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One of the most basic characterizations of the relationship between two random variables, X and
Y, is the value of their mutual information. Unfortunately, calculating it analytically and estimating
it empirically are often stymied by the extremely large dimension of the variables. One might hope
to replace such a high-dimensional variable by a smaller one that preserves the relationship with
the other. It is well-known that either X (or Y) can be replaced by its minimal sufficient statistic
about Y (or X) while preserving the mutual information. While intuitively reasonable, it is not
obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that
this is in fact possible: the information X’s minimal sufficient statistic preserves about Y is exactly
the information that Y’s minimal sufficient statistic preserves about X. We call this procedure
information trimming. As an important corollary, we consider the case where one variable is a
stochastic process’ past and the other its future. In this case, the mutual information is the channel
transmission rate between the channel’s effective states. That is, the past-future mutual information
(the excess entropy) is the amount of information about the future that can be predicted using the
past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual
information between the forward- and reverse-time causal states of computational mechanics. We
close by discussing multivariate extensions to this use of minimal sufficient statistics.
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I. INTRODUCTION amount of information being transmitted through the
present by the past-future mutual information—the ex-

How do we elucidate dependencies between variables? cess entropy [5]. However, this excess entropy can rarely

This is one of the major challenges facing today’s data- be calculated from past and future sequence statistics,

rich sciences, a task often stymied by the curse of dimen- ~ Since the sequences are semi-infinite. This makes cal-

sionality. One approach to circumventing the curse is culating the excess entropy an ideal candidate for using

to reduce each variable while still preserving its relation- sufficient statistics. The latter take the form of either a

ships with others. The maximal reduction—the minimal process’ prescient states or its causal states [6]. Though

sufficient statistic —is known to work for a single vari-  known for some time [4], a detailed proof of this relation-

able at a time [1]. In the multivariate setting, though, ship was rather involved, as laid out in Ref. [7].

it is not straightforward to demonstrate that, as intu-

ition might suggest, all variables can be simultaneously ~ The proof of our primary result turns on analyzing the
replaced by their minimal sufficient statistics. Here, we information-theoretic relationships among four random
prove that this is indeed the case in the two and three variables W, X, Y, and Z. All possible informational

variable settings; therefore this technique is a form of  relationships—in terms of Shannon multivariate infor-
lossless multivariate dimensionality reduction [2, 3]. mation measures—are illustrated in the information di-

agram [8, 9] (I-diagram) of Fig. 1. This Venn-like dia-
gram decomposes the entropy H[X,Y, Z, W] of the joint
random variable (X,Y, Z, W) into a number of atoms—
informational units that cannot be further decomposed
using the variables at hand. For example, take the region
labeled f in Fig. 1; this region is the conditional entropy
H[X | Y, Z,W]. Similarly, one has the four-variable mu-
tual information k =I[X : Y : Z: W] and the condition
* rgjames@ucdavis.edu mutual information d = I[W :Z | X,Y]. The analogy
 jrmahoney@ucdavis.edu with set theory, while helpful, must be handled with care:
* chaos@ucdavis.edu Shannon informations form a signed measure. Any atom

The need for sufficient statistics arises in many arenas.
Consider, for example, the dynamics of a complex sys-
tem. Any dynamical system can be viewed as a commu-
nication channel that transmits (information about) its
past to its future through its present [4]. Shannon in-
formation theory [1] tells us that we can monitor the
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quantifying the information shared among at least three
variables can be negative. In the context of our example,
Fig. 1, atoms g, h, m, n, and k can be negative. Negative
information has led to a great deal of investigation; see,
for example, Refs. [10, 11].

Here, we are interested in what happens when W is a
sufficient statistic of X about Y and Z is a sufficient
statistic of Y about X [1]. We denote this W = X |V
and Z =Y N\, X. The resulting (reduced) I-diagram
provides a useful and parsimonious view of the relations
among the four variables. In particular, it leads us to
the main conclusion that each variable can be simultane-
ously reduced to its sufficient statistic while maintaining
the mutual informations. Our development proceeds as
follows: Section II defines sufficient statistics and utilizes
two of their properties to reduce the informational rela-
tionships among the variables. Section III discusses how
this result applies to stochastic processes as communica-
tion channels. Section IV extends our results to the three
variable case and makes a conjecture about broader ap-
plicability. Finally, Section VI outlines further directions
and applications.

II. SUFFICIENT STATISTICS

A statistic is a function f(e) of random variable sam-
ples [1]. Let Fx denote the set of all functions of a
random variable X. These functions are also random
variables. Given variables X and Y, a variable V' forms a
Markov chain X -V =Y if p(x,y) = >, p(x)p(v|z)p(y|v).
Let Mxvy denote the set of all variables that form a
Markov chain with X and Y. A sufficient statistic of
X about Y is an element of Sx_,yv = Fx N Mxvy.' The
minimal sufficient statistic X Y of X about Y is the
minimal-entropy sufficient statistic:

XNY =argmin H[V] . (1)

VeSx oy

It is unique up to isomorphism [12].

The minimal sufficient statistic can be directly con-
structed from variables X and Y. Consider the function
f(e) mapping = to the conditional distribution p(Y|X =
x); then X Y ~ f(X) [13, 14]. Put more colloquially,
X Y aggregates the outcomes z that induce the same
conditional distribution p(Y|X = z). This is an equiva-
lence class over X, where the probability of each class is

1 Our definition here is equivalent to that provided in, e.g., Ref. [1],
but in a form that more directly emphasizes the properties we
exploit over the next two subsections.
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FIG. 1. Information diagram (I-diagram) for four random

variables X, W, Z, and Y. Each is depicted as a stadium
shape and the information atoms are obtained by forming all
possible intersections. Individual atoms are identified with
lowercase letters.

the sum of the probabilities of the outcomes contained in
that class.

A. Sufficient Statistic as a Function

Our first step in reducing Fig. 1 is to consider the fact
that W = X Y is a function of X.2 Any W = f(X) if
and only if H[W | X] = 0 [12]. Furthermore, conditional
entropies H[WW | o] are never increased by conditioning
on additional variables [1]. Since conditional entropies
are nonnegative [1], conditioning W on variables in ad-
dition to X can only yield additional zeros. In terms of
the information atoms, the relations:

HW | X]=a+d+h+1=0
H[W | X,Y]=a+d=0.

HW | X,Z =a+1=0.

HW | X,Z,Y] =a=0,

imply a =d = h =1=0. A symmetric argument implies
that b =d = g = j = 0. Each of these zeros is marked
with an asterisk in Fig. 2.

B. Sufficient Statistic as a Markov Chain

Variables X, V, and Y form a Markov chain X —V -V
if and only if I[X : Y | V] = 0. Said informally, V sta-
tistically shields X and Y, rendering them conditionally

2By Y = f(X), we mean for all z, [{y:p(Y =y|X =z) >0} =
1.
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FIG. 2. I-diagram for sufficient statistics: The vanishing
information atoms implied by a sufficient statistic being a
function of a random variable are labeled 0*. Those vanishing
atoms implied by a sufficient statistic forming a Markov chain
are marked with 0F.

independent. Applied to variable W we find:

IX:Y|W]=0
m+o0o=0,

and similarly for Z,

IX:Y|Z]=0
n+o0=0.

Since 0o =I[X : Y | W, Z] is a conditional mutual infor-
mation, o is nonnegative by the standard Shannon in-
equality [1].

Thus far, m and n are not individually constrained and
so could be negative. However, consider I[X : Z | W] =
7 + m, another conditional mutual information, which
is therefore also nonnegative. It is already known that
7 = 0, therefore m is nonnegative. Clearly, then, m and
o are individually zero.

Analogously, we find that n is nonnegative and conclude
that n and o are individually zero. These vanishing atoms
are marked with 0f in the simplified I-diagram in Fig. 2.

From this reduced diagram we can easily read that:

k=1[X:Y] (2)

—1[X: 7]

—I[W:Y]

—1[W:Z]

=1[X:W:Z

=I1[X:W:Y]

=1[X:2Z:Y]

=I[W:Z:Y]

=IX:W:Z:Y].

X\Y YN X
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FIG. 3. Minimal I-diagram containing only nonvanishing
atoms in Fig. 2.

Furthermore, one can remove the atoms that vanish to
arrive at the reduced I-diagram of Fig. 3. It now contains
only five of the original fifteen atoms. This demonstrates
the procedure of information trimming for two arbitrary
random variables.

III. STOCHASTIC PROCESSES AS CHANNELS

We find useful application of this result in the analysis
of stationary stochastic processes. Computational me-
chanics [6] is an information-theoretic framework for an-
alyzing structured stochastic processes. There, a pro-
cess is considered a channel that communicates its (semi-
infinite) past X_oo.0 to its (semi-infinite) future Xg.co
through the present [4, 15]. (The following suppresses co
when indexing.) An important process property—ezcess
entropy—is the mutual information E = 1[X,q : Xo.] be-
tween the past and future. E is the amount of uncertainty
in the future than can be removed using knowledge of the
past (and vice versa).

At first blush, it is not clear how to proceed in computing
a mutual information between two infinite-dimensional
random variables such as these. The answer lies in the
concept of causal states. Causal states play a central
role as the minimal effective states of a process’ channel.
The forward-time causal states encapsulate the minimal
amount of information from the past required for pre-
dicting the future. More precisely, the random variable
S is the minimal sufficient statistic of the past about
the future. Analogously, the reverse-time causal states
S, embody the minimal sufficient statistic of the future
about the past—the states needed for optimally retrod-
icting the past from the future.

By making the following substitutions: X — X.o, W —
Si, Z — Sy, and Y — Xp. in Eq. (2), we immediately
see that the excess entropy (past-future mutual informa-



tion) has several alternate expressions:

E =1[X, : Xo.] (3)
=1[X0:8;]
=1[S : Xo.]
=1[S S ] (4)

The last identity is the most useful form: The excess
entropy is the mutual information between the forward-
time and reverse-time causal states. As such, this
provocatively suggests a communication channel between
the forward- and reverse-causal-state processes—a chan-
nel that determines the amount information being trans-
mitted through the present. See also Fig. 1 in Ref. [4],
analogous to Fig. 3.

We can interpret this operationally. Consider a past x.q,
the particular forward-time causal state Sy it induces,
and an instance xg. of the future following this state. This
future analogously induces a reverse-time causal state
S, - Considering the above channel between forward- and
reverse-time states, the forward state Sy corresponds to
a distribution over reverse-time causal states Sy . Sam-
pling a state from this distribution results in a state that
gives as much information (retrodictivity) about the past
as the particular reverse state determined by the future.
Continuing, there are a number of related multivariate
mutual information [10] identities that follow directly:

E=1[X,:8]:8;]
[X:O : SS' : Xo:]
[X:O 0S5y ¢ Xo:]
(S Sy + Xo:]
[X:O : SS' 0 Sy iXO:] .

Furthermore, making use of the vanishing information
atoms, we find that the following Markov chains exist:

Xo—-8f -85 — Xo. ,
S —Xo0—8; — Xo. ,
X:ofSa'fXO;fSO_ , and
S —Xo—Xo. — S -

Causal states are, as noted, minimal sufficient statistics.
This minimality is not necessary in the above develop-
ment. As defined in Ref. [12], a prescient state R is one

for which I [X;o : Xo. ) 7%0} =0 and R is a function of
the past. In contrast to the causal states, prescient states
need not be minimal. And so, with little else said, the
analogous results follow for predictive and retrodictive

prescient states. For example, we have E =1 [7%_ : 7%4‘] .

QD

FIG. 4. Minimal I-diagram involving three variables and
their minimal sufficient statistics. This differs from a stan-
dard 3-variable I-diagram by the addition of three atoms:
HX | XNYZL,H[Y | Y\ XZ],and H[Z | Z \, XY].

If we were to lift the restriction that prescient states are
functions of the past (or the future), the resulting forward
and reverse generative [16] states may interact in their
“gauge” informations. That is, the atom labeled d in
Fig. 1 may be nonzero; for more on this, see Ref. [17].
The utility of our mutual information identities is then
unclear.

The excess entropy, and related information measures,
are widely-used diagnostics for complex systems, hav-
ing been applied to detect the presence of organization
in dynamical systems [18-21], in spin systems [22, 23],
in Markov random fields [24], in neurobiological sys-
tems [25-27], in long-memory processes [28], and even
in human language [29, 30].

With these application domains in mind, we should call
out the analytical benefits of using causal states, along
the lines analyzed here. The benefits are particularly ap-
parent in Refs. [27, 28], for example. While closed-form
expressions for excess entropy of finite-state processes
have existed for several years [4, 15], it is only recently
that it has been analyzed for truly complex (infinite-
state) processes [27, 28]. In this work, identifying and
then framing calculations around the causal states led to
substantial progress. The detailed results here show why
this is true: as sufficient statistics, causal states capture
the essential structural information in a process. Similar
benefits should also accrue when developing empirical es-
timation and inference algorithms for related information
measures.



IV. MULTIVARIATE EXTENSIONS

The results can be extended to multivariate systems as
well as to alternative measures of shared information.
Consider a system of three variables X, Y, and Z. The
I-diagram of interest involves six variables: X, Y, Z,
and their sufficient statistics about the other variables:
XNYZ Y N\ XZ,and Z N\, XY. This I-diagram
contains 26 — 1 = 63 atoms. It can be substantially
simplified along the lines of the previous section. First,
note that if A, B, C, and D form the Markov chain
A — B — CD, then we also have the chains A — B — C
and A — B — D. Second, recall our primary result that
IX:Y] = I[X\YZ:Y\ XZ] and note there are
similar relations for the pairs (X, Z) and (Y, Z). Com-
bining these two observations and the methods employed
in Section II allows one to determine that 53 atoms are
identically 0. This reduction results in the I-diagram of
Fig. 4.

Remarkably, the structure of this reduced I-diagram
allows us to immediately conclude that the total
correlation T[X :Y :Z] [31], dual total correlation
B[X :Y : Z] [32], co-information 1[X :Y : Z] [33, 34],
CAEKL mutual information J[X :Y : Z] [35], and any
other multivariate generalization of the mutual informa-
tion remains unchanged under substitution of sufficient
statistics. That is:

TIX:Y:Z]=T[X\\YZ:Y\XZ:Z\,XY],
BX:Y:Z=B[X\\YZ:Y\,XZ:Z\,XY],
I[X:Y:Z]=1[X\\YZ:Y\,XZ:Z\,XY], and
JIX:Y:Z]=J[X\YZ: Y\ XZ:Z\ XY] .

We conjecture that this behavior holds for any number
of variables. That is, replacing each variable by its suffi-
cient statistic about the others does not perturb the in-
formational interactions among the variables. Nor does
it induce any additional interactions among the sufficient
statistics. And so, any multivariate mutual information
will be invariant. We further conjecture that this is true
of any common information, such as the Gdcs-Kdrner
common information [36, 37], the Wyner common infor-
mation [38, 39], and the exact common information [40].

V. EXAMPLE

We now provide an illustrative example of information
trimming. In this example, shown in Fig. 5, we analyze
a distribution over two variables, X and Y, each with
an alphabet of size 3. There, the distinction between
X =0and X = 2isirrelevant for the statistics of Y while

XY Pr (X Y) (Y \, X) Pr
0 /8 0 0 /2
1/8 0 1 1/4

1/8 1 0 /4

FIG. 5. Information trimming example: The distinction be-
tween X = 0 and X = 2 is irrelevant for the statistics of Y.
Similarly, the distinction between Y = 0 and Y = 1 is irrel-
evant for the statistics of X. The informationally-trimmed
version sheds this 1.5 bit of information.

the distinction between ¥ = 0 and Y = 1 is irrelevant
for the statistics of X. Trimming the distribution sheds
1.5 bit of irrelevant information. It is worth noting that
there remains conditional entropy in the distribution—
it is generically not possible to capture just the mutual
information as a random variable [36].

VI. CONCLUDING REMARKS

We demonstrated that it is proper to replace each vari-
able with a sufficient statistic about the others with-
out altering information-theoretic interactions among the
variables. This is a great asset in many types of analysis
and provides a principled method of performing lossless
dimensionality reduction. As an important specific ap-
plication, we demonstrated how the causal states of com-
putational mechanics allow for the efficient computation
of the excess entropy.

Our proof method centered around the use of an I-
diagram and its atoms. Steps in our proof, such as iden-
tifying that the atom labeled m is nonnegative via its
containment in I[X : Z | W], are greatly aided by this
graphical tool. Despite this, we believe that a superior
proof of these results exists—a proof that does not de-
pend on demonstrating atom-by-atom that all but a se-
lect few are zero. Such a proof would, hopefully, apply
generically and directly to an N-variable system, hold for



the menagerie of multivariate generalizations of the mu-
tual information, and perhaps apply even to the common
informations.

Finally, we note that this procedure is available in the
dit (discrete information theory) Python package [41] as
dit.algorithms.info_trim().
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