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Analysis of finite, noisy time series data leads necessarily to modern statistical inference methods.
Here we adapt Bayesian inference for applied symbolic dynamics. We show that reconciling Kol-
mogorov’s maximum-entropy partition with the methods of Bayesian model selection requires the
use of two separate optimizations. First, instrument design produces a maximum-entropy symbolic
representation of time series data. Second, Bayesian model comparison with a uniform prior selects
a minimum-entropy model, with respect to the considered Markov chain orders, of the symbolic
data. We illustrate these steps using a binary partition of time series data from the logistic and
Hénon maps as well as the Rössler and Lorenz attractors with dynamical noise. In each case we
demonstrate the inference of effectively generating partitions and kth-order Markov chain models.
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Continuous-valued time series data from a low-
dimensional deterministic chaotic attractor are
commonly transformed into a symbolic sequence.
If done correctly, the resulting discrete sequence
captures the behavior of the underlying dynam-
ical system and one can obtain, for example, ac-
curate estimates of its fundamental invariants.
However, if the projection is not done with care,
the resulting sequence can substantially misrep-
resent the true dynamics, making them appear ei-
ther simpler or more complicated than they are.
We consider the effects of dynamical noise and
finite data samples. We show how to find appro-
priate symbolic representations and estimate the
observed randomness due to both deterministic
and stochastic elements. We break this prob-
lem into two parts: (i) instrument design and
(ii) model inference. Instrument design, the first
step, attempts to minimize the distortions that
arise from projecting continuous dynamics onto
a finite alphabet. It has been known for some
time that an instrument should be designed so
that the symbol sequences it produces have max-
imum entropy rate, thereby extracting the most
information with each measurement. Here we de-
velop a Bayesian method for optimal instrument
design. We use model inference, the second step,
to estimate an optimal kth-order Markov chain
from the resulting symbolic data. We develop
Bayesian model comparison to select a minimum
entropy-rate model in order to find regularity in
the symbol sequence. Our central conclusion is
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that the two separate optimizations—instrument
design and model inference—must be done to-
gether to avoid misleading models and unneces-
sary errors in estimating system properties.

I. INTRODUCTION

Research on chaotic dynamical systems during the last
forty years has produced a new vision of the origins of
randomness [1]. It is now widely understood that ob-
served randomness can be generated by low-dimensional
deterministic systems that exhibit a chaotic attractor [2].
In addition, additive noise and finite data samples can
add to the real or apparent randomness [3, 4]. To-
day, when confronted with what appears to be a high-
dimensional stochastic process, one now asks whether or
not the process is instead a hidden low-dimensional, but
nonlinear dynamical system.

Previous research on analyzing time series from sys-
tems that display deterministic or noisy chaos focused on
estimating maps, systems of ordinary differential equa-
tions (ODEs), or local (non)linear models of the dynam-
ics [5–8]. Often, these methods are quite effective and can
be adapted to address dynamical noise in their modeling
of the dynamics. However, many do not take direct ad-
vantage of modern mathematical statistics methods, such
as maximum likelihood or Bayesian estimation. This is a
distinct disadvantage since, without such methods, esti-
mates of uncertainty in inference and in model compar-
ison are generally unavailable. These concerns motivate
our investigation of an alternative method for time series
from nonlinear dynamical systems.

Symbolic dynamics, as one of a suite of tools in dy-
namical systems theory, considers a coarse-grained view
of a continuous dynamics [9]. Transforming continuous-
state time series into a symbol sequence opens the door to
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applying well developed methods for discrete-valued ran-
dom processes from statistical physics, information the-
ory, and mathematical statistics. However, converting
from a continuous state space to a finite set of symbols
must be done with great care since chaotic dynamics are
sensitive to the measurement process [10]. As it turns
out, this sensitivity is both a blessing and a curse.

Previous developments of symbolic dynamics concen-
trated on deterministic chaos without additive noise and
assumed knowledge of the dynamical system at hand;
see, for example, Ref. [5, 9] and references therein. Re-
cent work has attempted to extend the successful anal-
ysis of one-dimensional maps to higher-dimensional sys-
tems. Examples include analysis of the Hénon map [11]
and a coupled map lattice [12]. In addition, application
of symbolic dynamics methods to ordinary differential
equations have been considered in [9, 13, 14].

Current research in applied symbolic dynamics tech-
niques focuses on extracting information from available
time series data. It is assumed the analyst has little
or no knowledge of the dynamical system under inves-
tigation and is confronted with effects from finite data
samples and additive or observational noise [15]. Under
these conditions, the main results of symbolic dynamics
are not strictly valid. As a result, a variety of meth-
ods for finding an approximate generating partition have
been developed [16–19]. In addition, methods for esti-
mating topological and metric entropies from symbolic
data have been pursued as a means to identify effective
coarse-grainings [3, 20–22]. We note that recent work on
estimating entropies from finite data samples of a more
general nature should be considered [23–26] in addition
to the references above.

Here we address the interplay between optimal in-
struments and optimal models by analyzing a set of
relatively simple nonlinear systems, though the princi-
ples and procedures generalize to more complex systems.
To effectively model time series of discrete data from a
continuous-state system two concerns must be addressed.
First, we must consider the measuring instrument and
the representation of the true dynamics which it pro-
vides. In the process of instrument design we consider
the effect of projecting a continuous state space onto a
finite set of disjoint regions—a model of measurement
with finite resolution. Second, we must consider the in-
ference of models based on this data. The relation be-
tween these steps is more subtle than one might expect.
As we will demonstrate, on the one hand, in the measure-
ment of chaotic data, the instrument should be designed
to maximize the entropy rate of the resulting symbolic
data stream. This allows one to extract as much in-
formation from each measurement as possible. On the
other hand, model inference strives to minimize the ap-
parent randomness (entropy rate) over a class of alterna-
tive models. This reflects a search for determinism and
structure in the symbolic data. These criteria are clearly
at odds, and so they must be implemented with care.

To address these issues Sec. II considers the design and

evaluation of instruments for chaotic maps with addi-
tive noise. This is predominantly a review of previously
developed methods for symbolic dynamics of noise-free
chaotic maps. However, it provides guiding principles
for the noisy and finite data-sample setting we will con-
sider. In Sec. III we describe Bayesian inference of a
kth-order Markov chain to model the resulting symbolic
data stream. We provide sufficient detail for the reader
to follow the principles under investigation. However, for
a more detailed development of the ideas presented in
the section the reader should consult [27]. In Sec. IV we
describe experiments using the logistic and Hénon maps
as well as the Rössler and Lorenz attractors with addi-
tive noise. The simplicity of these examples serves to
highlight several technical issues and trade-offs in imple-
menting the multi-level Bayesian modeling scheme that
we advocate. Finally, in Sec. V we discuss the conse-
quences of our results, drawing general lessons for mod-
eling more complex systems.

II. INSTRUMENT DESIGN

A. Symbolic dynamics

Our model system is a one-dimensional chaotic map
with additive noise [3]

xt+1 = f(xt) + ξt , (1)

where t = 0, 1, 2, . . ., xt ∈ [0, 1], and ξt is an indepen-
dent identically distributed (IID) random variable with
uniform density on the interval [−ǫ/2, ǫ/2]. We will refer
to this as a noise level of ǫ. To start, we consider the
design of instruments in the zero-noise limit. This is the
regime of most previous work in symbolic dynamics and
provides a convenient initial frame of reference.

The construction of a symbolic dynamics representa-
tion of a continuous-state system goes as follows [9]. We
assume time is discrete and consider a map f from the
state space M to itself f : M → M . This space can be
partitioned into a finite set P = {Ii : ∪iIi = M ; Ii ∩ Ij =
∅, i 6= j} of nonoverlapping regions in many ways. The
most powerful is called a Markov partition and must sat-
isfy two conditions. First, the image of each region Ii
must be a union of partition elements: f(Ii) = ∪j Ij ,∀ i.
Second, the map f(Ii), restricted to a partition element,
must be one-to-one and onto. If a Markov partition can-
not be found for the system under consideration, the next
best coarse-graining is called a generating partition. For
one-dimensional maps, these are often easily found us-
ing the extrema of f(x)—its critical points. The critical
points in the map are used to divide the state space into
intervals Ii over which f is monotone. Note that Markov
partitions are generating, but the converse is not gener-
ally true.

Given any partition P = {Ii : i = 0, 1, . . . ,K − 1},
then, a series X = x0x1 . . . xN−1 of continuous-valued
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states can be projected onto its symbolic representa-
tion S = s0s1 . . . sN−1. The latter is simply the as-
sociated sequence of partition-element indices. This is
done by defining an operator π(xt) = st that returns
a unique symbol st = i for each Ii from an alphabet
A = {0, 1, . . . ,K − 1} when xt ∈ Ii.

The central result in symbolic dynamics establishes
that, using a generating partition, increasingly long se-
quences of observed symbols identify smaller and smaller
regions of the state space. Starting the system in such
a region produces the associated measurement symbol
sequence. In the limit of infinite symbol sequences, the
result is a discrete-symbol representation of a continuous-
state system—a representation that, as we will show, is
often much easier to analyze. In this way a chosen parti-
tion creates a symbol sequence π(X) = S which describes
the continuous-valued dynamics. The choice of partition
is equivalent to our instrument-design problem.

B. Evaluating an instrument

The effectiveness of a partition (in the zero-noise limit)
can be quantified by estimating the entropy rate of the re-
sulting symbolic sequence. To do this we consider length-
L words sL = stst+1 . . . st+L−1. The block entropy of
length-L sequences obtained from partition P is then

HL(P) = −
∑

sL∈AL

p(sL) log2 p(s
L) , (2)

where p(sL) is the probability of observing the word sL ∈
AL. From the block entropy the entropy rate can be
estimated as the following limit

hµ(P) = lim
L→∞

HL(P)

L
. (3)

In practice, it is often more accurate to calculate the
length-L estimate of the entropy rate using

hµL(P) = HL(P)−HL−1(P) . (4)

Another key result in symbolic dynamics says that the
entropy of the original continuous system is found using
generating partitions [28, 29]. In particular, the true en-
tropy rate hµ(f) maximizes the estimated entropy rates:

hµ(f) = max
{P}

hµ(P) . (5)

Thus, translated into a statement about experiment de-
sign, this result tells us to design an instrument so that
it maximizes the observed entropy rate hµL(P). This re-
flects the fact that we want each measurement to produce
the most information possible about the behavior of the
measured system.

As a useful benchmark on this, useful only in the case
when we know f(x), Pesin’s Identity [30] tells us that

the value of hµ(f) is equal to the sum of the positive
Lyapunov characteristic exponents:

hµ(f) =
∑

i

λ+
i , (6)

where λ+
i indicate positive exponents. For 1-d maps there

is a single Lyapunov exponent λ which is numerically
estimated from the map f and a trajectory {xt : t =
1, . . . , N} using

λ = lim
N→∞

1

N

N
∑

t=1

log2 |f
′(xt)| . (7)

A related set of equations for multi-dimensional maps
and flows can be obtained using the Jacobian matrix and
time series data; see, for example, Ref. citeKantz06a.

Taken altogether, these results tell us how to design
our instrument for effective observation of deterministic
chaos. Notably, in the presence of noise no such the-
orems exist. However, Ref. [3] demonstrated that the
methods developed above are robust in the presence of
noise. However, we expect that the equality in Eq. (6)
no longer applies when the addition of dynamical noise
is considered. For noisy chaos, the entropy rate should
in general be greater than the sum of the Lyapunov ex-
ponents estimated from the noise-free system. This is
not incorrect, dynamical noise should increase the en-
tropy rate because it affects the dynamics of the system
of interest.

In any case, we view the output of the instrument as a
stochastic process. A sample realization D of length N
with measurements taken from a finite alphabet is the ba-
sis for our inference problem: D = s0s1 . . . sN−1 , st ∈ A.
For our purposes here, the sample is generated by a par-
tition of continuous-state sequences from iterations of a
low-dimensional map or flow on a chaotic attractor. This
means, in particular, that the resulting discrete-valued
stochastic process is stationary. We assume, in addition,
that the alphabet is binary A = {0, 1}. This assumption
is motivated by our application to a variety of systems
which display return maps that can be approximated by
single peak, one-dimensional maps. A partition divider
located at the critical point of these maps produces the
assumed binary alphabet and results in a compact coarse-
graining of the data. In principle, larger alphabets could
be considered, but, at fixed data length N , this affects
the inference process by creating fewer samples of larger-
alphabet sequences without gaining any new information.
As a result, we choose the simple binary alphabet.

III. MODELING SYMBOLIC DATA

A. Bayesian inference of kth-order Markov chains

Given a method for instrument design the next step is
to estimate a model from the observed measurements.
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Here we employ the model class of kth-order Markov
chains and Bayesian inference as the model estimation
and selection paradigm following our development in
Ref. [27].

The kth-order Markov chain model class makes two
strong assumptions about the data sample. The first is an
assumption of finite memory. In other words, the proba-
bility of st depends only on some previous k symbols in
the data sample. We introduce the more compact nota-
tion ←−s k

t = st−k+1 . . . st to indicate a length-k sequence
of measurements ending at time t. The finite memory
assumption is then equivalent to saying the probability
of the observed data can be factored into the product of
terms with the form p(st+1|

←−s k
t ). The second assumption

is stationarity. This means the probability of observed se-
quences does not change with position in the data sample:
p(st+1|

←−s k
t ) = p(s|←−s k) for any index t. As noted above,

this assumption is satisfied by the data streams consid-
ered here. The first assumption, however, is often not
true of chaotic systems. They can generate time series
with infinitely long temporal correlations. Thus, in some
cases, we may be confronted with out-of-class modeling.
Note, however, that in the case that the instrument de-
fines a Markov partition, the Markov chain model class
is exactly appropriate.

A kth-order Markov chain model Mk has a set of pa-
rameters

θk = {p(s|←−s k) : s ∈ A,←−s k ∈ Ak} . (8)

The notation θ is conventional in mathematical statistics
for all model parameters that are to be estimated. For
example, a k = 1 Markov chain has parameters θ1 =
{p(0|0), p(1|0), p(0|1), p(1|1)}. Consistent with this, for
integrals we write dθ1 = dp(0|0) dp(1|0) dp(0|1) dp(1|1).
A similar pattern holds for larger Markov chain order k.

In Bayesian inference we connect the model parameters
θk for model Mk with the observed data D. To do this,
we write down the likelihood P (D|θk,Mk) and the prior

P (θk|Mk) and then calculate the evidence P (D|Mk).
The posterior distribution P (θk|D,Mk) is obtained from
these using Bayes’ theorem:

P (θk|D,Mk) =
P (D|θk,Mk) P (θk|Mk)

P (D|Mk)
. (9)

The posterior describes the distribution of model pa-
rameters θk given the model Mk and observed data D.
From this the expectation of the model parameters can
be found along with estimates of the uncertainty in the
expectations. In the following sections we outline the
specification of these quantities following Ref. [27, 31, 32].

1. Likelihood

Within the Markov chain model class, the likelihood
of an observed data sample is given by:

P (D|θk,Mk) =
∏

s∈A

∏

←−s k∈Ak

p(s|←−s k)n(←−s ks) , (10)

where n(←−s ks) is the number of times the word ←−s ks oc-
curs in sample D. We note that Eq. (10) is conditioned
on the start sequence ←−s k

k−1 = s0s1 . . . sk−1.

2. Prior

The prior is used to describe knowledge about the
model class. In the case of Mk models, we choose a
product of Dirichlet distributions—the so-called conju-

gate prior [31, 32]. Its form is:

P (θk|Mk) =
∏

←−s k∈Ak

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))
(11)

× δ(1−
∑

s∈A

p(s|←−s k))
∏

s∈A

p(s|←−s k)α(←−s ks)−1 ,

where α(←−s k) =
∑

s∈A α(←−s ks) and Γ(x) is the gamma

function. The prior’s hyperparameters {α(←−s ks) : s ∈
A,←−s k ∈ Ak} are assigned to reflect knowledge of the
system at hand and must be real and positive. An in-
tuition for the meaning of the hyperparameters can be
obtained by considering the mean of the Dirichlet prior:

Eprior[p(s|
←−s k)] =

α(←−s ks)

α(←−s k)
. (12)

In practice, a common assignment is α(←−s ks) = 1 for all
hyperparameters. This produces a uniform prior over all
of the Markov chain parameters, reflected by the expec-
tation Eprior[p(s|

←−s k)] = 1/|A|.
The uniform prior for the Markov chain parameters

results in a distribution of entropy rates peaked at the
maximum of log2 |A| bits per symbol. As a result, esti-
mates of the entropy rate for any order k will approach
the true value from above.

3. Evidence

The evidence is often seen as merely a normalization
term in Bayes’ theorem—a term that can be ignored.
However, when model comparison of different orders and
estimation of entropy rates are considered, it becomes a
fundamental part of the analysis. The evidence is defined
as:

P (D|Mk) =

∫

dθk P (D|θk,Mk)P (θk|Mk) , (13)

and provides the average of the likelihood with respect
to the prior. Equivalently, it gives the probability of the
data D given the model Mk. For the likelihood and prior
derived above, the evidence is found analytically [27]:

P (D|Mk) =
∏

←−s k∈Ak

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))
(14)

×

∏

s∈A Γ(n(←−s ks) + α(←−s ks))

Γ(n(←−s k) + α(←−s k))
.
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4. Posterior

The posterior distribution is constructed from the ele-
ments derived above according to Bayes’ theorem Eq. (9),
resulting in a product of Dirichlet distributions. This is a
result of choosing the conjugate prior and generates the
familiar form:

P (θk|D,Mk) =
∏

←−s k∈Ak

Γ(n(←−s k) + α(←−s k))
∏

s∈A Γ(n(←−s ks) + α(←−s ks))

× δ(1−
∑

s∈A

p(s|←−s k)) (15)

×
∏

s∈A

p(s|←−s k)n(←−s ks)+α(←−s ks)−1 .

The mean for the model parameters θk according to the
posterior distribution is then:

Epost[p(s|
←−s k)] =

n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)
. (16)

Given these estimates of the model parameters θk, the
next step is to decide which order k is best for a given
data sample.

B. Model comparison of orders k

Bayesian model comparison is very similar to the pa-
rameter estimation process discussed above. Following
Ref. [27] we start by enumerating the set of model orders
to considerM = {Mk : k ∈ [kmin, kmax]}. The probabil-
ity of a particular order can be found by considering two
factorings of the joint distribution P (Mk,D|M). Solving
for the probability of a particular order we obtain:

P (Mk|D,M) =
P (D|Mk,M)P (Mk|M)

P (D|M)
, (17)

where the denominator is given by the sum

P (D|M) =
∑

M′

k
∈M

P (D|M′k,M)P (M′k|M) . (18)

This expression is driven by two components: the ev-
idence P (D|Mk,M) = P (D|Mk) in Eq. (14) and the
prior over model orders P (Mk|M). Two common pri-
ors are a uniform prior over orders and an exponen-
tial penalty for the size of the model P (Mk|M) ∝
exp(−|Mk|). For a kth-order Markov chain the size of
the model, or number of free parameters, is given by
|Mk| = |A|

k(|A| − 1). To illustrate the method we will
consider only the prior with a penalty for model size.
Under these assumptions, the probability of order Mk is
given by

P (Mk|D,M) =
P (D|Mk,M) exp(−|Mk|)

∑

M′

k
P (D|M′k,M) exp(−|M′k|)

.

(19)

In the examples to follow, the model order Mk which has
the highest probability according to the above expression
will be used for estimation of the entropy rate.

C. Entropy rate estimation

The entropy rate of an inferred Markov chain can be
estimated by extending the method for independent iden-
tically distributed (IID) models of discrete data [24] us-
ing type theory [33]. In simple terms, type theory shows
that the probability of an observed sequence can be
suggestively rewritten in terms of the relative entropy

(Kullback-Leibler (KL) distance) and the entropy rate
Eq. (3). This form suggests a connection to statistical
mechanics. This, in turn, allows us to define a parti-
tion function and so to find average information-theoretic
quantities over the posterior by taking derivatives. In the
large data limit, the relative entropy vanishes and we are
left with the desired estimation of the Markov chain’s
entropy rate.

We introduce this method for computing the entropy
rate for two reasons. First, the result is a true average
over the posterior distribution, reflecting a strict adher-
ence to Bayesian methods. Second, this result provides
a computationally efficient method for entropy rate es-
timation without, for example, needing numerical linear
algebra packages. This provides a distinct benefit when
large alphabets or Markov chain orders k are considered.
The complete development is beyond our scope here; see
Ref. [27]. However, we will provide a brief sketch of the
derivation and quote the resulting estimator.

The connection we draw between inference and infor-
mation theory starts by considering the product of the
prior Eq. (11) and likelihood Eq. (10):

P (θk|Mk)P (D|θk,Mk) = P (D, θk|Mk) . (20)

This product forms a joint distribution over the observed
data D and model parameters θk given the model Mk.
Writing the normalization constant from the prior as Z to
save space, this joint distribution can be written, without
approximation, in terms of conditional relative entropies
D[·‖·] and entropy rates hµ[·]:

P (D, θk|Mk) = Z 2−βk(D[Q‖P ]+hµ[Q])

× 2+|A|k+1(D[U‖P ]+hµ[U ]) , (21)

where βk =
∑

←−s k,s

[

n(←−s ks) + α(←−s ks)
]

. The probabili-
ties used above are:

Q =

{

q(←−s k) =
n(←−s k) + α(←−s k)

βk

,

q(s|←−s k) =
n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)

}

(22)

U =

{

q(←−s k) =
1

|A|k
, q(s|←−s k) =

1

|A|

}

, (23)



6

whereQ is the distribution defined by the posterior mean,
U is a uniform distribution, and P = {p(←−s k), p(s|←−s k)}
are the “true” parameters given the model class. The
information theory quantities are given by

D[Q‖P ] =
∑

s,←−s k

q(←−s k)q(s|←−s k) log2

q(s|←−s k)

p(s|←−s k)
(24)

hµ[Q] = −
∑

s,←−s k

q(←−s k)q(s|←−s k) log2 q(s|
←−s k) . (25)

The form of Eq. (21) and its relation to the evidence
motivates the connection to statistical mechanics. We in-
terpret the evidence P (D|Mk) =

∫

dθkP (D, θk|Mk) as a
partition function Z = P (D|Mk). Using conventional
techniques from statistical mechanics, the expectation
and variance of D[Q‖P ] + hµ[Q] are obtained by taking
derivatives of − logZ with respect to βk. In this sense
E(Q,P ) = D[Q‖P ] + hµ[Q] plays the role of an energy
and βk is comparable to an inverse temperature. We take
advantage of the known form for the evidence provided
in Eq. (14) to exactly calculate the desired expectation,
resulting in:

Epost[E(Q,P ) ] =
1

log 2

∑

←−s k

q(←−s k)ψ(0)
[

βkq(
←−s k)

]

(26)

−
1

log 2

∑

←−s k,s

q(←−s k)q(s|←−s k)ψ(0)
[

βkq(
←−s k)q(s|←−s k)

]

,

where the polygamma function is defined as ψ(n)(x) =
dn+1/dxn+1 log Γ(x).

The meaning of the terms on the RHS of Eq. (26) is not
immediately clear. However, we can use an expansion of
the n = 0 polygamma function ψ(0)(x) = log x− 1/2x+
O(x−2), which is valid for x≫ 1, to find the asymptotic
form:

Epost[E(Q,P ) ] = H[q(←−s k)q(s|←−s k)]−H[q(←−s k)]

+
1

2βk

|A|k(|A| − 1) +O(1/β2
k) . (27)

The values of H[q(←−s k)q(s|←−s k)] and H[q(←−s k)] are block
entropies over words of length k + 1 and k, respec-
tively. These entropies can be calculated using the form
in Eq. (2) and the distribution Q in Eq. (22). From this
expansion we can see that the first two terms make up
the entropy rate hµk[Q] = H[q(←−s k)q(s|←−s k)]−H[q(←−s k)].
The last term must be associated with the conditional
relative entropy between the posterior mean estimate

(PME) distribution Q and the true distribution P . As-
suming the conditions for the approximation in Eq. (27)
hold, the factor 1/βk tells us that the desired expectation
will approach the entropy rate as 1/N , where N is the
length of the data sample.

IV. EXAMPLES

Now that we have our instrument design and model
inference methods fully specified we can describe the ex-
periments used to test them. We consider the logistic and
Hénon maps as well as the Rössler and Lorenz ODEs.
The specifics of the time series generation for each sys-
tem are detailed below. For each time series, a family of
binary partitions, appropriate to the system under study
is applied to the suitably processed data.

These examples serve to demonstrate the principles
that are the basis of above methods: (1) instrument de-
sign should maximize the entropy rate of the generated
symbol sequence and (2) model selection should mini-
mize the entropy rate of the chosen model order. The
first principle relies on the applicability of abstract sym-
bolic dynamics, as laid out in Sec. II, to the dynamical
noise setting. The second principle can be understood
as connecting model comparison with entropy rate esti-
mation: the Bayesian evidence appears in both model
comparison and entropy-rate estimation. Careful inspec-
tion reveals that minimizing the entropy rate for a given
order k maximizes the corresponding model probability.

A. Logistic Map

Data from simulations of the one-dimensional logistic
map, given by

xt+1 = rxt(1− xt) + ξt , (28)

at the chaotic value of r = 3.7 were the basis for the
analysis in our first example. A set of noise levels from
ǫ = 10−4 to ǫ = 10−1 was used for the added fluctuations.
Recall that noise level ǫ means a uniform density on the
interval [−ǫ/2, ǫ/2] was sampled.

For each value of ǫ considered, a random initial condi-
tion in the unit interval was generated and one thousand
transient steps, not analyzed, were generated to find a
typical state on the chaotic attractor. Next, a single time
series x0, x1, . . . , xN−1 of length N was produced.

The family of partitions used to analyze the logistic
map data were given by

P(d) = {“0” ∼ x ∈ [0, d), “1” ∼ x ∈ [d, 1]} , (29)

and parametrized by the decision point d ∈ [0, 1].
In Figures 1 to 3 we analyze time series from the logis-

tic map at r = 3.7—a typical chaotic parameter setting
at which deterministic dynamics plus noise stays within
the unit interval. Figure 1 illustrates the instrument de-
sign procedure for a single time series of length N = 105

generated with ǫ = 10−3. Panel (b) shows the entropy
rate hµ(d) for four hundred decision points d. The de-
pendence on d is nontrivial with many local maxima. In
fact, there are two prominent peaks, one at d = 1/2 and
the other at d = f−1(1/2). One also sees that values of
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FIG. 1: Optimizing instrument design for the logistic map at
r = 3.7 and with noise level ǫ = 10−3. Panel (b) plots entropy
rate hµ(d) versus decision point d. The dashed horizontal
line provides the noise-free Lyapunov exponent estimate of
λ ≈ 0.51. Panel (a) plots the selected optimal Markov chain
order for each decision point.

d off the attractor produce sequences of all 0s or 1s and
so have zero entropy rate.

The dashed gray line provides a numerical estimate of
the Lyapunov exponent for this r value: λ ≈ 0.512 bits
per iteration. The entropy rate estimate for d = 1/2 is
hµ ≈ 0.560 bits per symbol. This larger estimate relative
to the noise-free value of the Lyapunov exponent is not
unexpected due to the additive noise and modest sam-
ple length. Unlike the noise-free form for Pesin’s Identity
given in Eq. (6), we expect the observed entropy rate to
contain contributions from local spreading, added fluctu-
ations, and finite data [3, 34].

In panel (a) of Fig. 1 we consider selecting an optimal
Markov chain order versus d. The selected order k was
used to estimate the entropy rate for each value of d.
Order k = 1 is only selected for the values of d which
produce all 0s or 1s. This reflects the fact that d =
1/2 is not a Markov partition for r = 3.7. However,
this decision point is still generating. This is indicated
by the entropy rate hµ(d) reaching its maximum there.
It is important to note that simpler models, associated
with lower selected order k, can be found away from the
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FIG. 2: The model-order selection process for a sample of
decision points at r = 3.7. Panel (b) shows the estimated
entropy rate hµ(k) versus model order k. Panel (a) plots
the posterior probability of the model order, illustrating the
selection of the optimal order with minimum entropy rate.

generating partition. These are examples of apparently
simpler models being inferred due to misplaced decision
points—decision points with nonmaximal entropy rate.

Next, consider the model-order estimation process for
r = 3.7 presented in Fig. 2. In panel (b) we plot the
estimated entropy rate hµ(k) versus model order k for
a variety of decision points. In this case only the triv-
ial decision point of d = 0.2 selects the k = 1 Markov
chain. However, the approximate generating partition at
d = 1/2 selects k = 7. Here the appropriate decision
point results in a more complicated model. In panel (a)
of Fig. 2 we plot the posterior model probability versus
k. Again, this demonstrates that the model order with
minimum entropy rate hµ(k) is selected for each decision
point.

Finally, we consider a variety of fluctuation levels from
ǫ = 10−4 to ǫ = 10−1 for the logistic map at r = 3.7
and using a sample size N = 105 in Fig. 3. In panel (b)
we plot the estimated entropy rate hµ(d) versus decision
point for each noise level. In addition, the Lyapunov
exponent for the noise-free map is plotted as a dashed
horizontal line. An obvious pattern, as discussed above,
emerges: the entropy rate increases with ǫ for constant
r and sample size N . However, the appropriate decision
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FIG. 3: Analysis of instrument design at a variety of noise
levels for the logistic map at r = 3.7 and sample size N = 105.
Panel (b) plots entropy rate hµ(d) versus decision point d for
ǫ = 10−4 to ǫ = 10−1. The dashed gray line provides the
Lyapunov exponent λ ≈ 0.51 for the logistic map at r = 3.7.
Panel (a) plots the selected optimal Markov chain order for
each decision point. The largest and smallest noise levels are
considered.

point of d = 1/2 is still selected despite the increasing
fluctuations. In panel (a) we consider the order of the
model selected for the largest and smallest noise level,
ǫ = 10−1 and ǫ = 10−4 respectively. As the noise level
increases there are two interesting effects. First, the dy-
namics at large ǫ occur on a larger portion of the unit
interval. This results in higher-order Markov chains at
decision points off of the noise-free attractor. Second,
the Markov chain order for regions on the noise-free at-
tractor are decreased for increasing ǫ. In this, we see that
fluctuations mask the underlying deterministic structure,
reducing the range of temporal correlations.

B. Hénon Map

Simulations from the two-dimensional Hénon map,
given by

xt+1 = 1− ax2
t + yt + ξx

t

yt+1 = bxt + ξy
t , (30)

at a = 1.4 and b = 0.3, provided the time series for our
second example. A set of noise levels from ǫ = 10−4

to ǫ = 10−2 were considered for ξx
t and ξy

t . Larger ǫ
resulted in orbits that diverged. For each value of ǫ, a
random initial condition was generated and one thousand
transient steps, not analyzed, were generated to find a
typical state on the noisy attractor. Next, a single time
series of length N = 105 was produced.

(b)

0

1

4

1

2

3

4

1
h

µ
(d

):
E

n
tr

op
y

ra
te

(b
it

s)
h

µ
(d

):
E

n
tr

op
y

ra
te

(b
it

s)

−1.5 −1 −0.5 0 0.5 1 1.5

d (Decision Point)d (Decision Point)

ǫ = 1e-004
ǫ = 1e-003
ǫ = 1e-002
λ

(a)

0

2

4

6

8

10

12

14

k
:

S
el

ec
te

d
o
rd

er
k
:

S
el

ec
te

d
o
rd

er

−1.5 −1 −0.5 0 0.5 1 1.5

d (Decision Point)d (Decision Point)

ǫ = 1e-004
ǫ = 1e-002

FIG. 4: The instrument design process for the Hénon map at
a = 1.4 and b = 0.3. Panel (b) shows the estimated entropy
rate hµ(d) versus decision point d for various noise levels.
Panel (a) plots the selected model order versus decision point
for the largest and smallest noise levels considered.

For the Hénon map we consider the family of partitions

P(d) = {“0” ∼ x ∈ [−1.5, d), “1” ∼ x ∈ [d, 1.5]} , (31)

which dissects the x−y plane into two by a line at x = d.
(y-values of the generated time series are effectively ig-
nored.) Although this might seem to be an overly simple
instrument, the results demonstrate that it is quite effec-
tive.

In Fig. 4 we consider instrument design for the Hénon
map for the parameters above. In panel (b) we plot the
entropy rate hµ(d) versus decision point d for a variety of
fluctuation levels. In addition, a numerical estimation of
the positive Lyapunov exponent for the noise-free Hénon
map is plotted as a dashed horizontal line. As with the
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logistic map, we see a nontrivial dependence of the en-
tropy rate on the decision point with a variety of local
maxima. However, the range of noise levels has a rela-
tively small effect on the estimated entropy rate, increas-
ing the value only slightly. As discussed above, we found
values of ǫ greater than ǫ = 10−2 caused trajectories to
diverge. For each of the fluctuation levels considered, an
optimal decision point near d = −0.05 was found. The
estimated noise-free Lyapunov exponent (calculated with
a time series of length 105) was found to be λ ≈ 0.61 bits
per iteration. The estimated values of the entropy rate
at the chosen decision point were found to range from
hµ ≈ 0.65 to 0.66 bits per symbol from smallest ǫ to
largest.
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FIG. 5: The model-order selection process for the Hénon map
at a = 1.4, b = 0.3 and fluctuation level ǫ = 10−3. Panel (b)
shows the estimated entropy rate hµ(k) versus model order
k for a set of decision points. Panel (a) plots the posterior
model probability versus model order k for a variety of deci-
sion points. Note that the results for all decision points except
d = 1.125 overlap in this panel and select k = 8.

In panel (a) of Fig. 4 we show the selected model-order
versus decision point for the largest and smallest fluctua-
tions considered. The results are comparable to panel (a)
of Fig. 3 for the logistic map. As we saw there, increased
fluctuations generally resulted in a decrease in the se-
lected order. We see a similar effect in the results from
the Hénon map, although the effects are not as dramatic
due to the limited range of ǫ which could be considered

without divergence.
Finally, consider the model-selection process for the

Hénon map shown in Fig. 5 for a variety of decision
points. Panel (b) shows the entropy rate hµ(k) versus
order k. As with the logistic map, the decision point
closest to the selected value, in this case d = 0, displays
the largest value of hµ(k) for all k. In addition, the min-
imum of hµ(k) with respect to k identifies the selected
order k. Panel (a) plots the posterior model probabil-
ity versus order k. Here we see that the order k with
a minimum in hµ(k) in panel (b) is selected by model
comparison, reflected by a high probability in panel (a).

C. Rössler Attractor

With our third example we analyze a symbolic time
series from a system of ODEs, rather than a discrete
time map. The continuous-time and continuous-state
data must first be transformed so that we can apply a
simple binary partition and so estimate Markov chain
model. We start by describing the system of interest and
the techniques used to generate and sample the data.

The Rössler flow is given by the set of ODEs [35]

dx

dt
= −y − z + ξx

dy

dt
= x+ ay + ξy

dz

dt
= b+ z(x− c) + ξz , (32)

where a = 0.2, b = 0.2, and c = 5.7 were used for our
simulations. Data was generated by using a 4th-order
Runge-Kutta integrator with step size dt = 0.01. Each
noise term ξx, ξy, and ξz used a noise level of ǫ = 3. The
fluctuations were added at each integration time step. A
random initial condition was generated and 50 000 time
steps, not considered, were integrated to remove tran-
sients. Next, a single time series of 107 time steps was
created and a sampling rate of one data point per 25 in-
tegration time steps was employed. In this way, a time
series of {xt, yt, zt} was created.

Next, the time series data was processed in a man-
ner that takes advantage of the attractor’s low dimen-
sion. The {xt} time series was used to create a Lorenz

map [36]. This is done by scanning the data for maxima
in the time series. Each time a local maxima is encoun-
tered, the value is recorded as demonstrated in Fig. 6. In
this way, a return map can be constructed by consider-
ing the sequence of maxima. The result of this process
is shown in Fig. 7, where the first 1 000 data points from
the Lorenz map are plotted. A noisy, single hump map
is clearly present.

Following the recipe described above results in a set of
maxima of length N = 17 104. This was the time series
that we analyzed.

For the Rössler data we consider a family of partitions

P(d) = {“0” ∼ x ∈ [0, d), “1” ∼ x ∈ [d, 15]} , (33)
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FIG. 7: Lorenz map created from the x-dynamics of the
Rössler attractor. For this plot a fluctuation level of ǫ = 3
was used for each degree of freedom. A noisy unimodal return
map, similar to the logistic map, is clearly present.

parametrized by the decision point d. The minimum of
d = 0 and maximum of d = 15 were chosen to cover the
range of xmax values exhibited plus a margin.

The results of the instrument design process for the
Rössler attractor data are presented in Fig. 8. Panel(b)
plots the entropy rate hµ(d) versus decision point for four
hundred values between d = 0 and d = 15. As with the
previous examples, we see a nontrivial relation between
the entropy rate and the decision point. There are mul-
tiple peaks with a clear global maximum of hµ(d) ≈ 0.85
bits per symbol at d = 7.725. If we compare this with
the return map in Fig. 7 we see that this decision point
identifies the apparent critical point.

The entropy rate is quoted in bits per symbol and so
is not numerically comparable to Lyapunov exponents
given in the ODEs’ natural time units. For example, in
Ref. [37] the single positive Lyapunov exponent is quoted
as λ+ = 0.0714 (base-e) for noise-free dynamics. To di-
rectly compare the value we must divide our value of
hµ(d) by the average time between maxima (found to be
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FIG. 8: The instrument design process for the Rössler attrac-
tor at a = 0.2, b = 0.2, and c = 5.7. Panel (b) shows the
estimated entropy rate hµ(d) versus model order d for noise
level ǫ = 3. Note the entropy rate is given in bits per symbol
and so should not be directly compared to the positive Lya-
punov exponent estimated from the flow. (See discussion in
the text.) Panel (a) plots the selected model order versus de-
cision point. Note low orders are selected due to the relatively
small data sample N = 17 104.

∆t = 5.85) and multiply by log 2 to convert to base-e.
This results in estimated entropy rate of hest ≈ 0.1. As
we saw in previous examples, a small data set with added
noise is expected to display a larger value for the entropy
rate. With increasing data we expect hest to approach
λ+ = 0.0714. However, we do not expect equality of
these estimates due to contributions from the dynamical
noise.

Finally, in panel (a) of Fig. 9 we consider the model-
order selected versus decision point for the Rössler at-
tractor data. As we saw in previous examples, k = 1 is
selected for instruments that label data as all 0s or all
1s. However, a range of orders is selected when meaning-
ful decision points are used. The generally lower order
of the Markov chains selected in this example are due to
the smaller data sample of N = 17 104 rather than 105.
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D. Lorenz Attractor

In our final example we consider another well known
chaotic attractor found in the Lorenz ODEs. This sys-
tem models the three dominant Fourier modes of a two-
dimensional fluid heated from below. As with the Rössler
system, we will demonstrate that an effective symbolic
representation can be found using the Lorenz map tech-
nique.

The Lorenz chaotic attractor is exhibited by the
ODEs [36]

dx

dt
= α(y − x) + ξx

dy

dt
= x(r − z)− y + ξy

dz

dt
= xy − bz + ξz , (34)

with α = 10, r = 28, and b = 8/3. Data was gener-
ated by using a 4th-order Runge-Kutta integrator with
step size dt = 0.001. Each noise term ξx, ξy, and ξz

used a fluctuation level of ǫ = 6 and noise was added
at each integration time step. A larger fluctuation level
was employed here due to the large size of the attractor
when compared with the previous example. As before, a
random initial condition was generated and 50 000 time
steps, not considered, were integrated to remove tran-
sients. Next, a single time series of 107 time steps was
created and a sampling rate of one data point per 25 in-
tegration time steps was employed, creating a time series
of {xt, yt, zt}.
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FIG. 9: The Lorenz map extracted from the z-dynamics of
the Lorenz attractor. For this plot a noise level of ǫ = 6 was
applied to each coordinate. A noisy cusp map is associated
with this attractor.

Unlike the Rössler, where the time series of x-maxima
reveals the attractor’s low dimension, the Lorenz system
is most effectively reduced when the sequence of {zmax}
is considered. Using the same technique as described
for Fig. 6, a sequence of z-maxima are collected resulting
in a data set of size N = 13 311. However, when the

return map is considered in Fig. 9 a cusp map is revealed
rather than the relatively smooth map of Fig. 7.

For the Lorenz data we consider a family of binary
partitions

P(d) = {“0” ∼ x ∈ [25, d), “1” ∼ x ∈ [d, 50]} . (35)

parametrized by the decision point d. The minimum and
maximum values of d were chosen so that they cover the
range of observed zmax values plus a buffer.
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FIG. 10: The instrument design process for the Lorenz at-
tractor at α = 10, r = 28, and b = 8/3. Panel (b) shows the
estimated entropy rate hµ(d) versus model order d for noise
level ǫ = 6. Panel (a) plots the selected model order versus
decision point.

In Fig. 10 we consider the instrument design process
for the Lorenz data. In panel (b) we plot the entropy
rate hµ(d) versus decision point for four hundred values
from d = 25 to d = 50, as given in Eq. (35). In this
data set a maximum entropy rate of hµ(d) = 0.982 bits
per symbol is found at d = 38.44. As discussed with the
Rössler example, the entropy rate value is not directly
comparable with the quoted positive Lyapunov exponent
of λ+ = 0.9056 (base-e) in Ref. [37]. To do this we divide
by the average time per symbol, found to be ∆t = 0.7512
in this case, and multiply by log 2 to produce a base-e
estimate. We find hest ≈ 0.902.
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V. CONCLUSION

We analyzed the degree of randomness generated by
deterministic chaotic systems with a small amount of ad-
ditive noise. Appealing to the well developed theory of
symbolic dynamics, we demonstrated that this required a
two-step procedure: first, the careful design of a measur-
ing instrument and, second, effective model-order infer-
ence from the resulting data stream. Two modeling prin-
ciples emerged. The instrument should be designed to be
maximally informative and the model inference should
produce the most compact description in the model class.
In carrying these steps out an apparent conflict appeared:
in the first step of instrument design, the entropy rate was
maximized; in the second, it was minimized. Moreover,
it was seen that instrument design must not be simulta-
neously combined with model inference. In fact, treating
instrument design as part of the model inference process
leads to nonsensical results, such as using a trivial deci-
sion point that labels all data as a 0.

We suggest that these modeling principles can be ap-
plied to other instrument-model combinations, including
those appropriate for higher-dimensional time series. In
principle, an instrument is any classification method. For

example, neural networks, clustering algorithms, or ge-
netic algorithms can be employed to discretely partition
a time series. The model of the resulting symbolic data
stream can then be used to monitor the effectiveness of
the instrument and to estimate the underlying dynamical
system’s invariant properties. The model class used can
be Markov chains, hidden Markov models, context-trees,
or ǫ-machines, to name a few options.

The lessons learned are very simply summarized,
though: Use all of the data and nothing but the data. For
noisy chaos careful measurement partition analysis cou-
pled with Bayesian inference and Bayesian model com-
parison accomplish both of these goals.
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