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Persistent Chaos in High Dimensions
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An extensive statistical survey of universal approximators shows that as the dimension of a typi-
cal dissipative dynamical system is increased, the number of positive Lyapunov exponents increases
monotonically and the number of parameter windows with periodic behavior decreases. A subset
of parameter space remains where non-catastrophic topological change induced by small parameter
variation becomes inevitable. A geometric mechanism depending on dimension and an associated
conjecture depict why topological change is expected but not catastrophic, thus providing an expla-
nation of how and why deterministic chaos persists in high dimensions.
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Physical theory attempts to describe and predict the
natural world by expressing observed behavior and the
governing balance of forces formally in mathematical
models—models that can only be approximate represen-
tations. Empirically, many natural phenomena persist
even when control parameters and external conditions
vary. For example, the essential character of fully de-
veloped fluid turbulence is little affected if one slightly
changes the energy flux that drives it or if a small dent is
made in the containing vessel’s wall. In building a theory
of a system exhibiting this kind of dynamical persistence,
one hopes that, despite its approximations, one’s model
also has this persistence.

A century of analyzing nonlinear dynamical systems,
however, has led to an apparent inconsistency with this
goal. Since the days of Poincaré’s development of qual-
itative dynamics, mathematicians and physicists have
probed differential equations to test their solutions for
different kinds of stability. Poincaré’s discovery of deter-
ministic chaos [1] demonstrated that at the most detailed
level, there was inherent instability of system solutions:
change the initial condition only slightly and one finds
a different state-space trajectory develops rapidly. Later
studies showed that there was also an instability in be-
havior if the equations or parameters were changed only
slightly [2–4]. Even arbitrarily small functional perturba-
tions to the governing dynamic leads to radical changes
in behavior—from unpredictable to predictable behav-
ior, for example. The conclusion has been that nonlin-
ear, chaotic systems are exquisitely sensitive, amplifying
arbitrarily small variations in initial and boundary con-
ditions and parameters to macroscopic scales.
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How can one reconcile this with the observed fact of dy-
namical persistence in large-scale systems [5]? We take
dynamical persistence to mean that a behavior type—
e.g., equilibrium, oscillation, chaos—does not change
with functional perturbation or parameter variation.
Here we describe the results of a statistical survey which
empirically demonstrate that chaos is dynamically persis-
tent if the dimension of a nonlinear system is sufficiently
high. More importantly, we argue that a particular geo-
metric mechanism is responsible for persistent chaos.

Specifically, the survey shows that in large-scale sys-
tems dynamical sensitivity—when defined as breaking
topological equivalences associated with structural sta-
bility [6], ergodicity [7], and statistical stability [8]—is
typically benign and does not affect behavior types. Nat-
urally, drastic changes in a system’s invariant measure
yield different observed dynamics, but our results indi-
cate that this becomes increasingly less probable. More-
over, the instability associated with deterministic chaos
dominates high-dimensional dynamical systems, except
at extreme parameter settings.

Much of the intuition and motivation for our investiga-
tion comes from the analytical results found in abstract
dynamical systems theory, but our construction and con-
clusions highlight a distinct difference. Said most simply,
the number of dimensions of the dynamical system mat-
ters. That is, there is a qualitative difference between
common behaviors in high- and low-dimensional dynam-
ical systems, subject to how the given space of dynami-
cal systems is stratified, e.g., topologically [9], algebraic
geometrically [10], or in our case, measure-theoretically.
Beyond giving empirical evidence (relative to a measure
on a function space) to support these conclusions, we
introduce a definition of persistent chaos that suggests
an alternative approach to longstanding questions of dy-
namical stability and offer a conjecture detailing a ge-
ometric mechanism underlying persistent chaos in high
dimensions.
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Assuming the existence of an SRB measure [11], the
spectrum of Lyapunov characteristic exponents (LCEs)
[12] for a d-dimensional system consists of d LCEs: χ1 ≥
χ2 ≥ . . . ≥ χd, where indexing gives a monotonic order-
ing. The LCEs will be our primary tool for analyzing and
identifying behavior types since there is an equivalence
between the number of negative and positive Lyapunov
exponents and the number of global stable and unsta-
ble manifolds, respectively—structures that organize the
state space and constrain behavior [13]. Therefore, in re-
ferring to topological variation here we mean a change in
the number of positive LCEs.

In order to give a complete representation of the space
of all systems, we investigate typical behaviors in high
dimensions using a class of dynamical systems that are
known to be universal function approximators. They are
universal in two equivalent senses: (i) in the limit that
they have infinitely many parameters they are dense [14]
in Cr on compacta; and (ii) they can approximate ar-
bitrarily closely any Cr mapping and its derivatives on
compacta [14]. These are single-layer recurrent neural
networks of the form

xt = β0 +

n
∑

i=1

βi tanh s



ωi0 +

d
∑

j=1

ωijxt−j



 , (1)

which are maps from Rd to R and denoted fs,β,ω. Here n
is the number of hidden units (neurons), d the number of
time lags which determines the system’s input (embed-
ding) dimension, and s a scaling factor for the connection
weights ωij . The initial condition is (x1, x2, . . . , xd) and
the state at time t is (xt, xt+1, . . . , xt+d−1). The approx-
imation theorems of Ref. [14] and time-series embedding
of Ref. [15] establish an equivalence between these neural
networks and general dynamical systems [16].

In the statistical survey we sample the k = (n(d+2)+
1)-dimensional parameter space taking (i) βi ∈ [0, 1] uni-
formly distributed and rescaled to satisfy

∑n

i=1 β2
i = n,

(ii) ωij normally distributed with zero mean and unit
variance and (iii) the initial xj ∈ [−1, 1] as uniform.
These distributions—denoted mβ , mω, and mI—form a
product measure on the space of parameters and initial
conditions. The survey’s results are statistical estimates
with respect to this product measure.

To perform the experiment, each network has fixed
weights, and thus forms a standard discrete-time, time-
delay dynamical system. We then use the s parameter as
the primary control as it gives the magnitude of the ar-
gument of tanh(x). When x ≈ 0 Eq. (1) is linear and one
finds fixed points and limit cycles; when |x| ≫ 1 the out-
put is binary and one finds 2n different periodic states;
and for |x| between these extremes we find the nonlinear
behavior we will focus on.

The study of a general function space should be con-
trasted with investigations of restricted mappings—e.g.,
map lattices [17, 18]—for which the number of parame-
ters is a bounded function of the number of state vari-
ables, since these cannot systematically approximate Cr

function space.

FIG. 1: LCE spectrum as a function of gain s for a network
of n = 32 neurons and d = 64 dimensions. (15000 total time-
steps; 5000 initial time-steps to arrive on the attractor; LCE
renormalization is performed at each time-step.)

We now define persistent chaos (p-chaos) of degree p
for a dynamical system as follows:
Definition. Assume a map fξ : X → X (X ⊂ Rd) that
depends on a parameter ξ ∈ Rk. The map fξ has chaos
of degree-p on an open set O ⊂ X that is persistent for
ξ ∈ U ⊂ Rk if there is a neighborhood N of U such that
for all ξ ∈ N , the map fξ retains at least p ≥ 1 positive
LCEs Lebesgue a.e. in O.

The choice of defining p is flexible. For example, fixing
p to be the number of positive LCEs is a very strict con-
straint; specifying a minimum p or ratio of p to the max-
imum number of positive exponents are weaker. Flexibil-
ity allows one to analyze (say) systems with 106 unstable
directions in which a change in 1% of the geometry is
undetectable, but a 50% change is. This notion differs
from that of a robust chaotic attractor [19, 20] in several
ways. Importantly, we do not require the attractor to be
unique on U since, physically, there is little evidence in-
dicating that such strict forms of uniqueness are present
in many complex physical systems (Ref. [21] presents a
low-d example) and, technically, uniqueness is markedly
more difficult to establish.

Figure 1 presents the typical scenario for the LCE spec-
tra of the high-dimensional systems as a function of s.
Here typical refers to what was observed in more than
99% of the 15, 800 networks with n ≥ 32 and d > 32. Im-
portant properties to notice include (a) lack of periodic
windows with respect to (s, β, ω), (b) LCEs vary contin-
uously with s, (c) they have a single maximum (up to
statistical fluctuations) and (d) fs,β,ω has SRB measures
that yield a distribution of LCEs whose variance obeys
σ2

χi
< infj=±1(|χi − χj |) at fixed s. Other, previously

documented properties [16, 22] include (e) as d increases,
the length of the s-intervals Ui between LCE zero cross-
ings are asymptotically dense, |Ui| ∼ d−1.92, and (f) the
maximum number of positive LCEs increases monotoni-
cally as d/4 and the attractor’s Kaplan-Yorke dimension
scales as d/2. These properties contrast sharply with fa-
miliar low-dimensional bifurcation scenarios where one
typically encounters a preponderance of stable behavior
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and periodic windows and the LCEs vary in a discontin-
uous manner with control parameters.

The observations complement those from a previous
study of chaos in neural-network continuous-time differ-
ential equations [23]. There, a mean-field analysis, which
assumed that inputs are statistically independent (and
which does not apply in the present case), also suggested
that chaos should be common in high dimensions; cf.
Refs. [24, 25].

In light of Fig. 1 and the fact that LCE zero crossings
become dense, we propose the following geometric mech-
anism for persistent chaos. For a finite but arbitrar-
ily large number of segments along an s interval—e.g.,
s ∈ (0.1, 8)—there is an asymptotically dense, always
countable sequence of parameter values that have an LCE
transversally crossing through zero. Thus, a continuous
path along an s-interval yields inevitable, but noncatas-
trophic (i.e. p > 1) topological change. This implies
that when varying parameters, periodic and quasiperi-
odic windows will not exist in chaotic regions of param-
eter space of dynamical systems with a sufficiently large
number of positive exponents. The lack of dense peri-
odic and quasiperiodic windows is a necessary condition
for p-chaos.

To test for this mechanism, we analyzed the existence
of periodic and quasiperiodic windows along s ∈ (1, 4)
in networks with n = 32 and d ranging from 8 to 128
and with an ensemble of 700 networks per n and d. We
observed that (i) the mean fraction of networks with pe-
riodic and quasiperiodic windows decreases like ∼ d−1.3,
(ii) the mean number of windows decreases like ∼ d−2,
and (iii) the window lengths increase linearly with in-
creasing d. These observations are insensitive to in-
crements in s as long as ∆s ≤ 0.005. As the dimen-
sion increased above 64 the only networks with periodic
windows had windows that persisted for most of the s-
interval under consideration. That is, as dimension was
increased, periodic windows became increasingly rare.
When they were observed, however, they were neither
small nor intermittent, but instead dominated the pa-
rameter space.

To explore the full parameter space systematically, one
can fix s and vary the weights with random perturbations
of a given size. We surveyed networks with parameters
varied in a k-ball with its center fixed at s. Figure 2
shows how the probability of observing periodic windows
decreases as the dimension increases. Each data point
corresponds to the probability of finding a system with a
periodic orbit among a set of 700 networks at a given n
and d and each perturbed 100 times. The range of weight
perturbations was 10−3 with s = 3. We found that the
probability of periodic networks decreases as d−2. Thus,
as dimension increases the systems are far less likely to
display periodic windows and, as a consequence, become
more persistently chaotic. Our findings are robust for
s ∈ (0.1, 8) and to perturbation sizes ranging from 10−10

to 0.1.
While this is strong evidence for the disappearance of

FIG. 2: Log probability of periodic behavior versus log di-
mension for 700 cases per d. Each case has all the weights
perturbed on the order of 10−3; 100 times per case. The
best-fit line is ∼ 1/d2.

periodic windows in parameter space with increasing di-
mension, a stronger argument follows from our observa-
tion that the fraction of networks with windows decreases
less quickly (∼ d−1.3) than the overall probability of win-
dows (∼ d−2). Thus, periodic windows which do exist are
concentrated in an ever-decreasing fraction of networks
and those with one periodic window are more likely to
have many periodic windows.

That the exponents are continuous with s variation
can be seen in Fig. 1; quantitative analysis is performed
in Ref. [16]. The claim that fs,β,ω has SRB measures
obeying property (d) can be seen by noting that for every
s value in Fig. 1 a different initial condition with respect
to mI was used for computation. For s values below the
onset of chaos (s < 0.1), this condition does not apply.

These observations, Fig. 1, and detailed analysis of
400 four-dimensional dynamical systems and 200 64-
dimensional dynamical systems, as well as many of in-
termediate dimension, leads to the following view of the
geometric persistence mechanism. All of the LCEs that
become positive are negative for very small and very
large values of s—the LCE spectra are unimodal. As
the dimension d is increased, the LCE s-dependence be-
comes smoother. Moreover, with increasing dimension
the number of positive exponents increases monotonically
[22]. Finally, the distance between LCE zero crossings,
above the maximum, decreases with dimension as shown
schematically in Fig. 3. In sufficiently high dimensions,
the subsets Ui shrink and eventually fall below resolu-
tion. The result, then, is twofold: one observes contin-
uous topological change (bifurcations), but this is never
catastrophic. The claim is that the geometry depicted in
Fig. 1 is persistent to parameter variation.
Conjecture. Given fs,β,ω, if k and d are large enough,
the probability with respect to mβ × mω of the set (β, ω)
with the properties (a)-(f) is large and approaches 1 as
k, d → ∞.

Since our networks are universal function approxima-
tors, this behavior should be observed in many nonlinear
high-dimensional dynamical systems. The onset of suffi-
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FIG. 3: Lyapunov spectrum versus network nonlinearity s:
Ui’s are the open sets in parameter space where structural
stability is believed to persist. The |Ui| parameter intervals
shrink like ∼ d−1.92 as the dimension increases.

ciently high dimension for this to occur for our dynamical
systems was observed to be d ∼ 30.

The conjecture can be quantified for particular s-
intervals with the notion of p-chaos of degree p for an
ensemble of mappings with our construction. For exam-
ple, for an s-interval centered at s = 3 (far from the
s-interval containing the maximum number of positive
LCEs), if one considers p to be the mean number of pos-
itive LCEs minus 3 standard deviations, then p > 0 at
d = 32 and increases like p ∼ 4 log d for d ≥ 32 [22]. We
will refrain from arguing for a best definition of p and
simply note that pmin increases with d monotonically on
s ∈ [0.1, 10] and, thus, there exists an open set for which
fs,β,ω has p-chaos of degree p > 0.

Two comments are in order. First, the existence of
chaos as a persistent behavior type depends on dimen-
sion. The subset of parameter space in which chaos
becomes persistent increases in size (with respect to
mβ×mω×mI) as the dimension of the dynamical system
increases. This is due both to the increase in the num-
ber of positive LCEs (given a sufficient increase in n)
and to a decrease in the appearance of periodic windows.
Second, persistence is related to the number of (linearly
independent) parameters in the dynamical system. The

number n of neurons in the network effectively controls
the entropy rate [26]—that is, increasing the number of
neurons increases the entropy rate, number of positive
exponents, and the maximum of the largest exponent.
Moreover, increasing n increases the degree (p) of the
persistent chaos, but the mechanism for persistent chaos
remains, due to the decreasing probability of periodic
windows. Conversely, networks with few parameters ex-
hibit considerably less persistent chaos.

In this way high entropy-rate systems are more persis-
tent with respect to functional and parameter perturba-
tions. This is in accord with a wide range of experimental
observations of such systems. Indeed, dynamical persis-
tence is not a novel experience; often hydrodynamic en-
gineers and plasma experimentalists expend much effort
in attempts to eliminate persistent chaos [5]. Here we de-
scribed a mechanism in which the dynamical persistence
of high-dimensional systems is retained under parame-
ter perturbation, despite the fact that stricter notions of
dynamical equivalence are violated. This sets the stage
for more specific investigations of the statistical topol-
ogy of stable and unstable manifolds in high-dimensional
systems—investigations that, one hopes, will lead to pre-
dictive scaling theories for observed macroscopic proper-
ties that are grounded in microscopic dynamics.
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[1] H. Poincaré. Oeuvres. Gauthir-Villars, Paris, 1929.
[2] J. D. Farmer. Phys. Rev. Lett., 55(4):351–355, 1985.
[3] S. Newhouse. Publ. Math. IHES, 50:101–151, 1979.
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