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Identifying and quantifying memory are often critical steps in developing a mechanistic under-
standing of stochastic processes. These are particularly challenging and necessary when explor-
ing processes that exhibit long-range correlations. The most common signatures employed rely on
second-order temporal statistics and lead, for example, to identifying long memory in processes with
power-law autocorrelation function and Hurst exponent greater than 1/2. However, most stochas-
tic processes hide their memory in higher-order temporal correlations. Information measures—
specifically, divergences in the mutual information between a process’ past and future (excess en-
tropy) and minimal predictive memory stored in a process’ causal states (statistical complexity)—
provide a different way to identify long memory in processes with higher-order temporal correlations.
However, there are no ergodic stationary processes with infinite excess entropy for which information
measures have been compared to autocorrelation functions and Hurst exponents. Here, we show
that fractal renewal processes—those with interevent distribution tails ∝ t−α—exhibit long mem-
ory via a phase transition at α = 1. Excess entropy diverges only there and statistical complexity
diverges there and for all α < 1. When these processes do have power-law autocorrelation function
and Hurst exponent greater than 1/2, they do not have divergent excess entropy. This analysis
breaks the intuitive association between these different quantifications of memory. We hope that
the methods used here, based on causal states, provide some guide as to how to construct and
analyze other long memory processes.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey 02.50.Ga
Keywords: stationary renewal process, fractal renewal process, statistical complexity, excess entropy, long
memory, power-law scaling, 1/f noise, Zipf’s law

I. INTRODUCTION

Many time series of interest have “short memory”,

meaning (loosely speaking) that knowledge of the past

confers exponentially diminishing returns for predicting

the future. However, many other time series of interest—

those with “long memory”—exhibit intrinsic timescales

that grow without bound as the amount of available data

increases [1–6]. Examples include the hydrological data

first studied by Hurst [7] and modeled by Mandelbrot [8]

and many others, e.g., see Refs. [9, 10].

These are qualitatively different processes that demand

qualitatively different generative models. In other words,

signatures of long memory imply a kind of structural or-

ganization of the underlying process that differs from one

with short memory. This is the inverse problem of long

memory: Which statistical signatures identify, uniquely

or not, which intrinsic organizations? Sharp answers are

critical to successful empirical analysis and often provide

necessary first steps in predictive theory building. The

complementary forward problem, an open question, is to
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identify the kinds of memoryful process structure that

lead to one or another statistical signature. Answering

this question requires defining statistical signatures that

quantify memory in stochastic processes.

Many existing quantifications of long memory are

based on second-order statistics; e.g., on using the auto-

correlation function, power spectrum, or Hurst exponent.

These approaches have had notable successes in analyz-

ing hydrological data [7, 9], music [4], spin systems [2],

astrophysical flicker noise [6], language [11, 12], natural

scenery [13, 14], communication system error clustering

[15], financial time series, and many other seemingly com-

plex phenomena [5, 16].

However, there are at least two reasons to look to other

statistics besides the Hurst exponent. First, second-order

statistics alone can be misleading, as a process can “hide”

signatures of long memory in higher-order statistics. For

example, Fig. 1 shows a hidden Markov model (HMM)

that, on the one hand, is patently quite structured, and,

on the other, generates a process with a flat power spec-

trum [17]. Indeed, most stochastic processes seem to

hide information about their temporal dependencies in

higher-order statistics [18, 19]. Second, as suggested in

Ref. [20], our determination of whether or not a pro-
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FIG. 1. The Random-Random-XOR (RRXOR) Process is
generated by the five-state (minimal unifilar) Hidden Markov
model here. Labels p|x denote that a state-to-state transition
occurs with probability p and emits symbol x. If Xt is the
random variable at time t, then the generated time series is
Xt+2 = Xt+1 XOR Xt, with Xt+1 and Xt being Bernoulli(q)
and Bernoulli(p), respectively, for t = 0, 3, 6, . . .. With p =
q = 1/2 and starting state probabilities Pr(S) = 1/3 and
Pr(A) = Pr(B) = Pr(C) = Pr(D) = 1/6 the output process
is stationary white noise—a flat power spectrum [17].

cess has long memory ideally should be invariant under

invertible transformations of one’s measurement values.

The challenge is not only to find a new statistic that ad-

dresses these two concerns, but to find a statistic that is

also easy to operationalize.

References [21–23] suggested a process might be said

to have long memory when the mutual information be-

tween its past and future (excess entropy) diverges, and

Ref. [21] suggested that long memory is associated with

divergent statistical complexity with the effective mem-

ory architecture given by a process’ ε-machine. By con-

struction, these statistics are invariant under invertible

transformations of the data; and with sufficiently clever

entropy estimation techniques, these statistics are also

calculable directly from time series data.

Unfortunately, there is a paucity of concrete examples

upon which to build intuition as to how these higher-

order statistics and the more commonly used second-

order statistics relate. In part, this lack of concrete exam-

ples might owe somewhat to the fact that it is nontrivial

to construct ergodic stationary processes with divergent

excess entropy, though see Refs. [24, 25]. (Note that the

processes considered in Ref. [22] were nonergodic [26].)

To that end, we study a tractable class of processes

that can have both divergent excess entropy and Hurst

exponent greater than 1/2: the fractal renewal processes

[27–30] in which interevent intervals are drawn indepen-

dently and identically (IID) from a probability distribu-

tion with tails ∝ t−α. These processes are very widely

used in the physical, biological, and social sciences to

model diverse long-memory phenomena, ranging from

current fluctuations in electronic devices and neuronal

spike trains to earthquakes and astrophysical time series

[31–40].

Previous studies analyzed the second-order statistics

of such processes in some detail [9, 41]. Here, we use

techniques inspired by those in Refs. [25, 42] to calculate

the excess entropy and statistical complexity of fractal

renewal processes for the first time. We find that fractal

renewal processes have divergent excess entropy only and

exactly when α = 1 and divergent statistical complexity

as α → 1 from above and for all 0 < α < 1. However,

fractal renewal processes have power-law power spectra

for all 0 < α < 2 [41] and Hurst exponents greater than

1/2 [9]—the latter being two of the conventional second-

order statistical signatures of “long memory”. Thus, even

for these relatively straightforward processes, the excess

entropy and statistical complexity encapsulate a different

notion of long memory than one gleans using only second-

order statistics. These results also add fractal renewal

processes to a very short list of known stationary ergodic

processes with divergent excess entropy [25, 42] and so,

we hope, they pave the way for more general comparisons

between different definitions of long memory.

Section II briefly reviews definitions of memory in

stochastic processes. Section III calculates informational

measures of memory for fractal renewal processes. Sec-

tion IV then compares our findings to the second-order

statistics calculated by Refs. [9, 41] and draws out the

lessons for the above application examples. We close by

reflecting on structural organization associated with long

memory.

II. BACKGROUND

There are many definitions for a stochastic process

to have long memory; Ref. [20] provides a particularly

helpful survey. Consider a sequence of ` observations

x0, x1, . . . , x`−1, realizations of discrete-valued random

variables X0, X1, . . . , X`−1. For instance, if the autocor-

relation function C(τ) is asymptotically a power law mul-

tiplied by a slowly varying function g(τ), then a process

can be said to have “long memory”:

C(τ) = σ−2
∑̀

j=0

(xj − µ)(xj+τ − µ)

∝ g(τ)τ−γ ,

with 0 < γ < 1, mean µ, and variance σ2. Yet other

definitions are based on the decay of the spectral density :

P(f) = `−1

∣∣∣∣∣∣
∑̀

j=0

xje
−ijf

∣∣∣∣∣∣
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The process has long memory when P(f) ∝ f−βL1(f) as

f approaches 0 (where L1(f) is a slowly varying function

near f = 0) with 0 < β < 1. Other definitions still are

based on how variances deviate from time-local linear

extrapolation. Starting with the variance of partial sums

Sj = X1 + · · ·+Xj , one uses the rescaled-range statistics:

RS(`) =
max0≤j≤`(Sj − j

`S`)−min0≤j≤`(Sj − j
`S`)

σ

∝ `−H ,

where H ∈ (0, 1) is the Hurst index. Processes with

H > 1/2 are interpreted as having long memory. Un-

fortunately, even these second-order statistics are not al-

ways equivalent signatures of long memory. Section 5 of

Ref. [20] provides examples of inconsistencies.

In a search for general principles from ergodic theory,

Sec. 4 of Ref. [20] proposed that we require a definition of

long memory independent of invertible transformations

of the data. That is, if an invertible transformation is

applied pointwise to each observation Xi, we would hope

that the resulting process has long memory if and only if

the original process had long memory. This desideratum

is not satisfied by definitions based on the above second-

order statistics.

Since strongly mixing processes have short memory

and nonergodic processes could be said to have infinite

memory [26], Ref. [20] proposed that one or another type

of nonmixing property is a good candidate for long mem-

ory in ergodic stationary processes. This criterion satis-

fies the invariance desideratum above but can be rather

difficult to evaluate.

Fortunately, the information-theoretic notions of mem-

ory we consider also satisfy the transformation-invariant

desideratum and have been successfully deployed as

quantifications for the “complexity” of stochastic pro-

cesses [22, 43]. We study two: the excess entropy E =

I[
←−
X ;
−→
X ], or the mutual information between a process’

past
←−
X = . . . X−3X−2X−1 and future

−→
X = X0X1X2 . . .

[23]; and the statistical complexity Cµ, or the amount of

information from the past
←−
X required to exactly predict

the future
−→
X [43]. When the excess entropy diverges,

we are interested in the asymptotic rate of divergence of

finite-length excess entropy estimates E(`) = I[
←−
X ;
−→
X `]

[22, 23]. This asymptotic rate of divergence is also in-

variant to temporally local convolutions and invertible

transformations of the data [22].

To more precisely define and calculate the statistical

complexity and the excess entropy, we need to recall

the causal states of computational mechanics. Consider

clustering pasts according to an equivalence relation ∼
in which two pasts are equivalent when they have the

same conditional probability distribution over futures:

←−x ∼ ←−x ′ if and only if Pr(
−→
X |
←−
X =←−x ) = Pr(

−→
X |
←−
X =←−x ′).

The resulting clusters are forward-time causal states S+,

which inherit a probability distribution from the prob-

ability distribution over pasts. The forward-time sta-

tistical complexity is the entropy of these causal states:

C+
µ = H[S+]. For more detail, see Refs. [44, 45].

We can similarly define the reverse-time causal states

S− by clustering futures with equivalent conditional

probability distributions over pasts: −→x ∼ −→x ′ if and only

if Pr(
←−
X |
−→
X = −→x ) = Pr(

←−
X |
−→
X = −→x ′). The reverse-time

statistical complexity is the entropy of those reverse-time

causal states: C−µ = H[S−]. Renewal processes are time-

reversal invariant [46], or causally reversible, so through-

out the following we denote the statistical complexity as

Cµ = C+
µ = C−µ without loss of precision.

Reverse-time causal states and forward-time causal

states can be used to calculate the excess entropy [47, 48]:

E = I[S+;S−] .

For discrete-time processes, E is a lower bound on Cµ:

E ≤ Cµ . (1)

In other words, for discrete-time processes, if statistical

complexity is finite, then so is excess entropy. Conversely,

if excess entropy is infinite, then statistical complexity is

infinite.

Often continuous-time processes have an uncountable

set of causal states. For them, the statistical complexity

is taken to be the differential entropy:

Ĉµ = H[S+]

= −
∫

∆

dµ(σ+) logµ(σ+) ,

where we have the simplex ∆ of causal states and µ(σ+)

is their measure in ∆. In the continuous-time setting,

the inequality analogous to Eq. (1) no longer necessar-

ily holds [49]. We call the differential entropy Ĉµ the

continuous-time statistical complexity to distinguish it

from the discrete-time statistical complexity Cµ, but sim-

ply refer to it as the statistical complexity when context

is clear.

One can also define finite-time reverse-time causal

states, denoted S−` , by clustering futures of finite-length `

with the same equivalence relation as above. From these,

we obtain finite-length reverse-time statistical complex-

ity C−`µ = H[S−` ], respectively. These can be used to

calculate finite-future excess entropy estimates: E(`) =

I[S+;S−` ] [47, 48].

For discrete-alphabet, discrete-time processes, the sta-

tistical complexity is invariant to relabelings of the mea-
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surement alphabet. However, as just noted, when the

causal states are uncountable, the statistical complexity

involves a differential entropy, and differential entropies

are not invariant to invertible transformations of the co-

ordinate system of the distribution’s support. A prosaic

example of this is given in Ref. [50]. Modulo such factors,

whether or not statistical complexity diverges, the rate

of divergence of its finite-length estimates C`µ is invariant

to temporally local convolutions of the data.

Realizations from a renewal process consist of se-

quences of events separated by epochs of quiescence, the

lengths of which are drawn independently from the same

interevent distribution. Throughout, when discussing a

discrete-time renewal process, we use the following nota-

tion [46]: F (n) is the interevent count probability distri-

bution function; w(n) =
∑∞
n′ F (n′) is the survival func-

tion; and µ is its mean interevent count. We use the

following notation for continuous-time renewal processes:

φ(t) is the waiting time distribution; Φ(t) is its survival

function; and T is the mean interevent interval. Frac-

tal renewal processes have survival functions that have

power-law tails, as introduced shortly.

III. INTRINSIC MEMORY IN FRACTAL

RENEWAL PROCESSES

Fractal renewal processes—those with power-law in-

terevent interval probability density functions—can have

long memory in the sense of Ref. [51]. For instance,

they can have Hurst index H > 1/2 [9] and their auto-

correlation function can be (asymptotically) a power law

[41]. Fractal renewal processes have been implicated in a

variety of complex natural processes, to which the intro-

duction alluded. Might these processes also have infinite

statistical complexity or infinite excess entropy? To the

best of our knowledge, the excess entropy and statistical

complexity of fractal renewal processes have yet to be

calculated.

Calculating statistical complexity and excess entropy

can be challenging when going beyond finite causal-state

processes [52]. To make progress with bounding the ex-

cess entropy of fractal renewal processes, we use two

tools. The first tool is to coarse grain by time-binning.

The Data Processing Inequality [53] then implies that

the excess entropy of a discrete-time renewal process is

always upper-bounded by the excess entropy of the corre-

sponding continuous-time renewal process. See App. A.

The second tool allows us to calculate excess entropy and

statistical complexity even when the mean rate of events

vanishes by conditioning on the presence of a proxy event.

This tool was inspired by previous work [24] and is sum-

marized in App. B.

Fractal renewal processes are typically considered in

continuous-time, with interevent intervals generated in-

dependently and identically distributed (IID) from the

probability density function:

φ(t) =

{
0 t < 1

αt−(α+1) t ≥ 1
. (2)

The probability of seeing an interevent interval of length

t or larger is the survival function:

Φ(t) =

∫ ∞

t

φ(t′)dt′

=

{
1 t < 1

t−α t ≥ 1
. (3)

Time intervals are given in terms of the shortest possible

interevent interval. When α > 1, the mean interevent

interval T = α
α−1 is finite; when 0 < α ≤ 1, the mean

interevent interval is infinite, but one will always eventu-

ally see an event.

Appendix D describes how to manipulate the

continuous-time analog of Eq. (B1) to obtain:

Ê =





log α2

α−1 − 1 α > 1

∞ α = 1
α2+α−1
α(1−α) + log α

1−α − (1− α)Kα α < 1

, (4)

where Kα =
∫∞

0
(u−α−(1+u)−α) log(u−α−(1+u)−α)du.

Note that at small values of α, Kα is difficult to evaluate

numerically due to the integrand’s long tails, even when

Ê is quite small. For instance, when α = 1/4, Ê ≈ 0.089

nats, but
∫ N

0
(u−α−(1+u)−α) log(u−α−(1+u)−α)du does

not return positive estimates for the excess entropy until

N ≥ 1011. A more obvious benefit of Eq. (4), then, is that

we can study the excess entropy’s asymptotic behavior

near α = 1, where Ê(`) ∼ log log `. This divergence is

slower than any previously reported divergence [22, 24,

25], but is a divergence nonetheless.

When α > 1 but close to its critical value, the excess

entropy diverges as ∼ log 1
α−1 . As α→∞, Ê diverges as

logα. This point is discussed more fully later on.

The discrete-time analog of fractal renewal processes

has a survival function:

w(n) =

{
1 n = 0

n−α n ≥ 1
. (5)

The transient (small n) behavior of w(n) may not match

that in some applications, but only w(n)’s asymptotic

behavior is relevant to E’s divergence. Moreover, App. A

guarantees that E is finite when α 6= 1 and that at α = 1
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its divergence is at most log log `. Additional arguments

in App. D, in turn, show that E(`) diverges at α = 1 as

log log `.

The excess entropy E captures the amount of pre-

dictable randomness of a stochastic process. As a com-

parison, we are also interested in the statistical complex-

ity Cµ of discrete-time and continuous-time fractal re-

newal processes. The statistical complexity is the number

of bits required to losslessly predict (E nats of) the pro-

cess’ future. Sometimes, Cµ is not much larger than E;

for discrete-time periodic processes, the two are equiva-

lent and equal to the logarithm of the period. More often

than not, Cµ is infinite while E is finite; e.g., for processes

generated by most (nonunifilar) Hidden Markov Models.

Cryptic processes have large statistical complexity and

small excess entropy [47]; the larger the crypticity, the

more that a process’ true structure is “hidden” from the

observer. An open question is whether or not fractal re-

newal processes, with their statistical signatures of com-

plexity, are highly cryptic. So, we focus some attention

now on evaluating Cµ for fractal renewal processes.

We can calculate Cµ of time-binned continuous-time

renewal processes in the infinitesimal-τ limit [49]:

Cµτ ∼ log
1

τ
−
∫ ∞

0

Φ(t)

T
log

Φ(t)

T
dt .

As we will discuss elsewhere, the above expression is the

differential entropy over continuous-time causal states—

the expression given in Sec. II as the “continuous-time

statistical complexity” Ĉµ—plus the logarithm of our

time-bin resolution. Thus, Cµτ ’s log 1
τ divergence is an

artifact of our failure to use the differential entropy when

calculating memory storage requirements of continuous

random variables [53]. As a result, we focus on Cµτ ’s

nondivergent component, Ĉµ = limτ→0

(
Cµτ + log τ

)
, or

what was earlier called the continuous-time statistical

complexity. Straightforward algebra shows that:

Ĉµ =

{
1

α−1 + log α
α−1 α > 1

∞ α ≤ 1
. (6)

Again, we can say that the (continuous-time) Cµ di-

verges whenever the mean interevent interval T diverges.

When α ≤ 1, finite-length statistical complexity esti-

mates adapted to the continuous-time case from Eq. (B2)

diverge as:

C+`
µ ∼

{
log ` α < 1
1
2 log ` α = 1

.

So, the special nature of α = 1 is also revealed as a dis-

continuity in rates of divergence of the finite-length sta-

tistical complexity. In particular, the least cryptic frac-

tal renewal process, among fractal renewal processes with

divergent statistical complexity, is the process generated

when α = 1.

Equations (4) and (6) are plotted in Fig. 2. The di-

vergences in Ê and Ĉµ at α = 1 are apparent in the

plot. If Ê and Ĉµ are taken to be systems-agnostic or-

der parameters, then a fractal renewal process exhibits

a nonequilibrium phase transition exactly when its mean

interevent interval diverges.

1 10 100 10000
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FIG. 2. Excess entropy Ê and statistical complexity

Ĉµ of continuous-time fractal renewal processes: Pro-
cess realizations are generated by drawing interevent intervals
IID from the probability density function φ(t) = αt−(α+1) for

t ≥ 1 and 0 otherwise. Ê in nats as a function of α, evaluated
using Eq. (4). The nondivergent component of statistical com-

plexity Ĉµ in nats as a function of α, evaluated using Eq. (6).

Note that Ĉµ is a differential entropy and so not necessarily

larger than the excess entropy Ê; a subtlety when working
with continuous-time processes.

The behavior of Ê and Ĉµ as α tends to infinity also

deserves special mention, as the process appears to be-

come infinitely predictable (Ê→∞) while requiring less

memory for prediction (Ĉµ → 0). As α tends to ∞, φ(t)

becomes more and more sharply peaked at t = 1. In

other words, the process moves closer and closer to that

of a periodic process with period 1. Periodic processes are

random enough, in that the phase of the process could

be any real number between 0 and the period. In the

language of computational mechanics, the causal state is

the phase, and its differential entropy—the continuous-

time statistical complexity Ĉµ—is the logarithm of the

process’ period. As α→∞, the mean interevent interval

T = α
α−1 tends to 1, and the continuous-time statistical

complexity correspondingly tends to log 1 = 0. How-

ever, periodic processes are also highly predictable, in

that the time to next event is determined by the time
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since last event; hence, the differential entropy of the

time to next event conditioned on the time since last

event tends towards negative infinity, resulting in an in-

finite Ê = Ĉµ − H[S−|S+] → ∞. Similar behavior was

seen in Ref. [49] as the noisiness of spike trains tended to

zero, though. The least cryptic fractal renewal process,

then, occurs in the limit that α tends to infinity.

IV. CONCLUSION

We showed that a fractal renewal process’s excess en-

tropy diverges precisely when its mean interevent interval

diverges. This adds a relatively easily understood process

and one of much broader applicability to the existing list

of ergodic stationary processes with divergent excess en-

tropy [24, 25].

Notably, the expected number of events observed in a

finite time interval for a fractal renewal process with di-

vergent excess entropy is zero. This brings in an interpre-

tational challenge. A process that, on average, produces

arbitrarily long silence is not often described as random.

So, should not the excess entropy of a point process with

infinite mean interevent interval be zero? However, the

mutual information between finite-length pasts and fu-

tures, assuming that we do see an event, can diverge.

And, we will almost surely see an event when we view a

semi-infinite past.

Our calculations revealed that fractal renewal pro-

cesses flip from finite to divergent statistical complexity

and exhibit divergent excess entropy exactly when the

mean interevent interval diverges. These information-

theoretic measures of memory point to the power-law co-

efficient α = 1 as being a “critical” parameter in this

process family. When the mean interevent interval is

finite, both excess entropy and continuous-time statisti-

cal complexity are finite, though excess entropy grows

unbounded as α tends to infinity. When the mean in-

terevent interval is infinite and the power-law coefficient

is not α = 1, excess entropy is finite, but continuous-time

statistical complexity is infinite.

Employing signatures of long memory based on second-

order statistics suggests, instead, that α = 2 was a “crit-

ical point”. Specifically, the power spectrum of a fractal

renewal process exhibits power-law scaling when α < 2

[41], and the Hurst index of the processes with α < 2

is greater than 1/2 and increases with decreasing α [9].

Therefore, at a minimum, drawing conclusions about a

process’ complex organization via such low-order statis-

tics can be ambiguous.

Finally, our results suggest that certain previously

studied experimental phenomenon are poised at a critical

point between finite and infinite “memory”, as suggested

by many others using other definitions of criticality [54].

The stochastic process of neuron membrane ion channels

opening and closing has divergent excess entropy when

the kinetic rate adopts the form keff(t) ≈ t−1. This may

be the case for some potassium-selective channels in cul-

tured mouse hippocampal pyramidal cells near resting

membrane voltage, V = −60 V [55, Fig. 10, bottom

right]. Similarly, the phenomenological fit of the stop-

ping probabilities used for Wikipedia edit-revert time se-

ries has divergent statistical complexity when α = 1 and

divergent excess entropy when p = 1 as well [56, 57].

This seems to suggest that increased cooperativity be-

tween editors drives Wikipedia towards increasing its so-

cial memory.

However, one lesson from our results is tantamount to a

cautionary note on interpreting the implicated memory

organization. To the extent that the estimated fractal

renewal processes with divergent memory are good mod-

els, one cannot conclude that the content of that memory

reflects sophisticated computational processing or highly

organized storage of detailed information. Indeed, like all

renewal processes, fractal renewal processes are simple:

they count up to some threshold and reset. Surely these

coarse statistics, while useful and even necessary as tools

for a first-cut analysis, fall far short of fully describing

the hierarchies of information processing in neurons and

the rich social dynamics driving Wikipedia’s accumulat-

ing human knowledge.

To close, let’s return to our initial discussion of sta-

tistical signatures of structural organization. We drew a

comparison of divergent memory in ergodic processes to

that we previously identified in the so-called Bandit non-

ergodic processes [26]. The mechanism underlying the

latter was rather straightforward: from trial to trial the

process remembers the operant ergodic component sub-

process and so uses an infinite memory and exhibits an

excess entropy that diverges as log `. The case for er-

godic process is more subtle. For renewal processes we

showed that the divergence is log log `. What’s the as-

sociated mechanism? Renewal processes track time be-

tween events and so, in computational model terms, it

appears that the process somehow embeds a counter [21,

Sec. 4.5.2]. An interesting contrast is the log ` excess

entropy divergence seen at the onset of chaos through

period-doubling, associated with pushdown stack mecha-

nism [21, Sec. 4.5.1], and seen in the branching copy pro-

cess [24]. At this stage, though, the possibility of unique

associations between the form of information measure di-

vergence and mechanism is not sufficiently well explored.

Nonetheless, with further extension and refinement infor-

mation measures and their divergences will become in-

creasingly more insightful diagnostics of nature’s diverse

forms of intrinsic computation.
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Appendix A: Continuous- versus Discrete-time

Excess Entropies

Often, integrals are easier to evaluate than the corre-

sponding sums. One practical goal, leveraging this below,

is to relate the excess entropy of time-binned continuous-

time processes to that of corresponding discrete-time re-

newal processes.

Reference [46] found that the excess entropy of a

discrete-time renewal process is:

E = log(µ+ 1)− 2

µ+ 1

∞∑

n=0

w(n) logw(n)

+
1

µ+ 1

∞∑

n=0

(n+ 1)F (n) logF (n) .

(A1)

While Ref. [49] showed that the excess entropy of a

continuous-time renewal process X(t) is:

Ê = I[X(t)t<0;X(t)t≥0]

= log T − 2

T

∫ ∞

0

Φ(t) log Φ(t)dt

+
1

T

∫ ∞

0

tφ(t) log φ(t)dt , (A2)

which is in units of nats when the mean interevent inter-

val T is finite.

Consider time-binning the continuous-time point pro-

cess X(t) by asking how many events are observed in an

interval [t, t + τ). If at least one event is observed, then

we record a 1; if no events are observed, then we record

a 0. This data labeling technique is common; e.g., when

studying neural spike trains. The probability of observ-

ing at least n counts between successive 1s is given by:

wτ (n) = Φ(nτ) .

When τ = 1, then the survival function of the time-

binned process is exactly that of the discrete-time re-

newal process with excess entropy given in Eq. (A1).

The excess entropy or estimates thereof for a discrete-

time renewal process are upper bounded by the excess

entropy of a corresponding continuous-time renewal pro-

cess, as shown shortly. This is a special case of a more

general statement: coarse-graining a time series always

reduces its excess entropy, due to the Data Processing

Inequality. This statement can be easily generalized to

other discrete-alphabet, continuous-time processes. De-

spite its simplicity, it proves useful for the calculations to

come in Sec. III.

In particular, let Ê denote the excess entropy of a

continuous-time renewal process X(t) with survival func-

tion Φ(t) and E the excess entropy of the discrete-time

renewal process Xt with survival function w(n) = Φ(n)

for all nonnegative integers n. Then, when Ê <∞:

E ≤ Ê .

To see this, let Eτ denote the excess entropy of the

discrete-time process that comes from time-binning the

continuous-time renewal process with discretization bin

size τ . To obtain the above inequality, we apply the Data

Processing Inequality:

E1/n = I[. . . , X(−2/n), X(−1/n);X(0), X(1/n), . . .]

≥ I[. . . , X−2, X−1;X0, X1, . . .]

= E1 .

If we take the limit of the left-hand side as n → ∞, we

obtain:

Eτ=1 ≤ lim
n→∞

E1/n

= lim
τ→0

Eτ .

Again by the Data Processing Inequality, Eτ=1 is lower-

bounded by the mutual information between the counts

since last event and counts to next event, as the former is

a function of the past and the latter is a function of the

future: E ≤ Eτ=1. By definition [58], limτ→0 Eτ = Ê.

Appendix B: Renewal Processes with Infinite Mean

Intervent Intervals

When the mean interevent interval T (or µ) is infinite,

the formulae for excess entropy in Eqs. (A1) and (A2) no

longer apply. Causal states, however, still provide a use-

ful framework for calculating it. Using them we introduce

an analysis method for discrete-time renewal processes in

this case. The obvious extensions to continuous-time re-

newal processes follow when we replace F (n) with φ(t),
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w(n) with Φ(t), and summations with integrals.

We calculate E(`) for renewal processes with infinite µ

via an analysis technique inspired by Ref. [24] and then

calculate E as a limit of E(`) as ` tends to infinity, seem-

ingly valid for ergodic processes. First, we would like to

directly calculate E(`) in terms of forward and reverse-

time causal states [47]: E(`) = I[
←−
X ;
−→
X `] = I[S+;S−` ],

where S−` are finite-time reverse-time causal states. Un-

fortunately, inspecting the corresponding joint probabil-

ity distribution in App. II of Ref. [46] shows that while

we can identify the joint probability distribution up to

a normalization constant, this normalization constant is

infinite when µ is infinite.

So, we define a “proxy” binary random variable U`
which is 1 if there has been an event sometime in

−→
X `

and past
←−
X , and 0 otherwise. A little reflection shows

that Pr(U` = 0) = limN→∞ w(N + `) = 0. Even so,

this auxiliary random variable is a surprisingly useful

construct. A standard information-theoretic decompo-

sition gives E(`) = I[S+;S−` |U`] + I[S+;S−` ;U`], but

since Pr(U` = 0) = 0, we have that I[S+;S−` |U`] =

I[S+;S−` |U` = 1] and I[S+;S−` ;U`] = 0. Altogether this

yields:

E(`) = I[S+;S−` |U` = 1] .

The conditional probability distribution Pr(S+,S−` |U` =

1) is normalizable and, as shown in App. C, leads to:

E(`) = logZ(`)− 1

Z(`)

∑̀

n=0

w(n) logw(n)

− 1

Z(`)

( ∞∑

n=0

(w(n)− w(n+ `+ 1))

× log(w(n)− w(n+ `+ 1))
)

+
1

Z(`)

∑̀

n=0

(n+ 1)F (n) logF (n)

+
`+ 1

Z(`)

∞∑

n=`+1

F (n) logF (n) , (B1)

where Z(`) =
∑`
n=0 w(n). If lim`→∞E(`) diverges, then

we look for the asymptotic rate of divergence of E(`).

Otherwise, the process’ excess entropy can be defined as

E = lim`→∞E(`). We expect E will often be finite even

when µ diverges.

A similar method allows us to calculate Cµ when mean

interevent count is infinite. This time, we define U` as a

proxy random variable that is 1 if there has been an event

in
←−
X ` and 0 otherwise. Since U` is a function of S+, a

standard information-theoretic identity implies that:

Cµ = H[S+|U`] + H[U`]

and, in particular:

Cµ = lim
`→∞

(
H[S+|U`] + H[U`]

)
.

As before, lim`→∞ Pr(U` = 0) = lim`→∞ w(`) = 0,

so lim`→∞H[U`] = 0. Also, H[S+|U`] = Pr(U` =

0) H[S+|U` = 0] + Pr(U` = 1) H[S+|U` = 1] by defini-

tion. Since there is only one semi-infinite past without

an event, lim`→∞H[S+|U` = 0] = 0. And, H[S+|U` =

1] = −
∑`
n=0

w(n)
Z(`) log w(n)

Z(`) . Altogether, this implies:

Cµ = lim
`→∞

∑̀

n=0

w(n)

Z(`)
log

(
1/
w(n)

Z(`)

)
. (B2)

One can also study the growth rate of finite-time statisti-

cal complexity estimates which are, after a moment’s re-

flection, the C`µ = −
∑`
n=0

w(n)
Z(`) log w(n)

Z(`) estimates above

in Eq. (B2).

One comment, perhaps obvious from Eqs. (B1) and

(B2), is that whether or not E and Cµ diverge depends

entirely on the asymptotic form of F (n). Another is that

the sums in Eq. (B1) can be quite difficult to evaluate nu-

merically when the renewal process has long-range tem-

poral correlations, since then F (n) decays slowly with

n.

Appendix C: Finite-time Excess Entropy Estimates

with Infinite Mean Interevent Interval

From App. II of Ref. [46]:

Pr(S+ = σ+,S−` = σ−|U` = 1)

=
1

Z

{
F (σ+ + σ−) σ− ≤ `
0 σ− = `+ 1

,

where the normalization constant is:

Z =
∑̀

σ−=0

∞∑

σ+=0

F (σ+ + σ−)

=
∑̀

σ−=0

w(σ−) .

The marginals are easily calculated:

Pr(S+ = σ+|U` = 1) =
1

Z
(w(σ+)− w(σ+ + `+ 1))
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and:

Pr(S−` = σ−|U` = 1) =
1

Z

{
w(σ−) σ− ≤ `
0 σ− = `+ 1

.

From this, we calculate finite-length excess entropy in

nats:

E(`) = H[S−` |U` = 1] +H[S+|U` = 1]

−H[S+,S−` |U` = 1]

= logZ − 1

Z

∑̀

n=0

w(n) logw(n)

− 1

Z

( ∞∑

n=0

(w(n)− w(n+ `+ 1))

× log(w(n)− w(n+ `+ 1))
)

+
1

Z

∞∑

n=0

∑̀

m=0

F (n+m) logF (n+m) .

This simplifies to:

E(`) = logZ − 1

Z

∑̀

n=0

w(n) logw(n)

− 1

Z

( ∞∑

n=0

(w(n)− w(n+ `+ 1))

× log(w(n)− w(n+ `+ 1))
)

+
1

Z

∑

n=0

`(n+ 1)F (n) logF (n)

+
`+ 1

Z

∞∑

n=`+1

F (n) logF (n) .

Similar manipulations hold for continuous-time pro-

cesses. Briefly, the time since last event t and time to

next event t′ have a joint probability distribution pro-

portional to φ(t+ t′), since the time since last event plus

the time to next event is an interevent interval.

Appendix D: Fractal Renewal Processes

The α > 1 case simply requires substituting φ(t) and

Φ(t) from Eqs. (2)-(3) into Eq. (A2) and solving:

Ê = log T − 2

T

∫ ∞

0

Φ(t) log Φ(t)dt

+
1

T

∫ ∞

0

tφ(t) log φ(t)dt. (D1)

After straightforward calculations, we find that:

T =
α

α− 1
,

1

T

∫ ∞

0

Φ(t) log Φ(t)dt = − 1

α− 1
, and

1

T

∫ ∞

0

tφ(t) log φ(t)dt = logα− α+ 1

α− 1
.

These together yield:

Ê = log
α2

α− 1
− 1 .

Now, we turn our attention to the case of 0 < α ≤ 1.

There are two possibilities for Ê when 0 < α ≤ 1. One

is that Ê diverges, in which case, we only care about

the asymptotic rate of divergence of Ê(`). The other

possibility is that Ê does not diverge, in which case, we

only care about contributions Q to Ê(`) that are not

o(1); i.e., that satisfy lim`→∞Q 6= 0. Our strategy in

evaluating Ê(`) from Eq. (D1) is to systematically find

closed-form expressions for all components that are not

o(1).

Direct solution gives:

Z =

{
`1−α

1−α α < 1

log ` α = 1
, (D2)

plus components of o(1):

− 1

Z

∫ `

0

Φ(t) log Φ(t)dt =

{
− α

1−α + α log ` α < 1
1
2 log ` α = 1

(D3)

plus components of o(1); and:

1

Z

∫ `

1

tφ(t) log φ(t)dt+
`

Z

∫ ∞

`

φ(t) log φ(t)dt

=

{
− 1−α−2α2

α(1−α) + logα− (1 + α) log ` α < 1

−2− log ` α = 1
, (D4)

plus components of o(1).

Finally, we address the only component with no simple

closed-form expression:

1

Z

∫ ∞

0

(Φ(t)− Φ(t+ `)) log(Φ(t)− Φ(t+ `))dt

=
1

Z

∫ ∞

1

(t−α − (t+ `)−α) log(t−α − (t+ `)−α)dt

+
1

Z

∫ 1

0

(1− (t+ `)−α) log(1− (t+ `)−α)dt .
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Since:

lim
`→∞

1

Z

∫ 1

0

(1− (t+ `)−α) log(1− (t+ `)−α)dt = 0 ,

we ignore that term as a correction of o(1). The case for

α = 1 can actually be evaluated explicitly since 1
t−

1
t+` =

`
t(t+`) :

lim
`→∞

1

Z

∫ ∞

1

`

t(t+ `)
log(

`

t(t+ `)
)dt = −1

2
log ` .

Now, consider the case of α < 1. We extract the asymp-

totic scaling in ` of the first term by the change of vari-

ables u = `t, giving:

1

Z

∫ ∞

1

(t−α − (t+ `)−α) log(t−α − (t+ `)−α)dt

=
`1−α

Z

∫ ∞

1/`

(u−α − (1 + u)−α) log(`−α(u−α − (1 + u)−α))du

= −α`
1−α log `

Z

∫ ∞

1/`

u−α − (1 + u)−αdu

+
`1−α

Z

∫ ∞

1/`

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du .

The first of the two integrals can be evaluated explicitly

as:

∫ ∞

1/`

u−α − (1 + u)−αdu = − `α−1

1− α
+
`α−1

1− α
(`+ 1)1−α .

So, that we find the first term’s asymptotic behavior to

be:

−α`
1−α log `

Z

∫ ∞

1/`

u−α − (1 + u)−αdu ∼ −α log ` ,

plus corrections of o(1). One of the more notable cor-

rections of o(1) is proportional to log `
Z , which is o(1) for

α < 1 and otherwise has a nonzero limiting value when

`→∞.

Surprisingly, the latter of the two integrals limits to a

finite value for α < 1:

lim
`→∞

`1−α

Z

∫ ∞

1/`

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du

= (1− α)

∫ ∞

0

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du ,

where we used lim`→∞
`1−α

Z = 1− α for α < 1. As a result, we find that:

1

Z

∫ ∞

0

(Φ(t)− Φ(t+ `)) log(Φ(t)− Φ(t+ `))dt

=

{
− 1

2 log ` α = 1

−α log `+ (1− α)
∫∞

0
(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du 0 < α < 1

, (D5)

plus corrections of o(1). Altogether, combining Eqs. (D2)-(D4) and (D5) into Eq. (D1), we recover Eq. (4) of the

main text.

As discussed there, we still must evaluate E(`) at α =

1. We focus again on asymptotic expansions in ` and

drop corrections to expressions that do not contribute to

E. When α = 1:

Z(`) = 1 +
∑̀

n=1

1

n
= log ` ,
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plus corrections of O(1). Next, we evaluate:

−
∑̀

n=0

w(n) logw(n) =
∑̀

n=1

log n

n

=
∑̀

n=2

log n

n
.

Since logn
n is a monotone decreasing function with n,

we lower- and upper-bound this sum using integrals:∫ `+1

2
logn
n dn ≤

∑`
n=2

logn
n ≤ log 2

2 +
∫ `

2
logn
n dn. These

are easily evaluated, giving:

−
∑̀

n=0

w(n) logw(n) = −1

2
log2 ` ,

plus corrections of O(1). For other sums, we need an

expression for F (n):

F (n) = w(n)− w(n+ 1)

=

{
0 n = 0

1
n(n+1) n ≥ 1

.

Then, we evaluate:

∑̀

n=0

(n+ 1)F (n) logF (n) = −2
∑̀

n=1

log n

n
+
∑̀

n=1

log(1 + 1
n )

n

= log2 ` ,

plus corrections of O(1), where we have noted that∑∞
n=1

log(1+ 1
n )

n converges since
∫∞

1

log(1+ 1
x )

x dx converges.

The next term takes the form:

(`+ 1)

∞∑

`+1

F (n) logF (n) = −(`+ 1)

∞∑

`+1

log(n(n+ 1))

n(n+ 1)
.

We can bound the sum using
∫∞
`+1

log(n(n+1))
n(n+1) dn ≤

∑∞
`+1

log(n(n+1))
n(n+1) ≤ log(`2+`)

`2+` +
∫∞
`+1

log(n(n+1))
n(n+1) dn. These

integrals are both easily evaluated, revealing an asymp-

totic form of:

(`+ 1)

∞∑

`+1

F (n) logF (n) = −2 log ` ,

plus corrections of O(1). Finally, to evaluate the last

term in the sum, we note that:

w(n)− w(n+ `+ 1) =
1

n(1 + n
`+1 )

=
1/`+ 1

n
`+1 (1 + n

`+1 )
,

when n ≥ 1. We define xn = n
`+1 with dxn = 1

`+1 and

write:

w(n)− w(n+ `+ 1) =
dxn

xn(1 + xn)
.

Then:

∞∑

n=0

(w(n)− w(n+ `+ 1)) log(w(n)− w(n+ `+ 1))

= (1− w(`+ 1)) log(1− w(`+ 1))

+ log dxn

∞∑

n=1

dxn
xn(1 + xn)

+

∞∑

n=1

log(xn(1 + xn))

xn(1 + xn)
dxn .

The first term is o(1), since lim`→∞(1−w(`+ 1)) log(1−
w(` + 1)) = 0. We can view the other two sums as Rie-

mann sums for integrals
∫∞

1/`
dx

x(1+x) and
∫∞

1/`
log(x(1+x))
x(1+x) dx

respectively, giving:

∞∑

n=1

dxn
xn(1 + xn)

= log ` ,

plus corrections of o(1) and:

∞∑

n=1

log(xn(1 + xn))

xn(1 + xn)
dxn = −1

2
log2 ` .

plus corrections of o(1). Altogether, substituting the

above expressions into Eq. (B1) yields:

E(`) = log log `− 2 ,

plus corrections of o(1). The various divergences of order

log ` all cancel one another, but the divergence of log log `

due to the log ` divergence in Z(`) remains, just as for the

continuous-time case. When F (n) is monotone decreas-

ing at some finite N sufficiently rapidly, manipulations

similar to those above imply that divergence in Ê is a

sufficient condition for divergence in E.
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