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Alternative computing paradigms open the door to exploiting recent innovations in computa-
tional hardware to probe the fundamental thermodynamic limits of information processing. One
such paradigm employs superconducting quantum interference devices (SQUIDs) to execute classical
computations. This, though, requires constructing sufficiently complex superconducting circuits that
support a suite of useful information processing tasks and storage operations, as well as understand-
ing these circuits’ energetics. First-principle circuit design, though, leads to prohibitive algebraic
complications when deriving the effective equations of motion—complications that to date have
precluded achieving these goals, let alone doing so efficiently. We circumvent these complications by
(i) specializing our class of circuits and physical operating regimes, (ii) synthesizing existing deriva-
tion techniques to suit these specializations, and (iii) implementing solution-finding optimizations
which facilitate physically interpreting circuit degrees of freedom that respect physically-grounded
constraints. This leads to efficient, practical circuit prototyping and access to scalable circuit archi-
tectures. The analytical efficiency is demonstrated by reproducing the potential energy landscape
generated by the quantum flux parametron (QFP). We then show how inductively coupling two
QFPs produces a device that is capable of executing 2-bit computations via its composite potential
energy landscape. More generally, the synthesis methods detailed here provide a basis for construct-
ing universal logic gates and investigating their thermodynamic performance.

I. INTRODUCTION

All computation is physical. To effect information pro-
cessing, one approach entails a sequence of stochastic
transformations that systematically manipulate a sys-
tem’s potential energy landscape [1, 2]. Reliable com-
puting, in particular, then requires stable memory states
physically supported by a system’s information-bearing
degrees of freedom [3]. Energy minima on the landscape
provide this dynamical stability. Computation, then,
consists of externally controlling the creation, destruc-
tion, and location of energy minima. From this perspec-
tive, a device’s time-dependent potential energy surface
guides the emergence of its computational capabilities.

Exploring a superconducting circuit’s ability to per-
form computational operations in this way involves un-
derstanding the device’s energetics and subsequent dy-
namical equations of motion [4–8]. Success in using this
approach to design candidate devices, though, requires
rapidly determining if a given circuit construction is ca-
pable of carrying out computations. And this, in turn,
demands a framework that can efficiently derive a cir-
cuit’s equations of motion. To accomplish this, we syn-
thesize several previous approaches, specializing them to
a class of circuits of practical interest. The result is a
methodology for generating a readily-interpretable La-
grangian and associated equations of motion for a given
circuit in terms of its classical degrees of freedom.

The framework’s success is demonstrated through two
examples. First, we efficiently reproduce the Lagrangian
of a quantum flux parametron (QFP) [4, 5, 9–11]. Then,
we show how inductively coupling two QFPs produces a
device that can execute a range of 2-bit computations.

II. RELATED WORK

The following synthesizes methods from Refs. [12–15].
Its foundations build on Refs. [12, 13], which introduced
a network-theoretic approach to electrical circuit anal-
ysis and investigated circuits operating in the quantum
regime. Ref. [14] introduced an elegant technique for
multi-loop circuits to find irrotational degrees of free-
dom. However, it considered only the circuit’s quantum
Hamiltonian for investigating time-dependent quantities,
such as the transition probabilities between energy eigen-
states. And, this departs from our goals. Moreover, to
avoid cyclic coordinates in the equations of motion, Ref.
[14] restricted each circuit loop to have only a single in-
ductor. The following eschews this restriction and, in-
stead, finds optimal solutions for circuits containing more
than one inductor in a loop by algebraically eliminating
extra degrees of freedom.

Here, we use the resistive capacitive shunted junction
(RCSJ) model for each Josephson junction (JJ). Due to
this, the dissipative dynamics arising from finite-valued
direct current (DC) resistances must be accounted for.
To do this, we rely on Ref. [15]’s method that uses the
Rayleigh dissipation function [16] to model the circuit’s
resistive shunts.

Several alternative approaches are available to analyze
circuit behaviors in the quantum regime. One common
procedure employs number-phase quantization [17, 18],
which does not use a network-theoretic approach. Sim-
ulations of the quantum dynamics of similar circuits are
detailed in Ref. [19]. This all noted, though the SQUIDs
employed here are often the basis for quantum computing
devices, we concentrate on their behavior in the classical
regime to understand their information-bearing degrees
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of freedom [10, 20]. This also greatly facilitates follow-in
investigations of their thermodynamic performance.

Finally, a complementary approach to JJ circuit anal-
ysis considers the charge in a loop [21], as opposed to the
magnetic flux. However, previous works [20, 22] revealed
that varying magnetic flux provides a convenient circuit
control method. Consequently, this grounds the follow-
ing in a flux-focused interpretation of circuit behavior.
A generalized approach to the techniques implemented
in Ref. [14] considers arbitrary circuit geometries and
electromagnetic fields to construct a Hamiltonian [23].
That said, analytical complications that arise from this
first-principles framework preclude rapidly and directly
characterizing candidate circuit designs.

III. SUPERCONDUCTING CIRCUIT ANALYSIS

First, we obtain the equations of motion for a given
circuit. Then, we show how to find coordinate transfor-
mations that produce readily interpretable equations of
motion in Langevin form.

A. Circuit Equations of Motion

Following Ref. [12], we define a branch to be a partic-
ular circuit element, whose time dependent branch flux
is defined by:

ϕb = ϕb(t)

:=

∫ t

−∞
dt′ vb(t

′) .

This is related to the branch voltage vb(t), the instanta-
neous voltage across the circuit element, and the reduced
branch flux φb = 2πϕb/ϕ0, where ϕ0 is the flux quantum.
Before proceeding, several assumptions need to be ad-

dressed. To begin, all branches within a circuit corre-
spond to either a Josephson junction (JJ) or an inductor.
Corresponding variables are subscripted with a J or L,
respectively. All JJs are described by the RCSJ model
[24, 25], which is characterized by a critical current Ic
[7], capacitance CJ , and DC resistance R. Each induc-
tive branch is modeled by an inductance L in parallel
with a capacitance CL satisfying the limit CL/CJ ≈ 0.
We adopt CL as an auxiliary variable in a fashion similar
to Ref. [14], in that the limit is used at a particular step
in the calculations, which is exemplified in Sections IVA
and IVB.

Suppose a circuit is constructed with n JJs and m in-
ductors for a total of N = n +m branches. The branch
flux vector Φb := (ϕJ1

, . . . , ϕJn
, ϕL1

, . . . , ϕLm
)T com-

pactly represents all circuit branch fluxes. When com-
puting the potential and equations of motion, we refer to
the truncated branch flux vectors ΦbJ

:= (ϕJ1
, . . . , ϕJn

)T

and ΦbL
:= (ϕL1

, . . . , ϕLm
)T.

The energy stored in the capacitive components is [12]:

LT =
1

2
Φ̇T

bCΦ̇b , (1)

where the dot ˙ indicates a time derivative, and the ca-
pacitance matrix is:

C := diag (CJ1 , ..., CJn , CL1 , ..., CLm) .

Since we assume that all branches are either inductors
or JJs, the energy stored in the inductive elements can
be calculated using only ΦbL

. The m × m inductance
matrix L denotes the circuit’s linear inductances, with
diagonal entries corresponding to self-inductances Li and
off-diagonal entries corresponding to the mutual induc-
tive coupling −Mij between Li and Lj ̸=i. The energy
stored in the inductive components is given by [12]:

LL =
1

2
ΦT

bL
L−1ΦbL

. (2)

Up to a constant, the JJ potential energy contribution
is [12]:

LJ = −
n∑

i=1

Ei cos

(
2π

ϕ0
ΦbJi

)
, (3)

in which Ei = (ϕ0/2π)Ic is the Josephson energy of the
ith JJ in a circuit.
Equations (2)-(3) together give the circuit’s conserva-

tive potential energy LV := LJ + LL. Given a physical
circuit consisting of inductors and JJs as described above,
the circuit Lagrangian L := LT −LV is, up to a constant:

L =
1

2
Φ̇T

bCΦ̇b − 1

2
ΦT

bL
L−1ΦbL

+

n∑
i=1

Ei cos

(
2π

ϕ0
ΦbJi

)
. (4)

The nonconservative dissipation from the finite JJ re-
sistive shunts are taken into account by the Rayleigh dis-
sipation function D, and further incorporated into the
Euler-Lagrange equations of motion [15, 16] in terms of
a generalized coordinate qi, as:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= −∂D
∂q̇i

, (5)

with

D :=

n∑
i=1

1

2Ri
(ϕ̇Ji

)2 . (6)

D accounts for the dissipated power in each JJ branch
due to its shunt resistance Ri in terms of its branch flux
ϕJi . Recalling that only JJ branches have DC resistance
values, we rewrite Eq. (6) as:

D =
1

2
Φ̇T

bJ
D−1Φ̇bJ

,
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whereby, following the same logic as with L−1, D has
dimensions of n× n. However, unlike L, D is manifestly
diagonal.

To conclude, we add the contribution of the DC resis-
tances’ thermal noise current to the equations of motion
via:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= −∂D
∂q̇i

+ ηi(t) , (7)

in which ηi(t) is nonzero for the JJ branches only. As
is standard in Langevin treatments [10], ηi(t) are statis-
tically independent of each other, delta correlated over
time, and determined by the fluctuation-dissipation the-
orem through the relation:

⟨ηi(t)ηj(t′)⟩ =
2kBT

Ri
δijδ(t− t′) .

B. Determining Optimal Coordinates

Despite the fact that Eq. (5) marginally accommo-
dates the circuit’s topology, it does not account for flux-
oid quantization conditions [12, 26]: These require that
the sum of the branch fluxes around any loop equals the
external flux threading the loop. As a result, while there
may appear to be N = n +m degrees of freedom in the
Lagrangian, there are only N−F degrees of freedom in a
circuit with F independent loops—i.e., loops that contain
no other loops—threaded by external fluxes.

In view of this, the external flux vector Φx :=
(ϕx1

, ..., ϕxF
)T is defined to cast fluxoid quantization into

matrix form [14]:

Φx = RΦb .

The F×N matrix R is constructed in such a way that its
elements Rij satisfy the following criteria: Let Li denote
the ith loop threaded by the external flux Φxi that may
contain branch flux ϕj . Then:

Rij :=


+1 ϕj ∈ Li same orientation as Φxi ,

−1 ϕj ∈ Li opposite orientation as Φxi , and

0 ϕj /∈ Li .

Finally, the circuit’s degrees of freedom are defined as

Φ̃ := (ϕ̃1, . . . , ϕ̃N−F )
T [14]. Generally, these are a to-

be-determined linear combination of the branch fluxes
represented by the (N − F )×N matrix M:

Φ̃ = MΦb .

Furthermore, due to fluxoid quantization, no more than
N − F degrees of freedom in the circuit are expected.
The quantization conditions are included by employing

the N × 1 augmented flux vector Φ̃+ and the N × N

augmented matrix M+ [14]:

Φ̃+ :=

(
Φ̃
Φx

)
,

M+ :=

(
M
R

)
.

Note that the branch flux vector and the augmented
flux vector are directly related to each other through M+

by:

Φ̃+ = M+Φb . (8)

With this, the circuit Lagrangian and associated equa-

tions of motion can be written in terms of Φ̃+ by substi-

tuting Φb = M−1
+ Φ̃+ into Eq. (5). Specifically, to find

the circuit’s Lagrangian in terms of Φ̃+, M+ must be in-
vertible. Provided that the columns of M are chosen to
be linearly independent of each other and of the columns
of R, the nonsingularity of M+ is guaranteed.
However, ambiguity remains in defining the elements

of M. Following Ref. [14], these degrees of freedom are
deemed irrotational by ensuring that they satisfy the fol-
lowing constraint:

RC−1MT = 0 . (9)

This guarantees that the Lagrangian, when written in

terms of Φ̃+, does not depend on Φ̇x. Due to this, Φ̃

is referred to as the irrotational flux vector, and Φ̃+

is the augmented irrotational flux vector. In addition,
Eq. (9) allows the equations of motion to be of Langevin
form, further enabling thermodynamical analyses of the
circuit’s degrees of freedom—the subject of a sequel.
However, even after enforcing the irrotational con-

straint, there is still additional freedom in defining M.
To address this, we turn to the kinetic energy term:

LT =
1

2
Φ̇T

bCΦ̇b (10)

=
˙̃
Φ

T

+(M
−1
+ )TCM−1

+
˙̃
Φ+

=
1

2
˙̃
Φ

T

+Ceff
˙̃
Φ+ , (11)

in which Ceff is the effective capacitive matrix. With Eq.
(11) in mind, recall that the goal is to obtain an easily
interpretable Lagrangian and corresponding equations of
motion for a given circuit. A diagonal Ceff allows for a
straightforward interpretation of LT as the kinetic energy

in both the Φb and the Φ̃ bases. In other words, the task
is to find solutions of M that yield a diagonal Ceff .
Analyzing a number of cases established a set of cal-

culational guidelines that result in a diagonal Ceff when
solving for the components of M through Eq. (9). These
aid in the task of finding optimal solutions in the contin-
uous family of possible solutions:
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1. The first n rows of M can each contain up to n
nonzero entries corresponding to the n JJ coeffi-
cients of MΦb, which will have the same mag-
nitude. The other m inductive elements of M,
corresponding to the inductive coefficients in each
of these rows, will either be zero or proportional
to CL/CJ ; the latter subsequently vanishes when
CL/CJ → 0. Note that this limit is taken after a
solution is found.

2. When m − F > 0, the last m − F rows of M will
each contain up to m nonzero entries correspond-
ing to the m inductive flux coefficients of MΦb,
which also have the same magnitude. All n JJ co-
efficients in these rows will contain zero entries, and
all nonzero inductive coefficients are unity herein.

Importantly, linear independence between rows must be
maintained when implementing these conditions.

To briefly illustrate guideline (1), one possible realiza-
tion is that in each of the n rows, every JJ coefficient
takes on a nonzero value only once, while all other JJ
coefficients are zero. If each nonzero value is unity, this
is equivalent to there being no coordinate transformation
between these branch and irrotational flux coordinates.

Guideline (2) stems from a mismatch between the num-
ber of loops and inductors. For example, if m = 2 and
F = 1 such that m− F = 1—i.e., there is one loop that
contains more than one inductor—this requires setting all
JJ coefficients to zero for one solution of Eq. (9). This re-
flects the over-determination of the additional inductor’s
behavior in the circuit. Consequently, one cyclic coor-
dinate will appear in the circuit Lagrangian: This can
be eliminated through determining its equation of mo-
tion and subsequently rewriting it in terms of noncyclic
irrotational degrees of freedom. Sections IVA and IVB
demonstrate this procedure. Note that ifm−F = 0, then
guideline (2) does not apply. Additionally, if m−F < 0,
finding a diagonal Ceff is not possible.
Once the elements of M are determined, the dynami-

cal degrees of freedom are interpreted as the irrotational
degrees of freedom that are not cyclic [16]. Numerically,
there are N − F − (m− F ) = n, as there will be N − F
irrotational flux coordinates with m− F expected to be
cyclic. For a multi-loop circuit (F > 1), a diagonalCeff is
found only when there are no more JJs than there are ir-
rotational degrees of freedom. Equivalently, the number
of inductors in a circuit containing both JJs and induc-
tors must satisfy m ≥ F . These conditions can also be
explained as the following: Each JJ must be physically
represented by at least one dynamical degree of freedom,
and there must be at least one inductor per independent
circuit loop to capture the circuit flux behavior. Below,
we illustrate these conditions by example.

IV. EXAMPLE DEVICE DESIGNS

The following demonstrates how to find the indepen-
dent information-bearing degrees of freedom via two ex-

amples: A quantum flux parametron (QFP) and a device
comprised of two inductively coupled QFPs capable of
implementing a range of 2-bit computations.

A. Quantum Flux Parametron

We first consider a circuit whose names and construc-
tions span multiple use cases over a number of decades.
Figure 1 displays a circuit whose original name was the
variable β radio-frequency SQUID [4, 5, 10], and was
later known as the compound Josephson junction radio-
frequency SQUID [11, 27]. The device’s primary use
cases involved investigating macroscopic quantum phe-
nomenon, which deviates fundamentally from our goals.
Applications that utilize the quantum flux parametron
(QFP) [9, 28, 29] align more closely with our goals—
employing superconducting devices for classical informa-
tion processing—although the QFP construction differs
from that of Refs. [4, 5, 10]. With this considered, we
refer to the circuit in Fig. 1 as a QFP.

L

l1

J1

l2

J2

Φx1 Φx2

FIG. 1. A QFP with N = 5 and F = 2. Slight adjustments
are made to the physical construction of the circuit to com-
pare to Ref. [5].

Now, the goal is to reproduce the Lagrangian of the
circuit shown in Fig. 1—whose design is detailed in
Ref. [5]—using the methods detailed in Sections IIIA
and III B. To accomplish this, first we begin writing out
the flux vectors:

Φb = (ϕJ1 ϕJ2 ϕL ϕl1 ϕl2)
T ,

ΦbJ
= (ϕJ1

ϕJ2
)
T

,

ΦbL
= (ϕL ϕl1 ϕl2)

T
,

Φ̃+ = (ϕ̃1 ϕ̃2 ϕ̃3 ϕx1 ϕx2)
T .

With every branch orientation in Fig. 1 pointing up-
wards, fluxoid quantization gives:

R =

(
1 0 −1 1 0
−1 1 0 −1 1

)
,

where each row’s entries correspond to the column ori-
entation of (J1, J2, L, l1, l2), and each row coincides with
the external flux loops (ϕx1 , ϕx2), respectively. Next, the
capacitance matrix is written as:

C−1 = diag(C−1
J1

, C−1
J2

, C−1
L , C−1

l1
, C−1

l2
) .
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To satisfy Eq. (9), let:

MT =


M11 M21 M31

M12 M22 M32

M13 M23 M33

M14 M24 M34

M15 M25 M35

 .

Then, with the assumption that Cl := Cl1 = Cl2 = CL

and CJ := CJ1
= CJ2

, each column of MT satisfies:

CMi1 = Mi3 −Mi4 (12)

C(Mi2 −Mi1) = Mi4 −Mi5 , (13)

with C := Cl/CJ and i = 1, 2, 3. From here, we use the
guidelines described in Sec. III B to obtain a diagonal
Ceff . This is achieved first via guideline (1) for the first
n = 2 rows of M and guideline (2) for the last m−F = 1
row of M. We then write a subset of the solution space
of Eqs. (12)-(13) into the augmented matrix:

M+ =

(
M
R

)

=


1/2 1/2 C/4 −C/4 −C/4
−1 1 0 C −C
0 0 1 1 1
1 0 −1 1 0
−1 1 0 −1 1

 , (14)

Consequently, we expect there to be m − F = 1 cyclic
irrotational degree of freedom once the circuit Lagrangian
L is found. Next, taking the limit C → 0 and then
inverting M+ yields:

M−1
+ =


1 −1/2 0 0 0
1 1/2 0 0 0
2/3 0 1/3 −2/3 −1/3
−1/3 1/2 1/3 1/3 −1/3
−1/3 −1/2 1/3 1/3 2/3

 , (15)

which aids in computing the effective capacitive matrix
as:

Ceff =


2CJ 0 0 0 0
0 CJ/2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

which is diagonal as expected due to following guidelines
(1) and (2).

As there are no mutual inductance couplings, the in-
ductance matrix is:

L =

L 0 0
0 l1 0
0 0 l2

 .

Recalling Eq. (8), and writing the circuit Lagrangian
from Eq. (4) in terms of irrotational branch fluxes, pro-

duces:

L =
CJ

2

(
2
˙̃
ϕ

2

1 +
1

2
˙̃
ϕ

2

2

)
− 1

9L

(
2ϕ̃1 + ϕ̃3 − 2ϕx1

− ϕx2

)2

− 1

9l1

(
−ϕ̃1 +

3

2
ϕ̃2 + ϕ̃3 + ϕx1

− ϕx2

)2

− 1

9l2

(
−ϕ̃1 −

3

2
ϕ̃2 + ϕ̃3 + ϕx1

+ 2ϕx2

)2

+ E2+1 cos φ̃1 cos
φ̃2

2
− E2−1 sin φ̃1 sin

φ̃2

2
, (16)

where E2±1 = EJ2
± EJ1

.

The Lagrangian is independent of
˙̃
ϕ3 which indicates

that it is, as expected, a cyclic degree of freedom: It can
be eliminated by computing the Euler-Lagrange equation

of motion, finding that ϕ̃3 = ϕ̃1 − ϕx1 − ϕx2/2, and sub-
stituting this into L. A map between the circuit flux
variables in Eq. (16) and those from Ref. [5] can then be
identified as:

ϕ̃1 = ϕ ,

ϕ̃2 = ϕdc ,

ϕx1
= ϕx −

1

2
ϕxdc , and

ϕx2
= ϕxdc .

Making these substitutions into Eq. (16) yields a La-
grangian L that matches that of Ref. [5] with the pre-
ceding variable substitutions:

L = LT − Lvβ-rf (17)

=
CJ

2

(
2ϕ̇2 +

1

2
ϕ̇2
dc

)
− 1

2L
(ϕ− ϕx)

2 − 1

2l
(ϕdc − ϕxdc)

2

+ E2+1 cosφ cos
φdc

2
− E2−1 sinφ sin

φdc

2
.

B. Inductively Coupled QFPs

For our final example, consider inductively coupling
two QFPs through L1 and L2 via the mutual inductance
coupling constant M := M12 = M21, shown in Fig. 2.
Using the methods described in Secs. III A and III B, as
well as the results from Sec. IVA, allows rapidly deriving
its potential. After this, we discuss how this controllable
potential performs 2-bit computations.
The choice of branch orientation for the circuit in Fig.

2 is represented by:

R =

 1 0 0 0 −1 0 1 0 0 0
−1 1 0 0 0 0 −1 1 0 0
0 0 1 0 0 −1 0 0 1 0
0 0 −1 1 0 0 0 0 −1 1

 ,
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L1

J1l1

J2l2

L2

l3

l4

ϕ1x

ϕ1xdc

ϕ2x

ϕ2xdc

M

J3

J4

FIG. 2. Two QFPs inductively coupled via M : A super-
conducting device that supports 2-bit classical computations
through the manipulation of its potential energy landscape.

in which each row’s elements coincide with the col-
umn orientation (J1, J2, J3, J4, L1, L2, l1, l2, l3, l4),
each row corresponds to the external flux loop
(ϕ1x, ϕ1xdc, ϕ2x, ϕ2xdc), and each branch orienta-
tion of the upper [lower] SQUID points left [right].
Using the irrotational constraint RC−1MT = 0, we find
that the elements of M need to satisfy:

CMi1 = Mi5 −Mi7

C(Mi2 −Mi1) = Mi7 −Mi8

CMi3 = Mi6 −Mi9

C(Mi4 −Mi3) = Mi9 −Mi10 .

Taking a lesson from the single QFP case, and after tak-
ing C → 0, our choice of M and R leads to:

M+ =



1/2 1/2 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0 1 1

R


,

whose inverse is:

M−1
+ =



1 −1/2 0 0 0 0 0 0 0 0
1 1/2 0 0 0 0 0 0 0 0
0 0 1 −1/2 0 0 0 0 0 0
0 0 1 1/2 0 0 0 0 0 0
2/3 0 0 0 1/3 0 −2/3 −1/3 0 0
0 0 2/3 0 0 1/3 0 0 −2/3 −1/3

−1/3 1/2 0 0 1/3 0 1/3 −1/3 0 0
−1/3 −1/2 0 0 1/3 0 1/3 2/3 0 0
0 0 −1/3 1/2 0 1/3 0 0 1/3 −1/3
0 0 −1/3 −1/2 0 1/3 0 0 1/3 2/3


.

We then eliminate the cyclic degrees of freedom ϕ̃5 and

ϕ̃6. Following the single QFP case detailed in Sec. IVA,
the map between our flux variables and those of Ref. [5]
is:

ϕ̃i = ϕj ,

ϕ̃i+1 = ϕjdc ,

ϕxi
= ϕjx −

1

2
ϕjxdc , and

ϕxi+1
= ϕjxdc .

Here, the index i corresponds to either the ith dynamical
degree of freedom or the ith external flux, while the index
j aligns with the flux in the jth QFP, for which i = 1, 3
and j = 1, 2, respectively.

Next, the inductive contribution to the potential, when
taking L := L1 = L2 and l := l1 = l2 = l3 = l4, is found
by first writing:

L =


L −M 0 0 0 0

−M L 0 0 0 0
0 0 l 0 0 0
0 0 0 l 0 0
0 0 0 0 l 0
0 0 0 0 0 l

 .
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Then, subsequently taking its inverse gives:

L−1 =


1/Lα µ/Lα 0 0 0 0
µ/Lα 1/Lα 0 0 0 0
0 0 1/l 0 0 0
0 0 0 1/l 0 0
0 0 0 0 1/l 0
0 0 0 0 0 1/l

 ,

where Lα = αL, α = 1− µ2, and µ = M/L.
With this, the potential is then:

LV = −E2+1 cosφ1 cos
φ1dc

2
+ E2−1 sinφ1 sin

φ1dc

2

− E4+3 cosφ2 cos
φ2dc

2
+ E4−3 sinφ2 sin

φ2dc

2

+
1

2l
(ϕ1dc − ϕ1xdc)

2 +
1

2l
(ϕ2dc − ϕ2xdc)

2

+
1

2Lα
(ϕ1 − ϕ1x)

2 +
1

2Lα
(ϕ2 − ϕ2x)

2

+
µ

Lα
(ϕ1 − ϕ1x)(ϕ2 − ϕ2x) . (18)

If we assume small coupling by keeping only linear
terms in µ, then L−1

α → L−1, resulting in Eq. (18) sim-
plifying to a sum of two QFPs potential contributions
and a mutual inductance coupling LM.I.:

LV = Lvβ-rf 1 + Lvβ-rf 2 + LM.I. , (19)

in which LM.I. = µ(ϕ1 − ϕ1x)(ϕ2 − ϕ2x)/L.
A two dimensional projection of Eq. (19) is shown

in Fig. 3: The potential has four stable energy min-
ima which can each be assigned a computational mem-
ory state—00, 01, 10, and 11. Taking advantage of the
metastable regions near each minimum, we can store in-
formation. By varying the values of M , ϕix and ϕixdc for
which i = 1, 2, we can process that information—using
the dynamics of the Euler-Lagrange equation of motion
to implement 2-bit logic gates. Note that while we con-
sidered M to be a tunable coupling constant, the details
of its construction—a SQUID coupler—are detailed in
Refs. [27, 30, 31], whose equations of motion could be
accounted for within the complete device construction if
its dynamics become important in future investigations.

V. CONCLUSION

We introduced a superconducting circuit methodology
that enables exploring the classical informational pro-
cessing properties of a candidate superconducting circuit
through understanding the circuit’s energetics and subse-
quent dynamics. The methods reproduce—in an analyti-
cally efficient way—potentials used for experimentally in-
vestigating information-bearing degrees of freedom [20],

as well as constructing a device that supports 2-bit com-
putations. A sequel describes the information processing
properties and energetic performance in detail.
This is the first effort in a series on physically-realizable

classical computing. In point of fact, the coupled QFPs
shown in Fig. 2 also supports the information process-
ing behavior exhibited by a Szilard engine [1, 32, 33].
Follow-on efforts explore the dynamical and thermody-
namic properties of these circuits and implement univer-
sal gates—e.g., NAND, NOR, and Fredkin.

2 0 2

ϕ1

2

0

2

ϕ
2

FIG. 3. Example potential energy landscape generated by
Eq. (19). Instantiating each region surrounding an energy
minimum as a computational memory state—00, 10, 01, and
11—permits information storage. Information processing is
accomplished by way of a control protocol that employs the
mutual inductance and external flux parameters to transform
the landscape.

VI. ACKNOWLEDGMENTS

The authors thank Scott Habermehl, Paul Riechers,
and Greg Wimsatt for helpful discussions, as well as the
Telluride Science Research Center for its hospitality dur-
ing visits and the participants of the Information Engines
workshop there for their valuable feedback. J.P.C. ac-
knowledges the kind hospitality of the Santa Fe Institute
and California Institute of Technology. This material is
based on work supported by, or in part by, the U.S. Army
Research Laboratory and U.S. Army Research Office un-
der Grant No. W911NF-21-1-0048.



8

∗ czpratt@ucdavis.edu
† kjray@ucdavis.edu
‡ chaos@ucdavis.edu

[1] A. B. Boyd and J. P. Crutchfield. Maxwell Demon Dy-
namics: Deterministic Chaos, the Szilard Map, and the
Intelligence of Thermodynamic Systems. Physical Review
Letters, 116(19):190601, 2016.

[2] K. J. Ray, A. B. Boyd, G. W. Wimsatt, and J. P. Crutch-
field. Non-Markovian momentum computing: Thermo-
dynamically efficient and computation universal. Physi-
cal Review Research, 3(2), 2021.

[3] R. Landauer. Irreversibility and heat generation in the
computing process. IBM Journal of Research and Devel-
opment, 5(3):183–191, 1961.

[4] S. Han, J. Lapointe, and J. E. Lukens. Thermal acti-
vation in a two-dimensional potential. Physical Review
Letters, 63(16):1712–1715, 1989.

[5] S. Han, J. Lapointe, and J. E. Lukens. Variable ß rf
SQUID, volume 31, page 219–222. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1992.

[6] R. Cantor. Dc Squids: Design, Optimization and Prac-
tical Applications, page 179–233. Springer Netherlands,
Dordrecht, 1996.

[7] T. P. Orlando et al. Superconducting persistent-current
qubit. Physical Review B, 60(22):15398–15413, 1999.

[8] M. Mück, B. Chesca, and Y. Zhang. Radio Frequency
SQUIDs and their Applications, page 505–540. Springer
Netherlands, Dordrecht, 2001.

[9] Y. Harada, E. Goto, and N. Miyamoto. Quantum flux
parametron. In 1987 International Electron Devices
Meeting, page 389–392, December 1987.

[10] S. Han, J. Lapointe, and J. E. Lukens. Effect of a two-
dimensional potential on the rate of thermally induced
escape over the potential barrier. Physical Review B,
46(10):6338–6345, 1992.

[11] R. Harris et al. Probing noise in flux qubits via macro-
scopic resonant tunneling. Physical Review Letters,
101(11):117003, 2008.

[12] M. H. Devoret. Quantum Fluctuations in Electrical Cir-
cuits. Elsevier Science, Les Houches, Session LXIII, 1995.

[13] G. Burkard, R. H. Koch, and D. P. DiVincenzo. Mul-
tilevel quantum description of decoherence in supercon-
ducting qubits. Physical Review B, 69(6):064503, 2004.

[14] X. You, J. A. Sauls, and J. Koch. Circuit quantization
in the presence of time-dependent external flux. Physical
Review B, 99(17):174512, 2019.

[15] M. Mariantoni. The energy of an arbitrary electrical cir-
cuit, classical and quantum, 2021.

[16] H. Goldstein, C. P. Poole, and J. L. Safko. Classical
Mechanics. Addison-Wesley, San Francisco Munich, 3.
ed. edition, 2008.

[17] M. Xiang-Guo, W. Ji-Suo, Z. Yun, and F. Hong-Yi.
Number-phase quantization and deriving energy-level

gap of two lc circuits with mutual-inductance. Chinese
Physics Letters, 25(4):1205–1208, 2008.

[18] M. Xiang-Guo, W. Ji-Suo, and L. Bao-Long. Cooper-
pair number-phase quantization for inductance coupling
circuit including josephson junctions. Chinese Physics
Letters, 25(4):1419–1422, 2008.

[19] S. P. Chitta, T. Zhao, Z. Huang, I. Mondragon-Shem,
and J. Koch. Computer-aided quantization and numeri-
cal analysis of superconducting circuits. New Journal of
Physics, 2022.

[20] O. P. Saira et al. Nonequilibrium thermodynamics of
erasure with superconducting flux logic. Physical Review
Research, 2(1), 2020.

[21] J. Ulrich and F. Hassler. Dual approach to circuit
quantization using loop charges. Physical Review B,
94(9):094505, 2016.

[22] K. J. Ray and J. P. Crutchfield. Gigahertz Sub-Landauer
Momentum Computing. Phys. Rev. Applied, 19:014049,
2023.

[23] R.P. Riwar and D. P. DiVincenzo. Circuit quantization
with time-dependent magnetic fields for realistic geome-
tries. npj Quantum Information, 8(1):36, 2022.

[24] W. C. Stewart. Current-voltage characteristics of joseph-
son junctions. Applied Physics Letters, 1968.

[25] D. E. McCumber. Effect of ac Impedance on dc Voltage-
Current Characteristics of Superconductor Weak-Link
Junctions. Journal of Applied Physics, 39(7):3113–3118,
1968.

[26] B. Yurke and J. S. Denker. Quantum network theory.
Physical Review A, 29(3), 1984.

[27] R. Harris et al. Compound josephson-junction coupler
for flux qubits with minimal crosstalk. Physical Review
B, 80(5):052506, 2009.

[28] Hosoya et al. Quantum flux parametron: a single quan-
tum flux device for josephson supercomputer. IEEE
Transactions on Applied Superconductivity, 1(2):77–89,
1991.

[29] Takeuchi et al. Adiabatic quantum-flux-parametron:
A tutorial review. IEICE Transactions on Electronics,
E105.C(6):251–263, June 2022.

[30] A. van den Brink, A. J. Berkley, and M. Yalowsky. Me-
diated tunable coupling of flux qubits. New Journal of
Physics, 7:230–230, 2005.

[31] R. Harris et al. Sign- and magnitude-tunable coupler
for superconducting flux qubits. Physical Review Letters,
98(17):177001, 2007.
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