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We identify macroscopic functioning arising during a thermodynamic system’s typical and atypi-
cal behaviors, thereby describing system operations over the entire set of fluctuations. We show how
to use the information processing second law to determine functionality for atypical realizations and
how to calculate the probability of distinct modalities occurring via the large-deviation rate func-
tion, extended to include highly-correlated, memoryful environments and systems. Altogether, the
results complete a theory of functional fluctuations for complex thermodynamic nanoscale systems
operating over finite times. In addition to constructing the distribution of functional modalities, one
immediate consequence is a cautionary lesson: ascribing a single, unique functional modality to a
thermodynamic system, especially one on the nanoscale, can be misleading; likely masking an array
of simultaneous, parallel thermodynamic transformations that together may also be functional. In
this way, functional fluctuation theory alters how we conceive of the operation of biological cellular
processes, the goals of engineering design, and the robustness of evolutionary adaptation.
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I. INTRODUCTION

Almost all processes—highly correlated, weakly corre-

lated, or correlated not at all—exhibit statistical fluc-

tuations. Often physical laws, such as the Second Law

of Thermodynamics, address only typical realizations—

those identified by Shannon’s asymptotic equipartition

property [1] and that emerge in the thermodynamic limit

of an infinite number of degrees of freedom and infinite

time [2]. Indeed, our interpretations of the functioning of

macroscopic thermodynamic cycles are so focused. What

happens, though during atypical behaviors, during fluc-

tuations?

The limitation to typical behaviors is particularly a

concern when it comes to information processing in ther-

modynamic systems or in biological processes, since fluc-

tuations translate into errors in performing designed

computing tasks or in completing operations required

for maintenance and survival, respectively. As a con-

sequence, one realizes that the Information Processing

Second Law (IPSL) only identifies thermodynamic func-

tioning supported by a system’s typical realizations [3].

Now, since observing typical realizations is highly prob-

able over long times and goes to probability one in the

thermodynamic limit, a definition of system functional-
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ity based on typicality is quite useful. However, this ren-

ders the IPSL substantially incomplete and practically

inapplicable—ignoring fluctuations over finite times and

in microscopic systems. This is unfortunate. For ex-

ample, while a system’s typical realizations may operate

as an engine—converting thermal fluctuations to useful

work—even “nearby” fluctuations (atypical, but proba-

ble realizations) behave differently, as Landauer erasers—

converting available stored energy to dissipate stored in-

formation. How do we account for functioning during

fluctuations? And, over long times how, in fact, does a

fluctuating system operate at all?

The following answers these questions by introducing

constructive methods that identify thermodynamic func-

tioning during any system fluctuation. It shows how to

use the IPSL to determine functionality for atypical real-

izations and how to calculate the probability of distinct

modalities occurring via the large-deviation rate func-

tion. The lesson is that, falling short of the thermo-

dynamic limit, one cannot attribute a unique functional

modality to a thermodynamic system.

To get started, the next section motivates our ap-

proach, reviewing its historical background and basic

set-up. The development then reviews thermodynamic

functioning in information engines and fluctuation the-

ory proper, before bringing the two threads together to

analyze functional fluctuations in a prototype informa-

tion engine.
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II. FROM SZILARD TO FUNCTIONAL

INFORMATION ENGINES

Arguably, Szilard’s Engine [4] is the simplest thermo-

dynamic device—a controller leverages knowledge of a

single molecule’s position to extract work from a single

thermal reservoir. As one of the few Maxwellian Demons

[5] that can be completely analyzed [6], it exposes the

balance between entropic costs dictated by the Second

Law and thermodynamic functionality during the oper-

ation of an information-gathering physical system. The

net work extracted exactly balances the entropic cost.

As Szilard emphasized: while his single-molecule engine

was not very functional, it was wholly consistent with

the Second Law, only episodically extracting useful work

from a thermal reservoir.

Presaging Shannon’s communication theory [7] by two

decades, Szilard’s major contribution was to recognize

the importance of the Demon’s information acquisition

and storage in resolving Maxwell’s paradox [5]. The De-

mon’s informational manipulations had an irreducible en-

tropic cost that balanced any gain in work. The role of

information in physics [8] has been actively debated ever

since, culminating in a recent spate of experimental tests

of the physical limits of information processing [9–15] and

the realization that the degree of the control system’s

dynamical instability determines the rate of converting

thermal energy to work [6].

Though many years ago, Maxwell [5] and then Szilard

[4] were among the first to draw out the consequences of

an “intelligent being” taking advantage of thermal fluc-

tuations [16]. Szilard’s Engine, however, and ultimately

Maxwell’s Demon are not very functional: Proper energy

and entropy book-keeping during their operation shows

their net operation is consistent with the Second Law.

As much energy is dissipated by the Demon as it extracts

from the heat bath [4]. There is no net thermodynamic

benefit. Are there Demons that are functional?

Only rather recently was an exactly-solvable

Maxwellian engine proposed that exhibited func-

tionality, extracting net work each cycle by decreasing

physical entropy at the expense of positive change in a

reservoir’s Shannon information [17]. There, the Demon

generated directed rotation leveraging the statistical bias

in a memoryless information reservoir to compensate for

the transfer of high-entropy energy in a thermal reservoir

to low-entropy energy that performed the rotational

work. Since then, an extensive suite of studies analyzed

more complex information engines [3, 18–28]. Here,

and in contrast several of these studies, we emphasize

engines that leverage information reservoirs with large,

unrestricted memories while interacting with complex,

correlated environments.
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FIG. 1. Information engine: A thermodynamically-embedded
state machine transforms symbols on the input tape with
Shannon entropy rate hµ to the output tape with Shannon
entropy rate h′

µ. The input and output tapes compromise an
information reservoir coupled, as are the thermal and work
reservoirs, to the state machine. Tape symbols come from
the same alphabet; e.g., as here, the set {A,B}. According
to the Information Processing Second Law [3] by changing the
Shannon entropies of the input and output symbol sequences
the information engine functions to convert heat Q to work W
or work to heat depending on the sign of the entropy change
h′
µ − hµ. Positive work and heat indicate energy flows into

the Machine.

Figure 1 illustrates the general design for an infor-

mation engine. The Demon, now denoted “State Ma-

chine”, is in contact with three reservoirs: thermal, work,

and information. Each reservoir provides a distinct ther-

modynamic resource which the engine transforms. The

thermal reservoir stores high-entropy energy; the work

reservoir, low-entropy energy; and the information reser-

voir zero-energy Shannon information. The information

reservoir consists of input and output tapes with cells

storing discrete symbols.

The State Machine functions step by step. To pro-

cess information on the tapes, it reads a symbol from

an input cell and writes a symbol to an output tape cell

and changes its internal state. The tapes then shift one

cell presenting new input and output cells to the State

Machine. In terms of the energetics, in the first step, a

controller couples the symbol read from the input tape

cell to the Machine. The controller may need positive or

negative work from the work reservoir. The heat trans-

fer is zero since, for our purposes here, we assume the

process is relatively fast. In the second step, the state of

the coupled cell-system transitions as a result of being in

contact with thermal reservoir. Then the thermal reser-

voir induces a Markovian dynamics over the coupled cell-

system joint states. This step is completely performed by

the thermal reservoir and as a result there is heat trans-

fer between the machine and thermal reservoir. The con-

troller is absent and so the work done in this step is zero.

In the third step, the controller decouples the output
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state from machine state. Again, the work here can be

nonzero, but the heat flow is zero.

There are three types of functioning. In the first, the

state machine extracts heat from the thermal reservoir

and performs work on work reservoir by producing out-

put symbol sequences with higher entropy than the input

sequences. In this case, we say the machine functions as

an engine. In the second, machine decreases the output

sequence entropy below that of the input by extracting

work from work reservoir and dumping that energy to

the thermal reservoir. In this way, the machine acts as an

information eraser. Finally, the third (non)functionality

occurs when the machine uses (wastes) work energy to

randomize output. Since the randomization of the in-

put can happen spontaneously without wasting work—

similar to the engine mode—we say the machine func-

tions as a dud ; it is a wasteful randomizer.

III. ENVIRONMENT AND ENGINE

REPRESENTATIONS

There are two technical points that need to be called

out here. First, we imagine the engine interacts with

a complex environment. This means that we allow the

input sequence to be highly correlated with very long

memory. Formally, the input sequence considered as a

stochastic process is not necessarily Markovian. Denote

the probability distribution over the input’s bi-infinite

random variable chain by P(· · ·X−1X0X1 · · · ), where Xt

is the random variable at time t. Then, the input se-

quence’s Markov order R is:

P(Xt| · · ·X−1X0X1 · · ·Xt) = P(Xt|Xt−R · · ·Xt) .

And so, by complex environment we mean that input se-

quences to the machine have large R—the environment

remembers long histories. Second, even though the ma-

chine has finite number of states, we allow it to also have

long memory. This simply means that, via its states, the

machine can remember the last, perhaps large, number

of inputs.

One concludes from the first point about complex en-

vironments that Markov chains are not powerful enough

to represent correlated inputs, especially for the general

case we analyze. We need a less restrictive representa-

tion and so use hidden Markov models (HMMs), which

are known to be more powerful in the sense that, using

only a finite number of internal states, they can represent

infinite Markov-order processes. We use HMMs to rep-

resent the mechanisms generating both input sequences

and output sequences.

A process P’s HMM is given as a pair
{
S, {T (x) : x ∈

A}
}
. S is HMM’s hidden states. T (x) for any particular

x is a substochastic matrix or state-to-state transition

matrix for transitions that generate symbol x. A is the

alphabet of generated symbols.

Similarly, we conclude from the second point that more

powerful machinery is needed to handle general stochas-

tic mappings with long memory. We use stochastic finite-

state transducers [29] as they are powerful enough to rep-

resent the mappings we use in the following. (Several

of the technical contributions stem directly from show-

ing how to work directly with these powerful representa-

tions.)

A transducer representation is a pair
{
S, {T (x→y) :

x ∈ Ax, y ∈ Ay}
}
. S is transducer’s states. T (x→y) for

any particular x and y is a substochastic matrix or state-

to-state transition matrix for transitions that for input

x generate symbol y. Ax and Ay are the alphabet for

input and output symbols.

The following will demonstrate how these choices of

representation greatly facilitate analyzing the dynamics

and thermodynamics of information engines.

IV. THERMODYNAMIC FUNCTIONING:

WHEN IS AN ENGINE A REFRIGERATOR?

Thermodynamic functionality is defined in terms of the

recently introduced information processing second law

(IPSL) [3] which bounds the thermodynamic resources

required, such as work, to perform a certain amount of

information processing:

⟨W ⟩ ≤ kBT ln 2 (h′
µ − hµ) , (1)

where kB is Boltzmann’s constant and T is the environ-

ment’s temperature. The IPSL relates three macroscopic

system measures: the input’s Shannon entropy rate hµ,

the output’s entropy rate h′
µ, and the the average work

⟨W ⟩ done on the work reservoir per engine cycle:

hµ = lim
ℓ→∞

H[X0, X1, · · · , Xℓ−1]

ℓ
,

h′
µ = lim

ℓ→∞

H[X ′
0, X

′
1, · · · , X ′

ℓ−1]

ℓ
, and

⟨W ⟩ = lim
ℓ→∞

1

ℓ

∑
w∈Aℓ

P(w)f(w) . (2)

Here, H[·] is the Shannon entropy of the specified ran-

dom variables. f(w) is defined as follows. Since the

machine stochastically maps inputs to outputs a given

input sequence w typically map to many distinct output

sequences. Then f(w) denotes the average work done by

feeding word w to the machine, averaging over all the
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FIG. 2. Input-dependent work and information: Feeding in
every single word w, on average the Machine generates work
f(w) and information g(w).

possible mappings from w; see Fig. 2.

That is, thermodynamic functioning is determined by

the signs of ⟨W ⟩ and h′
µ−hµ. Since there are two possible

signs for each, there are four distinct cases. However,

the IPSL forbids the case ⟨W ⟩ > 0 and h′
µ − hµ < 0.

And so, there are three thermodynamically functional

modes: Engine, Eraser, and Ineffective randomizer ; see

Table I [3]. When operating as an Engine, the machine

absorbs heat from thermal reservoir and converts it to

work by mapping the input sequence to a higher entropy-

rate output sequence. Thus, the net effect is to randomize

the input. When operating as an eraser, the machine

reduces the input entropy by consuming work from work

reservoir and dumping it as high-entropy energy to the

heat reservoir. In the third case, the machine does not

function usefully at all. It is an ineffective randomizer,

consuming work to randomize to input string. It wastes

work, low-entropy energy.

Modality Function Net
Work

Net
Computation

Engine Extracts high-
entropy energy
from the thermal
reservoir, converts
it into low-entropy
work by randomiz-
ing output

⟨W ⟩ > 0 h′
µ − hµ > 0

Eraser Uses low-entropy
energy from work
reservoir to reduce
input randomness,
exhausting high-
entropy energy to
thermal reservoir

⟨W ⟩ < 0 h′
µ − hµ < 0

Ineffective
randomizer

Wastes stored work
(low-entropy en-
ergy) to randomize
output

⟨W ⟩ < 0 h′
µ − hµ > 0

TABLE I. Thermodynamic functionings for information en-
gines, as determined by the information processing second law
of Eq. (1).

V. A FUNCTIONAL INFORMATION ENGINE

To ground these ideas, consider a prototype informa-

tion engine—the information ratchet introduced in Ref.

[3]. The engine, Fig. 3, specifies the distribution of in-

puts and the states and transition structure of the en-

gine’s state machine. The inputs come from flipping a

coin with bias b for Heads (‘0’). That is, the input is

a memoryless, independent, and identically distributed

(IID) stochastic process. Its generating mechanism is

depicted as the hidden Markov model in Fig. 3(a) with

two states, A and B. Together the current state and

transition taken determine the statistics of the emitted

symbol. Similarly, the engine’s mechanism is represented

by the finite-state transducer in Fig. 3(b). Transducer

transitions are labeled. For example, if the machine is in

state B and the input is 0, then with probability p the

output emitted is 1 and the machine state changes to A.

This is shown by an edge labeled by 1|0 : p going from

state A to B.

C Db|0 1 � b|1

1 � b|1

b|0
(a) Input Information Reservoir

A B
0|0:1
0|1:q

1|1:(1− q)

0|0:(1− p)
1|0:p
1|1:1

(b) Input-Output Transducer

FIG. 3. (a) Hidden Markov model that generates a biased
coin input string xtxt+1 . . . with bias Pr(X = 0) = b. Edge
labels x : p indicate a state-to-state transition of probability
p that emits symbol x. (b) The information engines internal
mechanism is a transducer. Its edge labels x|x′ : p indicate
a state-to-state transition of probability p taken on reading
input symbol x that emits symbol x′. (Reprinted from Ref.
[3] with permission.)

At this point only the engine’s information processing

has been specified. To design a physical system that im-

plements the transducer, we first define the energetics for

inputs and for machine states and transitions:

E(0) = E(1) = 0 ,

E(A) = 0 , and

E(B) = e1 ,

where e1 is a parameter. Second, we define the energetics
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FIG. 4. Markovian detailed balance dynamics induced by con-
tact with the thermal reservoir in the coupled system (input-
symbol and machine state).

for joint symbol-states:

E(A⊗ 0) = 0 , E(B ⊗ 0) = −ϵ1 ,

E(A⊗ 1) = −ϵ2 , E(B ⊗ 0) = +ϵ3 .

The energies ϵi are further constrained:

e(ϵ1−ϵ2)/kBT =
1− e−(ϵ2+ϵ3)/kBT

1− e−ϵ1/kBT
.

Third, we specify Markovian detailed-balanced dynam-

ics over the coupled system (input + state machine) that

is induced by thermal reservoir; see Fig. 4. To guarantee

that this dynamic generates the same stochastic map-

ping as the transducer in Fig. 3(b), we must relate the

energetics to stochastic-transition parameters p and q:

p = 1− e−ϵ1/kBT

q = 1− e−(ϵ2+ϵ3)/kBT .

The average work done on the work reservoir is then:

⟨W ⟩ = kBT

2
[(pb− q + qb) ln (q/p)

+ (1− b)q ln(1− q) + pb ln(1− p)] . (3)

See Ref. [3] for calculation details.

The Shannon entropy rates of input and output se-

quences also can be calculated directly:

hµ = H(b)

≡ −b log2 b− (1− b) log2(1− b)

h′
µ =

H(b(1− p))

2
+

H((1− b)(1− q))

2
. (4)

Thus, the energies ϵ1,2,3 and control b are the only

free parameters. They control the engine’s behavior and,

through the IPSL modalities in Table I, its functionality.

Reference [3] gives a complete analysis of this information

engine’s thermodynamic functioning.

Summarizing for general information engines, one

specifies:

1. Input process as an HMM, and

2. Markovian detailed-balance dynamic over the cou-

pled system of input and machine states as a

finite-state transducer with consistent energy as-

signments.

This prepares us to analyze fluctuations in an information

engine interacting with the complex environment speci-

fied by the input process.

VI. ENGINES IN FLUCTUATING

ENVIRONMENTS: THE STRATEGY

Hidden in this and often unstated, but obvious once re-

alized, Maxwellian Demons cannot operate unless there

are statistical fluctuations. Szilard’s Engine cleverly

uses and skirts this issue since it contains only a single

molecule whose behaviors, by definition, are nothing but

fluctuations—single realizations. There is no large en-

semble over which to average. The information gleaned

by the engine’s control system (Demon/Machine) is all

about the “fluctuation” in the molecule’s position. And,

that information allows the engine to temporarily extract

energy from a heat reservoir. In short, fluctuations are

deeply implicated in the functioning of thermodynamic

systems. The following isolates the underlying statistical

mechanisms.

The distinct types of thermodynamic functioning—

engine, eraser, or dud—are based on three average quan-

tities: average work produced ⟨W ⟩, the input sequences’

Shannon entropy rate hµ, and the output sequences’

Shannon entropy rate h′
µ [3, 18–28, 30]. As a result, their

definition’s concern the thermodynamic limit of infinitely

long sequences being fed into the machine. Of course, the

situation is practically quite different: the engine works

with and operates due to finite-length sequences.

To overcome this—and so to develop a theory of func-

tional fluctuations—the following is burdened with pre-

cisely delineating the limitations inherent in the infinite-

length definitions above. It shows that, for any finite

length, the functionality definitions are limited to de-

scribing properties only of a unique subset of events—the

so-called typical set of realizations as identified by the

asymptotic equipartition property of information theory

[1]. To do this, first we redefine the three quantities—

work and entropy rates—as averages over all the possible

input sequences of a given length. Second, we define

three new unweighted-average quantities, but this time

they are explicitly limited to typical realizations. Third,
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we demonstrate that the differences between first three

averages and second three can be made arbitrarily small.

Since the second kind of averages are unweighted, the

closeness result tells us that the average quantities are

features of the typical set and not of any other subset

of the input sequences. In point of fact, they do not de-

scribe atypical behaviors (statistical fluctuations) and so

cannot be used to define thermodynamic functions aris-

ing from fluctuations.

One technical reason behind this result is that, for the

three averages, the functions being averaged are linearly

bounded from above by the input-sequence length. The

conclusion is that the original quantities can give infor-

mation only about system functionality for the specific

subset of typical realizations. Of course, since observing

realizations in this subset is highly probable for long se-

quences and has probability one in the thermodynamic

limit of infinite length, the original functionality defini-

tion is quite useful. Our goal, though, is to show just

how incomplete it is and in important ways that must be

overcome to analyze fluctuations in functioning.

In short, the following consistently extends the original

definitions to other realization subsets—the fluctuations

or atypical sets. The net result is that the theory covers

the set of any realization for any finite length. Given that,

we introduce a method to calculate the new functional-

ity for these different fluctuation subsets. This completes

the picture of functional fluctuations for finite, but long

lengths. We go on to find the large deviation rate for the

new definition of functionality. An important contribu-

tion in this is that all of the results also apply to input se-

quences and machines with long memories, given that the

latter are stochastic finite-state machines. This should

be contrasted with developments, cited above, that as-

sume memoryless or order-1 Markov systems. We return

to discuss related work at the end, once the results are

presented.

VII. FUNCTIONING SUPPORTED BY

TYPICAL REALIZATIONS

A picture of a system’s behavioral fluctuations can be

developed in terms of (and deviations from) asymptotic

equipartition. Let’s review. Consider a given process P
and let An denote the set of its possible length-ℓ real-

izations. Then, for an arbitrary 0 < ϵ ≪ 1, the process’

typical set is:

Aℓ
ϵ≡{w : 2−ℓ(hµ+ϵ) ≤ P(w) ≤ 2−ℓ(hµ−ϵ), w ∈ Aℓ} . (5)

This set consists of realizations whose probability scales

with the process’ entropy rate [1, 31, 32]. Moreover, the

Typical  
Set

Forbidden  
Set

Atypical  
Set

A1

FIG. 5. For a given process, the space A∞ of all sequences is
partitioned into forbidden sequences, sequences in the typical
set, and sequences neither forbidden nor typical—the atypical
or rare sequences.

Shannon-McMillan-Breiman theorem [7, 33, 34] gives the

probability of observing one of these realizations. That

is, for a given ϵ ≪ 1, sufficiently large ℓ∗, and w ∈ Aℓ:

P(w ∈ Aℓ
ϵ) ≥ 1− ϵ , (6)

for all ℓ ≥ ℓ∗. There are three lessons:

1. Asymptotic equipartition: Eq. (5) says that the

probability of each sequence in the typical decays

at approximately the same rate.
2. Typicality: Eq. (6) says that for large ℓ the proba-

bility of observing some typical realization goes to

one. Overwhelmingly, they are what one observes.
3. Fluctuations: Conversely, the probability of ob-

serving realizations outside the typical set is close

to zero. These are the sets of rare sequences or,

what we call, fluctuations.

As a result, sequences generated by a stationary er-

godic process fall into one of three partitions; as depicted

in Fig. 5. The first contains sequences that are never gen-

erated; they fall in the forbidden set. The second is the

typical set. And, the last contains sequences in a fam-

ily of atypical sets—realizations that are rare to different

degrees. Appendix A illustrates these for a Biased Coin

Process.

What does this partitioning say about fluctuations

in thermodynamic functioning? Recall the functionings

identified by the IPSL, as laid out in Table I. That is,

for a given input process, transducer, and temperature,

thermodynamic functionality is controlled by three quan-

tities: the average work ⟨W ⟩ generated by the transducer

when it operates on the input process, the Shannon en-

tropy hµ of the input process, and the Shannon entropy

h′
µ of output process.

Appendix B proves that the difference between aver-

age work ⟨W (ℓ)⟩ over all sequences and that ⟨W (ℓ)⟩TS
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defined for typical set is small for sufficiently large ℓ. For

all practical purposes, they are equal. This, together

with recalling that ⟨W (ℓ)⟩TS is an unweighted average of

works f(w) for w ∈ Aℓ
ϵ, provides an operational interpre-

tation of works used in typical-set-defined functionality.

Similarly, App. C proves that the average generated

information, when the transducer is fed the whole set,

is essentially equal to the average information generated

when the transducer is fed the typical set without prob-

ability weights.

From Eq. (5) it is also clear that Shannon entropy

rate of the input process is also function of typical set.

This demonstrates that all three quantities—⟨W ⟩, hµ,

and h′
µ—effectively measure properties of the typical set

and not of other (atypical) partitions. Recalling that

these three quantities also determine the thermodynamic

via the IPSL functionality highlights that the previously-

defined functionality is limited. Next, we remove this

limitation, extending the thermodynamic functionality

to the whole set of partitions.

VIII. FUNCTIONING OUTSIDE TYPICAL

REALIZATIONS

The last section established that the average work

⟨W (ℓ)⟩ and input and output entropy rates can be used,

for ℓ ≫ 1, to identify system functionality for typical

realizations. At last, “typical” has a precise operational

meaning. Moreover, as ℓ → ∞ the fraction of information

available about the functionality of realizations outside

the typical set vanishes. Since the probability of observ-

ing realizations in the typical set at large ℓ approaches

one, the definition of functionality based on ⟨W ⟩ and the

entropies is very useful.

However, one should not forget that this definition is

limited, applying only to one particular subset of realiza-

tions. As a result, the associated definition of functional-

ity gives an incomplete picture. How incomplete? Note

that the size of the typical set grows like 2hµℓ and the size

of the whole set, excluding forbidden realizations, grows

as 2hℓ, where h is the input process’ topological entropy

[35]. Generally, h > hµ [36]. And so, the relative size of

the typical set shrinks exponentially with ℓ as 2−(h−hµ)ℓ,

even though the probability of observing typical realiza-

tions converges to one. The lesson is that, at finite ℓ, only

considering the typical set misses exponentially many—

2−(h−hµ)ℓ—possibly functional, observable realizations.

With this as motivation, we are ready to define function-

ality for all realizations—typical and atypical—allowing

one to describe “nearby” functionalities that arise during

fluctuations out of the typical set. The goal is a complete

the picture of functional fluctuations for finite, but long

realizations.

What engine functionalities do atypical realizations

support? The very first step is to partition the set Aℓ of

all possible realizations into the subsets of interest. How?

We must find a suitable, physically-relevant parametriza-

tion of realization subsets. We call the collections a pro-

cess’ atypical sets, using degrees of typicality as a param-

eter.

A key step in the last section was to realize that func-

tionality is defined for unweighted sets of realizations.

Recalling Eq. (5)’s definition of typical set, the normal-

ized minus logarithm of probabilities—effectively a decay

rate—of all the words in the typical set is sandwiched by

small deviations (±ϵ) from the Shannon entropy rate:

hµ − ϵ ≤ −1

ℓ
log2 P(w) ≤ hµ + ϵ .

This is the main reason of why ⟨W ⟩TS is approximately

the unweighted average work and, consequently, why

functionality is operationally defined for an unweighted

set—the typical set. This provides an essential clue as to

how to partition the set Aℓ of all possible realizations, at

fixed length ℓ.

We collect all the realizations with the same proba-

bility in the same subset, labeling it with a decay rate

denoted u:

Λu,ℓ =

{
w : − log2 P(w)

ℓ
= u, w ∈ Aℓ

}
. (7)

Defining Λu = lim
n→∞

Λu,n, it is easy to show that Λu ⊂
A∞ are disjoint and partition A∞.

Technically, this definition for the (parametrized) sub-

sets of interest is necessary to guarantee consistency with

the previously-defined typical-set notion of functionality.

The parameter u, considered as a random variable, is

sometimes called a self process [38]. Figure 6 depicts

these subsets as “bubbles” of equal decay rate. Equa-

tion (5) says the typical set is that bubble with decay rate

equal to the process’ Shannon entropy rate: u = hµ. All

the other bubbles contain rare events, some rarer than

others; in the sense that they exhibit faster or slower

probability decay rates.

The previous section show that for ℓ ≫ 1 the averaging

operator ⟨·⟩ yields a statistic essentially about the typical

set. Now, consider the situation in which we are inter-

ested in the functionality of another subset with decay

rate u ̸= hµ. How can we use the same operator to find

functionality arising from this subset?

If someone presents us with another process Pu whose

typical set is Λu and we feed this new process into the

system, instead of the original input process, then the

operator can be used to identify the functionality of real-
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Set

Forbidden  
Set
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+11�1 0
�

umax uminhµ

FIG. 6. Space A∞ of all sequences partitioned into sub-
sets Λu—isoenergy-density or equal probability-decay-rate
bubbles—in which all sequences in the same Λu have the
same energy density u. The typical set is one such bubble
with energy equal to Shannon entropy rate: u = hµ. Another
important class is the forbidden set, in which all sequences do
not occur. The forbidden set can also be interpreted as the
subset of sequences with infinite positive energy. By applying
the map Bβ to the process and changing β continuously from
−∞ to +∞ (excluding β = 0) one can generate any atypical
class of interest ΛP

u . β → −∞ corresponds to the most prob-
able sequences with the largest energy density umax, β = 1
corresponds to the typical set and β → +∞ corresponds to
the least probable sequences with the smallest energy density
umin. (Reprinted with permission from Ref. [37].)

izations in Λu. Now, the question comes up as to whether

this process exists at all and, if so, can we find it?

The answer to the first question is positive, since we

made certain to define the atypical subsets in a way con-

sistent with the definition of the typical set. And, by

definition, all the sequences in the subset Λu have the

same decay rate.

The answer to the second question is also positive. As

argued earlier, we use hidden Markov models (HMMs) as

our choice of process representation. Denote process P’s

HMM by M(P) =
{
S, {T (x) : x ∈ A}

}
. The question is

now framed, What is M(Pu)?

To answer, define a new process Pβ with HMM

M(Pβ) =
{
S, {S(x)

β , x ∈ A}
}
. Notice both M(Pβ) and

M(P) have the same states S and same alphabet A. The

substochastic matrices of M(Pβ) are related to the sub-

stochastic matrices of M(P) via the following construc-

tion [37, 39]:

1. Pick a β ∈ R.
2. For each x ∈ A, construct a new matrix T

(x)
β for

which
(
T

(x)
β

)
ij
=

(
T(x)

)β
ij
.

3. Form the matrix Tβ =
∑

x∈A T
(x)
β .

4. Calculate Tβ ’s maximum eigenvalue λ̂β and corre-

sponding right eigenvector r̂β .

5. For each x ∈ A, construct new matrices S
(x)
β for

which:

(
S
(x)
β

)
ij
=

(
T

(x)
β

)
ij
(r̂β)j

λ̂β(r̂β)i
.

We defined the new process Pβ by constructing its

HMM. We now use the latter to produce an atypical set

of interest, say, Λu,ℓ.

Theorem 1. Within the new process Pβ, in the limit

ℓ → ∞ the probability of generating realizations from the

set Λu,ℓ converges to one:

lim
ℓ→∞

Pr
β
(Λu,ℓ) = 1 ,

where the energy density is:

u = β−1
(
hµ(Pβ)− log2 λ̂β

)
. (8)

Additionally, in the same limit the process Pβ assigns

equal energy densities (probability decay rates) to all w ∈
Λu,ℓ.

Proof. See Ref. [37].

In this way, for large ℓ the process Pβ typically gen-

erates realizations in the set Λu,ℓ and with the specified

energy u. The process Pβ is variously called the auxil-

iary, driven, or effective process [40–42].

Using Eq. (8), one can show that for any u there exists

a unique and distinct β ∈ R and, moreover, that u is a

decreasing function of β. And so, we can equivalently

denote the process Pβ by Pu. More formally, every word

in Λu with probability measure one is in the typical set

of process Pβ . Thus, sweeping β ∈ [−∞,∞] controls

which subsets (atypical sets) outside the typical set we

focus on. And, applying the operator ⟨·⟩ determines the

engine functionality for realizations in that subset, as we

now show.

IX. FUNCTIONAL FLUCTUATIONS

Let’s draw out the consequences and applications of

this theory of functional fluctuations. First, we ground

the results by identifying the range of functionality that

arises as an information ratchet (introduced earlier) op-

erates. Then, we turn to show how to calculate the prob-

ability of its fluctuating functionalities.
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A. An Information Ratchet Fluctuates

Recall the information ratchet introduced in Sec. IV,

but now set its Markov dynamic parameters p = 0.2

and q = 0.6 and put it in contact with an information

reservoir that generates IID symbol sequences with bias

b = 0.9. Operating the input reservoir for a sufficiently

long time, with high probability we observe a sequence

that has nearly 90% 0s in it. Using Eqs. (3) and (4),

we see positive work ⟨W ⟩ > 0 and positive entropy pro-

duction h′
µ − hµ > 0. Then, according to the IPSL func-

tionalities in Table I, the ratchet typically operates as an

engine.

What thermodynamic functionalities occur when the

input fluctuates outside the typical set? Sweeping β con-

trols which subsets outside the typical set are expressed

and, consequently, which fluctuation subsets are acces-

sible. Recall that the input process is specified by the

unifilar HMM in Fig. 3(a). For this input, as a result of

the ratchet design, M(Pβ) is the same as M(P), except

that b is shifted to b̂ = bβ/
(
bβ + (1− b)β

)
. Different

sequence-probability decay rates u are calculated from

Eq. (8). Then, feeding the new process to the ratchet,

⟨W ⟩ is calculated from Eq. (3), again by changing b to

b̂. Denote this work quantity ⟨W ⟩(u). Figure 7 showing

the dissipated work ⟨W ⟩(u) and the difference between

output and input Shannon entropy rate versus fluctuat-

ing decay rate u. There are several observations to make,

before associating thermodynamic function.

First, let’s locate the input typical set. It occurs at a

u such that β = 1. The figure identifies it with vertical

line, so labeled.

Second, the input process’ ground states occur as

β → ∞ since u is decreasing function of β. As a con-

sequence of Eq. (7) this subset corresponds to the se-

quence with the highest probability. In this case, this is

the all-0s sequence with umin = − log2(b) ≃ 0.152. The

other extreme is at umax, corresponding to the lowest-

probability, allowed sequence. This is the all-1s sequence

with umax = − log2(1−b) ≃ 3.32. Note that there is only

a single sequence associated with umax and only one with

umin.

Third, to complete the task of identifying function, we

must determine the average work ⟨W ⟩ as a function of

energy u. From the figure, we see that the dissipated

work ⟨W ⟩ is linear in the decay rate u. Appendix D de-

rives this and also shows that the maximum work, over all

subsets—all β or all allowed decay rates u—is indepen-

dent of the input process bias. This is perhaps puzzling

as bias clearly controls the ratchet’s thermodynamic be-

havior. Thus, assuming an IID input, the maximum work

is a property of the ratchet itself and not the input—the

maximum work playing a role rather analogous to how

0.5 1.0 1.5 2.0 2.5 3.0

u

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

E
ra
su
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E
n
g
in
e

D
u
d

Input Typical Set
[bits/symbol]

hµ(u)− h′µ(u)

〈W 〉(u)[kBT ]

Simulated result

FIG. 7. Average work ⟨W ⟩(u) (blue line) and difference
h′
µ − hµ between output and input Shannon entropy rate, re-

spectively, (red dashed line) versus decay rate u for different
atypical sets (fluctuations). In this, information transducer
with parameters p = 0.2 and q = 0.6 is driven by an IID in-
put source with bias b = 0.9. The Table I has been used to
identify functionality of different fluctuations subsets: Engine
(green), Eraser (red), and Dud (yellow, two regions).

Shannon’s channel capacity is a channel property.

To better understand how the ratchet operates ther-

modynamically, consider the ground state of the input

process; which as just noted has only a single member,

the all-0 sequence with zero entropy rate hµ = 0. If

we feed this sequence into the ratchet, the ratchet adds

stochasticity which appears in the output sequence. The

first 0 fed to the ratchet leads to a 0 on the output. For

the next 0 fed-in, with probability p the ratchet outputs

1 and with probability 1 − p it outputs 0. The entropy

rate of output sequence then is h′
µ = 1

2 H(p) ≃ 0.36.

To generate this sequence we simply use the ϵ-machine

in Fig. 3 with b = 1. With this biased process as input,

using Eq. (3) we find ⟨W ⟩(umin) ≃ 0.0875 > 0. Table I

then tells us that if we feed the ground state of the input

process to the ratchet, it functions as an engine. At the

other extreme Umax, the only fluctuation subset member

is the all-1s sequence with hµ = 0. Again, the ratchet

adds stochasticity and the output has h′
µ = 1

2 H(q) ≃
0.485. To generate this input sequence we simply use the

ϵ-machine in Fig. 3 with b = 0. With this process as

an input, we use Eq. (3) again and find negative work

⟨W ⟩(Umax) ≃ −0.6. Table I now tells us that feeding

in this extreme sequence (input fluctuation) the ratchet

functions as a Dud.

Overall Table I allows one to identify the regimes

of u associated with distinct thermodynamic function-

ality. These are indicated in Fig. 7 with the green re-

gion corresponding to Engine functioning, red to Eraser
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functioning, and yellow to Dud. We conclude that the

ratchet’s thermodynamic functioning depends substan-

tially on fluctuations and so will itself fluctuate over time.

In particular, Engine functionality occurs only at rela-

tively low input fluctuation energies, seen on Fig. 7’s

left side, and encompasses the typical set, as a conse-

quence of our design. Rather nearby the Engine regime,

though, is a narrow one of no functioning at all—a Dud.

In fact, though the ratchet was designed as an Engine,

we see that over most of the range of fluctuations, with

the given parameter setting, the ratchet operates as an

Eraser.

B. Probable Functional Fluctuations

In this way, we see that typical-set functionality can

be extended to all input realizations—that is, to all fluc-

tuation subsets. The results give insight into the vari-

ability of thermodynamic function and a direct sense of

its robustness or lack thereof. Now, we answer two ques-

tions that are particularly pertinent in the present setting

of events (sequences) whose probabilities decay exponen-

tially fast and so may be practically never observed. How

probable are fluctuations in thermodynamic functioning?

And, the related question, how probable are each of the

fluctuation subsets? Exploring one example, we will show

that the functional fluctuations are, in fact, quite observ-

able not only with short sequences, perhaps expectedly,

but also over relatively long sequences, such as ℓ = 100.

The second question calls for determining P(w ∈ Λu,ℓ).

However, in the large-ℓ limit this quantity vanishes. So,

it is rather more natural to ask how it converges to zero.

Since we are considering ergodic stationary processes, we

can apply the large deviation principle: the probability

of every subset Λu,ℓ vanishes exponentially with ℓ. How-

ever, each subset Λu,ℓ has different exponent which is the

subset’s large deviation rate [38]:

I(u) = lim
ℓ→∞

−1

ℓ
log2 P(w ∈ Λu,ℓ) .

Since all these w have the same probability decay rate u,

P(w) decomposes to two components. The first gives the

number |Λu,ℓ| of sequences in the subset and the second,

the probability 2−ℓu of individual sequences. That is:

I(u) = lim
ℓ→∞

−1

ℓ
log2 P(w ∈ Λu,ℓ)

= lim
ℓ→∞

−1

ℓ
log2(|Λu,ℓ|2−ℓu)

= u− lim
ℓ→∞

1

ℓ
log2(|Λu,ℓ|) .

The size of subsets also grows exponentially with ℓ,
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FIG. 8. Probability of fluctuations in thermodynamic func-
tioning: Large-deviation rate function I(u) (solid black line)
and the theoretically-predicted probability Pr(u100) of fluctu-
ation subsets for length ℓ = 100 input realizations (dotted-
solid blue line). Star tokens denote estimates from numerical
simulation which validate the analytical results due to their
close fit.

each subset with different exponent. To monitor this, we

define new function:

S(u) = lim
ℓ→∞

1

ℓ
log2 |Λu,ℓ| .

Previously, we showed that S(u) = hµ(Pβ), where

hµ(Pβ) is Pβ Shannon entropy and u = β−1
(
hµ(Pβ) −

log2 λ̂β

)
from Eq. (8) [37]. These results allow one to

calculate I(u) for any subset using the expressions:

I(u) =
(
β−1 − 1

)
hµ(Pβ)− β−1 log2 λ̂β and

u = β−1
(
hµ(Pβ)− log2 λ̂β

)
.

Figure 8 plots I(u) for our example information ratch-

ets. As with the previous figure, when realizations from

the typical set are fed in, the transducer functions as an

Engine. We now see that the typical set has zero large

deviation rate. That is, in the limit of infinite length

the probability of observing realizations in the typical set

goes to one. In terms of thermodynamic functioning, the

transducer operates as an Engine over long times with

probability one. Complementarily, in the infinite length

limit, the probability of the other “fluctuation” subsets

vanishes.

In reality, though, one only observes finite-length se-

quences. And so, the operant question here is, are func-
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tional fluctuations observable at finite lengths? As we

alluded earlier, the expectation is that short sequences

should enhance their observation.

Consider the input process in Fig. 3(a) and assume the

input’s realization length is ℓ = 100. We have 2100 dis-

tinct input sequences that are partitioned into 101 fluc-

tuation subsets with different energy densities—subsets

of sequences with ℓ 0s and 100−ℓ 1s for ℓ = 0, 1, . . . , 100.

Let’s calculate the probability of each of these fluctua-

tions subsets occurring analytically. The probability of

each versus its energy is shown in Fig. 8 as the blue dot-

ted line. To distinguish it from the energy density of

fluctuation subsets at infinite length we label the energy

density of each of these sets with u100, the index 100 re-

minds us that we are examining input sequences of length

ℓ = 100. There are 101 blue points on the figure, each

representing one of the fluctuation subsets. (Most are

obscured by other tokens, though.) If we feed the first 13

of the 101 fluctuation subsets (the first 13 blue points in

the left of the figure) to the transducer, it functions as an

Engine. Summing the probabilities of these Engine sub-

sets, we see that the transducer functions as an Engine

80% of the time. Which is quite probable, even though it

operates on sequences of length 100 that are individually

highly improbable.

To verify the analytical results we also performed ex-

tensive numerical simulations that drove the ratchet with

a sequence of length ℓ = 106. We divided the input se-

quence into time intervals of length 100 and estimated

the generated work and other observables, such as en-

ergy, during each interval. Star tokens in Fig. 7 show the

estimated average work in each interval with decay rate

u versus the decay rate itself. The numerical estimates

agree closely with the analytical result. Figure 8 also

shows the probabilities of each of these atypical subsets

estimated from the simulations, which also validates the

analytical results.

Let’s return to the remaining question: How proba-

ble are fluctuations in thermodynamic functioning? The

answer is given by the large deviation rate for ⟨W ⟩(u)?
Since ⟨W ⟩ is a function of u one can use the contrac-

tion principle [38] and relate the large deviation rate of

⟨W ⟩(u) in terms of large deviation rate of u via:

Ĩ(y = ⟨W ⟩(u)) = min
u:y=⟨W ⟩(u)

I(u) .

Since ⟨W ⟩(u) is a one-to-one function the minimization

above may be removed.

X. DISCUSSION

A. Related work

The new results here on memoryful information en-

gines are also complementary to previous studies of fluc-

tuations in the efficiency of a nanoscale heat engine [43–

45], a particular form of information engine.

B. Relation to Fluctuation Theorems

To head-off confusion, and anticipate a key theme,

note that “statistical fluctuation” above differs impor-

tantly from the sense used to describe variations in meso-

scopic quantities when controlling small-scale thermody-

namic systems. This latter sense is found in the recently-

famous fluctuation theorem for the probability of positive

and negative entropy production ∆S during macroscopic

thermodynamic manipulations [46–52]:

Pr(∆S)

Pr(−∆S)
= e∆S .

Both kinds of fluctuation are ubiquitous, often domi-

nating equilibrium finite-size systems and finite and in-

finite nonequilibrium steady-state systems. Differences

acknowledged, there are important connections between

statistical fluctuations in microstates observed in steady

state and fluctuations in thermodynamic variables en-

countered during general control: For one, they are

deeply implicated in expressed thermodynamic function.

Is a system operating as an engine—converting thermal

fluctuations to useful work—or as an eraser—depleting

energy reservoirs to reduce entropy—or not functioning

at all?

XI. CONCLUSION

We synthesized statistical fluctuations—as entailed

in Shannon’s Asymptotic Equipartition Property [1]

and large deviation theory [38, 53, 54]—and functional

thermodynamics—as determined using the new infor-

mational Second Law [3]—to predict spontaneous vari-

ations in thermodynamic functioning. In short, there

is simultaneous, inherently parallel, thermodynamic pro-

cessing that is functionally distinct and possibly in com-

petition. This strongly suggests that, even when in a

nonequilibrium steady state, a single nanoscale device or

biomolecule can be both an engine and an eraser. And,

we showed that these functional fluctuations need not be

rare. This complements similar previous results on fluc-

tuations in small-scale engine efficiency [44, 55, 56]. The
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conclusion is that functional fluctuations should be read-

ily observable and the prediction experimentally testable.

A main point motivating this effort was to call into

question the widespread habit of ascribing a single func-

tionality to a given system and, once that veil has lifted,

to appreciate the broad consequences. To drive them

home, since biomolecular systems are rather like the in-

formation ratchet here, they should exhibit measurably

different thermodynamic functions as they behave. If

this prediction holds, then the biological world is vastly

richer than we thought and it will demand of us a greatly

refined vocabulary and greatly improved theoretical and

experimental tools to adequately probe and analyze this

new modality of parallel functioning.

That said, thoroughness forces us to return to our ear-

lier caveat (Sec. IX) concerning not conflating various

“temperatures”. If we give the input information reser-

voir and the output information reservoir physical im-

plementations, then the fluctuation indices Uin and Uout

take on thermal physical meaning and so can be related

to the ratchet’s thermodynamic temperature T . Doing

so, however, would take us too far afield here, but it will

be necessary for a complete understanding.

Looking forward, there are many challenges. First,

note that technically speaking we introduced a fluctua-

tion theory for memoryful stochastic transducers, but by

way of the example of Ref. [3]’s information ratchet. A

thoroughgoing development must be carried out in much

more generality using the tools of Refs. [29, 57], if we are

to fully understand the functionality of thermodynamic

processes that transform inputs to outputs, environmen-

tal stimulus to environmental action.

Second, the role of Jarzynski-Crooks theory for fluctu-

ations in thermodynamic observables needs to be made

explicit and directly related to statistical fluctuations, in

the sense emphasized here. One reason is that their the-

ory bears directly on controlling thermodynamic systems

and the resulting macroscopic fluctuations. To draw the

parallel more closely, following the fluctuation theory for

transitions between nonequilibrium steady states [58], we

could drive the ratchet parameters p and q and input bias

b between different functional regimes and monitor the

entropy production fluctuations to test how the theory

fares for memoryful processes. In any case, efficacy in

control will also be modulated by statistical fluctuations.

Not surprisingly, there is much to do. Let’s turn to

a larger motivation and perhaps larger consequences to

motivate future efforts.

As just noted, fluctuations are key to nanoscale physics

and molecular biology. We showed that fluctuations

are deeply implicated both in identifying thermodynamic

function and in the very operation of small-scale systems.

In fact, fluctuations are critical to life—its proper and ro-

bust functioning. The perspective arising from parallel

thermodynamic function is that, rather than fluctuations

standing in contradiction to life processes, potentially

corrupting them, there may be a positive role for fluc-

tuations and parallel thermodynamic functioning. Once

that is acknowledged it is a short step to realize that bi-

ological evolution may have already harnessed them to

good thermodynamic effect. Manifestations are clearly

worth looking for.

It now seems highly likely that fluctuations engender

more than mere health and homeostasis. It is a com-

monplace that biological evolution is nothing, if not op-

portunistic. If so, then it would evolve cellular biological

thermodynamic processes that actively leverage fluctua-

tions. Mirroring Maxwell’s Demon’s need for fluctuations

to operate, biological evolution itself advances only when

there are fluctuations. For example, biomolecular muta-

tion processes engender a distribution of phenotypes and

fitnesses; fodder for driving selection and so evolutionary

innovation. This, then, is Darwin’s Demon—a mecha-

nism that ratchets in favorable fluctuations for positive

thermodynamic and then positive survival benefit. The

generality of results and methods here give new insight

into thermodynamic functioning in the presence of fluc-

tuations that should apply at many different scales of life,

including its emergence and evolution.
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Appendix A: Typical Set for a Biased Coin

What is An
ϵ for a biased coin with bias b? The typical

set is defined by;

An
ϵ = {w ∈ An : 2−n(hµ+ϵ) ≤ Pr(w) ≤ 2−n(hµ−ϵ)} .

The probability of a biased coin generating a particular

sequence w with k heads is bk(1− b)(n−k). And so, for w

to be in the typical set we must have:

ℓb− nϵ

log b
1−b

≤ k ≤ nb+
nϵ

log b
1−b

.

Since k is an integer:⌈
nb− nϵ

log b
1−b

⌉
≤ k ≤

⌊
nb+

nϵ

log b
1−b

⌋
.

For example, in the case where n = 1000, b = 0.6, and

ϵ = 0.01, we have:

582 ≤ k ≤ 617 .

This means that those length n = 1000 sequences with

582 to 617 Heads are in the typical set.

Appendix B: Work Bounds

Average work for finite length ℓ is:

⟨W (ℓ)⟩ = 1

ℓ

∑
w∈Aℓ

P(w)f(w) . (B1)

Recall that f(w) is the average work generated by the

transducer when fed the word w; see Fig. 2.

Now, let us say we are only interested in the engine’s

functionality when operating on sequences in a particu-

lar partition—those in the typical set. To determine the

functionality, we first define a new probability distribu-

tion for the typical set:

P̃(w) =

P(w)/
∑

w∈Aℓ
ϵ

P(w) w ∈ Aℓ
ϵ

0 w /∈ Aℓ
ϵ

.

Using it, we define a new average work for finite ℓ se-

quences in the typical set:

⟨W (ℓ)⟩TS =
1

ℓ

∑
w∈Aℓ

P̃(w)f(w) .

There are two important observations. First, this statis-

tic gives no information about works generated by se-

quences outside of Aℓ
ϵ, since the probability distribu-

tion vanishes there. Second, for every pair of typical

sequences w1, w2 ∈ Aℓ
ϵ:

P̃(w1) ≃ P̃(w2) ,

since Eq. (5) bounds the sequences’ probabilities:

2−ℓ(hµ+ϵ) ≤ Pr(w) ≤ 2−ℓ(hµ−ϵ). Effectively, ⟨W (ℓ)⟩TS

is an unweighted average over f(w)s for the words in

typical set.

Now, consider Eq. (B1) and decompose its righthand

side into two parts: the share of typical sequences and

the share of atypical sequences:∑
w∈Aℓ

P(w)f(w) =
∑
w∈Aℓ

ϵ

P(w)f(w) +
∑
w/∈Aℓ

ϵ

P(w)f(w) .

(B2)

The second term is bounded from above:

∑
w/∈Aℓ

ϵ

P(w)f(w) ≤

 ∑
w/∈Aℓ

ϵ

P(w)

max{f(w) : w /∈ Aℓ
ϵ}

≤ ϵ×max{f(w) : w /∈ Aℓ
ϵ} .

f(w), the work generated by any length-ℓ sequence w ∈
Aℓ, is also bounded:

ℓαmin ≤ f(w) ≤ ℓαmax ,

where αmin and αmax are the minimum and maximum

one-shot works, respectively. Here, αmax > 0 and αmin <

0, which are due to the finiteness of energy for the ma-

chine states and coupled input-symbol-states. As a re-

sult, we have: ∑
w/∈Aℓ

ϵ

P(w)f(w) ≤ ℓϵαmax .

Similarly, it has a lower bound:∑
w/∈Aℓ

ϵ

P(w)f(w) ≥ ϵℓαmin .

Now, we turn to decompose Eq. (B2)’s first term into
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two parts:

∑
w∈Aℓ

ϵ

P(w)f(w) =
∑
w∈Aℓ

ϵ

P(w)∑
w∈Aℓ

ϵ

P(w)
f(w)

+
∑
w∈Aℓ

ϵ

P(w)− P(w)∑
w∈Aℓ

ϵ

P(w)

 f(w) . (B3)

The second term in Eq. (B3) can be written as:

∑
w∈Aℓ

ϵ

P(w)− P(w)∑
w∈Aℓ

ϵ

P(w)

 f(w) =

1− 1∑
w∈Aℓ

ϵ

P(w)

 ∑
w∈Aℓ

ϵ

P(w)f(w) ,

To go further one must note that the coefficient of the

sum on the righthand side is negative. As a result:

∑
w∈Aℓ

ϵ

P(w)− P(w)∑
w∈Aℓ

ϵ

P(w)

 f(w)

≤

1− 1∑
w∈Aℓ

ϵ

P(w)

min{f(w) : w /∈ Aℓ
ϵ}

∑
w∈Aℓ

ϵ

P(w)

≤

1− 1∑
w∈Aℓ

ϵ

P(w)

 ℓαmin

∑
w∈Aℓ

ϵ

P(w)

≤
(
1− 1

1− ϵ

)
ℓαmin .

Giving an upper bound on the second term in Eq. (B3).

Similarly, one can give it a lower bound:

∑
w∈Aℓ

ϵ

P(w)− P(w)∑
w∈Aℓ

ϵ

P(w)

 f(w) ≥
(
1− 1

1− ϵ

)
ℓαmax .

Using Eqs. (B2) and (B3) and these upper and lower

bounds, we have:

δmin ≤ ⟨W (n)⟩ − ⟨W (n)⟩TS ≤ δmax ,

where:

δmin = ϵ

(
αmin − αmax

1− ϵ

)
and

δmax = ϵ

(
αmax −

αmin

1− ϵ

)
.

Recalling that αmax > 0 and αmin < 0, we have δmax > 0

and δmin < 0.

Thus, the difference between average work ⟨W (ℓ)⟩ over
all sequences and that ⟨W (ℓ)⟩TS defined for typical set

is small for sufficiently large ℓ. For all practical pur-

poses, they are equal. This, together with recalling that

⟨W (ℓ)⟩TS is an unweighted average of works f(w) for

w ∈ Aℓ
ϵ, provides an operational interpretation of the

previously-defined functionality.

Appendix C: Information Bounds

The Shannon entropy rate of the output process for

finite length ℓ is:

∆H′(ℓ) =
1

ℓ

∑
w′∈Aℓ

P′(w′) log2 P′(w′) .

Here, P(·) refers to probability of output sequences under

the process generated by the transducer and w′ is an

output sequence. Rewriting the sum in the form:∑
w′∈Aℓ

P′(w′) log2 P′(w′) =
∑

w,w′∈Aℓ

P(w)P(w′|w) log2 P′(w′) ,

where P(w′|w) is the conditional probability of the trans-

ducer generating output sequence w′ when reading input

w. Now, defining:

g(w) =
∑

w′∈Aℓ

−P(w′|w) log2 P′(w′) ,

one writes the Shannon entropy rate in a form paralleling

Eq. (B1):

∆H ′(ℓ) =
1

ℓ

∑
w∈Aℓ

P(w)g(w) , (C1)

where g(w) is the average information generated by the

word w when passing through transducer; see Fig. 2.

We can also monitor the information generated by

feeding in only the typical set with:

∆H′
TS(ℓ) =

1

ℓ

∑
w∈Aℓ

P̃(w)g(w) .

Similar to analyzing the generated works, one decom-

poses the sum in Eq. (C1) into two parts:∑
w∈Aℓ

P(w)g(w) =
∑
w∈Aℓ

ϵ

P(w)g(w) +
∑
w/∈Aℓ

ϵ

P(w)g(w) .

(C2)
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The second term in Eq. (C2) is bounded above:

∑
w/∈Aℓ

ϵ

P(w)g(w) ≤

 ∑
w/∈An

ϵ

P(w)

max{g(w) : w /∈ Aℓ
ϵ}

≤ ϵ×max{g(w) : w /∈ Aℓ
ϵ}

From the definition, one sees that there are upper

bounds on g(w) < ℓ, where the bound can only be

reached when the input is a Fair Coin Process and the

transducer maps every word fairly to all possible output

sequences. This means the second term in Eq. (C2) is

bounded from above:∑
w/∈Aℓ

ϵ

P(w)g(w) ≤ ϵℓ .

We can similarly analyze the first term in Eq. (C2):∑
w∈Aℓ

ϵ

P(w)g(w) =
∑
w∈Aℓ

ϵ

P̃(w)g(w)

+
∑
w∈Aℓ

ϵ

(P(w)− P̃(w))g(w) .

The second term here is negative and is bounded from

below:∑
w∈An

ϵ

(P(w)− P̃(w))g(w) =

1− 1∑
w∈Aℓ

ϵ

P(w)

 ∑
w∈Aℓ

ϵ

P(w)g(w)

≥
(
1− 1

1− ϵ

) ∑
w∈Aℓ

ϵ

P(w)g(w)

≥
(
1− 1

1− ϵ

)
max{g(w) : w /∈ Aℓ

ϵ}
∑
w∈Aℓ

ϵ

P(w)

≥
( −ϵ

1− ϵ

)
max{g(w) : w /∈ Aℓ

ϵ}

≥ ℓ

( −ϵ

1− ϵ

)
.

Combining these two bounds:

−ϵ

1− ϵ
≤ ∆H′(ℓ)−∆H′

TS(ℓ) ≤ ϵ ,

one concludes the average generated information, when

the transducer is fed the whole set, is essentially equal to

the average information generated when the transducer

is fed the typical set without probability weights.

Appendix D: Work is a Linear Function of Decay

Rate

First let us calculate u as a function of β. Recall that

they related via u = β−1
(
hµ(Pβ)− log2 λ̂β

)
.

Using step 2 and 3 for the HMMmodel shown in Figure

3 we have

Tβ =

[
bβ (1− b)β

bβ (1− b)β

]
.

Calculating the maximal eigenvalue λ̂β , we find:

log λβ = log2(b
β + (1− b)β) .

The Shannon entropy of process Pβ , hµ(Pβ) is equal

to the Shannon entropy of biased coin with bias b̂ =

bβ/(bβ + (1− b)β :

hµ(Pβ) = −
(

bβ

bβ + (1− b)β
log2

bβ

bβ + (1− b)β

+
(1− b)β

bβ + (1− b)β
log2

(1− b)β

bβ + (1− b)β

)
.

It is straightforward, now, to calculate u from these:

u =
−bβ

bβ + (1− b)β
log2(b)

+
−(1− b)β

bβ + (1− b)β
log2(1− b) .

In the next step wee need to calculate the work ⟨W ⟩
from Equation 3 for the input process Pβ by replacing b

with b̂:

⟨W ⟩(β) = kBT

2

(
−q log(q/p) + q log(1− q) +

cbβ

bβ + (1− b)β

)
,

where c = (p + q) log(q/p) + p log(1 − p) − q log(1 − q).

Now it is easy to see that

⟨W ⟩(u) = kBT

2

(
−q log

(
q

p

)
+ q log(1− q)

)
+c

u+ log(1− b)

log(1− b)− log(b)

)
.

It is easy to see that

Wmax = max
β

⟨W ⟩

=

{
W−

max ≡ kBT
(
− q log(p/q)− q log(1− q)

)
c < 0

W+
max ≡ kBT

(
p log(p/q)− p log(1− p)

)
c ≥ 0

,

which is in both cases independent of the bias for the
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input process b.
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