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Experimentalists observe phenotypic variability even in isogenic bacteria populations. We explore
the hypothesis that in fluctuating environments this variability is tuned to maximize a bacterium’s
expected log-growth rate, potentially aided by epigenetic (all inheritable nongenetic) markers that
store information about past environments. Crucially, we assume a time delay between sensing and
action, so that a past epigenetic marker is used to generate the present phenotypic variability. We
show that, in a complex, memoryful environment, the maximal expected log-growth rate is linear in
the instantaneous predictive information—the mutual information between a bacterium’s epigenetic
markers and future environmental states. Hence, under resource constraints, optimal epigenetic
markers are causal states—the minimal sufficient statistics for prediction—or lossy approximations
thereof. We propose new theoretical investigations into and new experiments on bacteria phenotypic
bet-hedging in fluctuating complex environments.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey 02.50.Ga

Isogenic bacteria populations exhibit phenotypic variabil-
ity [1–4]. Some variability is unavoidable due to noise
in the underlying biological circuits and when and how
they emerge during development [5]. Such noise is not
always detrimental to organism functioning: phenotypic
variability can be tuned to maximize population fitness
[6, 7]. Such optimal phenotypic variability is called bet
hedging [8, 9] and has been implicated in seed germination
in annual plants [10, 11] and in phenotype switching by
bacteriophages [12] and fungi [13–16].
At first blush, it may seem strange that a population
of organisms should not simply express the phenotype
that grows best in the most probable environment—a
deterministic strategy. Imagine, however, that the en-
vironment fluctuates somewhat unpredictably (as real
environments often do), sometimes reaching a less prob-
able state in which that phenotype does not reproduce.
If organisms only express that single phenotype, then
eventually, the population will go extinct. A population
of organisms should, instead, hedge its “bets” about fu-
ture environmental states, using the unavoidable noise in
biological circuits [5] or other mechanisms—e.g., slipped-
strand mispairing [2, 3]—to express different phenotypes
with varying probabilities. Given this, the only question
is: how should the population hedge its bets?
The first theoretical analysis of such bet-hedging was pro-
vided by Kelly in a classic analysis of gambling; see Refs.
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[17] and [18, Ch. 6]. If one thinks of organisms as money,
to draw out the parallel, then gambling and bacterial
growth are analogous. Adapting Kelly’s setup, only one
phenotype can reproduce in any given environmental state.
Kelly found in effect that (i) the optimal probability of
expressing a phenotype is the probability of observing the
corresponding environmental state and (ii) the maximal
expected log-growth rate is linear in the negative entropy
of a single environmental state’s probability.
Realistically, though, more than one phenotype might
reproduce in a particular environment. For example,
a bacteria phenotype optimized for growth on a high
concentration of lactose can still grow on glucose, albeit
with additional energetic expenditure [19]. References
[20, 21] analyzed bet-hedging in just such a case.
Furthermore, epigenetics provides a mechanism by which
organisms can remember the environmental past [22].
This memory acts as side information about future
environmental states—information that can be used
to increase the population’s expected log-growth rate
[17, 18, 23].1 And, this suggests in turn that such mem-
ory should affect optimal phenotypic variability. In fact,
in the context of seed germination, predictive cues about
the current environmental state were found to change the
optimal germination fraction [25]. We assume that there
is a time delay between sensing and action, e.g. as in Ref.
[26], so that prior epigenetic memory is used to choose the

1 In a different context, this observation about memory was used
to improve estimates of the entropy of written English [24].
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present phenotype. Hence, one’s best guide to the present
environmental state are indeed the past environmental
states.
Here, we solve for optimal phenotypic variability and use
this to calculate a population’s maximal expected log-
growth rate when accounting for (i) nonzero reproduction
rates of suboptimal phenotypes, (ii) limited epigenetic
memory, and (iii) sensor noise. We find, as one might have
expected from Ref. [23], that the instantaneous predictive
information—that shared between the organism’s present
phenotype and future environment states—captures (and
not just upper bounds [20, 21]) the benefit of epigenetic
memory. When combined with resource constraints—
not considered in Ref. [23]—this predicts that optimal
isogenic bacteria populations store epigenetic memories
that are causal states or lossy causal states of bacterial
observations of the environment, as long as sensors are
not too noisy. We conclude with suggestions for testing
and extending these results.

I. BACKGROUND

Take the environment to be everything, except the bacte-
ria phenotype, that determines reproductive rates of an
individual bacterium. At time t the environment is in a
state xt. What the bacteria observe of the environment at
time t is x̃t—a noisy subsampling of the full environmen-
tal state xt at time t. For example, the environmental
state xt might consist of a full list of available nutrients,
only some of which x̃t are sensed by bacteria.
An individual bacterium has a genotype, an epigenetic
state—all the epigenetic factors such as methylation or
the number of proteins that can be inherited above and
beyond genetic information—and a phenotype. When
we wish to emphasize that the epigenetic state contains
information about past environments, we refer to the
state as an epigenetic memory. We denote the epigenetic
state at time t by yt ∈ Y, with Yt its random variable.
See Fig. 1.
We assume the environmental time series x−∞:∞ =
. . . , xt, xt+1, . . . is a realization of a stationary stochastic
process. Time increments when the environment changes.
Bacteria are assumed to stochastically choose a new phe-
notype every time step based on their previous epigenetic
state, where the time delay between perception and ac-
tion comes from finite biochemical rates. We assume that
when a bacterium chooses its phenotype, it only refer-
ences its previous epigenetic state and not its previous
phenotype.
It is well worth mapping our setup’s assumptions (or,
equivalently, Ref. [23]’s) to those previously used to ex-
plore the value of information for populations subject to
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FIG. 1. Population of isogenic bacteria interacting with a
fluctuating environment x, given by the concentrations of
nutrients (pink and purple tokens): Bacteria (i) observe only
the concentration x̃ of pink nutrient, (ii) remember aspects of
the past environment through their epigenetic state y, which
for instance could include their genome and any methylations
M thereof, and (iii) express a phenotype p (blue or green
ovals) that reproduces at different rates depending on the
environment. Observations of the environment are assumed to
be identical from bacterium to bacterium. When the bacteria
experience identical sensations, the epigenetic states of the two
bacteria are assumed identical. However, inherent biochemical
stochasticity can cause the expression of different phenotypes.

fluctuating environments [27]. We simultaneously relax
assumptions A1 (“no information is inherited”) and A3
(“only one phenotype survives”) there, allowing for inher-
itance only through the epigenetic state, not through the
previous phenotype. The last assumption (“epigenetic
state selects phenotype”) does not map onto any in Ref.
[27]. It constitutes the main insight that allows relaxing
both A1 and A3 but still yields closed-form expression
for the value of information as the increase in expected
log-growth rate arising from storing information about
the environment [23].
We, at first, do not allow each bacterium to observe
the environment differently; in other words, Ref. [27]’s
environmental sensor is the identity map. Later, this too
is relaxed.
Ultimately, we show that a bacterium should optimally
predict its environment, (somehow) using the environ-
ment’s causal states [28]. Two observed environmen-
tal pasts x̃−∞:t and x̃′−∞:t are considered equivalent,
x̃−∞:t ∼ε x̃′−∞:t, if and only if Pr(X̃t|X̃−∞:t = x̃−∞:t) =
Pr(X̃t|X̃−∞:t = x̃′−∞:t). In this, X̃−∞:t = . . . X̃t−2, X̃t−1
is the chain of random variables representing the observed
pasts. The equivalence relation ∼ε partitions the set of all
pasts into classes called causal states σ ∈ S and induces
a rule that maps a past to its causal state: σ = ε(x̃−∞:t).
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Causal states are the minimal sufficient statistics for pre-
dicting the environment, meaning that they constitute
the minimal information about the past necessary to pre-
dict the future as well as one possibly could given the
observations.2

Typically, infinite futures are considered, but in the follow-
ing, one-step futures are best-suited for the results. The
change from infinite futures to one-step futures leads to a
slightly modified definition of causal states. The resulting
equivalence classes are a coarse-graining of causal states
defined as in Ref. [28], but for simplicity we continue to
refer to them as causal states.
Let St be the random variable corresponding to the causal
state at time t. From the probabilities Pr(X̃t|X̃−∞:t)
and the rule ε(·), one obtains a transition dynamic
Pr(St+1, X̃t|St) on causal states. The corresponding hid-
den Markov model is the environment’s minimal, optimal
model—its ε-machine [28]. It is unifilar—that is, given
the environment’s current causal state and next observa-
tion, its next state is uniquely determined. Of the unifilar
hidden Markov models that describe a given environment,
the ε-machine has the minimal number of states [28, 30].

II. RESULTS

First, we find that the instantaneous predictive informa-
tion defines the quality of an epigenetic state under several
assumptions on reproduction rates and environmental
statistics. Then, we show that the optimal resource-
constrained epigenetic states are the observational causal
states. Importantly, this latter result is free from several
of the more stringent assumptions required to establish
the first result. Finally, we find that when sensors are
sufficiently noisy, stochastic switching strategies [7] can
beat optimal memoryful bet-hedging strategies.

A. Emergence of Instantaneous Predictive
Information

Let nt be the number of organisms at time t. Let
Pr(pt|yt−1) be a bacterium’s strategy—the probability
that an organism expresses phenotype pt given epigenetic
state yt−1. (Recall that we condition on the previous epi-
genetic state since there is an effective time delay between
perception and action, enforced by finite biochemical ki-
netic rates.) This conditional probability distribution

2 The reinforcement learning literature has come to call causal
states predictive representations [29].

exists in a strategy simplex—the space of valid condi-
tional probability distributions Pr(p|y). Assume that a
bacterium’s phenotype at the next time step depends on
the previous epigenetic state but is generated indepen-
dently of its phenotype at the previous time step. Finally,
let f(pt, xt) be the reproduction rate of phenotype pt in
environment xt, which might depend on the energetic
efficiency of that phenotype in that environment. Let W
be the matrix of these reproductive rates.
We measure the fitness of a bacterial population by its
expected log-growth rate:

r =
〈

log nt+1

nt

〉
Pr(xt,yt−1)

. (1)

The expected log-growth rate r is a function of epige-
netic memories Pr(yt|x̃−∞:t), the phenotypic strategy
Pr(pt|yt−1), and reproductive rates f(pt, x:t). From App.
A and Ref. [23]’s Eq. (17), one finds a maximal expected
log-growth rate:

r∗ = max
Pr(pt|yt−1)

r

= −H [Xt|Yt−1]−
∑
xt

Pr(xt) log
∑
pt

(W−1)pt,xt , (2)

if Eq. (A2) yields an xy in the strategy simplex. The first
of these two terms (−H [Xt|Yt−1]) depends on the scheme
that assigns epigenetic states to environmental pasts. The
second is independent of such schemes and depends only
on environmental statistics and reproduction rates.
Now, recall that Ref. [27]’s “value of information” ∆r∗
is the increase in maximal expected log-growth rate of
a population with epigenetic memory above and beyond
that of a population without any epigenetic memory. And
so, if Eq. (A2) yields an xy in the strategy simplex, then
the “value of information” is:

∆r∗ = −H [Xt|Yt−1] + H [Xt]
= I [Yt−1;Xt] ; (3)

equivalent to Ref. [23]’s Eq. (18), where a cue there is
now the previous epigenetic state.
This is the instantaneous predictive information [31].
Hence, epigenetic states with higher instantaneous pre-
dictive information are evolutionarily favored.

B. Optimal Epigenetic States are Causal States

Now, we are ready to analyze optimal epigenetic strategies
Pr(yt|x̃−∞:t). Note that yt has access to information
about x̃−∞:t but cannot directly access information about
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xt. All of yt’s information about xt comes through x̃−∞:t;
i.e., Yt → X̃−∞:t → X:t → Xt. From this, the Data
Processing Inequality [18] reveals that:

I [Yt−1;Xt] ≤ I
[
X̃−∞:t;Xt

]
≤ I [X−∞:t;Xt] . (4)

Employing the Data Processing Inequality, we implicitly
assume that a bacterium’s only guide to the future envi-
ronment consists of past environmental states. In other
words, we assume that an experimentalist, say, does not
give the bacterium additional side information about the
environment. The quantity I [X−∞:t;Xt] = H [Xt]−hµ is
also known as the predicted information rate or the total
correlation rate [32, 33]. It is largely controlled by the
environment’s intrinsic randomness or Shannon entropy
rate hµ = H [Xt|X−∞:t].
Equation (4) suggests evolution favors populations of or-
ganisms who develop epigenetic memories that store as
much of the environmental past as possible. However,
memory is costly and one should not remember envi-
ronmental pasts that are not helpful. More specifically,
genomes are finite in size and can only support a finite
number of epigenetic markers. Hence, the number of
possible epigenetic states |Y| is finite. The balance to
strike therefore is to saturate the inequality in Eq. (4)
while minimizing a resource cost—the number of possible
epigenetic states |Y|. In short, epigenetic memories store
the minimal amount of information about the observed
environment’s past needed to predict the environment’s
future. They are, therefore, the minimal sufficient statis-
tics of prediction of the future environment with respect
to past observations.
How might epigenetic memories store such information?
After all, a bacterium cannot directly access the observed
environment’s past . . . , x̃t−2, x̃t−1 at time t. However, a
bacterium’s future epigenetic state yt+1 depends on both
its previous epigenetic state yt and the present environ-
mental observation x̃t+1. In other words, a bacterium’s
epigenetic state is generated by an input-dependent dy-
namical system in which input is the environmental obser-
vation. If the update rule for how the bacterium’s future
epigenetic state yt+1 depends on the previous epigenetic
state yt and the present environmental observation x̃t+1
are chosen so as to mimic the environment’s ε-machine
transition dynamic, then the bacterium’s epigenetic state
yt at time t will be the bacteria’s causal state [28]. This
is the limit to what is realizable from an input-dependent
dynamical system. Hence, optimal realizable epigenetic
memories are bacteria causal states. That is, they are
causal states of the observed environment.
More generally, Eq. (A2) might not give a valid con-

ditional probability distribution or the matrix W there
might not be invertible. Even then, maximization of
expected log-growth rate combined with resource limita-
tions implies that optimal epigenetic memories are causal
states. To show this, we first show that expected log-
growth rate is maximized when the epigenetic memories
store the entire observed environmental past. Then, we
show that this maximum is also achieved when epigenetic
memories are minimal sufficient statistics of prediction of
the future environment with respect to past observations.
Finally, the aforementioned resource constraints imply
that optimal realizable epigenetic memories are causal
states.
Let’s explain this and so provide a sketch of its proof.
As stated, we must first show that expected log-growth
rate is maximized when the epigenetic memories store
the entire environmental past. To see this, note that any
Pr(pt|yt−1), for any realizable yt−1, can be represented if
yt = x̃−∞:t+1. Hence:

max
Pr(pt|yt−1)

r ≤ max
Pr(pt|x̃−∞:t+1)

r .

Then:

max
Pr(yt−1|x̃−∞:t)

max
Pr(pt|yt−1)

r ≤ max
Pr(pt|yt−1):yt−1=x̃−∞:t

r .

The lefthand side is a maximum over all possible epige-
netic states, whereas the righthand side chooses a partic-
ular epigenetic state. And so, the opposite inequality also
holds. Therefore, as desired:

max
Pr(yt−1|x̃−∞:t)

max
Pr(pt|yt−1)

r = max
Pr(pt|yt−1):yt−1=x̃−∞:t

r .

Next, we argue that this maximum is also achieved when
epigenetic memories are minimal sufficient statistics of
prediction of the future environment with respect to past
observations. Note that the expression for r depends only
on Pr(xt|yt−1), averaged over Pr(yt−1). This, in turn,
implies that maximal expected log-growth rate can be
achieved by any sufficient statistic of prediction. If we
prefer sufficient statistics with smaller |Y|, then we find
that optimal realizable epigenetic memories are causal
states [28], as stated earlier.

C. Detrimental Effects of Noisy Sensors

Natural environments vary widely in terms of structure
and predictability. How do evolved bacteria respond? To
probe this in a controlled manner, we can design novel
experiments in which bacterial observations are described
by finite ε-machines. There are two reasons for using
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FIG. 2. Hidden Markov models that describe the environ-
ment’s time evolution xt (top) and bacterial observations x̃t

(bottom). Note that Fig. 2(bottom) is a nonunifilar hidden
Markov model; the next state is not uniquely determined by
the prior state and the observed symbol because both symbols
can be emitted from both states.

finite ε-machines to probe bacterial behavior. First, when
environments are generated by finite ε-machines, one can
quantitatively predict optimal phenotypic strategies. See
below. Second, even finite ε-machines are quite rich, as
they can have a wide range of stochasticity and structure.
Regardless of the ε-machine, results from the previous
subsection suggest that bacteria should become predictors
of their potentially complex environment.
However, sensors are noisy and this degrades a bacterium’s
ability to predict and detect regularities, especially in
less predictable or less structured environments. Bacteria
who noisily sense and bet-hedge might be outcompeted by
other nonsensing stochastic switchers [7]. Are optimized
bacteria still environmental prediction engines?
We study the effect of sensor noise via an illustrative
example. Consider an experiment that has been designed
so that at any time step, lactose is everywhere at one of
two concentrations: 0 and a concentration that we set
to be 1 without loss of generality. The experimentalist
changes the lactose concentration in time according to
the unifilar hidden Markov model shown in Fig. 2(top).
Bacteria observe the present lactose concentration via
transcription of the lacZ gene. The lacZ gene is more
likely to be transcribed when there is lactose in the envi-
ronment, as the lactose will bind to a lac repressor that
inhibits transcription. Such binding is governed by ther-
mal fluctuations. Hence, there is a error probability p

that 0 is incorrectly sensed as 1 and that 1 is mis-sensed
as 0. (In general, these mis-sensing probabilities are not
identical, but we assume that they are identical for the
sake of simplicity.) This probability p depends on the tem-
perature, on the concentration of lactose when present,
and on the free energy landscape of the sensor and the
sensed [34].
Due to this sensing noise, the time series of bacterial
observations from the point of view of any particular
bacterium is a realization of the process generated by
the hidden Markov model in Fig. 2(bottom). In this
model, environmental state transitions can produce either
concentrations 0 or 1 with probabilities determined by
the error parameter p. Fig. 2(bottom) is built from
Fig. 2(top) by altering state transitions to include the
mis-sensing probabilities of the noisy sensor.
What should a bacterium faced with this observed time
series do? Ideally, as discussed above, it should estimate
whether or not the environment is in state A or state B
in Fig. 2(bottom) from its observations 0 and 1. When
the sensor is noiseless—i.e., in the absence of thermal
fluctuations or when p = 0—the bacterium can employ
a simple input-dependent dynamical system to correctly
estimate whether or not the environment is in state A or
B: that of Fig. 2(top).
When bacterial sensors are noisy, a perfect classifica-
tion of pasts of bacterial observations into state A or
B is no longer possible. Optimized bacteria must try to
find causal states of a much more complicated stochas-
tic process—that generated by Fig. 2(bottom)—that
an infinite number of causal states that arise from its
(noise-induced) nonunifilarity [35]. (See Appendix B for
evidence that the number of causal states is infinite.) Due
to resource constraints, though, an optimized bacterium
cannot internally represent an infinite number of states to
predict. Rather it must now calculate lossy causal states
[36]. From Appendix B, the predictive information Ipred
saturates quickly as a function of the number of causal
states |Y|, implying that resource constraints still permit
a near-optimal storage of predictive information.
However, our optimized, noisily-sensing bacterium per-
ceives different lactose concentrations for the same envi-
ronmental concentration. This heterogeneity in sensation
leads to additional heterogeneity in phenotype expres-
sion above and beyond that predicted by the optimal
bet-hedging strategy.
To illustrate this, we imagine that there are two possi-
ble phenotypes: one pG that does not have the ability
to produce phenotypic machinery to digest lactose and
one pL that does have the ability to produce said ma-
chinery. For the associated reproduction rates suppose
that f(pG, 0) = 1, f(pG, 1) = 1, f(pL, 0) = 0.75, and
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FIG. 3. Optimal phenotypic response depends heavily on sen-
sor noisiness: Horizontal axis the sensing error rate p; vertical
the probability Pr(pt = pG|xt) of exhibiting a nonlactose-
digesting phenotype given that the environment is in state
xt ∈ {0, 1}. When xt = 0, the bacterium optimally expresses
the nonlactose-digesting phenotype; when xt = 1, it optimally
expresses the lactose-digesting phenotype. As the expressed
phenotype can only depend on past bacterial observations,
such an optimal response is impossible. And so, as sensor
noisiness p increases, the response tracks further from optimal.

f(pL, 1) = 2. These take into account both that produc-
ing the enzymes which digest lactose is expensive and
that lactose, when digested, provides the bacterium with
energy [19]. If we assume that the epigenetic memory
fully stores information about pasts of length 10, then
Pr(pG|x) depends on the sensor noisiness characterized
by error probability p. See Fig. 3. We have assumed, for
simplicity, that bacteria use a slightly sub-optimal pheno-
typic strategy: that their phenotypic strategy maximizes
expected log growth rate in the case that all bacteria have
seen the same bacterial observations. See App. B.

Figure 4 shows that the maximal expected log-growth
rate r∗ decreases with increasing p, implying that growth
is negatively affected by sensor noise. Furthermore, from
simulations described in App. C, simple stochastic switch-
ing strategies sans sensing can outcompete optimal pheno-
typic bet-hedging strategies with noisily-sensed epigenetic
memory when r∗ < 0.13 or when p > 0.19. And, these
limitations ignore the costs of sensing and memory storage
[7]. It is apparently not worthwhile to store expensive
epigenetic memory when sensor noise is too large. The
critical level of sensor noise depends on the reproductive
rates, the temporal statistics of the environment, and the
effect of epigenetic memory cost on reproductive rates.
For instance, when environments are periodic with a very
short period, the stochastic switching strategy will likely
outcompete the phenotypic bet-hedging strategy even

0.0 0.1 0.2 0.3 0.4 0.5
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0.175

0.200

0.225
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FIG. 4. Maximal expected log-growth rate quickly decreases
with increasing sensor noise level: r∗ versus noise level p for
environments with order-10 Markov memories. From sim-
ulations described in App. C, simple stochastic switching
strategies sans sensing can outcompete optimal phenotypic
bet-hedging strategies with noisily-sensed epigenetic memory
when r∗ < 0.13 or when p > 0.19. The blue region indicates
where optimal phenotypic bet-hedging strategies with sensing
outcompete stochastic switching strategies sans sensing, and
the green region indicates the opposite.

when there is no sensor noise [26].

III. CONCLUSIONS

These results lead us to propose that isogenic bacteria pop-
ulations must predict their environment to maximize their
expected log-growth rate, assuming that their sensors are
not so noisy that stochastic switching strategies without
sensing can outcompete optimal phenotypic bet-hedging
strategies with sensing. This conclusion and Eq. (A2) give
explicitly-testable predictions for new kinds of bacterial-
evolution experiment in which populations evolve subject
to a fluctuating memoryful environment. For instance,
one can subject populations to partly-random, partly-
predictable patterns of antibiotics. The prediction is that
the bacteria, if sensor noise is small enough, will develop
optimal phenotypic bet-hedging behavior in which their
probability of exhibiting a particular phenotype implies
epigenetic memory, i.e., with phenotypic variability given
by Eq. (A2) and with epigenetic memories that corre-
spond to causal states of the environment. (Epigenetic
mechanisms might include postreplicative DNA methy-
lation [37], which might occur on time scales as fast as
minutes [38].) Although the above analysis focused on
bacteria, similar results apply to the phenotype-switching
fungi cited earlier.
That said, Ref. [7]’s setup might be more appropriate
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for interfacing with experiment. As such, we briefly de-
scribe an extension of that setup that should yield similar
qualitative results to those presented here. Reference
[7] studied phenotypic bet-hedging in a continuous-time
system and assessed the difference between stochastically
switching phenotypes (bet-hedging) and switching to the
best phenotype based on sensing. In point of fact, there
is a time delay between sensing and action that can be
explicitly built into a model of environmental sensing and
phenotypic switching, as we have done here. One should
then find thatmemory of past environmental states, above
and beyond instantaneous sensing of present environmen-
tal states, can be used to better select the next phenotype.
The environment’s inherent stochasticity will also lead
such optimally-sensing populations to not only utilize
memory of past fluctuations, but also to stochastically
choose phenotypes.

For randomly selected processes, ε-machines are usually
not finite. Indeed, in our illustrative example, the tiniest
bit of sensor noise led to an infinite ε-machine. Thus, the
resource constraints mentioned earlier become paramount
when addressing more naturalistic environments and more
realistic setups. It is surprisingly easy to put resource
constraints and predictive information on the same footing
in this framework based solely on their effect on expected
log-growth rate.

Consider Eq. (A3). More stringent constraints on bac-
terium size will tend to increase reproductive rates f(p, x),
since less material is required to generate a new bacterium.
Resource constraints therefore will increase the second
term in Eq. (A3). However, stronger resource constraints
tend to diminish the predictive information captured by
the bacterial population, as given by the first term in Eq.
(A3). We therefore expect that the input-dependent dy-
namical system supporting a bacterium’s epigenetic states
will usually find “lossy causal states” [36] rather than

causal states. The degree of tradeoff between resource
constraints and predictive information will be determined
by the environment and the organism’s ability to grow in
said environment. Lossy causal states can be calculated
using the methods of Ref. [36], although here we found
suboptimal lossy causal states using the methods of Ref.
[35].
The derivation above assumed that the environment was
so large that its evolution was independent of bacteria
phenotypes. However, bacteria certainly affect their en-
vironment, at the very least by secreting molecules and
removing nutrients. Ideally, we would not assume that the
environment’s evolution was independent of the bacteria’s
actions, thereby closing the sensorimotor loop and allow-
ing for niche construction [39]. We expect relaxing this
assumption to yield much more complicated quantifiers
of the quality of epigenetic memory, given the difficulty of
solution of partially observable Markov decision processes
(POMDPs); e.g., as described in Refs. [40–42]. However,
we expect causal states to be optimal epigenetic states
in any case, since the belief states used in the solution of
POMDPs are causal states.
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Appendix A: Maximal Expected Log-Growth Rate

To keep our development self-contained, we derive here the maximal expected log-growth rate and the maximizing
distribution over phenotypes. From the setup, we straightforwardly obtain:

nt+1 =
∑
pt

(Pr(pt|yt−1)nt) f(pt, xt)

=
(∑

pt

Pr(pt|yt−1)f(pt, xt)
)
nt ,

valid when nt is sufficiently large. This yields an expected log-growth rate:

r =
〈

log nt+1

nt

〉
=
〈

log
(∑

pt

Pr(pt|yt−1)f(pt, xt)
)〉

=
∑

yt−1,xt

Pr(yt−1, xt) log
(∑

pt

Pr(pt|yt−1)f(pt, xt)
)
. (A1)

Note that we focus on the expected log-growth rate as a natural measure of a population’s fitness, rather than on an
individual’s fitness which might be better measured via expected growth rate. Indeed, the lesson from phenotypic
bet-hedging is that what is good for the population is not necessarily good for the individual. To survive, an individual
should choose a strategy that survives in all environments, even if it grows slowly in some. However, a population has
the luxury of betting some organisms on phenotypes that might not survive in certain environments if they grow much
faster in others. Hence, we are interested in what kinds of isogenic bacterial populations evolve. However, since these
populations are isogenic, we describe the evolved population by describing properties of the individual bacterium.

We seek the bet-hedging strategy Pr(pt|yt−1) that maximizes expected log-growth rate r. Our derivation closely follows
that of Ref. [21], with the key change that we now allow for side-information from epigenetic memory. We maximize r,
subject to the constraint that

∑
pt

Pr(pt|yt−1) = 1 for all yt, via the Lagrangian:

L =
∑

yt−1,xt

Pr(yt−1, xt) log
(∑

pt

Pr(pt|yt−1)f(pt, xt)
)

+
∑
yt−1

λyt−1

∑
pt

Pr(pt|yt−1) ,

with respect to Pr(pt|yt−1), where λyt−1 is the Lagrange multiplier for each epigenetic state yt−1. Note that if the
bacteria population strongly affected the environment’s dynamics, then Pr(yt−1, xt) would depend on Pr(pt|yt−1).
Instead, we assume the environment is so large that the bacteria population does not affect it.

To find the strategy Pr(pt|yt−1) that maximizes r, we take derivatives of the Lagrangian and set them to 0:

0 = ∂L
∂ Pr(pt|yt−1)

=
∑
xt

Pr(xt|yt−1) f(pt, xt)∑
pt

Pr(pt|yt−1)f(pt, xt)
− λyt−1 .

And so:

λyt−1 =
∑
xt

Pr(xt|yt−1) f(pt, xt)∑
pt

Pr(pt|yt−1)f(pt, xt)
.

Let xy be the vector of optimal strategies Pr(pt|yt−1), py the vector of Pr(xt|yt−1), and W the matrix with elements
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f(pt, xt). Then, the preceding result in matrix form is:

λy1 = W
(
py � [W>xy]�−1) ,

where the 1s vector 1 has the length of the number of possible phenotypes and � is the Hadamard product, so that �
represents component-wise multiplication and [W>xy]�−1 represents component-wise inversion. If W is invertible,
then we solve for xy:

xy = 1
λy

(
W>

)−1 (py � [W−11]�−1) ,
and, using the normalization condition 1>xy = 1, we fortuitously find that:

xy = py � [W−11]�−1

W>
. (A2)

Note that this is the maximizing conditional distribution if it is in the strategy simplex and if W is invertible. One
might relax the condition that W is invertible, if W is square, via the Drazin inverse. In sum, Eq. (A2) determines the
optimal strategy for phenotypic variability given a particular epigenetic memory. It is comparable to a manipulation of
Ref. [23]’s Eq. (16).
The expected log-growth rate r is, from Eq. (A1), a function of epigenetic memories Pr(yt|x::t+1), the phenotypic
strategy Pr(pt|yt−1), and reproductive rates f(pt, x:t). Given the optimal strategy xy from Eq. (A2), one finds a
maximal expected log-growth rate:

r∗ =
∑

yt−1,xt

Pr(yt−1, xt) log Pr(xt|yt−1)∑
pt

(W−1)pt,xt

= −H [Xt|Yt−1]−
∑
xt

Pr(xt) log
∑
pt

(W−1)pt,xt
. (A3)

Equation (A3) is comparable to Ref. [23]’s Eq. (17), in which y(e|c) is set to p(e|c) and in which d(e) is calculated in
terms of W .

Appendix B: Sensor Noise

We would first like to calculate Ipred = I
[
YT ; X̃T

]
. Here, we take Yt to be a uniform coarse-graining of the mixed

state simplex [35, 43]. We cannot find the recurrent mixed states, but instead calculate transient mixed states for
trajectories of length T . Since there are only two states in the underlying hidden Markov model, the mixed-state
simplex is one dimensional and characterized completely by the probability that one is in state A given a trajectory
x̃0:T . Our calculations require only two labeled-transition matrices:

T (0) =
( 1

2 (1− p) p
1
2p 0

)
and T (1) =

( 1
2p 1− p

1
2 (1− p) 0

)
.

The equilibrium probability µ over states A and B is:

µ = eig1(T (0) + T (1))

=
( 2

3
1
3

)
,

where eig1(M) is the normalized (i.e., entries sum to 1) eigenvector of eigenvalue 1 of matrix M . The probability of
observing any particular trajectory is:

p(x̃0:T ) = 1>T (x̃T−1) . . . T (x̃0)µ
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FIG. 5. For the noisy Even Process, mixed states are in a one-dimensional simplex. A mixed state is completely characterized
by Pr(ST = A|X̃0:T = x̃0:T ). The distribution over mixed states is, then, shown here as an empirical histogram over the unit
interval, here shown with T = 12 and 20 bins along the unit interval. This mixed state presentation suggests an infinite number
of mixed states, since the empirical frequency distribution does not look to be a sum of delta functions.

and the corresponding mixed state has:(
Pr(ST = A|X̃0:T = x̃0:T )
Pr(ST = B|X̃0:T = x̃0:T )

)
= 1
p(x̃0:T )T

(x̃T−1) . . . T (x̃0)µ .

The empirical distribution over mixed states is shown in Fig. 5 for p = 0.1.
To coarse grain, the mixed-state simplex—completely characterized by Pr(ST = A|X̃0:T = x̃0:T )—is divided into |Y|
equal-sized bins, corresponding then to representation yT . Let δ|Y| : x̃0:T → y describe the map:

δ|Y|(x̃0:T ) = b|Y|Pr(ST = A|X̃0:T = x̃0:T )c.

We would like to calculate Ipred = I
[
YT ; X̃T

]
, which requires calculating Pr(X̃T |YT ). We calculate the latter from:

Pr(X̃T |YT ) =
∑
σ

Pr(X̃T |ST = σ) Pr(ST = σ|YT ) ,

where:

Pr(ST = σ|YT ) =
∑
x̃0:T

Pr(ST = σ|X̃0:T = x̃0:T ) Pr(X̃0:T = x̃0:T |YT )

Pr(ST = σ|YT = y) =
∑

x̃0:T :δ|Y|(x̃0:T )=y

Pr(ST = σ|X̃0:T = x̃0:T )p(x̃0:T )/
∑

x̃0:T :δ|Y|(x̃0:T )=y

p(x̃0:T )

and where Pr(X̃T |ST = σ) can be calculated from 1>T (x̃T )
:,σ , so that:

Pr(X̃T = 0|ST = A) = 1
2 and Pr(X̃T = 0|ST = B) = p ,

and so on. Figure 6 shows the predictive information Ipred so calculated, as a function of |Y| for the particular value
p = 0.1.
Finally, we would like to compute both optimal phenotypic heterogeneity Pr(p|xt) and maximal expected log growth
rate r∗ as a function of sensor noise p. This turns out to be beyond the scope of this paper, for reasons detailed below.
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FIG. 6. Predictive information Ipred quickly saturates as a function of the number |Y| of epigenetic states: At p = 0.1, with Yt

being a uniform coarse-graining of 215 mixed states (T = 15) with |Y| coarse-grained states. This curve is representative of
various p and is typical for such curves [36, 44, 45].

If the bacterial population remains isogenic, then we can calculate phenotypic heterogeneity from consideration of
the optimal phenotypic strategy given a particular environmental past. Of course, all the bacteria “sees”– all that
influences its phenotypic strategy– is the observed environmental past. In other words, we have:

Pr(p|x−∞:t) =
∑
x̃−∞:t

Pr(p|x̃−∞:t) Pr(x̃−∞:t|x−∞:t).

A tricky part is to correctly calculate Pr(x̃−∞:t|x−∞:t). Naively, it may seem that

Pr(x̃t−L:t|xt−L:t) = pH(x̃t−L:t,xt−L:t)(1− p)L−H(x̃t−L:t,xt−L:t),

where H(a, b) is the Hamming distance based on how we’ve defined the sensor noise, but this is incorrect. The
probability of a cell experiencing a certain observation x̃t−L:t is affected by the phenotypic strategy pursued by the
cell, as that changes the fraction of cells having observed x̃t−L:t, which then changes the fraction of cells observing a
particular x̃t−L:t+1. In reality, supposing that there are nt(x̃t−L:t) cells that experience observations x̃t−L:t at time t,
then

nt+1(x̃t+1−L:t+1) =
∑
x̃′

t−L:t

nt(x̃′t−L:t)〈f(p, xt)〉Pr(p|x̃′
t−L:t) Pr(x̃t+1−L:t+1|x̃′t−L:t) (B1)

where

Pr(x̃t+1−L:t+1|x̃′t−L:t) = Pr(x̃:t|xt)δx̃t+1−L:t,x̃′t+1−L:t
(B2)

where Pr(x̃t:|xt:) is 1− p if they are identical and p otherwise for the particular example in this paper. This implies
that the expected log growth rate is

r =
〈∑

x̃t+1−L:t+1
nt+1(x̃t+1−L:t+1)∑

x̃t−L:t
nt(x̃t−L:t)

〉
t

. (B3)

Given a phenotypic strategy Pr(p|x̃t−L:t), we can calculate the expected log growth rate given the evolution equation
above.
Note that Eq. B3 gives a different equation for expected log growth rate than previously given in App. A. There is
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no longer a closed-form solution for the optimal phenotypic strategy that maximizes expected log growth rate. To
make progress, we assume a suboptimal phenotypic strategy: we assume that bacteria experiencing observations x̃−∞:t
choose a phenotypic strategy that would have maximized expected log growth rate had the entire population observed
x̃−∞:t. This should work well when x̃−∞:t is “typical”, which happens with high probability. This will lead to an
overestimate of the detrimental effects of sensor noise. In other words, to find an approximate Pr(p|x̃−∞:t), we utilize
the results of App. A and find that

Pr(p|x̃−∞:t) =
(
Pr(xt|x̃−∞:t)� [W−1~1]�−1) /W> ,

for:

W =
(

0 1
1
4 2

)
.

When the so-calculated Pr(p|x̃−∞:t) is not in the simplex, that means that it is at the edges of the simplex. To deal
with this likely scenario, we simply calculate the expected log growth rate conditioned on observing the past x̃−∞:t,∑

xt
Pr(xt|x̃−∞:t) log

(∑
p Pr(p|x̃−∞:t)f(p, xt)

)
, and choose the phenotypic strategy at the edge of the simplex that

maximizes this conditional expected log growth rate. For the two-phenotype problem considered here, we compare∑
xt

Pr(xt|x̃−∞:t) log (f(pG, xt)) to
∑
xt

Pr(xt|x̃−∞:t) log (f(pL, xt)) and choose the strategy Pr(p|x̃−∞:t) = δp,pG

should the former outweigh the latter and Pr(p|x̃−∞:t) = δp,pL
should the latter outweigh the former. In practice, we

replace the infinite pasts x−∞:t and x̃−∞:t with finite length L pasts, and make L sufficiently large that the answer
does not change upon increases in L. Finite L is not only computationally necessary, but biologically reasonable given
our requirement on resource constraints. We have chosen L = 10.

Appendix C: Stochastic Switching Strategies

In a stochastic switching strategy, nothing is sensed, but bacteria randomly switch from one phenotype to another. In
the simple illustrative example studied in the main text, if nGt is the number of glucose-favoring phenotypes at time t
and nLt is the number of lactose-favoring phenotypes at time t, then:(

nGt+1
nLt+1

)
=
(

1− a b

a 1− b

)(
f(pG, x:t) 0

0 f(pL, x:t)

)(
nGt
nLt

)
.

In this model, bacteria first grow each time step and then stochastically switch. Environments are generated from the
hidden Markov model in Fig. 2(top) for T time steps, and the expected log-growth rate is approximated as:

r̂ = 1
T

T∑
t=1

log
nGt+1 + nLt+1
nGt + nLt

.

Larger T leads to more accurate estimates of the true expected log-growth rate. Parameter sweeps over a and b were
performed, resulting in the contour plot of expected log-growth rate r̂ in Fig. 7. The maximal expected log-growth
rate from a stochastic switching strategy is r̂∗ ≈ 0.13.
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FIG. 7. Estimated expected log-growth rate r̂ with T = 105 as a function of stochastic switching parameters a and b. At
maximum, stochastic switching gives an expected log-growth rate of r̂∗ ≈ 0.13.
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