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Pairwise interactions between individuals are taken as fundamental drivers of collective behavior—
responsible for group cohesion and decision-making. While an individual directly influences only a
few neighbors, over time indirect influences penetrate a much larger group. The abiding question
is how this spread of influence comes to affect the collective. In this, one or a few individuals are
often identified as “leaders”, being more influential than others in determining group behaviors.
To support these observations transfer entropy and time-delayed mutual information are used to
quantitatively identify underlying asymmetric interactions, such as leader-follower classification in
aggregated individuals—cells, birds, fish, and animals. However, these informational measures do
not properly characterize asymmetric interactions. They also conflate distinct functional modes of
information flow between individuals and between individuals and the collective. Employing simple
models of interacting self-propelled particles, we examine the pitfalls of using them to quantify the
strength of influence from a leader to a follower. Surprisingly, one must be wary of these pitfalls even
for two interacting particles. As an alternative we decompose transfer entropy and time-delayed
mutual information into intrinsic, shared, and synergistic modes of information flow. The result
not only properly reveals the underlying effective interactions, but also facilitates a more detailed
diagnosis of how individual interactions lead to collective behavior. This exposes, for example, the
role of individual and group memory in collective behaviors.
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I. INTRODUCTION

Coherent collective behavior fascinates us when a global pattern emerges from individuals who share information
with others only in their local vicinity. Decisions made by one individual apparently cascade throughout the entire
group. That said, not all members have the same influence. The challenge here in explaining such emergent behaviors
is to infer the underlying relationships among individuals from observations. Not surprisingly, this challenge has
attracted many over decades to diagnose collective behaviors in a variety of systems [4, 20, 23, 25, 26, 29, 31, 37]. In
epithelial Madin-Darby canine kidney monolayers, for example, collective cell migration is triggered by multicellular
protrusions forming a fingerlike structure [25, 26, 37]. Photoablating a group of cells from the finger tip makes the
remaining cell group lose its sense of direction. The interpretation is that the former and latter cells have acted as if
they were “leaders” and “followers”. This functional assignment can be carried out due to their spatial location along
the protrusion and since the two cell classes are genetically distinct [37].

Identifying leaders—even defining what that role means [9]—is very difficult. Especially so, when probing the
mechanisms that cause the dynamical behaviors of aggregated agents. Beyond cells, these basic questions also apply
to bird flocking [20], fish schooling [4, 23], caribou migration [31], and bonobo ape foraging [29]. Leader agents are
often defined as an individual that exerts more influence upon others than others influence on upon it. That is, the
role is fundamentally asymmetric. Previous studies [1, 4, 17–19, 23] proposed that, under this definition, pairwise
analysis of trajectories can assign leaders and followers under the working hypothesis that a change in motion of
the leader forecasts a change in motion of the follower. From this, one interprets the change of leader motion as a
candidate cause that triggers the motion of followers.

Various statistical quantities are used to infer causal relationships in such situations. In pigeon flocks, for example,
the time-delayed correlation between the orientation of individuals at one time instance and the orientation of others
at previous times reveals a hierarchical leadership structure and also provides a method to quantify the timescale
of influence [20]. In such a case, the motion of one pigeon is correlated with the past motion of another. Granger
causality [3] is seen as an improvement to time-delayed correlation as it quantifies the predictability of the current state
of a variable based on knowledge of a variable at a previous time. Time-delayed correlation and Granger causality
both assume linear relationships between variables, though. This generally does not hold. More recent studies argued
that information-theoretic quantities—transfer entropy, time-delayed mutual information, and causation entropy—
are superior when identifying leaders since they naturally accommodate the highly nonlinear nature of multi-agent
systems [1, 4, 13, 14, 17, 19, 22, 30].

In principle, trajectories of each agent are required to fully analyze the mutual influence of individuals at desired
spatiotemporal resolution. However, in most of empirical settings one cannot make such detailed observations. Here,
we assume that only pairwise measurements—that is, coordinates of two agents including their history—are available
to quantify the influence of individuals in collective motion. Carefully considering the definitions of (formally pairwise)
information-theoretic quantities—such as, transfer entropy or time-delayed mutual information—further illuminates
the types of influence a particular individual has. As pointed out in introducing transfer entropy [27], time-delayed
mutual information reports a nonzero value between the present of a stochastic variable X and the future of a
stochastic variable Y even when Y has no direct influence on X. This implies that it cannot be directly employed
to infer the underlying mutual influence among individuals. It also includes additional information not intrinsically
coming from X.

Transfer entropy, in contrast, computes the reduction of uncertainty about Y ’s future while knowing X’s present,
conditioned on Y ’s present. Recently though, Ref. [11] showed that, paralleling time-delayed mutual information,
transfer entropy incorporates additional, unwarranted information; namely, the reduction of uncertainty about Y
that occurs by knowing the present state of X and Y simultaneously. This information is extraneous to determining
“flow” and, misleadingly, adds to the desired information: intrinsic flow from X to Y . In this view, transfer entropy
decomposes into two distinct modes of information flow—intrinsic and synergistic [11].

Pairwise interactions are fundamental to information theory’s development of input-output (“two-port”) commu-
nication channels [7]. As such, they provide a primary statistical tool that, as we show, makes it possible to infer the
underlying influences among individuals. To obtain maximum insight into the mechanisms underlying multi-agent
systems, the following focuses on decomposing transfer entropy and time-delayed mutual information into Ref. [11]’s
three different fundamental modes of information flow—termed intrinsic, shared, and synergistic information flows.
The results demonstrate how the decomposed elemental information flows shed light on the influences that drive
leader-follower relationships.

As an illustrative vehicle we employ a generalized Vicsek model [33] with two additional features: 1) tunable influence
weight of one particle over another (i.e., leaders have larger influence) and 2) particle memory. We show that, by
analyzing the effects of 1) and 2) on the three modes of information flow, intrinsic information flow exists whenever
the motion of an agent depends on another with nonzero weight, as does transfer entropy and time-delayed mutual
information. Shared and synergistic information, however, can occur when agents mutually influence each other and
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synergistic information only occurs in such cases. These results extend previous studies on modes of information flow
in finite-state hidden Markov models by introducing Vicsek models that are fundamental to understanding collective
motion and exhibit distinct modes of information flow. Moreover, we probe the effect of agent memory and the effect
of more than two interacting agents on the different modes of information flow and their role in collective behavior.

II. RESULTS

A. Inferring causal relationship: Time-delayed mutual information and transfer entropy

In our definition of leaders, leaders are expected to be more influential than followers. Due to the influence exerted
by the leader on a follower, the follower's motion at some time is influenced by the leader's, but there exists a
disparity in time. The field of information theory has introduced widely used measures such as time-delayed mutual
information and transfer entropy to characterize causal relationships between variables. Such quantities go beyond
time-delayed correlation [17] or Granger causality [3], which only capture relationships at the linear level. Consider
that X = (..., xt−1, xt, xt+1, ...) and Y = (..., yt−1, yt, yt+1, ...) are two stationary processes with probability mass
functions p(xt) = Pr{X = xt} and p(yt) = Pr{Y = yt}, respectively. Time-delayed mutual information (TDMI),
denoted by MX→Y hereinafter, is defined as [13]:

MX→Y (τ) = I(Xt;Yt+τ ) = H(Yt+τ )−H(Yt+τ |Xt) = H(Xt)−H(Xt|Yt+τ ), (1)

where, for example, H(Yt+τ ) and H(Yt+τ |Xt) are the Shannon entropy and the conditional entropy, respectively,
which estimate the uncertainty of the variable Yt+τ and the remaining uncertainty of the variable Yt+τ once given Xt

with a delay time τ . In other words, the mutual information is the reduction of uncertainty in the future of Y by
knowing the present of X at a present time t. Since mutual information is symmetric, this can also be interpreted as
the reduction of uncertainty in X at a present time t by knowing Y in the future time t+τ , however, this interpretation
cannot be used to infer causality since future cannot influence present.

As Schreiber elucidated [27], TDMI has a drawback in predicting influence, because the quantity can be nonzero
when two variables have some shared history. That is, the condition I(Xt;Yt+τ ) > 0 may hold even when variable Y
is not directly influenced by variable X when either X or Y dynamics contains memory of their configurations.

To overcome the above-mentioned shortcomings, transfer entropy (TE) has been introduced [27]. The idea of TE
is that if a process X influences another process Y , then the prediction of future Y becomes easier after knowing
the present of both X and Y , compared to only knowing the present of Y . TE from X to Y , denoted by TX→Y
hereinafter, has the following form:

TX→Y (τ) = I(Xt;Yt+τ |Yt) = H(Yt+τ |Yt)−H(Yt+τ |Yt, Xt), (2)

that is, TX→Y (τ) is time-delayed mutual information between Y at time t + τ and X at time t conditioned by Y
at time t and is exactly the same as the subtraction of the remained uncertainty in Y at time t+τ given both X
and Y at the present time t from that in Yt+τ given Yt, which corresponds to the amount of uncertainty of Yt+τ
reduced by knowing Xt in addition to the knowledge of Yt. TE has been used extensively as one of the most standard
methods for measuring influence such as in classifying leaders and followers [5, 14, 17–19, 22, 23], and to infer causal
relationships systems pervading many areas of science including neuroscience [28, 32, 34–36], chemistry [2], human
behavior [21, 24], and Earth systems [6, 8, 10], as it is an improvement upon TDMI for quantifying asymmetric causal
relationships between variables. It is noted, however, that, like correlation, information-theoretic quantities such as
TDMI and TE are not enough in themselves to identify causality. The potential existence of hidden variables should
be taken into consideration. Since the conditioning on the past in computing TE and TDMI are both finite in time
length, the history of each variable may act like another hidden variable which influences the outcome, leading to a
spurious effect in the computation of information flow, as we will elucidate further.

Recently, it was demonstrated for a simple toy binary system that positive TE from X to Y can exist even though
knowledge of Xt alone cannot reduce the uncertainty of Yt+τ in the system [11] (See also SI). It was pointed out that,
in addition to information intrinsic to the reduction of uncertainty in the variable Yt+τ by knowing the present of Xt

being independent of the present of Yt, TE from X to Y includes the information corresponding to the reduction of
uncertainty in the variable Yt+τ by knowing the present of Xt and Yt simultaneously [12]. Here the idea of information
flow being intrinsic is defined as the amount of uncertainty that knowledge of the present of X alone reduces about
the future of Y further than what knowing the present of Y alone or knowing the present of X and Y simultaneously
would reduce. As a potential measure to avoid computing influence that is coming from both the present of X and
Y in predicting the future of Y , intrinsic mutual information has been proposed [12, 16]. Note that while intrinsic
mutual information is a specific quantity and is not synonymous with intrinsic information flow, intrinsic mutual
information is an attempt to compute intrinsic information flow between two variables.
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B. Inferring causal relationship: Intrinsic, shared, and synergistic mutual information

In order to explain the motivation behind intrinsic mutual information, one must take the cryptographic flow
ansatz [12], which states that intrinsic information flow between X and Y is synonymous with secret key agree-
ment [15, 16] between Xt and Yt+τ while Yt is an outside observer. Based on this ansatz, information which is
flowing intrinsically from X to Y is equal to the secret key agreement rate S(Xt;Yt+τ |Yt). Since S(Xt;Yt+τ |Yt) is not
computable in practice, intrinsic mutual information IX→Y is used as a convenient upper bound on S(Xt;Yt+τ |Yt)
to demonstrate information which is flowing intrinsically from X to Y . Intrinsic mutual information from a process
X = {..., xt−1, xt, xt+1, ...} to another process Y = {..., yt−1, yt, yt+1, ...}, denoted by IX→Y , is defined as the infimum
of I(Xt;Yt+τ |Y t), taken over all possible conditional distributions p(Y t|Yt) [11] (See also SI), i.e.,

IX→Y (τ): = inf
{
I(Xt;Yt+τ |Y t) :

∑
y∈Yt

p(Xt, Yt+τ , Yt= y)p(Yt|Yt= y)
}
, (3)

where Yt is an auxiliary variable to elucidate the upper bound of S(Xt;Yt+τ |Yt) that satisfies a Markov property
XtYt+τ → Yt → Yt. Here A → B (AC → B) signifies that B depends only on A (A and/or C) and the infimum is
taken over all possible conditional distributions p(Yt|Yt). Intrinsic mutual information IX→Y represents uncertainty
reduction in the future of Y by knowing only the present of X as much as possible under the assumption of the Markov
property with respect to Y and Y . It should be noted here that this Markov property has no physical relevance to
the actual system Y , and is merely an assumption to reduce the space of the minimization in Eq. 3, and provide an
upper bound of S(Xt;Yt+τ |Yt). Intrinsic mutual information has been found to be both a convenient and accurate
bound on the secret key agreement rate S(Xt;Yt+τ |Yt) [12, 16]. The following relations sum up the importance of
IX→Y (τ) and its relationship to S(Xt;Yt+τ |Yt), TX→Y (τ), and MX→Y (τ):

0 ≤ S(Xt;Yt+τ |Yt) ≤ IX→Y (τ), (4)

IX→Y ≤ TX→Y (τ), (5)

and

IX→Y ≤MX→Y (τ). (6)

Equations 4-6 demonstrate the utility of intrinsic mutual information that it can be used to compute bounds on the
deviations of TX→Y (τ) and TX→Y (τ) from S(Xt;Yt+τ |Yt). That is, whenever equality does not hold in Eq. 5 (Eq. 6),
then there must be a portion of TX→Y (τ) (MX→Y (τ)) which is not intrinsically coming from X. From here onwards
we set τ = 1 and omit τ from the equations, as it has been shown that τ = 1 best captures the information flow
between two particles in the Vicsek model [1].

Once IX→Y has been computed, the subtractions from TDMI (MX→Y ) and TE (TX→Y ) are defined and denoted
by σX→Y and SX→Y , respectively:

σX→Y =MX→Y − IX→Y , (7)

and

SX→Y = TX→Y − IX→Y . (8)

Based on Eqs. 4-6, one can deduce that 0 ≤ σX→Y ≤ MX→Y and 0 ≤ SX→Y ≤ TX→Y . Since IX→Y serves
as the information coming from (mostly) X alone (since intrinsic mutual information provides an upper bound of
S(Xt;Yt+τ |Yt)) to Y , SX→Y > 0 (σX→Y > 0) implies that TX→Y (MX→Y ) contains some information that comes
from the present of Y , and TX→Y (MX→Y ) should not be treated as information flowing only from X to Y in those
cases. Here, based on the interpretation that IX→Y is (mostly) the information coming from only X to Y , σX→Y
is the part of MX→Y which is coming from knowledge of both variables, and is postulated to be the information
redundantly shared by both X and Y , thus, termed as “shared” information. Likewise SX→Y is the part of TX→Y
which is coming from knowledge of both variables, and is postulated to be the information coming from simultaneous
knowledge of X and Y , termed as “synergistic” information [11]. These three quantities I, σ, and S carry a more
detailed picture of the relationship between X and Y than can be inferred by computing T orM alone. In this paper,
we show using modified Vicsek model that T andM can result in misleading interpretation concerning the underlying
actual relationship among individuals, and propose that I, σ, and S can provide us with a more firm interpretation
of the relationship without requiring additional experiments.
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FIG. 1. Graph representation of four example interaction types with asymmetric interaction between leader and follower, i.e.,
wLF > 0 and wFL = 0. a) The dynamics of the leader and follower do not depend on their present configurations. b) Only
the dynamics of the leader depends on its present configuration. c) Only the dynamics of the follower depends on its present
configuration. d) The dynamics of the leader and the follower both depend on their own present configuration. Note that the
value of wLL (wFF) is inconsequential when the dynamics of leader (follower) do not depend on its present configuration, and
the θi(t) depends solely on a random number in the interval [−π, π].

C. Modified Vicsek Model

To demonstrate the drawback of T orM, and the interpretability of their decompositions into modes I, σ, and S,
we employ a series of modified Vicsek models that modify the original one [33] with asymmetric interaction weights
and turn on/off dependence on the present dynamics of interacting particle(s) in the propagation of system dynamics.
Consider N particles lying within a square box of length L with periodic boundary conditions. The position of each
particle i (i = 1, 2, ..., N) at time t is denoted by ~rti and is updated with a time increment ∆t as:

~rt+1
i = ~rti + ~vti∆t, (9)

where ~vti denotes the velocity of particle i at time t. For simplicity, we consider particles with a uniform constant
speed v0, and only their orientations θi change. The orientation of a particle is updated at each time step by taking
the weighted average of the velocity of neighboring particles within a given radius R:

θi(t+ 1) = 〈θ(t)〉R,w ,~rt + ∆θi, (10)

where 〈θ(t)〉R,w ,~rt is computed by arctan
[∑′

j wij sin θj(t)/
∑′
j wij cos θj(t)

]
where

∑′
takes over all j satisfying

| ~rti − ~rtj |≤ R. w(= {wij}) is a nonnegative asymmetric matrix whose element in the ith row and jth column
represents the interaction strength that particle i exerts on particle j, and wij > wji whenever particle i is a leader
and particle j is a follower in our setting. ∆θi is a random number uniformly distributed in the range [−η0/2, η0/2]
and is chosen uniquely for each particle i at each time step and represents thermal noise. In the original Vicsek model,
the right hand side of Eq.(10) ensures that the dynamics of θi(t+ 1) result from the configurations of all the particles
j (including that of the same particle i) within the circle of radius R centered at ~rti .

We construct a set of the modified Vicsek models by turning on and off the dependence on θj(t) associated with
follower/leader in determining the θi(t+ 1) dynamics, where the leader influences the follower but the follower does
not influence the leader (i.e., wLF > 0 while wFL = 0). Figure 1 shows graph representations of the influence of
particles in a simple, two particle system in determining θi(t+ 1) in four different cases, where L and F denote leader
and follower, respectively, and A → B (A, B is either L or F) signifies that the present of A influences the future of
B. Here, we vary wLF(∈ N) from 1 to 10, and set wLL and wFF=1 to be unity for the models in which the present of
L(F) influences the future of L(F). For models where no influence of the present to the future of the same particle (F
and/or L) exists (Figs. 1A- 1C), we replaced θi(t) in the summation

∑′
by a random number in the interval [−π, π],

to erase any influence from the present of θi(t) of the same particle i.

Misinterpretation of causal inference in time-delayed mutual information (TDMI) and transfer en-
tropy (TE) for a two-particle system: Let us first examine the TE (T ) and TDMI (M) landscapes shown in
Figures 2 and 3 as a function of wLF and η0 for different interaction types in Fig. 1, where T and M from leader
to follower (L→F) are given in A-D and those from follower to leader (F→L) are in E-H. As expected, ML→F

(Fig. 2A-2D) and TL→F (Fig. 3A- 3D) exhibit significant, nonzero values in all interaction types, since the leader is
influencing the follower in all cases. Naively one should expect MF→L and TF→L to be zero for all cases since the
follower does not influence the leader at all, however, there are in fact spurious values of MF→L (Figs 2F and 2H)
and TF→L (Figs. 3F and 3H) whenever the future dynamics of leader depends on its present. This is due to the
leader’s history acting as a hidden variable that imparts information onto both the leader and the follower. In the
following paragraph and in Sects II D- II F, we elaborate on the effect of the leader and follower dynamics that are de-
pendent on their present on the various information flow quantities (T ,M, and their decompositions into I, σ, and S).
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FIG. 2. Time-delayed mutual information (TDMI)ML→F (A-D) andMF→L (E-H) as a function of the strength of interaction
wLF and the noise level η0. A) and E) for type A, B) and F) for type B, C) and G) for type C, and D) and H) for type D as
diagrammed in Fig. 1.

Decomposed information modes, intrinsic, shared, and synergistic information: Figures 4, 5, and 6 show
different modes of information, i.e., intrinsic (I), shared (σ), and synergistic informations (S) defined by Eqs. (3-8)
from leader to follower and vice versa, for four different interaction types given in Fig. 1, respectively. First, let us look
into the decomposed modes of information for each interaction types in brief. Each interaction diagram corresponds
to a special case in information flow. In type A where neither the leader nor the follower depends on its present in its
θi(t+ 1) dynamics (Fig. 1A), only IL→F and no other type of information flow is observed as seen in Figs. 4A, 5A,
and 6A. Fig. 1B represents type B where only the leader depends on its present in the θi(t+ 1) dynamics. This is
similar to the example given by Schreiber [27], where, perhaps counterintuitively, there exists a significant amount
of TDMI from the follower to the leader MF→L even though there exists no direct interaction in that direction, as
seen in Fig. 2F. Transfer entropy T was then introduced to reconcile this issue [27], and TF→L does in fact reduce
the amount information flow in that direction in our model, given that TF→L is less than MF→L in Figs. 3F and 2F
(we will elucidate where this spurious TE is coming from in Sect II F). Fig. 1C represents type C where only the
follower depends on its present in the θi(t+ 1) dynamics. This tends to erase all spurious values of information flow
from follower to leader (Figs. 2G-6G), since those spurious effects are coming from the history of the leader, as we
will elucidate further in the following sections. The leader to follower information flows in this case (Figs. 2C-6C) are
all increased compared to the case where the follower dynamics do not depend on its present (Figs. 2A-6A), which
further emphasizes our point that dependence of the dynamics on its present plays a key role in the calculation of
information flow even when the interactions between individuals are not intrinsically changing (we elucidate further
in the following sections). Figure 1D may represent the most intuitive case in typical physical systems, where both
entities depend on their present in the θi(t+ 1) dynamics. In that case, all flows have significant values except for the
synergistic information from the follower to the leader SF→L, which is negligibly small (Fig. 6H). In the following, we
look deeper into each mode of information for their illustrative types of interactions.

D. Intrinsic information

IX→Y is the uncertainty reduction in future of Y from knowing the present of (mostly) X alone. Hence I is more
fundamental than TE or TDMI. IL→F (Fig. 4A- 4D) is nonzero while the larger the noise level η0 the lower the value
of IL→F and IF→L. IL→F increases as wLF increases, as one may expect. In the cases where the dynamics of the
leader depends on its present configuration in types B and D (Figs. 4B and 4D), the leader generates less information
at η0 = 0 because its dynamics are dependent largely on its initial conditions at time t = 0 in trajectories, and
therefore imparts less information upon the follower. As η0 increases, the leader experiences a much wider variety of
configurations from time to time and, hence, generates more information and therefore IL→F increases as a function of
η0 at low η0. However as η0 approaches 2π, noise dominates the follower’s motion and therefore the follower’s motion
depends less on the leader’s, and IL→F goes back to zero. In turn, in the cases where the dynamics of the leader does
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FIG. 3. Transfer entropy (TE) TL→F (A-D) and TF→L (E-H) as a function of the strength of interaction wLF and the noise level
η0. A) and E) for type A, B) and F) for type B, C) and G) for type C, and D) and H) for type D as diagrammed in Fig. 1.

FIG. 4. Intrinsic information IL→F (A-D) and IF→L (E-H) as a function of the strength of interaction wLF and the noise level
η0. A) and E) for type A, B) and F) for type B, C) and G) for type C, and D) and H) for type D as diagrammed in Fig. 1.

not depend on its present in types A and C (Figs. 4A and 4C), IL→F peaks at η0 = 0. This arises from the fact that
the simulation procedure erases any influence of θi(t) in determining the future state θi(t+ 1) irrespective of the value
of η0, which randomizes the leader configuration at each time step after interacting with the follower (hence making
the leader impart new information to the follower), and therefore information transfer is highest when the thermal
noise on the follower is lowest and its motion is dominated by the interaction.

IF→L is zero for types A and C where the leader dynamics do not depend on its present as shown in Figs. 4E
and 4G. However, note for types B and D where the leader dynamics depend on its present, IF→L spuriously exists
even though there is no direct interaction from the follower to the leader (Figs. 4F and 4H). As clarified below in
Figs. 6F and 6H, TF→L ' IF→L and this is the same situation as observed in the TE landscape (Figs. 3F and 3H).
Note that the computation of intrinsic information I (Eq. 3) makes IX→Y least depend on the history of Y with an
auxiliary variable Y to mimic Y along its Markov property: IF→L is regarded as minimizing the possible influence of
the leader’s history to determining the future state of the leader θL(t+ 1).

Thus the history of the leader’s configuration may act as a hidden variable which injects information to both the
follower and the leader. To elucidate this, we have computed types B and D only with the leader forgetting its past
once every two time steps, which is truly Markovian in its leader dynamics. That is, the leader’s dynamics at time t
only depend on its dynamics at time t− 1 when t is even, otherwise its orientation at time t− 1 in Eq. 10 is replaced
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FIG. 5. Shared information σL→F (A-D) and σF→L (E-H) as a function of the strength of interaction wLF and the noise level
η0. A) and E) for type A, B) and F) for type B, C) and G) for type C, and D) and H) for type D as diagrammed in Fig. 1.

FIG. 6. Synergistic information SL→F (A-D) and SF→L (E-H) as a function of the strength of interaction wLF and the noise
level η0. A) and E) for type A, B) and F) for type B, C) and G) for type C, and D) and H) for type D as diagrammed in Fig. 1.

by a random number in the interval [0, 2π]. The reason for this is to remove the possibility that spurious amounts of
IL→F result from the past of the leader acting as a hidden variable that affects both the leader and the follower. As
shown in Figs. 13D and 12D, IF→L becomes negligible in these cases. One can deduce that in the cases where the
follower dynamics depends on its past (Figs. 4C and 4D) a small part of IL→F is also coming from this effect.

E. Shared information

σX→Y quantifies the information which is redundantly flowing from both the present of X and Y to the future of
Y , and represents the part of MX→Y which is not intrinsically coming from X (see Eq. 1). σL→F is negligibly small
when the leader does not depend on the present in its dynamics for types A and C, as shown in Figs. 5A and 5C,
because the σL→F is coming from information that the leader shares with its present that it has imparted onto the
follower. As in the case of I, σ is also zero when η0 = 0 since there is no uncertainty to be reduced, as shown in
Figs. 5B and 5D. σL→F and σF→L are both high whenever the leader dynamics depends on its present values as more
present information is shared in types D and B (Figs. 5B, 5D, 5F, and 5H) and are highest when when both L and F
are dependent on their present (Figs. 5D and 5H). In types B and D where σ is nonzero, both σL→F and σF→L have
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FIG. 7. Interaction diagrams for three agents. A) Model A. Interaction diagram where a leader influences both followers
and both followers influence the leader, and followers can also influence each other. B) Model B. Followers cannot influence
each other. Weights are asymmetric where wLF (leader to followers) is greater than wFL and wFF. We set wLF=1.05, and
wFL = wFF = 1.

a tendency to increase as a function of wLF, since the future dynamics of the follower depends more on that of the
leader, i.e., larger shared information for type D than for type B.

In the case of σF→L, it follows a very similar trend as the σL→F. In the case where the leader has memory, the
values of σ in Fig. 5F imply that TDMI exists between the follower and the leader, as Schreiber had pointed out [27],
even though the follower has no direct influence on the leader (in this case, MF→L ' σF→L due to Eq. 1 since IF→L

relatively negligible, as seen in Fig. 4F). Thus σ elucidates the part of TDMI which is not intrinsically coming from
the leader or from another hidden variable such as shared history.

To elucidate the claim that σF→L comes from the history of the leader, we have computed σ when the leader forgets
its memory once every two time steps for types B and D. σF→L (Figs. 13E and 12E) is zero since σF→L conditions on
the past of the leader for one time step, and the leader does not have additional memory past one time step.

F. Synergistic information

SX→Y represents the information which comes to the future of Y from simultaneously knowing the present of X and
the present of Y . When SX→Y is high compared to IX→Y , it means that the future state of Y is only predictable when
the present of both X and Y are known simultaneously than when either of them are known independently. SX→Y is
postulated to be the part of TX→Y which arises from the contribution from the present of X and Y simultaneously.
(see Eq. 2). Thus one can see that SL→F is close to zero whenever the follower cannot predict itself, such as when the
follower dynamics does not depend on the present of the follower configuration, and is entirely dependent on noise
and the leader’s dynamics (types A and B), as in Figs. 6A and 6B. When the follower does depend on its present,
SL→F is highest relative to IL→F when the influence of both the leader and follower are balanced (as in Fig. 6D when
wLF is close to 1), and therefore knowledge of both leader and follower are required to accurately predict the outcome
of the follower. SF→L is zero in all cases except where the leader forgets its past once every two time steps. The
nonzero value of SF→L in cases where the leader forgets its past once every two time steps (Figs. 13F and 12F) can
be explained as follows. Whenever t is even, it means that the leader has memory of its past at time t− 1, which it
has imparted upon the follower. Whenever t− 1 is odd, the leader does not have memory of its past and is not likely
to be aligned with the follower. Therefore the simultaneous knowledge of θL(t − 1) and θF(t − 1) informs us about
the state of t − 1 (i.e., t − 1 is more likely to be even if θL(t − 1) and θF(t − 1) are aligned). Knowing the status of
t− 1, the follower can then predict whether the leader will correlate with itself at time t or not, and thus can predict
the leader’s present with some likelihood whenever t− 1 is even.

G. Leader and group of followers

Up to this point we have considered only pairwise interactions, which is in line with the theoretical basis of the
information measures used, for example TX→Y (τ) in Eq. 2. There exist generalizations of these measures to take into
account the influence of additional time series of the third particle (or agent) such as causation entropy [14]. However
in practice, conditioning on other variables increases the dimension of the probability space required for computing the
information measures, and large amounts of data are required in order to properly sample the probability distributions.
Therefore, in many-agent systems, it is not usually feasible to condition on all other agents that interact with a given
agent. Nonetheless, computation of information measures between two agents has been proven useful for characterizing
influence [4, 13, 17, 19, 22], even in systems having more than two agents. We will now show how looking at I, σ,
and S, can improve upon the interpretation given the approximate nature of these measures.
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FIG. 8. T as a function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple) where
the number of leaders is always one. A) TL→F for model A, B) T L→F for model B, and C) TF→L for model B.

FIG. 9. Modes of information flow from leader to follower the case where followers can influence followers for model A as a
function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple). A) IL→F, B) σL→F, and
C) SL→F.

Let us consider the case of the Vicsek model where the leader and follower mutually interact with one another,
where model A allows followers to also directly interact with each other but model B does not (e.g., Fig. 7A and
Fig. 7B for the case of three agents case). Figures 8A, 8B, and 8C show T L→F as a function of noise level for model
A, TL→F for model B, and TF→L for model B, respectively for different numbers of agents in which only one agent is
a leader and all the rest are followers (The plot of TF→L for model A was almost indistinguishable with Fig. 8A. see
Supporting information Fig. S15). As an overall trend, the TL→F and TF→L first increase shortly and then decrease
as the noise level η0 increases, with small bumps at 0.6π ≤ η0 ≤ 1.5π for T L→F (See Figs. 8A and B). At noise
level η0 being zero, agent’s movements quickly attain a regular laminar flow irrespective of what initial configurations
and velocities are prepared (see the movie in SI) so that influence of orientational movements of leader or follower is
negligible (on average) for predicting orientational motions of the others. In nature, all agents are subject to finite
noise due to thermal fluctuation from the environment. Gradual decreases of T as the noise level gets larger simply
arise from the stochastic nature of the system dynamics. However, it should be noted that the gradual decrease of
T for model A (Fig. 8A) is slightly dependent on the number of followers, i.e., third agent(s) for elucidating the
pairwise information flow, in which the more the number of followers the (slightly) larger the T but almost identical
irrespective of the number of followers for model B (Figs. 8B and 8C). As seen in Fig. 8A and 8B, the bumps in
TL→F appear in 0.6π ≤ η0 ≤ 1.5π (as well as in TF→L (Fig.15)) for model A start to cease as the number of followers
increase while the bumps observed in a similar η0 region for model B stay unchanged with respect to the increase
of the number of followers: in that the smallest number of followers, i.e., just one follower, gives rise to the largest
bumps for model A.
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FIG. 10. Modes of information flow from leader to follower for the case where followers cannot influence followers for model
B as a function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple). A) IL→F, B)
σL→F, and C) SL→F

The three different modes of ‘pairwise’ information flow (IL→F, σL→F, and SL→F) for model A, and for model B
are shown in Fig. 9 and Fig. 10, respectively. One can see that the bumps observed in the plot of T vs η0 originate
from the ingredient inside transfer entropy, synergistic information S, and the major contribution of transfer entropy
TX→Y is that of IX→Y that is maximally free from the present of Y in the VM model systems.
SL→F and SF→L for model A (Fig. 9C and Fig. 14C) decrease as the number of followers increases. This is due

to the fact that S > 0 only when the simultaneous knowledge of two agents brings additional predictability which
is not found in knowing either of the agents alone. As the dynamics depends on more agents, the knowledge of the
present state of two agents becomes less powerful in predicting the future state of either agent because its future state
is more influenced by the third agent(s). Figure 10 shows the case where we turn off follower-follower interactions. In
this case, there is no effect of increasing the number of agents on I or σ (Figs. 10A, and B and Figs. 14 A and B)).
SL→F (Fig. 10C) also has no effect as the number of agents increases, since, from the follower’s point of view, it is
only interacting with the leader and is not affected by any other agents. SF→L (Fig. 14 C), however, still decreases as
a function of the number of agents, since each follower can influence the leader and therefore increasing the number
of followers decreases the likelihood that simultaneously knowing the state of a particular follower and the leader has
any additional predictive power on the leader.

It is noted that to confirm the significance of the values of modes of information flow, especially that of S, we
computed I, σ, and S between two stochastic, fully random variables taken from [0 : 2π] with the same time
length of the leader-follower VM simulation: I = 9.2 × 10−6 ± 1.8 × 10−6, σ = 6.0 × 10−17 ± 7.9 × 10−17, and
S = 4.7×10−5±6.8×10−6. That is, the above discussions on S, e.g., dependence on the number of followers, persists
and not buried in possible number fluctuation in the computation.

III. CONCLUSION

We investigated a series of model systems based on the Vicsek Model of collective motion to explore the effect of
interaction protocols on the distinct modes of information flow. In theory, one would condition on all variables, as well
as history, to fully interpret mutual relationships among agents in a collective. At present this is not practical. Instead,
our task was to acquire detailed and correct interpretations under the constraint of limited measurements—specifically,
pairwise interactions among agents.

We observed that the intrinsic information between X and Y dominates whenever there is only a link from X to
Y and no direct link between Y to X or from Y to itself. However, a small amount of intrinsic information can still
be observed when there is no direct link from X to Y , as in the case where X is a follower with memory and Y is a
leader. We noted that this was due to the effect of memory. We also found that shared information dominates when
there is memory shared between particles due to their interactions and memory of their pasts. Synergistic information
dominates when present knowledge of X or Y alone cannot predict the future state of Y by itself, but knowing both
the present of X and Y simultaneously does. One of the most striking consequences in our analysis of this multi-agent
system was that decomposing transfer entropy into intrinsic information and synergistic information flows enabled us
to correctly interpret the “bump” observed in transfer entropy as a function of noise level. Notably, from that one
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FIG. 11. Modes of information flow from follower to leader for the case where followers cannot influence followers for model
B as a function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple). A) IF→L, B)
σF→L, and C) SF→L.

can infer how each follower interacts with each other in the collective.

Based on the model systems and their corresponding information flows, one can deduce which information measure
is more appropriate based on the physical problem being addressed. In leader-follower classification, for example,
transfer entropy is often used. However, when one does not expect to find significant synergistic and shared flows,
it equals the time-delayed mutual information. The latter is then a better choice since it does not require additional
conditioning that increases the dimension of the probability distribution that must be well-sampled. In cases where
synergistic flow is dominant, one may consider separating intrinsic and synergistic flows instead of computing just
transfer entropy. This results in a much richer feature space for classification. In general, computing intrinsic, shared,
and synergistic flows should perform better or at least as well as transfer entropy and time-delayed mutual information
in classification. Future work will verify these claims and elucidate exactly in which scenarios we expect each mode
of information flow to be effective in classifying leaders and followers.

In empirical settings, it would be useful to know when there is sufficient time-series data to compute information
flows to adequate accuracy, accounting for experimental errors, variables that are not conditioned upon, and history
length that is not conditioned upon. Using general formulas for intrinsic information, transfer entropy, and time-
delayed mutual information, one can compute the modes of information flow as a function of history length and the
number of conditioning variables. In the hope of making the methods more applicable to experiments in a rigorous
sense, another future direction for this work is quantifying exactly, and providing bounds for, the amount of intrinsic
information that arises from external variables or from shared history.
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IV. METHODS

A. Details of the modified Vicsek Model

Positions are updated using Eq. 9, and the orientations θF and θL are updated using Eq. 10. The weighted
interaction term in Eq. 10 is computed by
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FIG. 12. (A) IL→F, (B)σL→F , (C)SL→F, (D) IF→L, (E)σF→L , and (F)SF→L for interaction type D in Fig. 1, only with the
leader forgetting its past once every two time steps. (we should move this to SI)

FIG. 13. (A) IL→F, (B)σL→F , (C)SL→F, (D) IF→L, (E)σF→L , (F)SF→L for interaction type B in Fig. 1, only with the leader
forgetting its past once every two time steps.(we may move this to SI)

〈θ(t)〉R,w ,~rt = tan−1


∑
j:|~rti−~rtj |≤R

[
wii sin θti + wij sin θtj

]
∑
j:|~rti−~rtj |≤R

[
wii cos θti + wij cos θtj

]
 ,

the derivation of which can be found in the appendix of [1].
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FIG. 14. Modes of information flow from follower to leader for the case where followers can influence followers for model A as
a function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple). A) IF→L, B) σF→L,
and C) SF→L.

FIG. 15. TF→L as a function of noise level η0 with 2 agents (blue), 4 agents (red), 6 agents (orange) and 8 agents (purple) for
model A.
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