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Abstract Recurrent neural networks are used to forecast time series in finance, climate, language,
and from many other domains. Reservoir computers are a particularly easily trainable form of re-
current neural network. Recently, a “next-generation” reservoir computer was introduced in which
the memory trace involves only a finite number of previous symbols. We explore the inherent limita-
tions of finite-past memory traces in this intriguing proposal. A lower bound from Fano’s inequality
shows that, on highly non-Markovian processes generated by large probabilistic state machines,
next-generation reservoir computers with reasonably long memory traces have an error probability
that is at least ∼ 60% higher than the minimal attainable error probability in predicting the next
observation. More generally, it appears that popular recurrent neural networks fall far short of op-
timally predicting such complex processes. These results highlight the need for a new generation of
optimized recurrent neural network architectures. Alongside this finding, we present concentration-
of-measure results for randomly-generated but complex processes. One conclusion is that large
probabilistic state machines—specifically, large ϵ-machines—are key to generating challenging and
structurally-unbiased stimuli for ground-truthing recurrent neural network architectures.

PACS numbers: 02.50.-r 05.45.Tp 02.50.Ey 02.50.Ga

I. INTRODUCTION

Success in many scientific fields centers on prediction.

From the early history of celestial mechanics we know

that predicting how planetary objects move stimulated

the birth of physics. Today, predicting neuronal spik-

ing drives advances in theoretical neuroscience. Outside

the sciences, prediction is quite useful as well—predicting

stock prices fuels the finance industry and predicting

English text fuels social media companies. Recent ad-

vances in prediction and generation are so impressive

(e.g., GPT-4) that one is left with the impression that

time series prediction is a nearly solved problem. As we

will show using randomness- and correlation-calibrated

data sources, this hopeful state of affairs could not be

further from the truth.

Recurrent neural networks [1], of which reservoir com-

puters are a prominent and somewhat recent example [2],

have risen to become one of the major tools for predic-

tion. From mathematics’ rather prosaic perspective, re-

current neural networks are simply input-dependent dy-

namical systems. Since input signals to a learning system

affect its behavior, over time it can build up a “memory

trace” of the input history. This memory trace can then
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be used to predict future inputs.

There are broad guidelines for how to build recurrent

neural networks [1] and reservoir computers that are good

predictors [2]. For instance, a linearized analysis shows

that one wants to be at the edge of instability [3]. How-

ever, a theory of how these recurrent neural networks

work optimally is lacking; though see Ref. [4]. Recently,

a new architecture was introduced for prediction called

a “next-generation reservoir computer”, whose memory

trace intriguingly only included the last few timesteps of

the input, while demonstrating low prediction error with

simultaneously small compute power [5].

The general impression from these and many addi-

tional reports is that these recurrent neural networks

have conquered natural stimuli, including language [6],

video [7], and even climate data [8]. They have cer-

tainly maximized performance on toy tasks [9, 10] that

test long memory. This noted, it is unknown how far

they are from optimal performance on the tasks of most

importance, such as prediction of language, video, and

climate. We need a calibration for how far away they are

from nearly-perfect prediction. And this suggests devel-

oping a suite of complex processes for which we know the

minimal achievable probability of error in prediction.

In the service of this goal, the following adopts the

perspective that calibration is needed to understand

the limitations inherent in the architecture of the next-

generation reservoir computers and to understand how

well state-of-the-art recurrent neural networks (including
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next-generation reservoir computers) perform on tasks

for which optimal prediction strategies are known. This

calibration is provided by time series data generated by a

special type of hidden Markov model specialized for pre-

diction called ϵ-machines. We find, surprisingly perhaps,

that large random multi-state ϵ-machines are an excellent

source of complex prediction tasks with which to probe

the performance limits of recurrent neural networks.

More to the point, benchmarking on these data demon-

strates that reasonably-sized next-generation reservoir

computers are inherently performance limited: they

achieve no better than a ∼ 60% increase in error proba-

bility above and beyond optimal for “typical” ϵ-machine

tasks even with a reasonable amount of memory. A key

aspect of the calibration is that the optimalities are de-

rived analytically from the ϵ-machine data generators,

providing an objective ground truth. This increase in er-

ror probability above and beyond the optimal increases

to 105% if interesting [11, 12] stimuli are used. Alto-

gether, we find that state-of-the-art recurrent neural net-

works fail to perform well predicting the high-complexity

time series generated by large ϵ-machines. In this way,

next-generation reservoir computers are fundamentally

limited. Perhaps more surprisingly, a more powerful re-

current neural network [9] also has an increase in error

probability above and beyond the minimum of roughly

50% for these new prediction benchmarks.

Section II reviews reservoir computers, recurrent neu-

ral networks, and ϵ-machines. Section III derives a lower

bound on the average rate of prediction errors. Sec-

tion IV describes a new set of complex prediction tasks

and surveys the performance of a variety of recurrent

neural networks on these tasks. Section V draws conclu-

sions and proposes new calibration strategies for neural

network architectures. Such objective diagnostics should

enable significant improvements in recurrent neural net-

works.

II. BACKGROUND

Section IIA describes ϵ-machines and Sec. II B lays out

the setup of the typical recurrent neural network (RNN)

and reservoir computer (RC).

A. Complex processes and ϵ-machines

Each stationary stochastic process is uniquely repre-

sented by a predictive model called an ϵ-machine. This

one-to-one association is particularly noteworthy as it

gives explicit structure to the space of all such processes.

One can either explore the space of stationary processes

or, equivalently, the space of all ϵ-machines. This is made

all the more operational, since ϵ-machines can be effi-

ciently enumerated [13].

In information theory they are viewed as process gen-

erators and described as minimal unifilar hidden Markov

chains (HMC). In computation theory they are viewed

as process recognizers and described as minimal proba-

bilistic deterministic automata (PDA) [14, 15]. Briefly,

an ϵ-machine has hidden states σ ∈ S, referred to as

causal states, and generates a process by emitting sym-

bols x ∈ A over a sequence of state-to-state transi-

tions. For purposes of neural-network comparison in the

following, we explore binary-valued processes, so that

A = {0, 1}. ϵ-Machines are unifilar or “probabilistic

deterministic” models since each transition probability

p(σ′|x, σ) from state σ to state σ′ given emitted symbol

x are singly supported. More simply, there is at most

a single destination state. In computation theory this

is a deterministic transition in the sense that the model

reads in symbols which uniquely determine the successor

state. That said, these models are probabilistic as pro-

cess generators: given that one is in state σ, a number of

symbols x can be emitted, each with emission probabil-

ity p(x|σ). In this way, these models represent stochastic

languages—a set of output strings each occurring with

some probability.

While every stationary process has an ϵ-machine pre-

sentation, it is usually not finite. An example is shown

in Fig. 1 [16]. The finite HMC on the top is nonunifi-

lar since starting in state A and emitting a 0 does not

uniquely determine to which state one transits—either A

or B. The HMC on the bottom is unifilar, since in every

state, knowing the emitted symbol uniquely determines

the next state. Note that the ϵ-machine for the process

generated by the finite nonunifilar HMC has an infinite

number of causal states. Also, note that the process has

infinite Markov order: if one sees a past of all 0s, one has

not “synchronized” to the ϵ-machine’s internal hidden

state [17], meaning that one does not know which hidden

state of the ϵ-machine one is in. And, therefore, there

is not a complete one-to-one correspondence between se-

quences of observed symbols and chains of hidden states.

In contrast, with each step in the ϵ-machine presentation

one inches closer to a one-to-one correspondence between

observed symbols and hidden states—in reality, as close

as possible.

In a way, a nonunifilar HMC is little more than a pro-

cess generator [18] for which the equivalent ϵ-machine

presentation has an infinite number of causal states. In

another sense, ϵ-machines are a very special type of HMC

generator since the ϵ-machine’s causal states actually rep-

resent clusters of pasts that have the same conditional

probability distribution over futures [14]. As a result,
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FIG. 1. At top, we see a nonunifilar hidden Markov
model that is not an ϵ-Machine because, when in state
A, knowing that you have emitted a 0 does not uniquely
determine to which state one has transitioned. At bot-
tom, we see the corresponding ϵ-Machine, for which
in every state, knowing the emitted symbol uniquely
determines the next state. For this ϵ-Machine, we

have F (n) =

{
(1− p)(1− q)(pn − qn)/(p− q) p ̸= q ,

(1− p)2npn−1 p = q .
and

w(n) =
∑∞

m=n F (m) [16]. Note that both hidden Markov
models generate an identical infinite-order Markov process: if
one sees a past of all 0’s, one has not “synchronized” to the
internal hidden state of the ϵ-Machine. Therefore, there is
not a complete one-to-one correspondence between sequences
of observed symbols and hidden states.

the casual states and so ϵ-machines are predictive.

Consider observing a process generated by a particular

ϵ-machine and becoming synchronized so that you know

the hidden state. (Now, this happens with probability 1

but it does not always happen [17], as we just described

with the nonunifilar HMC example.) Then you can build

a prediction algorithm based on the known hidden state.

The result, in fact, is the best possible prediction algo-

rithm that one can build. Moreover, the latter is simple:

when synchronized to hidden state σ, you predict the

symbol argmaxx p(x|σ).
This has one key consequence in our calibrating neural

networks: the minimal attainable time-averaged proba-

bility Pmin
e of error in predicting the next symbol can be

explicitly calculated as:

Pmin
e =

∑
σ

[
1−max

x
p(x|σ)

]
p(σ) . (1)

(The following considers binary alphabets, so that 1 −
maxx p(x|σ) = minx p(x|σ).) We are also able to calcu-

late the entropy rate hµ directly from the ϵ-machine [14]

via:

hµ = H[X0|
←−
X 0]

= −
∑
σ

p(σ)
∑
x

p(x|σ) log p(x|σ) . (2)

In contrast, until recently determining hµ for processes

generated by nonunifilar HMCs was intractable. The key

advance is that for these processes we recently solved

Blackwell’s integral equation [19, 20].

B. Recurrent neural networks

Let st ∈ Rd be the state of the learning system—

perhaps a sensor—and let xt ∈ RN be a time-varying

N -dimensional input, both at time t. Discrete-time re-

current neural networks (RNN) are input-driven dynam-

ical systems of the form:

st+1 = fθ(st, xt) (3)

where fθ(·, ·) is a function of both sensor state st and in-

put xt with parameters θ. See Fig. 2. These parameters

are weights that govern how st and xt affect future sen-

sor states st+1, st+2, . . .. Alternative RNN architectures

result from different choices of f . See below. Memory

units (LSTMs) and Gated Recurrent Units (GRUs) are

often used to optimize prediction of input. For simplicity,

the following considers scalar time series: N = 1.

Generally, RNNs are hard to train, both in terms of

required data sample size and compute resources (mem-
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FIG. 2. A recurrent neural network (RNN) for which the
future state of the recurrent node depends on its previous
state and the current input. The present state of the recurrent
node is then used to make a prediction.

ory and time) [21]. RCs [2, 22], also known as echo state

networks [23] and liquid state machines [24, 25], were

introduced to address these challenges.

RCs involve two components. The first is a reservoir—

an input-dependent dynamical system with high dimen-

sionality d as in Eq. (3). And, the second is a readout

layer û—a simple function of the hidden reservoir state.

Here, the readout layer typically employs logistic regres-

sion:

P (û|s) = ea
⊤
û s+bû∑

û′ e
a⊤
û′s+bû′

,

with regression parameters aû and bû. To model binary-

valued processes, our focus here, we have:

P (û = 1|s) = ea
⊤s+b

1 + ea⊤s+b
.

The regression parameters are easily trained and can in-

clude regularization if desired. Note that while s was

used as the input into the logistic regression probabil-

ities, one can move to nonlinear readout by also using

ss⊤ to inform the logistic regression probabilities.

The following compares several types of RNNs: ‘typi-

cal’ RCs, ‘next generation’ RCs, and LSTMs.

1. ‘Typical’ RCs

In the following, as a model of typical RCs, a sub-

set of RC nodes are updated linearly, while others are

updated according to a tanh(·) activation function. Let

s =

(
snl

sl

)
. We have:

snlt+1 = tanh
(
W nlsnlt + vnlxt + bnl

)
,

and

slt+1 = W lslt + vlxt + bl,

where vl,nl controls how strongly the input affects the

state, bl,nl is a bias term, and W l,nl are the weight ma-

trices.

The weight matrices W l,nl are chosen to have: 0 en-

tries based on a small-world network of density 0.1 and

β = 0.1; nonzero entries normally distributed according

to the standard normal; and a spectral radius ∼ 0.99

to guarantee the RC fading-memory condition [23]. Dif-

ferent recipes for choosing which nodes were connected

(small-world networks with varying β and density), what

distribution the weights were drawn from (normal versus

uniform), and whether or not there was a bias term were

tried. These variations had virtually no effect on the re-

sults. The only thing that clearly made a difference was

whether or not the readout was linear (logistic regres-

sion) or nonlinear (logistic regression on a concatenation

of s and ss⊤. These two cases are clearly demarcated in

the appropriate figure. There was no bias term in the

figure shown.

2. ‘Next generation’ RCs

Next-generation RCs employ a simple reservoir that

tracks some amount of input history and a more com-

plex readout layer [5] to improve accuracy over RC’s uni-

versal approximation property. The reservoir records in-

puts from the last m timesteps and, then, uses a read-

out layer consisting of polynomials of arbitrary order.

Technically, next-generation RCs are a subset of general

RCs in that a reservoir can be made into a shift regis-

ter that records the last m timesteps. As introduced in

Ref. [5] next-generation RCs solve a regression task, but

they can easily be modified to solve classification tasks.

The following simply takes second-order polynomial com-

binations of the last m timesteps and uses those as fea-

tures for the logistic regression layer. In other words, let

st = (xt, xt−1, ..., xt−m+1), a column vector, be the state

of the reservoir; then we use st and s⊤t st as input to the

logistic regression.

3. LSTMs

In contrast, long short-term memory networks (LSTM)

[9] take a different approach by optimizing fθ for train-

ing and for retaining memory. There, s is a combina-

tion of several hidden states and the update equations

for the network are given in Ref. [9]. An LSTM’s es-

sential components consist of linearly-updated memory

cells that make training easier and avoid exploding or

vanishing gradients and a forget gate that may improve

performance by allowing the network to access a range
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of timescales [4].

III. PREDICTION ERROR BOUNDS

No matter the RNN, the conditional entropy of the

next input symbol Xt given the learning system’s state

St,

H[X0|S0] = −
∑
st

p(st)
∑
xt

p(xt|st) log p(xt|st) ,

places a fundamental upper bound on the RNN predic-

tion performance through Fano’s inequality:

H[X0|S0] ≤ Hb (Pe) + Pe log (|A| − 1) .

In this, Pe is the time-averaged probability of making

an error in predicting the next symbol xt from RNN’s

state st, and Hb is the binary entropy function. We have

also invoked stationarity of the time series, to remove

the dependence on t in the steady-state operation of the

RNN. In particular, for a binary process where |A| = 2:

Pe ≥ H−1
b [H(X0|S0)] ,

where H−1
b , defined on the domain [0, 1], is the inverse of

Hb on its monotonically increasing domain [0, 1/2].

In other words, the measure of RNN performance is

given by a function of H[X0|S0] that lower bounds Pe,

coupled with the minimal attainable probability of error

calculable directly from the ϵ-machine as described in

Sec. II. The lower the model’s conditional entropy, the

better prediction performance. For any RNN, due to the

Markov chain S0 →
←−
X 0 → X0, this cannot be lower than

hµ—the entropy rate:

H[X0|S0] ≥ H[X0|
←−
X 0]

= hµ .

Notably, the next-generation RC takes into account only

the last m timesteps, so that:

H[X0|S0] = H[X0|
←−
Xm

0 ]

= hµ(m),

where the myopic entropy rate hµ(m) ≥ hµ is discussed

at length in Refs. [26].

IV. RESULTS

We are now ready to calibrate RNN and RC perfor-

mance on the task of time-series prediction. First, we

survey the performance of RCs when predicting a random

sample of typical complex stochastic processes. Second,

we explore RC performance on an “interesting” com-

plex process—one from the family of memoryful renewal

processes—hidden semi-Markov processes with infinite

Markov order. Third and finally, we compare the pre-

diction performance of RCs, next-generation RCs, and

LSTM RNNs on a large suite of complex stochastic pro-

cesses.

A. Limits of Next-Generation RCs Predicting

“Typical” Processes

We construct exemplars of “typical” complex processes

by sampling the space of ϵ-machines as follows:

• An arbitrary large number of candidate states is

chosen for the HMC stochastic process generator.

This parallels the fact that most processes have an

infinite number of causal states [15, 27];

• For each (σ, x) pair, a labeled transition σ
x−→ σ′

is randomly generated, with the destination state

σ′ chosen from the uniform distribution over can-

didate states;

• Symbol emission probabilities p(x|σ) are randomly

generated from a Dirichlet distribution with uni-

form concentration parameter α;

• We retain the largest recurrent component of this

construction as our sample ϵ-machine.

Numerically, we find that approximately 20% of the

candidate states become transients in the constructed di-

rected network, which are then trimmed from the final

ϵ-machine. This number of transients strongly clusters

around 20% as the number of candidates grows large.

(Note that this is a topological feature, independent of

α.) Moreover, this candidate network typically has a

single recurrent component. Accordingly, the resulting

causal states typically number about 80% of the candi-

date states in our construction, as the number of candi-

date states grows large.

This results in a finite-state unifilar HMC or, equiva-

lently, a presentation that can generate a process with a

finite number of causal states. Interestingly, though, the

process generated is usually infinite-order Markov [28].

This can be seen from the mixed-state presentation that

describes optimal prediction [20, 26], whose transient

states of uncertainty generically maintain nonzero prob-

ability even after arbitrarily long observation time. [This

is typical even when the mixed-state presentation has

a finite number of transient states. Adding a further

challenge to the task of prediction, though, the mixed-
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state presentation typically has infinitely many transient

states.]

An expression for the myopic entropy rate hµ(m) was

developed in Ref. [26] that allows one to exactly com-

pute hµ(m) from the generating ϵ-machine’s mixed-state

presentation. However, for binary-valued processes it

was more straightforward to explicitly enumerate possi-

ble length-m futures. Note, though, that this is imprac-

tical for the trajectory lengths used here if the emitted-

symbol alphabet is larger than two. Figure 3(top) shows

hµ(m) as a function of m, in the case that α = 1. Fig-

ure 3(bottom) shows percentage increases in the Pe lower

bounds for next-generation RCs above and beyond the

minimal Pmin
e , tracking prediction error lower bounds

given by Fano’s inequality in Sec. IV.

Across this family of stochastic processes, typical val-

ues of the myopic entropy rate hµ(m) and the entropy

rate hµ exhibit a concentration of measure as the num-

ber of causal states grows large, with values clustering

around 1/2 nat (not shown here). Typical values of the

percentage increase in the Pe above and beyond the min-

imal Pmin
e show a concentration of measure, and the min-

imum probability Pmin
e of error cluster around 1/4 (not

shown here), reminiscent of the process-survey results re-

ported by Ref. [29].

A quick plausibility argument suggests that there is

a genuine concentration of measure for these two quan-

tities, using the formulae in Sec. II. Roughly speaking,

when the ϵ-machine generator has a large number of

causal states, the transitions from any particular state

have little effect on the stationary state distribution p(σ).

Hence, hµ and Pmin
e are roughly the sum of N i.i.d. ran-

dom variables. The Central Limit Theorem dictates for

the concentration parameter α = 1 that hµ estimates

should cluster around 1/2 nat and that Pmin
e should clus-

ter around 1/4. In contrast, H[X0] has the larger ex-

pected value of ln(2) nats, which becomes typical as the

number of causal states grows large. The gradual de-

cay of uncertainty from ln(2) to 1/2 nat per symbol can

only be achieved by predictors that (at least implicitly)

synchronize to the latent state of the source via distin-

guishing long histories.

These typical processes are surprisingly non-

Markovian, exhibiting infinite-range correlation. A

process’ degree of non-Markovianity is reflected in

how long it takes for hµ(m) to converge to hµ: how

large must m be to synchronize? Even after observing

m = 15 symbols, these processes (with a finite but

large number of causal states) are still ∼ 0.2 nats

away from synchronization. This convergence failure

contributes to a minimal probability of error that cannot

be circumvented no matter the cleverness in choosing

the RC nonlinear readout function.
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FIG. 3. (Top) Finite-length entropy rate hµ(m) in nats for
typical random unifilar HMCs constructed with 30 (blue),
300 (orange), and 3000 (green) candidate states as a func-
tion of the number of input timesteps m. (Bottom) Increase
of the lower bound on the probability Pe of error from Fano’s
inequality, above and beyond Pmin

e , with the same random
unifilar HMCs as a function of the number of input timesteps
m. Since occassionally the lower bound on this quantity fell
below 0%, the maximum of 0% and the quantity is used. 90%
confidence intervals are shown on both graphs.

B. Limits of Next-Generation RCs Predicting an

“Interesting” Process

References [11, 12] define complex and thus “interest-

ing” processes as those that have infinite mutual informa-

tion between past and future—the so-called “predictive

information” or “excess entropy”. The timescales of pre-

dictability are revealed through the growth Ipred(m) as

longer length-m blocks of history and future are taken

into account. The predictive information is:

Ipred(m) =

m∑
l=0

[hµ(l)− hµ] .
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And so, its growth rate is:

Ipred(m+ 1)− Ipred(m) =

m+1∑
l=0

[hµ(l)− hµ]−
m∑
l=0

[hµ(l)− hµ]

= hµ(m+ 1)− hµ .

That is:

hµ(m+ 1) = hµ + Ipred(m+ 1)− Ipred(m) .

The gap between hµ(m+1) and hµ quantifies the excess

uncertainty in the next observable, due to observation of

only a finite-length past. This is governed by Ipred(m +

1) − Ipred(m) in discrete-time processes or, analogously,

by dIpred(t)/dt in continuous-time processes.

What constitutes an acceptable increase in prediction

error above and beyond hµ? The intuition for this fol-

lows from inverting Fano’s inequality to determine the

additional conditional entropy implied by a substantial

increase in the probability of error.

To illustrate this, we turn to an interesting process

that has a very slow gain in predictive information—the

discrete-time renewal process shown in Fig. 1(Bottom),

with survival function:

w(n) =

{
1 n = 0

n−β n ≥ 1
.

Discrete- and continuous-time renewal processes are en-

countered broadly—in the physical, chemical, biological,

and social sciences and in engineering—as sequences of

discrete events consisting of an event type and an event

duration or magnitude. An example critical to infras-

tructure design occurs in the geophysics of crustal plate

tectonics, where the event types are major earthquakes

tagged with duration time, time between their occur-

rence, and an approximate or continuous Richter mag-

nitude [30]. Another example is seen in the history of

reversals of the earth’s geomagnetic field [31]. In physical

chemistry they appear in single-molecule spectroscopy

which reveals molecular dynamics as hops between con-

formational states that persist for randomly distributed

durations [32, 33]. A familiar example from neuroscience

is found in the spike trains generated by neurons that

consist of spike-no-spike event types separated by inter-

spike intervals [34]. Finally, a growing set of renewal pro-

cesses appear in the quantitative social sciences, in which

human communication events and their durations are

monitored as signals of emergent coordination or com-

petition [35].

At β = 1, this discrete-time renewal process has

Ipred(m) ∼ log logm [36]. The minimal achievable lower

bound is Pmin
e = 0.0001. Due to an additional ∼ 0.1 nats
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FIG. 4. Predicting a discrete-time fractal renewal process
with infinite excess entropy: (Top) Percentage increase in the
lower bound for the probability of error Pe above and beyond
the minimum using Fano’s inequality as a function of time
steps m. (Bottom) Percentage increase in the lower bound for
the probability of error Pe above and beyond the minimum
using Fano’s inequality as a function of time steps m for a
process such as that in Ref. [36].

from not using an infinite-order memory trace and in-

stead only using the last m = 5 symbols, the probability-

of-error lower bound jumps to 0.02. This is a percent-

age increase in probability of error of 104% at m = 11

timesteps—about two and half orders of magnitude worse

than that of a typical complex process. We emphasize

these are fundamental bounds that no amount of clever-

ness can circumvent. While any nonlinear readout func-

tion might be chosen for a next-generation RC, the pro-

cess’ inherent complexity demands that an infinite-order

memory trace be used for relatively good prediction.

References [37, 38] constructed an HMC that ergodi-

cally [39] generated Ipred(m) ∼ logm. For this process:

hµ(m+ 1) ≈ hµ +
1

m
.
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Consider a process that has a “typical” entropy rate of

0.5 nats, we can invert Fano’s inequality—that is not nec-

essarily tight—to find a lower bound on the probability

of error with an infinite memory trace. Assuming this

lower bound, the bound on the percentage increase of

the probability of error above and beyond Pmin
e decays

to 10% only when the RC uses more than m = 1000

symbols. See Fig. 4(bottom).

C. RCs, Next-Generation RCs, and

State-of-the-Art RNNs Predicting Highly

non-Markovian Processes

Knowing that there are fundamental limits to the next-

generation RC’s ability to predict processes forces the

question: how well do next-generation RCs actually do at

predicting these processes when using second-order poly-

nomial readout? Moreover, do more traditional RCs and

state-of-the-art RNNs do any better?

In all experiments, we are careful to hold the number of

input nodes to the readout constant for a fair comparison.

We now compare typical RCs with linear readout, typ-

ical RCs with nonlinear readout (second-order polyno-

mial), and LSTMs to next-generation RCs on prediction

tasks generated by the large ϵ-machines of Sec. IVA.

Although RCs with nonlinear readout and many more

nodes outperform next-generation RCs, Fig. 5 shows that

when the number of readout nodes is held constant, next-

generation RCs are indeed the best RC possible. This is

expected from Ref. [5]. LSTMs beat all reservoir com-

puters, however, as one can see from the red violin plot of

Fig. 5 settling primarily on the lowest possible values of

(Pe − Pmin
e )/Pmin

e × 100%. This is somewhat expected

since LSTMs optimize both the reservoir and readout,

although the fact that they do is a testament to the fact

that the successful training of the reservoir using back-

propagation through time [40].

Figure 5’s surprise is that all RNNs perform quite

poorly, leaving at least ∼ 50% increase in the proba-

bility of error above and beyond optimal, as one can see

from the surprisingly large values on the y-axis, achieved

at m = 10 for the next-generation RC. This nearly satu-

rates the lower bound on this percentage increase in the

probability of error placed by Fano’s inequality.

V. CONCLUSION

The striking advances made by RNNs in predicting a

very wide range of systems—from language to climate—

have not been accompanied by markedly improved explo-

rations of how much structure they fail to predict. Here,

50

60
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e
−
P
m
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e
)/
P
m
in

e
×

10
0%

FIG. 5. Percentage increase in the probability of error of
trained next generation RCs (green), trained RCs with linear
readout (orange), trained RCs with nonlinear readout (blue),
and trained LSTMs (red) above and beyond Pmin

e for 100
ϵ-machines with 300 candidate states. The next-generation
RC has 10 timesteps as input; the typical RC with nonlin-
ear readout has 10 nodes with 5 linear nodes; the typical RC
with linear readout has 110 nodes with 10 linear nodes; and
the LSTM has 110 nodes. The number of nodes has been cho-
sen so that the number of readout nodes is equivalent across
machines. Note that these nearly saturate the lower bound
provided by Fano’s inequality.

we introduced and illustrated such a calibration.

We addressed the task of leveraging past inputs to fore-

cast future inputs, for any stochastic process. We showed

that Pmin
e —the minimal time-averaged probability of in-

correctly guessing the next input, minimized over all pos-

sible strategies that can operate on historical input—can

be directly calculated from a data source’s generating

ϵ-machine. This provides a benchmark for all possible

prediction algorithms. We compared this optimal predic-

tive performance with a lower bound on various RNNs’

Pe—the actual time-averaged probability of incorrectly

guessing the next input, given the state of the model.

We found that so-called next-generation RCs are funda-

mentally limited in their performance. And we showed

that this cannot be improved on via clever readout non-

linearities.

In our comparison of various prediction models, we

tested next-generation RCs with highly-correlated inputs

that are challenging to predict. This input data was gen-

erated from large ϵ-machines. The ϵ-machines are the

optimal prediction algorithm, and the minimal probabil-

ity of error for these data are known in closed-form. Our

extensive surveys showed, surprisingly, that models from

RCs with linear readout to next-generation RCs of rea-

sonable size to LSTMs all have a probability of prediction

error that is ∼ 50% greater than the theoretical minimal

probability of error.

The fact that simple large random ϵ-machines generate



9

such challenging stimuli might be a surprise. Recently,

though, it was reported that tractable ϵ-machines can

lead to “interesting” processes [11, 12]. We showed that

these processes provide even more of a challenge for next-

generation RCs.

At first, it may seem that this new calibration is some-

what useless, both theoretically and from a practical

point of view. For instance, it is perhaps not surpris-

ing that RCs, NGRCs, and maybe even LSTMs perform

poorly on highly non-Markovian processes such as the

ones used in this paper. However, with N nodes, one can

find N predictive features that potentially reach far back

into the past even though one might naively think that

the N features correspond to the last N time points. Sec-

ondly, the processes used here are not of general interest,

as large random ϵ-machines do not correspond to real-

world signals in structure. However, one can manufac-

ture ϵ-machines that do have the structure of real-world

signals, as any real-world signal can be represented by

an ϵ-machine. Then, the calibration here can improve

the RC or RNN’s ability to predict real-world signals.

This potential research program extends even to non-

stationary real-world data. Both natural language and

natural data from the physical world can be understood

as stochastic processes which, in principle, have some

epsilon machine representation. While we focused on

stationary processes in this manuscript, non-stationary

processes can be accommodated via simple adaptations

of our methods, where the unifilar HMM of the process

would have a unique start state and possible absorbing

states.

Finally, next-generation RCs—that do indeed outper-

form typical RCs with the same number of readout

nodes—are fundamentally limited in prediction perfor-

mance by the nature of their limited memory traces. We

suggest that effort should be expended to optimize stan-

dard RCs that do not suffer from the same fundamental

limitations—so that memory becomes properly incorpo-

rated and typical performance improves.
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