Noise phenomena in Josephson junctions
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We suggest that the reported noise-rise phenomenon observed in Josephson oscillators can be
understood in terms of the full nonlinear and deterministic junction dynamics. We show that the
drive damped pendulum equation describing the junction behavior exhibits chaotic solutions
associated with the appearance of strange attractors in phase space. These results are relevant to
the general problem of turbulent behavior of anharmonic systems.

PACS numbers: 74.50. + r

Several experiments on Josephson junction oscillators
have revealed a striking noise-rise phenomena which cannot
be accounted for in terms of thermal fluctuations. Chiao and
co-workers' have reported that when superconducting junc-
tions are used as unbiased parameteric amplifiers
(SUPARAMPS), an increase in the amplitude of the oscilla-
tory driving signal can lead to broad-band voltage fluctu-
ations with equivalent noise temperatures of 5 10* K. This
behavior, which has been observed in many other experi-
ments,”* defies explanations based on either amplification of
thermal noise* or stability analysis of the equations govern-
ing the phase oscillations.’

In this letter, we suggest that this broad-band noise-rise
phenomenon can be understood in terms of the existence of
chaotic solutions to the full nonlinear junction dynamics.
This turbulent behavior, which gives rise to broad-band
power spectra, is associated with the appearance of a strange
attractor® in phase space. Besides providing an explanation
for the observed voltage fluctuations in some Josephson de-
vices, our theory points to these junctions as attractive ex-
perimental tools for the study of solid-state turbulence and
nonlinear dynamics. Also, since the equations that we study
appear in a number of different systems, our results are rel-
evant to problems that range from soliton dynamics’ to sol-
id-state turbulence.®®

Consider a Josephson oscillator in the presence of mi-
crowave radiation and described by a current-driven shunt-
ed-junction model.'? If C is the junction capacitance, R the
normal-state resistance, and ¥V the potential difference
across the junction, the superconducting phase @ is deter-
mined by the following equations:

dv vV .
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dp 2e
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where /. is the critical supercurrent and I,, the amplitude of
the microwave field at the driving frequency w,. Replacing
the potential in Eq. (1) by its expression in terms of the phase
[Eq. (2)], we obtain the nonlinear differential equation for @
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where 7=(RC) is the damping time and w, = (2el./AC)""*
the plasma frequency of the junction. This description of the
driven damped motion of a particle in a spatially periodic
potential forms the basis of extensive work on a number of
devices utilizing either point junctions or micro-
bridges.>'®'? It also appears as a generalization of the an-
harmonicity problem in solid-state systems driven by peri-
odic fields.**®

For small enough values of the amplitude of the phase
oscillations, it is possible to study the stability of Eq. (3)
against fluctuations by converting it into a Mathieu-type
equation.'? As the value of @ increases, however, the first
two terms of a Taylor-series expansion for the sing term lead
to a cascade of bifurcations into a chaotic regime which can-
not be obtained via perturbation theory.®

In order to study the full nonlinear solutions of Eq. (3)
we express it in terms of dimensionless variables. Introduc-
ing anew timescalet’' = ¢ /a and writing I’ =(Q2¢’a/#C )/,
and 2,=aw,, we obtain

dp L @ do

de? 7 dt
This equation was solved by using a hybrid digital-analog
computer system. Starting with typical junctions parameters
suchas R =42, C=5pF, I, =100 uA, and choosing
a=10", wefinda/7=0.5and 2] = 6.4.

Although a detailed description of the possible solu-
tions to Eq. (4) will be published elsewhere, our main result
can be summarized in the bifurcation diagram of Fig. 1,
where we show the types of behaviors to be expected for
different values of the driving amplitude and frequency. As
can be seen, for frequencies that are either much smaller or
much larger than w, one encounters periodic solutions
which can, in some cases, become fairly complicated (i.e.,
subharmonic and harmonic content, hysteresis loops, etc.).
A noteworthy periodic regime, which occurs at fairly high
values of I, is the one in which @ undergoes successive 27
rotations in phase with the driving frequency, corresponding
to the periodic motion of the particle from one potential well
to another (region A). This kind of behavior represents the
running periodic solutions described by Levi e a/.'?

In region B, the phase amplitude is confined to one po-
tential well, i.e., 0<@<2. In this regime the solutions exhib-

+ N7 sing = I' cosaw,t. 4)
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FIG. 1. Bifurcation diagram for Eq. (4) with a/7 = 0.5, 2§ = 6.4, and

a = 10", obtained by varying w, at constant I". The chaotic regime con-
tains small regions of periodic solutions. Region A: periodic running solu-
tions. Region B: amplitude hysteresis and cascading bifurcations of Ref. 8.
Narrow shaded region: full extent of period-doubling chaos.

it the amplitude hysteresis and the set of period-doubling
cascading bifurcations into a chaotic state which was found
for the anharmonic potential.® Beyond this regime, @ is no
longer bounded and a complicated turbulent behavior en-
sues, characterized by strange attractors in phase space'*
whose Poincaré sections'® display an infinite lattice struc-
ture with the spatial periodicity of the potential (Fig. 2). The
structure of these strange attractors can be understood in
terms of two distinct time scales which the motion exhibits:
The shorter time scale corresponds to fast oscillations be-
tween a small number of wells; the longer time scale is associ-
ated with a slower diffusion throughout the lattice. This tur-
bulent behavior is best characterized by the power spectral
density shown in Fig. 3, which was obtained for the param-
eter values I = 3.8, w, /0, = 0.64. S (w) denotes the Fourier
transform of the autocorrelation function for the time de-
rivative of the phase which, by Eq. (2), is proportional to the
voltage fluctuations across the junction. This broad-band
spectrum, generated by the deterministic Eq. (4), is quite
similar to some of those observed in Josephson oscillators

FIG. 2. Poincaré section of the strange attractor at parameter values

I' = 3.8 and w,/w, = 0.64. Points comprising the section are taken at posi-
tive-going zero crossings of the driving force (zero phase). The section repre-
sents a six-well segment of the strange attractor lattice. The vertical and
horizontal coordinates denote ¢ and @, respectively.
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FIG. 3. Power spectrum of the strange attractor for same parameter values
of Fig. 2. 5 {w} is the Fourier transform of the voltage autocorrelation func-
tion, computed from 12 averages of a 4096-point fast Fourier transform.
The frequency has been normalized to w,.

operated as parametric amplifiers.'> We should also add
that even though the sharp peak observed at the driving fre-
quency appears narrow, it broadens at larger driving
amplitudes. .

Our results suggest an explanation for the noise-rise
phenomenon based on the intrinsic nonlinearity of the junc-
tion dynamics. Whether this theory accurately describes the
observed behavior depends on the extent to which the driven
damped pendulum models the actual junction dynamics. If
that were the case, the phase diagram of Fig. 1 could also
provide some guidelines for operating superconducting
parametric amplifiers in noise-free regions. Moreover, if
broad-band noise in Josephson oscillators is due to the pres-
ence of strange attractors in phase space, they could become
likely candidates for the study of solid-state turbulence and
nonlinear dynamics, a subject which is just beginning to be
studied experimentally.

Finally, we should point out that these results are of
relevance to the wide variety of problems that can be mod-
eled by the driven damped pendulum of Eq. (4). In particu-
lar, they show that the range of parameter values for which
chaotic solutions can occur is much larger than that found
for the single-well anharmonic problem.® This is of impor-
tance to experiments dealing with turbulent properties of
solids.
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