2 (e-Machines Are Deterministic) For each
S;ands € A, Ti(js) > 0 only for that S; for which e(?s) =
S; iff e(g) = §;, for all pasts .

“Deterministic” is meant in the sense of automata-
theory, not dynamics.

Lemma 3 (Causal States Are Independent) The
probability distributions over causal states at different
times are conditionally independent.

This indicates that the causal states, considered as a
process, define a kind of Markov chain. We say “kind
of” since the class of e-machines is substantially richer
than the one normally associated with Markov chains
(Crutchfield, 1994; Upper, 1997).

Definition 6 (e-Machine Reconstruction)
e-Machine reconstruction is any procedure that given a

x4 x4
process P(S), or an approzimation of P(S), produces the
process’s e-machine {€, T}.



Given a mathematical description of a process, one can
often calculate analytically its e-machine. (For exam-
ple, see the computational mechanics analysis of statis-
tical mechanical spin systems in Feldman and Crutch-
field (1998).) There are also algorithms that reconstruct

e-machines from empirical estimates of P(g) Those
used in Crutchfield (1994), Crutchfield and Young (1989),
Hanson (1993), and Perry and Binder (1999), operate in
batch mode, taking the raw data as a whole and pro-
ducing the e-machine. Others could work on-line, taking
in individual measurements and re-estimating the set of

causal states and their transition probabilities.

I. Optimalities and Uniqueness

Theorem 1 (Causal States are Maximally Pre-
scient) For all R and all L € 7,7,

—L —L —L
H[S |R] > H[S |S]=HI[S | S]. (9)

Causal states are as good at predicting the future—
are as prescient—as complete histories. Since the causal
states can be systematically approximated, we have
shown that the upper bound on the strength of patterns
(Def. 1 and Lemma 1) can in fact be reached.

All subsequent results concern rival states that are as
prescient as the causal states. We call these prescient
rivals and denote a class of them R.

Definition 7 (Prescient Rivals) Prescient rivals R

are states that are as predictive as the causal states; viz.,
forall L € Z™,

L L

H[S |R] = H[S |S]. (10)

FIG. 2. An alternative class R of states (delineated by

dashed lines) that partition § overlaid on the causal states S
(solid lines). Here, for example, S» contains parts of R1, Roa,
Rs and R4. Note again that the R; need not be compact nor
simply connected, as drawn.

Lemma 4 (Refinement Lemma) For all prescient ri-
vals R and for each p € R, there is a 0 € S and
a measure-0 subset po C p, possibly empty, such that
P\ po C o, where \ is set subtraction.

The lemma becomes more intuitive if we ignore for a
moment the measure-0 set po of histories. It then says
that any alternative partition R that is as prescient as
the causal states must be a refinement of the causal-state
partition. That is, each R; must be a (possibly improper)
subset of some S;. Otherwise, at least one R; would
contain parts of at least two causal states. Therefore,
using R; to predict the future observables would lead to

more uncertainty about § than using the causal states.
(Compare Fig. 3 with Fig. 2.) Because the histories in
po have zero probability, treating them the “wrong” way
makes no discernible difference to predictions.

Theorem 2 (Causal States Are Minimal) For all
prescient rivals R,

Cu(R) 2 Cu(S) - (11)

N

If we were trying to predict, not the whole of S but
*>L

some limited piece § , the causal states might not be

the simplest ones with full predictive power. For any
value of L, however, the states constructed by analogy to
the causal states—the “truncated causal states”—have
maximal prescience and minimal C,.

The minimality theorem licenses the following defini-
tion.

FIG. 3. A prescient rival partition R must be a refinement
of the causal-state partition almost everywhere. Almost all of
each R; must lie within some Sj; the exceptions, if any, are
a set of histories of measure 0. Here for instance Sy contains
the positive-measure parts of 7@3, 7@4, and Rs. One of these
rival states, say Rs, could have member-histories in any or
all of the other causal states, if the total measure of these
exceptional histories is zero.



Definition 8 (Statistical Complexity of a Process)
The statistical complezity C,,(O) of a process O is that
of its causal states: C,(O) = C,(S).

Theorem 3 (Causal States Are Unique) For all pre-
scient rivals R, if C,(R) = C,(8), then there exists an

invertible function between R and S that almost always
preserves equivalence of state: R and n are the same
as S and €, respectively, except on a set of histories of
measure 0.

The remarks on Lemma 4 also apply to the inelim-
inable but immaterial measure-0 caveat here.

Theorem 4 (e-Machines Are Minimally Stochas-
tic) For all prescient rivals ’ﬁ’,,

H[R'|R] > H[S'|S] (12)

where S' and R’ are the next causal state of the process
and the next n-state, respectively.

Finally, we relate C, to an information theoretic quan-
tity that is often used to measure complexity.

Definition 9 (Excess Entropy) The excess entropy E
of a process is the mutual information between its semi-
infinite past and its semi-infinite future:

E=1I[3:;5]. (13)

Excess entropy is regularly re-introduced into the
complexity-measure literature, as “predictive informa-
tion”, “stored information”, “effective measure complex-
ity”, and so on (Shalizi & Crutchfield, 1999, Sec. VI).
As these names indicate, it is tempting to see E as the
amount of information stored in a process (which ac-
counts for its popularity). According to the following
theorem this temptation should be resisted.

Theorem 5 The statistical complexity C,, bounds the ex-
cess entropy E:

E <Cu(8), (14)

with equality iff H[S)| §] =0.

E is thus only a lower bound on the true amount of
information stored in the process, namely C,(S).

IV. RELATIONS TO OTHER FIELDS
A. Computational and Statistical Learning Theory

The goal of computational learning theory (Kearns &
Vazirani, 1994; Vapnik, 1995) is to identify algorithms

that quickly, reliably, and simply lead to good representa-
tions of a target concept, usually taken to be a dichotomy
of a feature or input space. Particular attention is paid
to “probably approximately correct” (PAC) procedures
(Valiant, 1984): those having a high probability of find-
ing a close match to the target concept among members
of a fixed representation class. The key word here is
“fixed”. While taking the representation class as a given
is in line with implicit assumptions in most of mathemat-
ical statistics, it seems dubious when analyzing learning
in the real world (Crutchfield, 1994; Boden, 1994).

In any case, such an assumption is clearly inappropri-
ate if our goal is pattern discovery, and it was not made
in the preceding development. While we plan to make ev-
ery possible use of the results of computational learning
theory in e-machine reconstruction, we feel this theory
is more properly a part of statistical inference and, par-
ticularly, of algorithmic parameter estimation, than of
pattern discovery per se.

B. Formal Language Theory and Grammatical
Inference

It is well known that formal languages can be clas-
sified into a hierarchy, the higher levels of which have
strictly greater expressive power. The denizens of the
lowest level of the hierarchy, the regular languages, cor-
respond to finite-state machines and to hidden Markov
models of finite dimension. In such cases, relatives of our
minimality and uniqueness theorems are well known, and
the construction of causal states is analogous to Nerode
equivalence classing (Hopcroft & Ullman, 1979). Our
theorems, however, are not restricted to this setting.

The problem of learning a language from observational
data has been extensively studied by linguists and com-
puter scientists. Unfortunately, good learning techniques
exist only for the two lowest classes in the hierarchy, the
regular and the context-free languages. (For a good ac-
count of these procedures see Charniak (1993).) Adapt-
ing this work to the reconstruction of e-machines should
be a useful area for future research.

C. The Minimum Description-Length Principles

Rissanen’s minimum description-length (MDL) princi-
ple, best presented in his book (1989), is a way of picking
the most concise generative model out of a chosen family
of models that are all statistically consistent with given
data. The MDL approach starts from Shannon’s results
on the connection between probability distributions and
codes (Shannon & Weaver, 1963).

Suppose we choose a class M of models and are given
data set z. The MDL principle tells us to use the model
M € M that minimizes the sum of the length of the de-
scription of z given M, plus the length of description of



M given M. The description length of z is taken to be
—log P(x|M). The description length of M may be re-
garded as either given by some coding scheme or, equiv-
alently, by some distribution over the members of M.

Though the MDL principle was one of the inspirations
of computational mechanics, our approach to pattern dis-
covery does not fit within Rissanen’s framework. To men-
tion only the most basic differences: We have no fixed
class of models M; we do not use encodings of rival mod-
els or prior distributions over them; and C,(R) is not a
description length.

D. Connectionist Models

Neural networks engaged in unsupervised learning
(Becker, 1991) are often effectively doing pattern discov-
ery. Certainly Hebb (1949) had this aim in mind when
proposing his learning rule. While such networks cer-
tainly can discover regularities and covariations, they
often represent them in ways baffling to humans. e-
Machines present the structures discovered by recon-
struction in a clear and distinct way, but the learning
dynamics are not (currently) as well understood as those
of neural networks; see Sec. VB below.

V. CONCLUDING REMARKS
A. Limitations of the Current Results

We made some restrictive assumptions in our develop-
ment above. Here we mention them in order of increasing
severity and consider what may be done to lift them.

1. We know exact joint probabilities over sequence
blocks of all lengths for a process. The cure for this is
e-machine reconstruction and in the next subsection we
sketch work (underway) on a statistical theory of recon-
struction.

2. The observed process takes on discrete values. This
can probably be addressed with only a modest cost in
increased mathematical subtlety, since the information-
theoretic quantities we have used also exist for continuous
variables. Many of our results appear to carry over to the
continuous setting.

3. The process is discrete in time. This looks similarly
solvable, since continuous-time stochastic process theory
is moderately well developed. It may involve sophisti-
cated probability theory or functional analysis, however.

4. The process is a pure time series; e.g., without spa-
tial extent. There are already tricks to make spatially
extended systems look like time series. Basically, one
looks at all the paths through space-time, treating each
one as if it were a time series. While this works well for
data compression (Lempel & Ziv, 1986), it may not be
satisfactory for capturing structure (Feldman, 1998).

5. The process is stationary. It’s unclear how best to
relax the assumption of stationarity. There are several
straightforward ways of doing so, but it is unclear how
much substantive content these extensions have. In any
case, a systematic classification of non-stationary pro-
cesses is (at best) in its infant stages.

B. Directions for Future Work

Two broad avenues for research present themselves.

First, we have the mathematics of e-machines them-
selves.  Assumption-lifting extensions have just been
mentioned but there are many other ways to go. One
which is especially interesting in the machine-learning
context is the trade-off between prescience and complex-
ity. For a given process there is a sequence of optimal
machines connecting the one-state, zero-complexity ma-
chine with minimal prescience to the e-machine. Each
step on the path is the minimal machine for a certain de-
gree of prescience; it would be very interesting to know
what, if anything, we can say in general about the shape
of this “prediction frontier”.

Second, there is e-machine reconstruction. As we re-
marked (p. 4), there are already several algorithms for
reconstructing machines from data. What we need is
knowledge of the error statistics (Mayo, 1996) of differ-
ent reconstruction procedures, of the kinds of mistakes
they make and the probabilities with which they make
them. Ideally, we want to find “confidence regions” for
the products of reconstruction: calculating the proba-
bilities of different degrees of reconstruction error for a
given volume of data or the amount of data needed to
be confident of a fixed bound on the error. An analyti-
cal theory has been developed for the expected error in
reconstructing certain kinds of processes (Crutchfield &
Douglas, 1999). The results are encouraging enough that
work is underway on a general theory of statistical infer-
ence for e-machines—a theory analogous to what already
exists in computational learning theory and grammatical
inference.
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