
Santa Fe Institute Working Paper 15-08-030
arxiv.org:1508.02760 [quant-ph]

Occam’s Quantum Strop:
Synchronizing and Compressing Classical Cryptic Processes

via a Quantum Channel

John R. Mahoney,∗ Cina Aghamohammadi,† and James P. Crutchfield‡

Complexity Sciences Center and Department of Physics,
University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: November 19, 2015)

A stochastic process’s statistical complexity stands out as a fundamental property: the minimum
information required to synchronize one process generator to another. How much information is
required, though, when synchronizing over a quantum channel? Recent work demonstrated that
representing causal similarity as quantum state-indistinguishability provides a quantum advantage.
We generalize this to synchronization and offer a sequence of constructions that exploit extended
causal structures, finding substantial increase of the quantum advantage. We demonstrate that
maximum compression is determined by the process’s cryptic order—a classical, topological property
closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient
algorithm that computes the quantum advantage and close noting that the advantage comes at a
cost—one trades off prediction for generation complexity.
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Discovering and describing correlation and pattern are
critical to progress in the physical sciences. Observing
the weather in California last Summer we find a long
series of sunny days interrupted only rarely by rain—a
pattern now all too familiar to residents. Analogously,
a one-dimensional spin system in a magnetic field might
have most of its spins “up” with just a few “down”—
defects determined by the details of spin coupling and
thermal fluctuations. Though nominally the same pat-
tern, the domains of these systems span the macroscopic
to the microscopic, the multi-layer to the pure. Despite
the gap, can we meaningfully compare these two pat-
terns?

To exist on an equal descriptive footing, they must
each be abstracted from their physical embodiment by,
for example, expressing their generating mechanisms via
minimal probabilistic encodings. Measures of unpre-
dictability, memory, and structure then naturally arise
as information-theoretic properties of these encodings.
Indeed, the fundamental interpretation of (Shannon) in-
formation is as a rate of encoding such sequences. This
recasts the informational properties as answers to dis-
tinct communication problems. For instance, a process’
structure becomes the problem of two observers, Alice
and Bob, synchronizing their predictions of the process.

However, what if the communication between Alice
and Bob is not classical? What if Alice instead sends
qubits to Bob—that is, they synchronize over a quantum
channel? Does this change the communication require-
ments? More generally, does quantum communication
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enhance our understanding of what “pattern” is in the
first place? What if the original process is itself quan-
tum? More practically, is the quantum encoding more
compact?

A provocative answer to the last question appeared
recently [1–3] suggesting that a quantum representation
can compress a stochastic process beyond its known clas-
sical limits [4]. In the following, we introduce a new con-
struction for quantum channels that improves and broad-
ens that result to any memoryful stochastic process, is
highly computationally efficient, and identifies optimal
quantum compression. Importantly, we draw out the
connection between quantum compressibility and process
cryptic order—a purely classical property that was only
recently discovered [5]. Finally, we discuss the subtle way
in which the quantum framing of pattern and structure
differs from the classical.

Synchronizing Classical Processes To frame these
questions precisely, we focus on patterns generated by
discrete-valued, discrete-time stationary stochastic pro-
cesses. There is a broad literature that addresses such
emergent patterns [6–8]. In particular, computational
mechanics is a well developed theory of pattern whose
primary construct—the ε-machine—is a process’s mini-
mal, unifilar predictor [4]. The ε-machine’s causal states
σ ∈ S are defined by the equivalence relation that groups
all histories ←−x = x−∞:0 that lead to the same prediction
of the future

−→
X = X0:∞:

←−x ∼ ←−x ′ ⇐⇒ Pr(
−→
X |←−x ) = Pr(

−→
X |←−x ′) . (1)

Helpfully, a process’ ε-machine allows one to directly
calculate its measures of unpredictability, memory, and
structure.

For example, the most basic question about unpre-
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dictability is, how much uncertainty about the next fu-
ture observation remains given complete knowledge of
the infinite past? This is measured by the well-known
Shannon entropy rate hµ [9–12]:

hµ = lim
L→∞

H(XL|X0:L) ,

where XL denotes the symbol random variable at
time L, X0:L denotes the length-L block of symbols
X0, . . . , XL−1, and H = −∑

pi log pi is the Shannon en-
tropy (in bits using log base 2) of the probability distri-
bution {pi} [13]. A process’s ε-machine allows us to di-
rectly calculate this in closed form as the state-averaged
branching uncertainty:

hµ =
∑
σi∈S

πi H(X0|S0 = σi) ,

where πi denotes the stationary distribution over causal
states σi and S0 is the state random variable at time
0. This form is possible due to ε-machine’s unifilarity : in
each state σ, each symbol x leads to at most one successor
state σ′.

One can ask the complementary question, given knowl-
edge of the infinite past, how much can we reduce our un-
certainty about the future? This quantity is the mutual
information between the past and future and is known
the excess entropy [9, and citations therein]:

E = I[X−∞:0 : X0:∞] .

It is the total amount of future information predictable
from the past. Using the ε-machine we can directly cal-
culate it also:

E = I[S+ : S−] ,

where S+ and S− are the forward (predictive) and re-
verse (retrodictive) causal states, respectively [5]. This
suggests we think of any process as channel that com-
municates the past to the future through the present. In
this view E is the information transmission rate through
the present “channel”. The excess entropy has been ap-
plied to capture the total predictable information in such
diverse systems as Ising spin models [14], diffusion in non-
linear potentials [15], neural spike trains [16–18], and hu-
man language [19].

What memory is necessary to implement predicting E
bits of the future given the past? Said differently, what
resources are required to instantiate this putative chan-
nel? Most basically, this is simply the historical infor-
mation the process remembers and stores in the present.
The minimum necessary such information is that stored
in the causal states, the statistical complexity [4]:

Cµ = H(S) = −
∑
i

πi log πi .

Importantly, it is lower-bounded by the excess entropy:

E ≤ Cµ .

Thus, to predict all E bits of the future requires remem-
bering Cµ bits of the past.

What do these quantities tell us? Perhaps the most
surprising observation is that there is a large class of
cryptic processes for which E � Cµ [5]. The structural
mechanism behind this difference is characterized by the
cryptic order : the minimum k for which H[Sk|X0:∞] = 0.
A related and more familiar property is the Markov or-
der : the smallest R for which H[SR|X0:R] = 0. Markov
order reflects a process’s historical dependence. These
orders are independent apart from the fact that k ≤ R
[20, 21]. It is worth pointing out that the equality E = Cµ
is obtained exactly for cryptic order k = 0 and, further-
more, that this corresponds with counifilarity—for each
state σ′ and each symbol x, there is at most one prior
state σ that leads to σ′ on a transition generating x [21].

These properties play a key role in the following com-
munication scenario where we have a given process’s
ε-machine in hand. Alice and Bob each have a copy.
Since she has been following the process for some time,
using her ε-machine Alice knows that the process is cur-
rently in state σj , say. From this knowledge, she can
use her ε-machine to make the optimal probabilistic pre-
diction Pr(X0:L|σj) about the process’ future (and do so
over arbitrarily long horizons L). While Bob is able to
produce all such predictions from each of his ε-machine’s
states, he does not know which particular state is cur-
rently relevant to Alice. We say that Bob and Alice are
unsynchronized.

To communicate the relevant state to Bob, Alice must
send at least Cµ bits of information. More precisely,
to communicate this information for an ensemble (size
N →∞) of ε-machines, she may, by the Shannon noise-
less coding theorem [13], send NCµ bits. Under this in-
terpretation, Cµ is a fundamental measure of a process’s
structure in that it characterizes not only the correlation
between past and future, but also the mechanism of pre-
diction. In the scenario with Alice and Bob, Cµ is seen
as the communication cost to synchronize. We can also
imagine Alice using this channel to communicate with
her future self. In this light, Cµ is understood as a fun-
damental measure of a process’ internal memory.

RESULTS

A. Quantum Synchronization

What if Alice can send qubits to Bob? Consider a com-
munication protocol in which Alice encodes the causal
state in a quantum state that is sent to Bob. Bob then
extracts the information through measurement of this
quantum state. Their communication is implemented
via a quantum object—the q-machine—that simulates
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the original stochastic process. It sports a single param-
eter that sets the horizon-length L of future words incor-
porated in the quantum-state superpositions it employs.
We monitor the q-machine protocol’s efficacy by compar-
ing the quantum-state information transmission rate to
the classical causal-state rate (Cµ).

The q-machine M(L) consists of a set {|ηk(L)〉} of pure
signal states that are in one-to-one correspondence with
the classical causal states σk ∈ S. Each signal state
|ηk(L)〉 encodes the set of length-L words that may fol-
low σk, as well as each corresponding conditional proba-
bility used for prediction from σk. Fixing L, we construct
quantum states of the form:

|ηj(L)〉 ≡
∑

wL∈|A|L

∑
σk∈S

√
Pr(wL, σk|σj) |wL〉 |σk〉 ,

where wL denotes a length-L word and Pr(wL, σk|σj) =
Pr(X0:L = wL,SL = σk|S0 = σj). Due to ε-machine
unifilarity, a word wL following a causal state σj leads to
only one subsequent causal state. Thus, Pr(wL, σk|σj) =
Pr(wL|σj). The resulting Hilbert space is the product
Hw ⊗Hσ. Factor space Hσ is of size |S|, the number of
classical causal states, with basis elements |σk〉. Factor
space Hw is of size |A|L, the number of length-L words,
with basis elements |wL〉 = |x0〉 · · · |xL−1〉.

Note that the L = 1 q-machine M(1) is equivalent
to the construction introduced in Ref. [1]. Additionally,
insight about the q-machine can be gained through its
connection with the classical concatenation machine de-
fined in Ref. [22]; the q-machine M(L) is equivalent to
the q-machine M(1) derived from the Lth concatenation
machine.

Having specified the Hilbert state space, we now de-
scribe how the q-machine produces symbol sequences.
Given one of the pure quantum signal states, we perform
a projective measurement in the Hw basis. This results
in a symbol string wL = x0, . . . , xL−1, which we take
as the next L symbols in the generated process. Since
the ε-machine is unifilar, the quantum conditional state
must be in some basis state |σk〉 of Hσ. Subsequent mea-
surement in this basis then indicates the corresponding
classical causal state with no uncertainty.

Observe that the probability of a word wL given quan-
tum state |ηk〉 is equal to the probability of that word
given the analogous classical state σk. Also, the classical
knowledge of the subsequent corresponding causal state
can be used to prepare a subsequent quantum state for
continued symbol generation. Thus, the q-machine gen-
erates the desired stochastic process and is, in this sense,
equivalent to the classical ε-machine.

Focus now on the q-machine’s initial quantum state:

ρ(L) =
∑
i

pi |ηi(L)〉 〈ηi(L)| .

We see this mixed quantum state is composed of pure
signal states combined according to the probabilities of

each being prepared by Alice (or being realized by the
original process that she observes). These are simply the
probabilities of each corresponding classical causal state,
which we take to be the stationary distribution: pi = πi.
In short, quantum state ρ(L) is what Alice must transmit
to Bob for him to successfully synchronize. Later, we
revisit this scenario to discuss the tradeoffs associated
with the q-machine representation.

If Alice sends a large number N of these states, she
may, according to the quantum noiseless coding theorem
[23], compress this message into NS(ρ(L)) qubits, where
S is the von Neumann entropy S(ρ) = tr(ρ log(ρ)). Due
to its parallel with Cµ, and for convenience, we define the
function:

Cq(L) ≡ S(ρ(L)) .

Recall that, classically, Alice must send NCµ bits. To the
extent that NCq(L) is smaller, the quantum protocol will
be more efficient.

B. Example Processes: Cq(L)

Let’s now draw out specific consequences of using the
q-machine. We explore protocol efficiency by calculating
Cq(L) for several example processes, each chosen to illus-
trate distinct properties: q-machine affords a quantum
advantage, further compression can be found at longer
horizons L, and the compression rate is minimized at the
horizon length k—the cryptic order of the classical pro-
cess [21].

For each example, we examine a process family by
sweeping one transition probability parameter, illustrat-
ing Cq(L) and its relation to classical bounds Cµ and
E. Additionally, we highlight a single representative pro-
cess at one generic transition probability. Following these
examples, we turn to discuss more general properties of
q-machine compression that apply quite broadly and how
the results alter our notion of quantum structural com-
plexity.

1. Biased Coins Process

The Biased Coins Process provides a first, simple case
that realizes a nontrivial quantum state entropy [1].
There are two biased coins, named A and B. The first
generates 0 with probability p; the second, 0 with proba-
bility 1−p. At each step, one coin is flipped—which coin
is flipped depends on the previous coin and the answer it
yields. If flipping coin A yields a 1, the next flip is made
using coin B. If flipping coin B yields a 1, the next flip is
made using coin A. Otherwise the same coin is flipped.
Its two causal-state ε-machine is shown in Fig. 1(top).

Consider p ≈ 1/2. The generated sequence is close to
that of a fair coin. And, starting with coin A or B makes
little difference to the future. There is little to predict
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FIG. 1. Biased Coins Process: (top) ε-Machine. Edges are
conditional probabilities. For example, self-loop on state A
p|0 indicates Pr(0|A) = p. (left) Statistical complexity Cµ,
quantum state entropy Cq(L), and excess entropy E as a func-
tion of A’s self-loop probability p ∈ [0, 1]. Cq(1) (dark blue)
lies between Cµ and E (bits), except for extreme parameters
and the center (p = 1/2). (right) For p = 0.666, Cq(L) de-
creases from L = 0 to L = 1 and is then constant; the process
is maximally compressed at L = 1, its cryptic order k = 1.
This yields substantial compression: Cq(1)� Cµ.

about future sequences. This intuition is quantified by
the predictable information E ≈ 0, when p is near 1/2.
See Fig. 1(left).

In contrast, since the causal states have equal prob-
ability, Cµ = 1 bit independent of parameter p. (All
information measures are quoted in log base 2.) The
gap between Cµ and E presents an opportunity for large
quantum improvement. This is because there is always
some, albeit very little, predictive advantage to remem-
bering whether the last symbol was 0 or 1. Retaining this
advantage, however small, requires the use of an entire
(classical) bit. It is only at the exact value p = 1/2 where
the two causal states merge, this advantage disappears,
and the process becomes memoryless (IID). This is re-
flected in the discontinuity of Cµ as p → 1/2, which is
sometimes misinterpreted as a deficiency of Cµ. Contrari-
wise, this feature follows naturally from the equivalence
relation and is a signature of symmetry.

Now, let’s consider these complexities in the quan-
tum setting where we monitor communication costs us-
ing Cq(L). To understand its behavior, we first write
down the q-machine’s states. For L = 0, we have the
trivial |η0A〉 = |A〉 and |η0B〉 = |B〉. For L = 1, we have
|η1A〉 =

√
1− p |0〉 |A〉+√p |1〉 |B〉 and |η1B〉 =

√
p |0〉 |A〉+√

1− p |1〉 |B〉. The von Neumann entropy of the former
is simply the Shannon information of the signal state
distribution; that is, Cq(0) = Cµ. In the latter, however,
the two quantum states have a nonzero overlap (inner
product). This implies that the von Neumann entropy is
smaller than the Shannon entropy Cq(1) < Cµ = Cq(0).
(See Ref. [24] Thm. 11.10.) Also, making use of the

Holevo bound, we see that E ≤ Cq(1) [1, 25]. These
bounds are maintained for all L: E ≤ Cq(L) ≤ Cµ. This
follows by considering the q-machine M(1) of the Lth
classical concatenation.

(Note that for p ∈ {0, 1/2, 1} these quantities are all
equal and equal to zero. This comes from the simplifica-
tion of process topology caused by state merging dictated
by the predictive equivalence relation, Eq. (1).)

How do costs change with sequence length L? To see
this Fig. 1(right) expands the left view, but for a single
value of p. As expected, Cq(L) decreases from L = 0 to
L = 1. However, it then remains constant for all L ≥ 1.
There is no additional quantum state-compression af-
forded by expanding the q-machine to use longer hori-
zons.

The Biased Coins Process has been analyzed earlier
using a construction equivalent to an L = 1 q-machine
[1], similarly finding that that the number of required
qubits falls between E and Cµ. The explanation there
for this compression (Cq(1) < Cµ) was lack of counifilar-
ity in the process’ ε-machine. More specifically, Ref. [1]
showed that E = Cq = Cµ if and only if the ε-machine
is counifilar, and E < Cq < Cµ otherwise. The Biased
Coins Process is easily seen to be noncounifilar and so
the inequality follows.

This previous analysis happens to be sufficient for the
Biased Coins Process, since Cq(L) does not decrease be-
yond L = 1. Unfortunately, only this single, two-state
process was analyzed when, in fact, the space of processes
is replete with richly structured behaviors [26]. With this
in mind and to show the power of the q-machine, we step
into deeper water to consider a 7-state process that is
almost periodic with a random phase-slip.

2. R-k Golden Mean Process

The R-k Golden Mean Process is a useful generaliza-
tion of the Markov order-1 Golden Mean Process that
allows for the independent specification of Markov order
R and cryptic order k [20, 21]. Figure 2(top) illustrates
its ε-machine. We take R = 4 and k = 3.

The calculations in Fig. 2(left) show again that Cq(L)
generically lies between E and Cµ, across this family of
processes. In contrast with the previous example, Cq(L)
continues to decrease beyond L = 1. Figure 2(right)
illustrates that the successive q-machines continue to re-
duce the von Neumann entropy: Cµ > Cq(1) > Cq(2) >
Cq(3). However, there is no further improvement beyond
a future-depth of L = 3, the cryptic order: Cq(3) =
Cq(L > 3). It is important to note that the compression
improvements at stages L = 2 and L = 3 are significant.
Therefore, a length-1 quantum representation misses the
majority of the quantum advantage.

To understand these results we need to sort out how
quantum compression stems from noncounifilarity. In
short, the latter leads to quantum signal states with
nonzero overlap that allow for super-classical compres-
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FIG. 2. 4-3 Golden Mean Process: (top) The ε-machine. (left)
Statistical complexity Cµ, quantum state entropy Cq(L), and
excess entropy E as a function of A’s self-loop probability
p ∈ [0, 1]. Cq(L) is calculated and plotted (light to dark
blue) up to L = 5. (right) For p = 0.505, Cq(L) decreases
monotonically until L = 3—the process’ cryptic order. The
additional compression is substantial: Cq(3)� Cq(1).

sion. Let’s explain using the current example. There is
one noncounifilar state in this process, state A. Both
states A and G lead to A on a symbol 1. Due to this, at
L = 1, the two q-machine states:

|ηA〉 =
√
p |1〉 |A〉+

√
1− p |0〉 |B〉 and

|ηG〉 = |1〉 |A〉

have a nonzero overlap of 〈ηA|ηG〉 =
√
p. (All other

overlaps in the L = 1 q-machine vanish.) As with the
Biased Coins Process, this leads to the inequality Cq(1) <
Cµ.

Extending the representation to L = 2 words, we find
three nonorthogonal quantum states:

|ηA〉 =
√
p2 |11〉 |A〉+

√
p(1− p) |10〉 |B〉

+
√

(1− p) |00〉 |C〉 ,
|ηF 〉 = |11〉 |A〉 , and

|ηG〉 =
√
p |11〉 |A〉+

√
1− p |10〉 |B〉 ,

with three nonzero overlaps 〈ηA|ηF 〉 = p, 〈ηA|ηG〉 =
√
p,

and 〈ηF |ηG〉 =
√
p.

Note that the overlap 〈ηA|ηG〉 is unchanged. This is
because the conditional futures are identical once the
merger on symbol 1 has taken place. That is, the words
11 and 10, which contribute to the L = 2 〈ηA|ηG〉 over-
lap, simply derive from the prefix 1, which was the source
of the overlap at L = 1. In order to obtain a change in
this or any other overlap, there must be a new merger-
inducing prefix (for that state-pair). (See Sec. E for

computational implications.) Since all quantum ampli-
tudes are positive, each pairwise overlap is a nondecreas-
ing function of L.

At L = 2 we have two such new mergers: 11 for 〈ηA|ηF 〉
and 11 for 〈ηF |ηG〉. This additional increase in pairwise
overlaps leads to a second decrease in the von Neumann
entropy. (See Sec. C for details.) Then, at L = 3, we
find three new mergers: 111 for 〈ηA|ηE〉, 111 for 〈ηE |ηF 〉,
and 111 for 〈ηE |ηG〉. As before, the pre-existing mergers
simply acquire suffixes and do not change the degree of
overlap.

Importantly, we find that at L = 4 there are no new
mergers. That is, any length-4 word that leads to the
merging of two states must merge before the fourth sym-
bol. In general, the length at which the last merger oc-
curs is equivalent to the cryptic order [21]. Furthermore,
it is known that the von Neumann entropy is a function
of pairwise overlaps of signal states [27]. Therefore, a
lack of new mergers, and thus constant overlaps, implies
that the von Neumann entropy is constant. This demon-
strates that Cq(L) is constant for L ≥ k, for k the cryptic
order.

The R-k Golden Mean Process was selected to high-
light the unique role of the cryptic order, by drawing
a distinction between it and Markov order. The result
emphasizes the physical significance of the cryptic order.
In the example, it is not until L = 4 that a naive ob-
server can synchronize to the causal state; this is shown
by the Markov order. For example, the word 000 induces
two states D and E. Just one more symbol synchronizes
to either E (on 0) or F (on 1). Yet recall that syn-
chronization can come about in two ways. A word may
either induce a path merger or a path termination. All
merger-type synchronizations must occur no later than
the last termination-type synchronization. This is equiv-
alently stated: the cryptic order is never greater than the
Markov order [21].

In the current example, we observe this termination-
type of synchronization on the symbol following 000. For
instance, 0000 does not lead to the merger of paths orig-
inating in multiple states. Rather, it eliminates the pos-
sibility that the original state might have been B.

It is the final merger-type synchronization at L = 3
that leads to the final unique-prefix quantum merger and,
thus, to the ultimate minimization of the von Neumann
entropy. So, we see that in the context of the q-machine,
the most efficient state compression is accomplished at
the process’s cryptic order. (One could certainly con-
tinue beyond the cryptic order, but at best this increases
implementation cost with no functional benefit.)

3. Nemo Process

To demonstrate the challenges in quantum compress-
ing typical memoryful stochastic processes, we conclude
our set of examples with the seemingly simple three-
state Nemo Process, shown in Fig. 3(top). Despite its
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FIG. 3. Nemo Process: (top) Its ε-machine. (left) Sta-
tistical complexity Cµ, quantum state entropy Cq(L), and
excess entropy E as a function of A’s self-loop probability
p ∈ [0, 1]. Cq(L) is calculated and plotted (light to dark
blue) for L = 0, 1, .., 19. (right) For p = 0.666, Cq(L) de-
creases monotonically, never reaching the limit since the pro-
cess’ cryptic order is infinite. The full quantum advantage is
realized only in the limit.

overt simplicity, both Markov and cryptic orders are in-
finite. As one should now anticipate, each increase in
the length L affords a smaller and smaller state entropy,
yielding the infinite chain of inequalities: Cµ ≥ Cq(1) ≥
Cq(2) ≥ Cq(3) ≥ . . . ≥ Cq(∞). Figure 3(right) veri-
fies this. This sequence approaches the asymptotic value
Cq(∞) ' 1.0332. We also notice that the convergence of
Cq(L) is richer than in the previous processes. For ex-
ample, while the sequence monotonically decreases (and
at each p), it is not convex in L. For instance, the fourth
quantum incremental improvement is greater than the
third.

We now turn to discuss the broader theory that under-
lies the preceding analyses. We first address the conver-
gence properties of Cq(L), then the importance of study-
ing the full range of memoryful stochastic processes, and
finally tradeoffs between synchronization, compression,
and prediction.

C. Cq(L) Monotonicity

It is important to point out that while we observed
nonincreasing Cq(L) in our examples, this does not con-
stitute proof. The latter is nontrivial since Ref. [27]
showed that each pairwise overlap of signal states can in-
crease while also increasing von Neumann entropy. (This
assumes a constant distribution over signal states.) Fur-
thermore, this phenomenon occurs with nonzero mea-
sure. They also provided a criterion that can exclude
this somewhat nonintuitive behavior. Specifically, if the

3 4 5 6 7 8 9 10 11 12 13 · · · ∞
Markov order R

0
1
2
3
4
5
6
7
8
9

10
11
12
13

...

∞

cr
y
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ti
c
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rd

er
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FIG. 4. Distribution of Markov order R and cryptic or-
der kχ for all 1, 132, 613 six-state, binary-alphabet, exactly-
synchronizing ε-machines. Marker size is proportional to the
number of ε-machines within this class at the same (R, kχ).
(Reprinted with permission from Ref. [29].)

element-wise ratio matrix R of two Gram matrices of sig-
nal states is a positive operator, then strictly increasing
overlaps imply a decreasing von Neumann entropy. We
note, however, that there exist processes with ε-machines
for which the R matrix is nonpositive. At the same time,
we have found no example of an increasing Cq(L).

So, while it appears that a new criterion is required to
settle this issue, the preponderance of numerical evidence
suggests that Cq(L) is indeed monotonically decreasing.
In particular, we verified Cq(L) monotonicity for many
processes drawn from the topological ε-machine library
[28]. Examining 1000 random samples of two-symbol,
N -state processes for 2 ≤ N ≤ 7 yielded no counterex-
amples. Thus, failing a proof, the survey suggests that
this is the dominant behavior.

D. Infinite Cryptic Order Dominates

The Biased Coins Process, being cryptic order k = 1, is
atypical. Previous exhaustive surveys demonstrated the
ubiquity of infinite Markov and cryptic orders within pro-
cess space. For example, Fig. 4 shows the distribution of
different Markov and cryptic orders for processes gener-
ated by six-state, binary-alphabet, exactly-synchronizing
ε-machines [29]. The overwhelming majority have infinite
Markov and cryptic orders. Furthermore, among those
with finite cryptic order, orders zero and one are not
common. Such surveys in combination with the apparent
monotonic decrease of Cq(L) confirm that, when it comes
to general claims about compressibility and complexity,
it is advantageous to extend analyses to long sequence
lengths.
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FIG. 5. Trading prediction for quantum compression: A is
Alice’s state of predictive knowledge. B is that for Bob, except
when he uses the process’ ε-machine to refine it. In which case,
his predictive knowledge becomes that in B′, which can occur
at a time no earlier than that determined by the cryptic order
k.

E. Prediction-Compression Trade Off

Let’s return to Alice and Bob in their attempt to syn-
chronize on a given stochastic process to explore some-
what subtle trade-offs in compressibility, prediction, and
complexity. Figure 5 illustrates the difference in their
ability to generate probabilistic predictions about the fu-
ture given the historical data. There, Alice is in causal
state A (signified by A for Alice). Her prediction “cone”
is depicted in light gray. It depicts the span over which
she can generate probabilistic predictions conditioned on
the current causal state (A). She chooses to map this
classical causal state to a L = 3 q-machine state and
send it to Bob. (Whether this is part of an ensemble of
other such states or not affects the rate of qubit trans-
mission, but not the following argument.) It is impor-
tant to understand that Bob cannot actually determine
the corresponding causal state (at time t = 0). He can,
however, make a measurement that results in some sym-
bol sequence of length 3 followed by a definite (classical)
causal state. In the figure, he generates the sequence
111 followed by causal state A at time t = 3. This is
shown by the blue state-path ending in B for Bob. Now
Bob is in position to generate corresponding conditional
predictions—B’s future cone Pr(X0:∞|B). As the figure
shows, this cone is only a subprediction of Alice’s. That
is, it is equivalent to Alice’s prediction conditioned on
her observation of 111 or any other word leading to the
same state.

Now, what can Bob say about times t = 0, 1, 2? The
light blue states and edges in the figure show the alternate
paths that could have also lead to his measurement of the
sequence 111 and state A. For instance, Bob can only say
that Alice might have been in causal states A, D, or E at
time t = 0. In short, the quantum representation led to
his uncertainty about the initial state sequence and, in
particular, Alice’s prediction. All together, we see that

the quantum representation gains compressibility at the
expense of Bob’s predictive power.

What if Alice does not bother to compute k and, want-
ing to make good use of quantum compressibility, uses an
L = 1000 q-machine? Does this necessarily translate into
Bob’s uncertainty in the first 1000 states and, therefore,
only a highly conditional prediction? In our example,
Alice was not quite so enthusiastic and settled for the
L = 3 q-machine. We see that Bob can use his current
state A at t = 3 and knowledge of the word that led to
it to infer that the state at t = 2 must have been A.
The figure denotes his knowledge of this state by B′. For
other words he may be able to trace farther back. (For
instance, 000 can be traced back from D at t = 3 all the
way to A at t = 0.) The situation chosen in the figure
illustrates the worst-case scenario for this process where
he is able to trace back and discover all but the first 2
states. The worst-case scenario defines the cryptic or-
der k, in this case k = 2. After this tracing back, Bob
is then able to make the improved statement, “If Alice
observes symbols 11, then her conditional prediction will
be Pr(X0:∞|A)”. This means that Alice and Bob cannot
suffer through overcoding—using an L in excess of k.

Finally, one feature that is unaffected by such manipu-
lations is the ability of Alice and Bob to generate a single
future instance drawn from the distribution Pr(X0:∞|A).
This helps to emphasize that generation is distinct from
prediction. Note that this is true for the q-machine M(L)
at any length.

METHODS

Let’s explain computing Cq(L). First, note that the

size of the q-machine M(L) Hilbert space grows as L|A|

(L2|A| for the density operators). That is, computing
Cq(L = 20) for the Nemo Process involves finding eigen-
values of a matrix with 1012 elements. Granted, these
matrices are often sparse, but the number of compo-
nents in each signal state still grows exponentially with
the topological entropy rate of the process. This alone
would drive computations for even moderately complex
processes (described by moderate-sized ε-machines) be-
yond the access of contemporary computers.

Recall though that there are, at any L, still only |S|
quantum signal states to consider. Therefore, the embed-
ding of this constant-sized subspace wastes an exponen-
tial amount of the embedding space. We desire a com-
putation of Cq(L) that is independent of the diverging
embedding dimension.

Another source of difficulty is the exponentially in-
creasing number of words with L. However, we only need
to consider a small subset of these words. Once a merger
has occurred between states |ηi〉 and |ηj〉 on word w, sub-
sequent symbols, while maintaining that merger, do not
add to the corresponding overlap. That is, the contribu-
tion to the overlap 〈ηi|ηj〉 by all words with prefix w is
complete.
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FIG. 6. Pairwise-merger machines for our three example
processes. Pair-states (red) lead to each other or enter the
ε-machine at a noncounifilar state. For example, in the R-k
Golden Mean (middle), the two pair-states AF and FG both
lead to pair-state AG on 0. Then pair-state AG leads to state
A, the only noncounifilar state in this ε-machine.

To take advantage of these two opportunities for re-
duction, we compute Cq(L) in the following manner.

First, we construct the “pairwise-merger machine”
(PMM) from the ε-machine. The states of the PMM
are unordered pairs of causal states. A pair-state (σi, σj)
leads to (σm, σn) on symbol x if σi leads to σm on x
and σj leads to σm on x. (Pairs are unordered, so we
consider m ↔ n as well.) If both components in a pair-
state lead to the same causal state, then this represents a
merger. Of course, these mergers from pair-states occur
only when entering noncounifilar states of the ε-machine.
If either component state forbids subsequent emission of
symbol x, then that edge is omitted. The PMMs for the
three example processes are shown in Fig. 6.

Now, making use of the PMM, we begin at each non-
counifilar state and proceed backward through the pair-
state transient structure. At each horizon-length, we
record the pair-states visited and with what probabilities.

This allows computing each increment to each overlap.
Importantly, by moving up the transient structure, we
avoid keeping track of any further novel overlaps; they are
all “behind us”. Additionally, the finite number of pair-
states gives us a finite structure through which to move;
when the end of a branch is reached, its contributions
cease. It is worth noting that this pair-state transient
structure may contain cycles (as it does for the Nemo
Process). In that case, the algorithm is non-halting, but
it is clear that contributions generated within a cycle de-
crease exponentially.

All of this serves to yield the set of overlaps at each
length. We then use a Gram-Schmidt-like procedure to
produce a set of |S| vectors in R|S|+ (the positive hype-
roctant) having the desired set of overlaps.

Weighting these real, positive vectors with the station-
ary distribution yields a real, positive-element represen-
tation of the density operator restricted to the subspace
spanned by the signal states. At this point, computing
Cq(L) reduces to finding eigenvalues of an |S| × |S| ma-
trix.

For example, consider the Nemo Process.
The sequence of overlap increments for L =
[0, 1, 2, 3, 4, 5, 6, 7, 8, . . .], for 〈η0|η1〉, 〈η1|η2〉, 〈η2|η0〉
respectively, is given by:√

p(1− p)
2

× [0, 0, 0, a0, a0, a0, a1, a1, a1, . . .] ,
√
p

2
× [0, 0, a0, a0, a0, a1, a1, a1, a2, . . .] , and√

p

2
× [0, a0, a0, a0, a1, a1, a1, a2, a2, . . .] ,

where a = (1− p)/2.
And, the asymptotic cumulative overlaps are given by:

〈η0|η1〉 =

√
p(1− p)
1 + p

,

〈η1|η2〉 =

√
p

1 + p
, and

〈η2|η0〉 =

√
2p

1 + p
.

From this, we computed the restricted density matrix
and, hence, its L→∞ entropy Cq(∞) ' 1.0332, as illus-
trated in Fig. 3. The density matrix and eigenvalue forms
are long and not particularly illuminating, and so we do
not quote them here. A sequel details a yet more effi-
cient analytic technique based on holomorphic functions
of the internal-state Markov chain of a related quantum
transient structure.

DISCUSSION

Recalling our original motivation, we return to the con-
cept of pattern; in particular, its representation and char-
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acterization. We showed that, to stand as a canonical
form, a process’ quantum representation should encode,
explicitly in its states, process correlations over a suffi-
ciently long horizon-length. In demonstrating this, our
examples and analyses found that the q-machine gener-
ally offers a more efficient quantum representation than
the alternative previously introduced [1].

Interestingly, the length scale at which our construc-
tion’s compression saturates is the cryptic order, a re-
cently introduced measure of causal-state merging and
synchronization for classical stochastic processes. Cryp-
tic order, in contrast to counifilarity, makes a finer divi-
sion of process space, suggesting that it is a more appro-
priate explanation for super-classical compression. We
also developed efficient algorithms to compute this ulti-
mate quantum compressibility. Their computational effi-
ciency is especially important for large or infinite cryptic
orders, which are known to dominate process space.

We cannot yet establish the minimality of our con-
struction with respect to all alternatives. For example,
more general quantum hidden Markov models (QHMMs)
may yield a greater advantage [3]. Proving minimal-
ity among QHMMs is of great interest on its own, as
it would mark a canonical quantum representation of
classical stochastic processes. As we have illustrated in
Sec. E, the observed quantum compression has come at
a cost—the q-machine is not generally fully predictive
(while the ε-machine is). There exist classical represen-
tations that make a similar tradeoff—generative models
can be (entropically) smaller than the ε-machine, but can
only generate instances as opposed to produce full pre-
dictive future morphs [30]. Teasing apart the effects of
this generative tradeoff from the purely quantum contri-
bution to compression will require a better understand-
ing of classical generative models, itself a nontrivial task.

Furthermore, claims about overall minimality of quan-
tum representations requires first defining the appropri-
ate space of comparison. We look forward to making
contributions toward answering these questions in future
work.

And, what is the meaning of the remaining gap be-
tween Cq(k) and E? In the case that Cq(k) is in fact
a minimum, this difference should represent a quantum
analog of the classical crypticity. Physically, since the
latter is connected with information thermodynamic ef-
ficiency [22, 31, 32], it would then control the efficiency
for quantum thermodynamic processes.

Let’s close by outlining future impacts of these re-
sults. Most generally, they provide yet another moti-
vation to move into the quantum domain, beyond crack-
ing secure codes [33] and efficient database queries [34].
They promise extremely high, super-classical compres-
sion of our data. If implementations prove out, they will
be valuable for improving communication technologies.
However, they will also impact quantum computing it-
self, especially for Big Data applications, as markedly
less information will have to be moved when it is quan-
tum compressed.
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