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We review several statistical complexity measures proposed over the last decade and a half as
general indicators of structure or correlation. Recently, Lòpez-Ruiz, Mancini, and Calbet [Phys.
Lett. A 209 (1995) 321] introduced another measure of statistical complexity CLMC that, like
others, satisfies the “boundary conditions” of vanishing in the extreme ordered and disordered
limits. We examine some properties of CLMC and find that it is neither an intensive nor an extensive
thermodynamic variable and that it vanishes exponentially in the thermodynamic limit for all one-
dimensional finite-range spin systems. We propose a simple alteration of CLMC that renders it
extensive. However, this remedy results in a quantity that is a trivial function of the entropy
density and hence of no use as a measure of structure or memory. We conclude by suggesting that
a useful “statistical complexity” must not only obey the ordered-random boundary conditions of
vanishing, it must also be defined in a setting that gives a clear interpretation to what structures
are quantified.
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I. STATISTICAL COMPLEXITY MEASURES

Theoretical physics has long possessed a general mea-
sure of the uncertainty associated with the behavior of
a probabilistic process: the Shannon entropy of the un-
derlying distribution [1, 2]—a quantity originally intro-
duced by Boltzmann over 100 years ago. In the ’50’s,
Kolmogorov and Sinai [3, 4] adapted Shannon’s infor-
mation theory to the study of dynamical systems. This
work formed the foundation for the statistical character-
ization of deterministic sources of apparent randomness
in the late ’60’s through the early ’80’s. These efforts to
describe the unpredictability of dynamical systems were
largely successful. The metric entropy, Lyapunov expo-
nents, and fractal dimensions now provide widely appli-
cable quantities that can be used to detect the presence
of and to quantify the degree of deterministic chaotic be-
havior.

Since that time, though, it has become better appreci-
ated that measuring the randomness and unpredictabil-
ity of a system fails to adequately capture the correla-
tional structure in its behavior. Structure here is taken
to be a statement about the relationship between a sys-
tem’s components. Roughly speaking, the larger and
more intricate the “correlations” between the system’s
constituents, the more structured its underlying distri-
bution. Structure and correlation are not completely in-
dependent of randomness, however. It is generally agreed

that both maximally random and perfectly ordered sys-
tems possess no structure [5–7]. Nevertheless, at a given
level of randomness away from these extremes, there can
be an enormously wide range of differently structured
processes.

These realizations led to a considerable effort to de-
velop a general measure that quantifies the degree of
structure or pattern present in a process (c.f. [5–17]).
There are many ad hoc methods for detecting structure,
but none are as widely applicable as entropy is for indi-
cating randomness. The quantities that have been pro-
posed as general structural measures are often referred
to as “complexity measures.” To reduce confusion, it
has become convenient to refer to them instead as statis-
tical complexity measures. In so doing they are immedi-
ately distinguished from deterministic complexities, such
as the Kolmogorov-Chaitin complexity [18–20] which re-
quires the deterministic accounting of every bit—random
or not—in an object. In contrast, statistical complexity
measures discount for randomness and so provide a mea-
sure of the regularities present in an object above and
beyond pure randomness. Deterministic complexities are
dominated by the random components in an object; the
result is that their average-case growth rate is given by
the Shannon entropy rate [2].

A number of approaches to measuring statistical com-
plexity have been taken. One line of attack operates
within information theory and examines how the Shan-
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non entropy of successively larger subsystems converges
to the entropy density of the entire system [6, 8, 9, 11, 13,
14]. These quantities can be interpreted as the average
memory stored in configurations.

Another set of approaches appeals to computation
theory’s classification of devices that recognize differ-
ent classes of formal languages (sets of strings). Ex-
amples include finite memory devices (e.g. the finite-
state machines) and infinite memory devices (e.g. push-
down automata and Turing machines) [21]. One such
computation-based measure of statistical complexity is
the logical depth [12]. The logical depth of (say) a sys-
tem’s configuration is the time required for a universal
Turing machine to run the minimal program that re-
produces it. Another example of a computation theo-
retic approach is found in the statistical complexity of
refs. [7, 15], a quantity that measures the amount of
memory needed, on average, to statistically reproduce a
given configuration. Unlike logical depth, which assumes
the use of a universal Turing machine—the most powerful
discrete computational model class—this statistical com-
plexity assumes that the simplest possible computational
class is used to describe the configuration. A higher level
class is used only if lower ones fail to admit a finite de-
scription. This “bottom-up” definition of hierarchical in-
formation processing has been successfully applied to the
symbolic dynamics of chaotic maps [7, 15], cellular au-
tomata [22], spin systems [23], and hidden Markov mod-
els [24]. For other approaches to statistical complexity
see, for example, refs. [5, 10, 16, 17, 25].

II. PROPERTIES OF CLMC

Recently, Lòpez-Ruiz, Mancini, and Calbet proposed
another measure of statistical complexity CLMC [26].
Consider a discrete random variable Y that can take on
N values y. We denote by Pr(y) the probability that the
variable Y assumes the value y. Ref. [26] then defines a
complexity measure:

CLMC[Y ] ≡ H[Y ]D[Y ] , (1)

where H is the Shannon entropy,

H[Y ] = −
∑

{y}

Pr(y) log2 Pr(y) , (2)

in which the sum runs over all allowed values of y. The
quantity D is the “disequilibrium,” defined by

D[Y ] =
∑

{y}

(Pr(y) −
1

N
)2 , (3)

which measures the departure of Pr(y) from uniformity.
The motivation posited in ref. [26] for the form of

CLMC is that it vanishes for distributions that correspond

to perfect order and maximal randomness. Ref. [26] ar-
gues that perfect order corresponds to a vanishing Shan-
non entropy and notes that for H = 0, CLMC = 0. Max-
imal randomness occurs for H = log2 N , corresponding
to Pr(y) = 1/N . And so, by eq. (3) D and hence CLMC

equal zero. Thus, by construction, CLMC vanishes in the
extreme ordered and disordered limits.

We now proceed to discuss the behavior of CLMC in
the thermodynamic limit. Anteneodo and Plastino have
already reported some of CLMC’s properties in this limit
[27]. However, their line of investigation is rather differ-
ent from that undertaken here. In ref. [27] the distribu-
tion that maximizes CLMC is determined. Numerical and
analytic work there indicate that the maximizing distri-
bution for N → ∞ is one in which a single event has
probability 2/3 while all others are equally likely.

As an alternative to looking at the maximizing distri-
bution, we suggest examining how a system’s complex-
ity changes as parameters—e.g. temperature, coupling
strength, nonlinearity, etc.—are varied. This approach
is in keeping with statistical mechanics, where one typi-
cally looks at changes in the behavior of quantities in the
thermodynamic limit as system parameters are modified.
For example, rather than determine the distribution that
maximizes the expectation value of the specific heat for a
finite-sized system, one usually determines how the spe-
cific heat per site behaves in the limit of an infinite system
as, say, the temperature is varied.

Consider the class of probability distributions over dis-
crete, finite random variables generated by finite-memory
Markov chains. Let . . . X−2,X−1,X0,X1,X2, . . . be a
bi-infinite chain of random variables where each value
xi is chosen from a discrete finite alphabet of size
k. We denote L consecutive variables by XL

i ≡
Xi,Xi+1,Xi+2, . . . ,Xi+L−1. XL

i is a system of L vari-
ables with N = kL possible configurations xL

i . Let
Pr(xi) be the probability that the ith random variable
takes on the particular value xi. We denote by Pr(xL

i )
the joint probability distribution over L consecutive ran-
dom variables. We assume a shift symmetry so that
Pr(xL

i ) = Pr(xL
0 ) and subsequently drop the subscript

i = 0. The chain of discrete random variables may
be viewed as a translationally invariant spin system or,
equivalently, as a stationary stochastic process.

As is well known, the Shannon entropy of a block of
L such variables typically grows linearly for sufficiently
large L. In other words, the limit

hµ ≡ lim
L→∞

1

L
H[X0,X1, . . . ,XL−1] (4)

exists and, in the thermodynamic (L → ∞) limit,

H[XL] ∝ hµL . (5)

The quantity hµ is well-defined as the system size goes
to infinity and is known as the entropy rate, the metric
entropy, or the thermodynamic entropy density depend-
ing on the context. In statistical mechanics parlance,
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eq. (4) tells us that the Shannon entropy H is an exten-
sive quantity, so that it is possible to define a meaningful
entropy density hµ that characterizes the randomness per
variable in the system.

The “disequilibrium” term, eq. (3), is not so well be-
haved. In fact, under no circumstances does it grow lin-
early with system size L. One can show, quite generally,
that for a system of length L described by a probability
distribution over N = kL events, D is bounded above by
1−1/N . To see this, we expand the square in eq. (3) and,
since the probability distribution is normalized, obtain

D[XL] =
∑

{xL}

Pr(xL)2 −
1

kL
. (6)

The sum is understood to run over all kL possible values
of XL. Since Pr(xL) ≤ 1, it follows that

∑

{xL}

Pr(xL)2 ≤
∑

{xL}

Pr(xL) = 1 . (7)

Thus,

D[XL] ≤ 1 − k−L , (8)

and we see that D cannot grow linearly with the system
size L. Therefore, the “disequilibrium” is not a thermo-
dynamically extensive quantity.

In fact, it can be shown that D vanishes exponentially
with increasing system size for a large class of systems.
Let our chain of variables . . . X−1,X0,X1,X2, . . . be cho-
sen by a one-step Markov process with transition prob-
abilities given by Tab = Pr(b|a), a, b ∈ {0, 1, . . . , k − 1}.
That is, Tab gives the probability that the variable Xi+1

takes on the bth value given that Xi takes on the ath

value. (What follows applies to any finite-step Markov
chain, as blocks of adjacent variables can be grouped to
render the process one-step.) Then, if we assume that
the Markovian process is regular—i.e., there exists some
K such that (Tab)

K > 0 for all a and b—then it follows
that the disequilibrium of a system of L variables goes to
zero exponentially fast in L. This is proved in appendix
A.

As a result, CLMC vanishes in the thermodynamic limit
for all regular Markov chains, a class of systems that in-
cludes all finite-range, one-dimensional spin systems with
finite-strength interactions. It seems to us counterintu-
itive that a (useful) measure of complexity vanishes for
all of these systems. While these models exhibit no crit-
ical phenomena, there are considerable changes in the
structure of the distributions as system parameters are
varied [23]. A measure of complexity, as we envision it,
should be sensitive to these changes.

As an illustration of the nonextensivity of D, consider
the special case where the chain consists of variables
that are independent and identically distributed (iid);
i.e., Pr(xi, xj) = Pr(xi)Pr(xj) for all Xi and Xj with
i, j = . . . ,−2,−1, 0, 1, 2, . . .. For a spin system, this cor-
responds to the case where there is no coupling between

spins—a paramagnet. For convenience we assume that
Xi can take on two values, (say) 0 and 1, and we denote
the probability that Xi takes on the value 1 by p. Then,
using the binomial theorem, we find that CLMC for a
system of L such variables is given by:

CLMC[XL] = LH[X]
(
(1 − 2p + 2p2)L − 2−L

)
, (9)

where H[X] is the binary entropy function:

H[X] = −p log2 p − (1 − p) log2(1 − p) . (10)

Eq. (9) is rather curious. In our view, the complexity of
a collection of iid binary variables should vanish regard-
less of their number. A set of independent variables is
statistically very simple—there is manifestly no correla-
tional structure whatsoever. Furthermore, it seems to us
that if the complexity doesn’t vanish for all such systems,
it ought to grow linearly as a function of the number of
variables. That is, six biased coins should be twice as
complex as three biased coins. Eq. (9) shows that the
size dependence of CLMC is much more complicated.

In ref. [27] it is found that the maximal value of CLMC

goes to 4/27 as the system size goes to infinity. This is not
at odds with the exponentially fast vanishing of D (and
hence CLMC) for regular Markov processes noted here,
since the system that maximizes CLMC is not Marko-
vian. To see this, recall that the maximal distribution
reported in ref. [27] has one configuration with probabil-
ity 2/3 while all others have equal probability. In the
thermodynamic limit, this one configuration is infinitely
long. Thus, the generating process must keep track of ar-
bitrarily long configurations in order to assign a distinct
probability to one and another probability uniformly to
all others. As a result, the distribution that maximizes
CLMC cannot be generated by a finite-memory Markov
process in the thermodynamic limit.

III. REPAIRING NONEXTENSIVITY

Up to this point we have seen that CLMC is not suitable
for use in a statistical mechanics context. In particular, it
suffers from two related deficiencies: it is not an extensive
quantity and it vanishes for a large variety of structured
processes. The trouble causing both of these shortcom-
ings resides in the “disequilibrium” factor. Perhaps if one
altered the definition of CLMC so that D was extensive,
as the Shannon entropy H is, one would obtain a more
useful measure of statistical complexity.

To this end, we seek an extensive measure of a distribu-
tion’s departure from uniformity. As we will be multiply-
ing this measure by the Shannon entropy H which carries
units of bits, it also seems natural, although not neces-
sary, to choose a “disequilibrium-like” quantity that also
carries units of bits. Information theory is armed with
just such a function: the relative information [2].

The relative information, also known as the informa-
tion gain or the Kullback-Leibler information distance,
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between two distributions Pr(y) and P̂r(y) is defined by

D( Pr(y) ‖ P̂r(y) ) ≡
∑

{y}

Pr(y) log2

Pr(y)

P̂r(y)
. (11)

The relative information is not a true distance function,
neither satisfying the triangle inequality nor being sym-
metric. Nevertheless, it does provide a measure of how
much two distributions differ and it does carry the same
units (bits) as the Shannon entropy. It is also an exten-
sive quantity, since it grows linearly with the number of
variables in the distribution’s support.

So, D( Pr(y) ‖ P̂r(y) ) where P̂r(y) = 1/N provides an
extensive measure of Pr(y)’s departure from uniformity
in units of bits. Using this in eq. (3), we define a modified
statistical complexity measure:

C ′[Y ] ≡ H[Y ]D( Pr(y) ‖ 1/N ) , (12)

which has units of [bits2]. From here on we will focus on
C ′, the modified CLMC. Note that much of C ′’s character
is shared by CLMC.

To see how this new quantity behaves, let’s look more
closely at D( Pr(y) ‖ 1/N ). Consider again XL, a Markov
chain of length L. And for convenience let the Xi be
binary variables. The total number N of configurations
for such a system is 2L. First, note that:

D( Pr(xL) ‖ 1/N ) = L − H[XL] . (13)

Since H[XL] is extensive (eq. (5)), we have:

D( Pr(xL) ‖ 1/N ) ∝ L(1 − hµ) . (14)

Thus, C ′ consists of the product of two extensive quan-
tities, H and D( Pr(xL) ‖ 1/N ). As a consequence, divid-
ing C ′ by L2 yields a quantity that is finite in the L → ∞
limit; specifically,

lim
L→∞

1

L2
C ′ = hµ(1 − hµ) . (15)

(See Fig. 1.) This is indeed a function that vanishes in
the ordered (hµ = 0) and disordered (hµ = 1) extremes.
However, note that it is a function only of the system’s
entropy density. That is, the modified statistical com-
plexity measure eq. (12) is a function only of the system’s
randomness. The relation C ′ ∝ L2hµ(1 − hµ) strikes us
as being “over-universal.” For example, it’s possible for a
paramagnet and a system at its critical point, where the
correlation length diverges, to have the same value of C ′.
It does not seem particularly revealing that all systems
with the same entropy density have the same statistical
complexity.

As a contrast to the C ′ versus hµ behavior shown in
Fig. (1), consider Fig. (2), where we show the behavior of
a different measure of statistical complexity, the excess
entropy E [6, 8, 9, 11, 13, 14]. The excess entropy of
an infinite configuration may be expressed as the mutual
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FIG. 1: C ′ versus entropy density hµ. Note that C ′ is a
function of hµ.

information between two semi-infinite halves of the con-
figuration. That is, E is the amount of spatial memory
embedded in configurations. In ref. [23] we show that E
captures significant structural changes in the configura-
tions of one-dimensional spin systems as external param-
eters are varied. In Fig. (2) we plot the excess entropy for
104 sets of parameter values for a 1D Ising system with
nearest-neighbor coupling in the presence of an external
field. Note that for all these Ising systems CLMC = 0,
since CLMC vanishes in the thermodynamic limit. Com-
paring the two figures, it is clear that the excess entropy
depends on the entropy density hµ in a much more subtle
way than C ′ does.

Comparing these two plots raises another important is-
sue. Note that the excess entropy does not always equal
zero for hµ = 0, an apparent violation of the “boundary
condition” requiring that a complexity measure vanish
in the perfectly ordered limit. However, hµ = 0 corre-
sponds to perfect asymptotic predictability, not perfect
order. A process with a vanishing entropy rate indicates
that it can be predicted without error—it says nothing,
however, about how much effort or memory is required to
perform this prediction. Thus, a zero value of the entropy
density is too crude a measure of order. To see this, note
that any periodic system has hµ = 0. Yet all periodic
systems aren’t equally ordered: a configuration with pe-
riod 1 is certainly more ordered than a configuration of
period 1729—which, for example, requires more memory
to produce. In fact, at the period-doubling accumulation
point of the logistic map, the symbolic dynamics produce
periodic configurations of diverging periodicity. Hence,
the excess entropy is infinite here, while the entropy rate
remains zero [6, 7, 15].

In contrast to C ′, which vanishes for any periodic sys-
tem, the excess entropy E for a configuration of period P
is log2 P . Only if the period is 1, indicating trivial order-
ing and predictability, does the excess entropy vanish for
a periodic process. Thus, the (hµ,E) = (0, 0) points in
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FIG. 2: Excess entropy E, a statistical complexity measure,
versus entropy density hµ for a spin-1/2 one-dimensional Ising
spin system: 104 (hµ, E) points. The system parameters were
randomly chosen from the following intervals: J (coupling
constant) ∈ [−3, 3]; T (temperature) ∈ [0.05, 4.05]; and B
(external field) ∈ [0, 3].

Fig. (2) correspond to the system’s ferromagnetic ground
states of period 1 and the (hµ,E) = (0, 1) points corre-
spond to the antiferromagnetic ground states of period 2
[23]. Statistical complexity measures such as C ′ or, for
that matter CLMC, that are zero for all hµ = 0 configu-
rations are very blunt implements with which to detect
structure. A measure of complexity should be able to
distinguish between structures of different periodicities.

For maximal randomness (hµ = 1), the excess entropy
E vanishes, as expected. At hµ = 1, corresponding to
infinite temperature, the spins decouple and there is no
information shared between them. But the excess en-
tropy does more than satisfy the “boundary conditions”
of vanishing for hµ = 0 and 1. The interpretation of E as
the memory stored in spatial configurations holds for in-
termediate values of hµ as well. As a result, Fig. (2) lets
us place an upper bound on the memory stored in spa-
tial configurations for a spin-1/2 nearest neighbor Ising
model: E ≤ 1 − hµ. This result, derived analytically
in ref. [23], applies to all one-step Markov chains over a
binary alphabet.

We close this section by noting that there is a grow-
ing body of evidence indicating that, aside from the re-
quirement of vanishing at the ordered and disordered ex-
tremes, entropy and “complexity” (defined in a number
of different ways to reflect “structure”) are more or less
independent. That is, there is a vastly wider range of
complexity versus entropy relationships than indicated
by eq. (15) [14, 15, 23]. Fig. (2) is just one example
of many possible statistical complexity-entropy density
relationships.

IV. CONCLUSION

To summarize, we have shown that CLMC vanishes
in the thermodynamic limit for finite-memory regular
Markov chains. This class of systems includes, at a min-
imum, all finite-range one-dimensional spin systems. We
have also shown that CLMC is not an extensive variable.
We have proposed modifying CLMC, replacing the “dis-
equilibrium” of ref. [26] with the relative entropy with
respect to the uniform distribution. This results in a
quantity C ′ that grows appropriately in the thermody-
namic limit, making it possible to define a meaningful
statistical complexity density that, nonetheless, retains
the spirit of CLMC. However, the product of this mod-
ification is a quantity that is a trivial, “over-universal”
function of the entropy density hµ. In short, based on
the above observations, it seems to us that CLMC and
C ′ may be of little use in measuring the complexity of a
statistical mechanical system.

We conclude by pointing out that the “boundary con-
ditions” of vanishing in the extreme ordered and disor-
dered limits do not uniquely specify a measure of com-
plexity, an observation also made by Anteneodo and Plas-
tino [27]. In fact, if this is the only feature one demands
of a complexity measure, it’s not clear to us why one
would be motivated to devise a new statistic at all.

Statistical mechanics, for example, is replete with func-
tions that vanish in the high and low temperature limits.
Since thermodynamic entropy, a measure of randomness,
is a monotonic function of temperature, high (low) tem-
perature corresponds to high (low) randomness. Exam-
ples of quantities that vanish in these extremes (assuming
there is not a critical point at T = 0) include the con-
nected correlation functions, the correlation length, and
magnetic susceptibility. These functions can be easily
applied to any probability distribution describing a spa-
tially or spatio-temporally extended collection of random
variables.

Information theory also comes equipped with a func-
tion that vanishes for perfectly ordered and disordered
systems: the mutual information I [1, 2]. If two random
variables Z and Y are independently distributed, then
the mutual information between them, I[Z;Y ] vanishes.
At the other extreme, if Z and Y are both known with
certainty—that is, H[Z] = H[Y ] = 0—then I[Z;Y ] also
vanishes. For statistical dependencies between these ex-
tremes, I[Z;Y ] is positive and measures the amount of
information shared between Y and Z.

Given that there are many functions that vanish in the
extreme ordered and disordered limits, it is clear that re-
quiring this property does not sufficiently restrict a sta-
tistical complexity measure. What other criteria can we
use, then, to guide us as we attempt to detect structures
and patterns in nature? To this question we offer two
suggestions.

First, it is helpful if the candidate statistical complex-
ity has a clear interpretation: What exactly is the sta-
tistical complexity measuring? The two English words
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“statistical complexity” do not sufficiently answer the
question. Many of the statistical complexity measures
proposed over the last decade or so do have clear inter-
pretations. For example, the excess entropy may be in-
terpreted as the mutual information between two halves
of an infinite configuration [6, 14, 23]. Logical depth
is the run time required by a universal Turing machine
executing the minimal program to reproduce a given pat-
tern. These unambiguous interpretations help put these
statistical complexity measures on a solid footing.

Second, it is essential to consider the motivations be-
hind a measure of statistical complexity: How is the mea-
sure to be used? What questions might it help answer?
It is possible to meaningfully assess its utility only if
the motivations and goals for defining a complexity mea-
sure are stated clearly. One set of issues is the detection
and quantification of patterns produced by a process. It
has been proposed that particular notions of structure
adapted from computation theory capture the intrinsic
“patterns” and information processing architecture em-
bedded in a system. In this setting, one finds well-defined
and easily interpreted measures of statistical complexity
[15]. For other views on questions that a measure of sta-
tistical complexity might help answer, see ref. [28].

Finally, ref. [27] mentions several different notions of
complexity and notes that “there is not yet a consen-
sus on a precise definition.” “Complexity” has accepted
meanings in other fields—meanings established prior to
the recent attempts to use it as a label for structure in
natural systems. For example, Kolmogorov-Chaitin com-
plexity in algorithmic information theory means some-
thing quite different from computational complexity in
the analysis of algorithms. These, in turn, are each dif-
ferent from the stochastic complexity used in model-order
estimation in statistics [29]. Though at a future date re-
lationships may be found, at present all of these are dif-
ferent from the notions of statistical complexity discussed
here.

Unfortunately, “complexity” has been used without
qualification by so many authors, both scientific and non-
scientific, that the term has been almost stripped of its
meaning. Given this state of affairs, it is even more im-
perative to state clearly why one is defining a measure of
complexity and what it is intended to capture.

We thank Melanie Mitchell and Karl Young for helpful
comments on the manuscript. This work was partially
supported at UC Berkeley by ONR grant N00014-95-1-
0524 and at the Santa Fe Institute by ONR grant N00014-
95-1-0975.
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APPENDIX A: D VANISHES EXPONENTIALLY

FAST FOR REGULAR MARKOV CHAINS

We will show that D goes to zero exponentially fast
with increasing system size for a Markov chain governed
by a regular transition matrix Tab = Pr(b|a), where 0 ≤
Tab ≤ 1 and there exists a K < ∞ such that (TK)ab > 0
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for all a and b. Since the conditional probabilities are

normalized, the matrix T is stochastic:
∑k

b=1 Tab = 1.
The probability of a block of L consecutive variables

taking on the values x1, x2, . . . , xL is given by

Pr(x1, x2, . . . , xL) = px1
Tx1x2

Tx2x3
· · ·TxL−1xL

, (A1)

where p is the stationary distribution of a single variable,
as given by the left eigenvector of T with eigenvalue 1.
The eigenvector p is chosen so as to be normalized in

probability,
∑k

a=1 pa = 1.

Let T̃ be a matrix whose components T̃ab are given
by (Tab)

2. Note that T̃ 6= T 2. Similarly, let p̃ be a
vector whose components p̃a are given by (pa)2. Eq. (6)
indicates that we are interested in

∑

{xL}

Pr(xL)2 =
∑

{xL}

p̃x1
T̃x1x2

T̃x2x3
· · · T̃xL−1xL

. (A2)

The sum runs over all configurations of length L. The
effect of the sum is to multiply the matrices together;

∑

{xL}

Pr(xL)2 =
∑

x1

∑

xL

p̃x1
(T̃L−1)x1xL

. (A3)

We shall show that in the L → ∞ limit the above ex-
pression goes to zero exponentially fast.

We begin by considering the vector V ≡ p̃T̃L−1 and
its L∞ norm, ‖V ‖ ≡ max{|V1|, |V2|, . . .}. Eq. (A3) may
be rewritten in terms of V ,

∑

{xL}

Pr(xL)2 =

k∑

i=1

Vi. (A4)

Since V is finite dimensional and all elements are
nonnegative, if ‖V ‖ goes to zero exponentially fast,∑

{xL} Pr(xL)2 must also go to zero exponentially fast.

To show the former we use some well-known properties
of vector and matrix norms [30].

Consider the matrix norm induced by the L∞ vector
norm:

‖T̃‖ ≡ max
a

{
∑

b

T̃ab } . (A5)

Any matrix norm is compatible with its associated vector
norm:

‖V ‖ = ‖p̃ T̃L−1‖ ≤ ‖p̃‖ ‖T̃L−1‖ . (A6)

Recall that the components of p̃ are the squares of the
components of the stationary probability p of the Markov
chain. Except for the trivial case in which there is only
one symbol in our chain and T is a one-by-one matrix,
the maximum component of p is less than one. Thus,
0 < ‖p̃‖ < 1 and we have

‖V ‖ ≤ ‖p̃‖ ‖T̃L−1‖ ≤ ‖T̃L−1‖ . (A7)
Since T is regular and stochastic, there exists a K such

that 0 < (TK)ab < 1 for all a and b. Each element of
TK is a sum of terms that are products of T ’s elements.
Likewise, each element of T̃K is a sum of terms that are
products of T̃ ’s elements. However, since T̃ab = (T 2)ab

and 0 ≤ Tab ≤ 1, it follows that each component of T̃K

is strictly less than the corresponding component of TK .
The product of stochastic matrices is itself a stochastic

matrix, so
∑k

b=1(T
K)ab = 1. Thus, since each compo-

nent of T̃ is less than the corresponding component of T ,∑k
b=1(T̃

K)ab < 1. As a result, ‖T̃‖ < 1.

Rewriting eq. (A7), we have: ‖V ‖ ≤ ‖T̃K(L−1)/K‖ .

Using the consistency condition ‖T̃ 2‖ ≤ ‖T̃‖ ‖T̃‖, obeyed
by all matrix norms, we see that in the L/K → ∞ limit:

‖V ‖ ≤ ‖T̃K‖L−1 . (A8)

(The L/K → ∞ limit is equivalent to the L → ∞ limit

since K is finite.) Since ‖T̃K‖ < 1 we see that ‖V ‖
is bounded above by a function that decreases exponen-
tially in L. Hence ‖V ‖ itself also decreases exponentially
in L.


