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I. INTRODUCTION

This is a brief resource note covering methods to cal-

culate basic features of ergodic hidden Markov processes

(HMPs) generated by hidden Markov models (HMMs).

The emphasis is on unifilar HMMs, such as ε-machines.

Sources for these notes can be found in the following

publications:

• Ref. [1]: Short introduction that motivates the

mixed state in terms of interesting statistical prop-

erties of HMPs.

• Ref. [2]: The theory behind it. See Sec. “Alterna-

tive Presentations”.

• Refs. [3] and [4]: A useful application.

II. PRESENTATION

We will discuss generative models and the observed

processes they produce.

The generative models will be given as a unifilar pre-

sentation: a class of state-based models in which ob-

served symbols are emitted on state-to-state transitions.

(The alternative, that symbols are emitted on entering

a state, are not considered. There is no loss of gener-

ality, since these HMM presentations are equivalent to

“edge-labeled” HMM presentations here.)

A presentation M =
{
A,S, {T (x)}

}
of a HMP consists

of:

1. Alphabet of observed symbols: x ∈ A. The associ-

ated random variable at time t is denoted Xt.
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2. Set of internal (hidden) states, σ ∈ S =

{0, 1, . . . , N − 1}, with random variable St at time

t; and

3. Set of symbol-labeled state transition matrices:

{T (x)
σ,σ′ : σ, σ′ ∈ S, x ∈ A}. These determine the

probability T
(x)
σ,σ′ = Pr(σ′|σ, x) of transitioning from

state σ′ starting in state σ and seeing x.

The internal process is described by a Markov chain

with transition matrix T =
∑
x∈A T

(x). It is a stochastic

matrix : The transition probabilities leaving a state sum

to one:
∑
σ′ Tσ,σ′ = 1. That is, a transition is always

made on each step. The individual T (x) are referred to

as substochastic matrices.

Unifilarity is a strong constraint on the {T (x)}: the

transition to a next state, if allowed, is uniquely deter-

mined by the current state and measurement symbol.

One result is that the matrices are sparse.

For a given process, unifilar presentations need not be

unique.

Since we consider only ergodic HMPs, there is a single

strongly connected set of recurrent states that is visited

asymptotically. Here, we assume S consists only of these

recurrent states.

III. JOINT PROCESS

Given a presentation of a process, there is a most pro-

saic description. This is the joint process over internal

states and generated symbols:

{. . . (σ, x)t−1, (σ, x)t, (σ, x)t+1, . . .} (1)

where σt ∈ S and x ∈ A. The presentation is simply

a list of all allowed realizations. Their probabilities are

specified by the joint distribution Pr
(↔
S ,
←→
X
)

.
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IV. WORD DISTRIBUTION

The observed process is the marginal distribution of

the joint process:

Pr(
←→
X ) =

∑
↔
σ∈
↔
S

Pr
(↔
S=
↔
σ ,
←→
X
)
.

We will assume a stationary observed process:

Pr (
←→
X t) = Pr (

←→
X 0) ,

for all t. Due to this we drop the absolute time index

where convenient.

The distribution of words w = x0x1 . . . xL−1 of length

L is a marginal of the observed process:

Pr(XL = w)

=
∑

xL,xL+1,...∈A
Pr(XL = w,XL = xL, XL+1 = xL+1, . . .) .

(2)

Being infinite, the explicit process presentation of Eq.

(1) is often not helpful. Except, perhaps, for the case

of periodic processes. This is especially true when we

come to practical questions related to calculating word

probabilities and other properties. In a sense, this is one

of the main reasons we use models—presentations of a

process. So, how do we directly calculate these from a

presentation? The following sections outline what things

there are to know and how to calculate them.

V. INTERNAL STATE DISTRIBUTION

Consider the internal Markov chain. We represent the

state distribution µt ≡ Pr(St) at time t as a row vector:

µt = Pr(St = 0, . . . ,St = N − 1) . (3)

Then, in vector notation, the state distribution at the

next time is:

µt+1 = µtT . (4)

The time-asymptotic probability of visiting states is

denoted π. It is calculated as the principal left eigenvec-

tor of the internal state transition matrix:

π = πT .

Its components are normalized in probability:
∑
σ πσ =

1. Since T is a stochastic matrix, the principal eigen-

vector is unity. Operationally, this means that Eq. (4)

preserves probability: µt+1 is a normalized distribution,

if µt is.

VI. WORD DISTRIBUTION FROM

PRESENTATION

The symbol probability starting from a given state is

specified in the symbol-labeled transition matrices:

Pr(x|σ) =

{
T

(x)
σ,σ′ , if σ′ is allowed,

0, if disallowed.

Recall that presentation’s unifilarity means at most

one transition is allowed on each symbol leaving a state.

(At most one T
(x)
σ,σ′ is positive, for a given symbol x ∈ A

and state σ ∈ A.) This is an import subclass of HMM

presentations. One that allows us to calculate a num-

ber of properties of the observed process in terms of the

internal Markov chain. In short, unifilarity provides a

mapping between sequences of internal state transitions

and sequences of observed symbols.

Given a presentation of a process, the probability of

seeing symbol x ∈ A is the average probability that it is

generated from each state:

Pr(X = x) =
∑
σ∈S

Pr(σ) Pr(X = x|σ) .

If at time t we have Pr(St) = µt, then this translates to

the vector notation:

Pr(Xt = x) = µtT
(x)1 , (5)

where 1 is the all-1s column vector. It sums over the

states in which one ends after seeing x.

If we believe the process is in statistical equilibrium—

that the state probabilities are given by π—then the ex-

pected symbol probability is:

Pr(X = x) = πT (x)1 . (6)

This probability is stationary (and so the t index was

dropped), since the states are distributed according to π.

These calculations extend directly to words w ∈ A+:

Pr(w) =
∑
σ∈S

Pr(σ) Pr(w|σ) . (7)

The conditional probability on the RHS is the word prob-

ability starting from a given state:

Pr(XL = w|S = σ0)

= Pr(σ0) Pr(x0|σ0) Pr(x1|σ1) · · ·Pr(xL−1|σL−1) .
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Here, the sequence of states visited in generating w is

denoted σ0, . . . , σL−1.

Again, assuming state probabilities are stationary, in

vector notation Eq. (7) becomes:

Pr(XL = w) = πT (s0) · · ·T (sL−1)1

= πT (w)1 . (8)

These word probabilities are stationary since the states

are distributed according to π.

When we say that we have a presentation M of a pro-

cess P, we mean that M generates all of and exactly P’s

word distribution. That is, the distributions of Eqs. (2)

and (8) are the same.

VII. MIXED STATE EVOLUTION

Above, partly as an aid to compare a given station-

ary process to the process generated by a presentation,

we assumed the presentation started in asymptotic state

distribution π. We can take any initial distribution µ,

though. To emphasize the geometric view of a state dis-

tribution as a vector, as in Eq. (3), we refer to µ as a

mixed state. That is, µ is a mixture of state probabil-

ities. Individual state probabilities expressed as mixed

states are Pr(S = i) = (0, . . . , 1, . . . , 0). These pure

states are vertices of the mixed-state simplex. And so,

given a presentation M , we can work with an alternative

model called the mixed state presentation, denoted M.

By construction, M is unifilar, even if M is not. Here,

we show how this alternative works.

Nothing else said, the internal state evolution is given

by Eq. (4). However, we are also interested in how a

given state distribution Pr(S) changes when observing

a particular symbol. This is denoted by the conditional

probability Pr(S|x). Using simple probability identities,

we see that it is:

Pr(S|x) =
Pr(S, x)

Pr(x)

=
Pr(S) Pr(x|S)

Pr(x)
.

In vector notation, we have the mixed state µt =

Pr(S). Then, if we observe Xt = x, we have more infor-

mation about the update of internal states than assumed

in Eq. (4). The result is that we transition to a new

state distribution or mixed state µt+1 ≡ Pr(St+1|Xt = x)

given by:

µt+1 =
µtT

(x)

µtT (x)1
. (9)

This is a row vector representing the normalized state

probability. The numerator, though similar to how

Eq. (4) evolves the state distribution, is only a partial

distribution. The denominator normalizes that vector

back to a distribution. Note that the denominators in

this—µtT
(x)1—and the immediately preceding nonvec-

tor version—Pr(x)—are related by Eq. (5).

That is, the probability to see x starting in mixed state

µt was given by Eq. (5). Rewriting this slightly to indi-

cate the current mixed state explicitly, we have:

Pr(x|µt) = µtT
(x)1 .

In Eq. (6) we assumed π and obtained a stationary

symbol probability. Here, the probability need not be

stationary.

A key point is that due to unifilarity of the mixed state

presentation, Pr(x) is also the transition probability of

going from mixed state µt to mixed state µt+1 on seeing

x. That is,

Pr(µt →x µt+1) = µtT
(x)1 .

VIII. SYNOPSIS

Here’s a reprise of the main mixed-state (vector) ex-

pressions. However, as just noted, one needs to be careful

to specify on which state distribution we condition and

the word that induces a mixed state distribution. And

so, we introduce some slightly modified notation.

Evolve state distribution S ∼ µ:

µt+1 = µtT . (10)

Word probability given a mixed state:

Pr(XL = w|S ∼ µ) = µT (w)1 . (11)

Mixed state evolution induced by symbol x:

µt+1(x) =
µtT

(x)

µtT (x)1
.

Mixed state transition on generating symbol x:

Pr(µt →x µt+1) = µtT
(x)1 .
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