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Only a subset of degrees of freedom are typically accessible or measurable in real-world systems.
As a consequence, the proper setting for empirical modeling is that of partially-observed systems.
Notably, data-driven models consistently outperform physics-based models for systems with few
observable degrees of freedom; e.g., hydrological systems. Here, we provide an operator-theoretic
explanation for this empirical success. To predict a partially-observed system’s future behavior with
physics-based models, the missing degrees of freedom must be explicitly accounted for using data
assimilation and model parametrization. Data-driven models, in contrast, employ delay-coordinate
embeddings and their evolution under the Koopman operator to implicitly model the effects of the
missing degrees of freedom. We describe in detail the statistical physics of partial observations
underlying data-driven models using novel Maximum Entropy and Maximum Caliber measures.
The resulting nonequilibrium Wiener projections applied to the Mori-Zwanzig formalism reveal
how data-driven models may converge to the true dynamics of the observable degrees of freedom.
Additionally, this framework shows how data-driven models infer the effects of unobserved degrees
of freedom implicitly, in much the same way that physics models infer the effects explicitly. This
provides a unified implicit-explicit modeling framework for predicting partially-observed systems,
with hybrid physics-informed machine learning methods combining implicit and explicit aspects.

I. INTRODUCTION

Most Earth Science investigations access only a sub-
set of a high-dimensional dynamical system’s degrees of
freedom due to limited instrumentation. Predicting the
future behavior of partially-observed systems is a central
challenge for many areas of Earth Science, and one that
dates back to the earliest uses of scientific computing
[1, 2].

Traditional prediction employing physics-based (or
process-based) models relies on explicit representations:
systems are modeled via closed-form equations of motion
that determine how a system evolves forward in time
through interactions among all its degrees of freedom.
Predictions are extracted from numerical approximations
of solutions of the equations of motion. This requires
knowing the full state of the system at each time, but lim-
ited instrument measurements of the true system provide
only a partial view of the underlying state. Data assim-
ilation is then used to generate a data-image through
model inversion. The result is a coarse-grained approx-
imation of the full system state that is most consistent
with the instrument observations and assumptions of the
underlying physics.

In contrast, data-driven prediction (typically) does not
rely on explicit closed-form models and thus does not re-
quire interpolated data-images. For the prediction task
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that evolves only instrument measurements forward in
time, data-driven models learn implicit representations
for this evolution directly from the observations them-
selves.

The explicit nature of physics models hinges on our
understanding of the underlying physics governing the
system being encapsulated in closed-form differential
equations-of-motion. This is what explicit representa-
tions attempt to approximate. The equivalent govern-
ing physics—the “ground truth”—for the evolution of
the measurement observables is given by linear, infinite-
dimensional Koopman operators. The implicit represen-
tations of data-driven models thus attempt to learn pro-
jections of the Koopman operators’ action [3].

In fact, the governing equations of motion for the
measurement observables are given by the Mori-Zwanzig
equation [4, 5], derived from expanding the action of
the Koopman operator in terms of projection operators
onto the observable degrees of freedom [6, 7]. A key in-
sight from the Mori-Zwanzig formalism is that predictive
models of partially-observed systems require a history
dependence—past observations of the observable degrees
of freedom generally contain information relevant for fu-
ture predictions.

Recently, the connection between the history depen-
dence of predictive models and the intrinsic geometry
of delay-coordinate embeddings [8, 9] has been explored
[10–13]. Past values of partial observations, in the form
of delay embeddings, implicitly stand in for the missing
degrees of freedom. This parallels how, for physics-based
models, data images act explicitly to fill in the gaps of
the missing degrees of freedom when predicting partially-
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observed systems.

Most data-driven modeling and prediction relies on
Hilbert space methods that learn a target function liv-
ing in a Hilbert space of functions [14]. Optimal Hilbert
space models take the form of a conditional expectation
of future observations given past observations. This opti-
mum is equivalent to a nonlinear projection of the action
of the Koopman operator (that gives the future value
of the measurement observables) onto the Hilbert sub-
space of functions of only the observable degrees of free-
dom. History-dependent target function models can be
expressed as functions of delay-coordinate embeddings
using Wiener projections [6]. The optimal model is then
the nonlinear Wiener projection of the action of the
Koopman operator onto functions of observed delay em-
beddings.

There is evidence that Wiener projection models may
converge to the true dynamics of the measurement ob-
servables if sufficient past observations are taken into ac-
count [15]. Here, we provide a new perspective on the be-
havior of history-dependent data-driven models and their
relation to the true underlying physics of partial observa-
tions. We do so using insights from the logical inference
approach to statistical mechanics given by Jaynes’ Max-
imum Entropy principle [16]. This further builds on the
connections between nonequilibrium statistical mechan-
ics and optimal prediction of partially-observed systems
[17].

Optimal Hilbert space models are typically formulated
in terms of an invariant “equilibrium” measure. How-
ever, we show there is a natural family of time-dependent
“nonequilibrium” measures induced by partial obser-
vations using Maximum Entropy and its time-varying
generalization Maximum Caliber [18, 19]. Construc-
tively, these measures support more general nonasymp-
totic behaviors—behaviors that cannot be modeled with
an invariant measure. Importantly, though, they provide
unique insights into the convergence of optimal models to
the true governing physics of partial observations. They
do this by directly constructing predictive distributions—
probabilities over future observations given past observa-
tions. In particular, we express the possible convergence
of history-dependent models as a thermodynamic limit
in which the variance of predictive distributions vanishes
as the length of past observations increases. This again
shows how the action of Koopman operators on delay em-
beddings implicitly account for the effects of unobserved
degrees of freedom.

Formulating optimal data-driven models as expecta-
tions of predictive distributions suggests a more gen-
eral stochastic framework for modeling partially-observed
systems. Rather than returning the expectation of pre-
dictive distributions, optimal stochastic models simply
return the predictive distributions themselves [20], which
then may be sampled for ensemble forecasts. Our di-
rect construction of predictive distributions using Max-
imum Caliber measures leads naturally to such optimal
stochastic models for partially-observed systems. A se-

quel gives this stochastic formulation of optimal predic-
tion of partially-observed systems.

A. Implicit versus explicit representations

The physical insights that emerge shed light on why
data-driven models can outperform traditional physics
models for predicting systems with relatively few ob-
served degrees of freedom. Indeed, this has become
increasingly common for hydrological systems [21–24].
In these cases, the implicit approach that uses delay-
coordinate embeddings is more effective than the explicit
approach that uses data assimilation. For example, while
many details, e.g., subsurface morphology, are crucial
for geophysical prediction, given limited available sub-
surface measurements, reconstructing informative data-
images for them is exceedingly difficult. This leads to less
effective physics-based methods that rely on the latter.

Perhaps unsurprisingly in this light, due to their em-
pirical successes in scientific applications, data-driven
predictive models are increasingly employed. That
said, they are widely considered to be an entirely new
paradigm—a paradigm with little to no relation with
governing physics and physics-based models. We aim to
show that they are in fact quite similar.

Our framework, together with numerical examples,
shows that data-driven models do implicitly what
physics-based models do explicitly to account for unob-
served degrees of freedom. We also clarify how the ac-
tion Koopman and Perron-Frobenius operators on delay-
coordinate embeddings may converge to the true system
dynamics on the full system state. Generating partitions
on maps of the unit interval are discussed as a rigorous
example displaying this behavior. Said another way, the
physics underlying history-dependent data-driven models
is the same as the physics underlying traditional physics-
based models.

The resulting unified modeling framework shows that
the distinction is not so much “data-driven versus
physics-based”, but rather the emphasis should be on
where approaches land in the “implicit versus explicit”
representation spectrum. The class of physics-informed
machine learning models [25–27], now rapidly gaining
popularity, are thus seen to lie between fully-explicit
physics-based models and fully-implicit data-driven mod-
els. Such hybrid models explicitly enforce certain phys-
ical properties as inductive biases [28, 29], with any re-
maining properties learned implicitly from the data.

B. Synopsis

Our development unfolds as follows. Section II intro-
duces Platonic models as the true dynamics of a given
physical system. This is what models attempt to pre-
dict. Next, Section III formalizes partial observations
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and the resulting stochastic processes over the observ-
able degrees of freedom, which we call dynamical pro-
cesses. These are the main objects of study. To set the
stage for the development of implicit data-driven mod-
els, Section IV first reviews the explicit physics-based
modeling approach. Next, Section V gives the physics of
partial observations expressed in terms of Koopman and
Perron-Frobenius operators. This section also discusses
connections to statistical mechanics and introduces Max-
imum Entropy measures.

Section VI overviews implicit data-driven models and
their Hilbert space formulation for the case of instanta-
neous prediction. Section VII details the Mori-Zwanzig
formalism, motivating history-dependent models. Sec-
tion VIII discusses histories of past observations in the
form of delay-coordinate embeddings. Section IX then
expresses the Mori-Zwanzig formalism in terms of de-
lay embeddings using Wiener projections. This pro-
vides the formulation of history-dependent Hilbert space
models, using both the equilibrium invariant measure
and nonequilibrium Maximum Caliber measures. In the
nonequilibrium case, the Maximum Caliber measures al-
low for the direct construction of predictive distributions,
providing insights into the convergence behavior of opti-
mal history-dependent models. Section X provides exam-
ples demonstrating the ability of data-driven models to
implicitly learn the effects of the unobserved degrees of
freedom. Finally, Section XI uses the prior development
to formally connect implicit data-driven models with ex-
plicit physics-based models. This shows the underlying
similarity between the two approaches and offers a uni-
fied implicit-explicit modeling framework.

II. SYSTEMS AND PLATONIC MODELS

After centuries of intellectual inquiry, physical scien-
tists collectively have come to believe in having a solid
grasp of the basic physics governing measurable phenom-
ena. For example, many Earth Science systems are gov-
erned by classical field theories. Atmospheric circulation,
shown in Fig. 1, is governed by the laws of fluid mechan-
ics and thermodynamics [30].

Saying that one “understands” these system’s basic
physics means, more specifically, that the governing prin-
ciples are encapsulated in the form of explicit differential
equations-of-motion [31]. Formally, the system state ω
evolves according to:

ω̇ =
dω

dt
= Φ(ω) ,

where the governing equations Φ are a function of ω.
For spatially-extended field theories, ω itself is a func-
tion of spatial coordinates, too. Φ then typically includes
finitely-many spatial derivatives of ω, signifying the state
dynamics are governed by local interactions.

The “unreasonable effectiveness of mathematics” in
physics has been repeatedly noted since Ref. [32] high-
lighted the puzzle. Noting that governing equations Φ are
almost always given in closed form the effectiveness is all
the more intriguing. Our development further highlights
that demanding physical systems always be expressed
in closed form rather restricts the class of mathematical
models used to describe the physical world.

Here, we represent a given physical system as a dif-
ferential dynamical system (Ω,Φ) that, for a shorthand,
we call the Platonic model. A system’s true dynamics,
given by the Platonic model, may be well approximated
with closed-form equations of motion. The Navier-Stokes
partial differential equations come to mind as an approx-
imation to the Platonic model of fluid flow. However, we
need not assume a particular functional form for Platonic
models.

That said, there are three important properties we do
assume for Platonic models. Note that we are primarily
concerned here with phenomena that occur at classical
energy scales, such as found in Earth Systems. The first
property is that system states evolve continuously—they
are continuous trajectories in the state space over time.

The next two properties define what the system state
ω ∈ Ω actually is. The second property assumes Platonic
models are Markovian: Determining a later state ωt =
Φtω0 only requires knowing the state at a single prior
time ω0. The third property assumes Platonic models
are deterministic: The same initial condition ω0 always
produces the same later state ωt = Φtω0.

The latter two properties impose a closure relation-
ship among the degrees of freedom constituting the sys-
tem state ω. That is, ω is considered a vector with each
component ωi being a degree of freedom. The dynamic
Φ(ω) captures the physically-relevant interactions among
the degrees of freedom by determining how they evolve
forward in time. The system’s governing physics is ap-
propriately captured or modeled when, with sufficiently-
many degrees of freedom comprising ω, there is a closure
in their dynamics: For every ωi, its time evolution is a
deterministic and Markovian function of a subset of the
other {ωi}, i.e., the system state ω.

As there are many parallels to statistical mechanics,
note that there is an important property we are not as-
suming of (Ω,Φ)—that the system is Hamiltonian. In the
partially-observed setting, introduced shortly, the Pla-
tonic model (Ω,Φ) is analogous to a “microsystem”. Sta-
tistical mechanics would take it to be Hamiltonian. This
is too restrictive for our purposes. Importantly, Hamil-
tonian systems are conservative and volume-preserving,
via Liouville’s theorem [4]. Volume-preserving dynamics
admit a natural invariant probability distribution over Ω,
known as the microcanonical ensemble in statistical me-
chanics [4]. While such invariant probability measures
are convenient mathematically, many physical systems
of interest display transient nonasymptotic behavior that
cannot be captured by invariant measures. This is par-
ticularly notable for fluid flows.
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To accommodate nonasymptotic behaviors within our
formalism, we do not assume Platonic models are neces-
sarily volume-preserving, although they may be. More
generally, while it is standard to assume the dynamics
is measure-preserving such that there is a probability
measure over Ω which is invariant under Φ, our formal-
ism does not require an invariant measure. Rather, one
of our main contributions is introducing natural time-
dependent measures for partially-observed systems that
can support nonasymptotic behaviors. In the language of
statistical mechanics, our approach is a nonequilibrium
formalism that generalizes the equilibrium setting using
asymptotic invariant measures. For more details on er-
godicity, invariant measures, and dissipative systems, see
Appendix A.

Additionally, in what follows, we assume a system’s
dynamic is reversible, so that:

(Φt)−1 = Φ−t .

This, however, is an assumption for notional convenience
and simplicity. It can be lifted without much difficulty.
An added advantage of our time-dependent formulation
is that we need not assume reversible dynamics. Note
though that many systems of interest are reversible in
this way, such as all finite-dimensional systems of ordi-
nary differential equations.

III. PARTIAL OBSERVATIONS AND
DYNAMICAL PROCESSES

The semigroup formalism of dynamical systems [33,
Ch. 7] is particularly apt for our development. Con-
sider a dynamical system (Ω,ΣΩ, ν,Φ). The state space
Ω is a Euclidean space or manifold for finite-dimensional
systems or a general Hilbert space for spatially-extended
systems. ΣΩ is the Borel σ-algebra and ν the Lebesgue
reference measure that gives a “volume” to state space.

Φ is the dynamic—the infinitesimal generator of a con-
tinuous semigroup of measurable flow maps {Φt : Ω →
Ω}t∈R, with:

Φ(ω) = lim
τ→0

1

τ

(
Φt+τ (ω)− Φt(ω)

)

=
d

dt
Φt(ω)|t=0 .

Thus, the orbits {ωt = Φt(ω0) : t ∈ R(≥0)} are continuous
functions of time t. When the dynamic is specified by a
system of differential equations, Φ is the time derivative
of the orbits:

ω̇ =
d

dt
ω

= Φ(ω) .

For a given dynamical system under study, let x ∈
X be the subset of system variables that are observ-

able, measurable, or generally accessible. Through ex-
perimental or observational measurements or numeri-
cal simulations, they may be collected in a time series
{x0, x1, . . . , xT−1}—a time-ordered set of observations of
x taken at uniform time intervals {t0, t1, . . . , tT−1} with
ti = (i− 1)∆t. The observations x are generated by the
dynamical system under the continuous and measurable
mapping X : Ω → X so that xt = X(ωt). In practice,
the measurement observables are given as a vector of real
numbers, so that X = Rn.

We are interested in the case of a partially-observed
dynamical system for which the map X is many-to-one
and not invertible. Due to this, an observation xt is in-
sufficient for determining the full state ωt of the underly-
ing dynamical system at any given time. That is, there
are unobservable, unmeasurable, or inaccessible degrees
of freedom in ω. And so, measurement data can only
ever provide a limited view of the system’s true state ω.
An important example is weather prediction, shown in
Fig. 1.

We refer to collections of arbitrarily-long time series of
observables {. . . , x−1, x0, x1, . . .} as a dynamical process,
signifying that it is a stochastic process derived from a
deterministic dynamical system through partial observa-
tions. They are the objects we wish to model. If the
underlying system is governed by noninvertible dynam-
ics we consider the time index of a dynamical process to
correspond to observation time. That is, x0 is not an
initial condition, but rather the present moment of ob-
servation. The leading dots then indicate that we allow
measurements from arbitrarily far in the past.

Various properties of dynamical processes will be given
shortly, using the Koopman and Perron-Frobenius oper-
ators. First though, we detail the standard approach for
modeling partially-observed systems using physics-based
models.

IV. EXPLICIT PREDICTIVE MODELS

Given a physical system’s Platonic model—its govern-
ing physics—and partial observations from instrument
measurements, how do we predict the system’s future
behavior? Our main interest is to explain the effec-
tiveness of implicit approaches learned by data-driven
models. To set the stage, though, we first overview the
more familiar explicit approach using physics-based mod-
els. Figure 1 shows the relation between data-driven and
physics-based methods for modeling systems from par-
tial observations. After formulating the physics under-
lying implicit data-driven models, a formal connection
with explicit physics models is given in Section XI.

A. Physics-Based Models

In essence, physics-based models simply attempt to
solve the governing equations that constitute or well-
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Koopman Operator
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Model Physics
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U tX = X ◦ Φt

FIG. 1. Predicting complex systems (left) from partial observations: Instantaneous data-driven modeling (middle) versus
physics-based models (right). Instrument measurements provide a partial view x of the true system state ω through a nonin-
vertible mapping X. From an initial measurement observation x0 = X(ω0), the value of the instruments at later time t is found
by letting the actual system evolve, given by the dynamic Φt, and taking a measurement xt = X(ωt) at this time. Koopman
operators U t, provide an alternate point of view by providing a future measurement function xt = U tX(ω0) that gives the
instrument readings xt at time t from the current system state ω0. It provides the ground-truth that data-driven models T t
try to approximate as functions from current observation x0 to future observation xt. In contrast, physics-based models create
a coarse-grained approximation u0 of the full system state ω0 most consistent with past observations using data assimilation

and model inversion as u0 =←−a (x0, x−1, x−2, . . .). Data images are then evolved through numerical approximation ut = Φ̃t(u0)
of the system dynamics ωt = Φt(ω0).

approximate the Platonic model Φ. There are three
main challenges when predicting a physical system us-
ing differential equation models: nonlinearity, high-
dimensionality, and calibration.

First, most systems of interest are governed by nonlin-
ear equations that cannot be solved analytically. Thus,
numerical approximations to solutions are necessary. For
complicated systems like those encountered in Earth Sci-
ences, this introduces a second challenge.

Even with the arrival of massive high performance
computing, today’s largest machines still do not have the
computational resources required to fully account for all
known physical effects in a system at the necessary scales.
This second challenge is certainly the case for numerical
models of the atmosphere, as depicted in Fig. 1’s right
column. The effects that are not directly computed are
accounted for using parametrization schemes to replace
processes that are too small-scale or complicated to be
directly computed in the model. This simplifying proce-
dure produces a deterministic, Markovian closure.

While parametrization schemes are often heuristic
choices, increasingly they are being informed by sepa-
rate models specifically targeting the effects being pa-
rameterized. This includes, for example, using cloud-
resolving models to inform cloud formation parametriza-

tions in large-scale atmospheric models. Moreover, for
spatially-extended field theories, continuous spatial co-
ordinates must be discretized into a finite grid or mesh
and then the effects of subgrid-scale processes must be
parameterized using approximate closure models. How-
ever they are arrived at, the parametrizations represent
a modeler’s choices, and these choices necessarily induce
conceptual error that affects the model’s predictive ca-
pabilities. Poor choice of generic model may also lead to
conceptual error in prediction.

Assume, for a given physical system, that we know ef-
fective differential equations Φ(ω) that govern the sys-
tem. A generic model of Φ(ω) is an auxiliary set of

equations Φ̃τα : ut 7→ ut+τ whose solutions {ut} can be
solved numerically and that approximate the solutions of
Φ. The generic model typically contains a set of parame-
ters α that include those associated with parametrization
schemes as well as physical parameters of the model, such
as viscosity in the Navier-Stokes equations. The generic

model Φ̃τα acts on data images ut that are coarse-grained
approximations of the state ωt of the physical system.
Neglecting numerical round-off error, numerical models
are also Markov and deterministic, like the differential
equation models they approximate.
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B. Data Assimilation

The final challenge in using a generic physics model to
predict the future behavior of a partially-observed phys-
ical system comes during calibration. The generic model
must be made into a specific model that appropriately
captures the particular circumstances of the physical sys-
tem of interest. This includes specification of the param-
eters α and boundary conditions, as well as initialization
of the model. (For simplicity, we include specification of
the boundary conditions in α.) The Markov property al-
lows for generating an orbit ut of the specific model from
a single initial state u0. For this orbit to provide a pre-
diction of the true system’s orbit {ωt} requires aligning
the model’s initial state u0 as well as possible to the true
physical system’s initial state ω0.

To emphasize the difficulty of initialization in particu-
lar, consider the commonly-encountered case of predict-
ing a spatially-extended system using approximated so-
lutions of a classical field theory—i.e., Φ is a set of par-
tial differential equations. It is not possible to determine
the system’s configuration over a continuum of spatial
coordinates. Rather, as depicted in the top of Fig. 1’s
middle column, measurements derive from a variety of
instruments collecting data over a relatively small sub-
set of the spatial domain. However, solving the model
equations—say, using a finite element method—requires
an initial condition on a grid over the spatial domain.
Our instruments, though, do not necessarily provide full
coverage over the grid. Thus, the calibration methods
produce a data image u0 (top right of Fig. 1) that repre-
sents inferred values over the full grid.

Model calibration, including parameter and bound-
ary condition specification, as well as initialization of
the data image u0, are carried out using model inver-
sion and data assimilation [34, 35]. Since these tech-
niques require multiple past observations, calibration is
sometimes also referred to as history matching. Given a
history of past observations ←−x kt := {xt, xt−1, . . . , xt−k},
calibration attempts to find the initial data image ut =←−a (←−x kt ) and parameter set α such that the model output

{ut, Φ̃−1
α (ut), . . . , Φ̃

−k
α (ut)} is as consistent with the past

observations ←−x kt as possible. (Recall that we are assum-
ing reversible dynamics for notational simplicity, but this
is not strictly required.)

Due to the many-to-one nature of the partial obser-
vation map X, the calibration process is typically not
unique. Multiple parameter sets and initial data images
may produce orbits of data images that are equally con-
sistent with the observations up to time t. Therefore,
there will be multiple specific models that are equally
consistent with past observations, but make different
predictions for future behaviors. Therefore, a specific
model used for prediction generally has calibration er-
ror. This combined with conceptual error leads to the
model’s overall prediction error. Prediction error can ac-
cumulate rapidly, particularly for deterministic chaotic
systems whose inherent instabilities exponentially am-

plify small variations. This is one reason why weather
is so hard to predict.

We stress here that model parametrizations and initial-
ization u0 = a(x0) are both means of explicitly account-
ing for unobserved or unrepresented degrees of freedom
not in x = X(ω). For instance, in atmospheric circula-
tion, imagine we do not have instruments on a remote
island in the Pacific. As a consequence, atmospheric
variables—temperature, pressure, wind speed, and the
like—at that spatial location are not in x = X(ω). How-
ever, when a data image u is created these variables are
approximated at that location.

Note also that the primary concerns are the predictive
capability of physics models and how it relates to the
Platonic model’s true dynamics. In a sense, though, we
are agnostic as to whether a specific model is valid or
not [36, 37]. Loosely speaking, validity measures how
well a physical system’s specific model approximates its
Platonic model. The specific model’s predictive skill is, of
course, related to how well it approximates the Platonic
model. And, this is a question we care about here.

That said, there is a deeper concern about how well a
specific model approximates the Platonic model. This in-
volves the question of how much we can infer about the
underlying physical and causal processes governing the
true system, given a specific model of that system and
its predictive capability. That is, how well can we explic-
itly formulate a Platonic model given a skillful specific
model? It is in this deeper mechanistic sense that we are
agnostic to the question of model validity. As the saying
goes, “All models are wrong, but some are useful” [38].

V. PHYSICS OF PARTIAL OBSERVATIONS

Platonic equation-of-motion models are given in terms
of the underlying system state—the full set of degrees
of freedom. Due to their explicit nature, the connection
between physics models and the system’s true govern-
ing physics described by Platonic models is clear. Data-
driven models of partially-observed systems do not gen-
erally attempt to explicitly infer the full Platonic system
state, as physics-based models do. And so, it is less clear
how they relate to the physics of Platonic models. To dis-
cuss Platonic models and the true governing physics in
a meaningful way for partially-observed system requires
the operator-theoretic formulation of dynamical systems
[3, 33]. Both Koopman and Perron-Frobenius opera-
tors, defined shortly, provide alternative descriptions of
a system’s temporal evolution: Koopman operators give
the evolution of observables, while Perron-Frobenius op-
erators evolve state distributions. These evolution op-
erators are the classical analogs of the Heisenberg and
Schrödinger formulations of quantum mechanics, respec-
tively.
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A. Koopman Operators

A Koopman operator U t acts on functions of the sys-
tem state, known as observables f : Ω→ R, where f is an
element of a function space F . The action of U t : F → F
on observable f is given by composition with the dynamic
Φt, also known as the pullback of f along Φt:

U tf = f ◦ Φt, (1)

[U tf ](ω) = ft(ω)

:= f
(
Φt(ω)

)
. (2)

That is, U t’s action on observable f ∈ F gives the time-
shifted observable ft = U tf whose value at state ω is
obtained by evaluating f at the future state ωt = Φt(ω).
Recall that the flow maps {Φt} form a semigroup in that
Φt+s = Φt ◦ Φs. The set {U t} inherits this semigroup
structure, so that U t ◦ U∆t = U t+∆t.

Each U t is a linear infinite-dimensional operator when
F is a vector space. As discussed more below in relation
to Perron-Frobenius operators, it is most natural to take
F = L∞(Ω, ν)—the almost-everywhere bounded func-
tions of ω—but the square-integrable functions L2(Ω, ν)
are often used for mathematical convenience. The fol-
lowing uses Koopman operators on L2(Ω, ν) since it is a
Hilbert space and the development requires orthogonal
projections.

Recall that we are interested in observable functions
X that are generally multidimensional. With this, an
observable function f is a component of a vector-valued
observable function; e.g., f = Xi. A Koopman operator
that acts on an observable X is then the product over the
component operators acting on Xi. To avoid excessive
notation, we denote these product operators as U t.

For a dynamical system with initial condition ω0 at
time t0, the measurement observable at a later time t > t0
is given by:

xt = X(ωt)

= X
(
Φt(ω0)

)

= Xt(ω0)

= [U tX](ω0) .

The dynamical process, therefore, is a function of the
underlying system’s (unknown) initial condition:

{. . . , x−1, x0, x1, . . .} =

{. . . , U−1X(ω0), U0X(ω0), U1X(ω0), . . . } . (3)

This transparently relates the evolution of partial
measurement observations of the dynamical process
{. . . , x−1, x0, x1, . . .} to the physics of the Platonic model
Φt(ω0) through the action of Koopman operators on the
observable map X.

B. Perron-Frobenius Operators

Koopman operators connect dynamical processes to
the Platonic model (Ω,Φ) via an unknown initial Pla-
tonic state ω0. If we do not seek to directly infer ω0, as
done with physics models, it becomes useful to formu-
late the problem in terms of distributions over possible
ω0. The dynamics of these distributions is provided by
Perron-Frobenius operators.

In appropriately defined spaces, Perron-Frobenius op-
erators are dual to Koopman operators. It is most com-
mon to consider Perron-Frobenius operators acting on
L1(Ω, ν) densities and, thus, their Koopman duals evolve
observables in L∞(Ω, ν). However, as often done, the fol-
lowing considers both operators acting on L2(Ω, ν) func-
tions. In this case, Perron-Frobenius operators act on L2

measures. If the L2 measure νρ is absolutely continuous
with respect to the reference measure ν, νρ is related to
the density ρ through the reference measure:

νρ(B) =

∫

B

ρdν ,

for density ρ ∈ L1(Ω, ν) and B ∈ ΣΩ.

For continuous-time dynamical systems there is a con-
tinuous semigroup {P t} of Perron-Frobenius operators
that evolve measures µ through the pushforward of µ
along Φt:

µt = P tµ

:= µ ◦ Φ−t . (4)

The measure µt defines the probability space
(Ω,ΣΩ, µt) that quantifies uncertainty in system state ωt
at time t. In turn, this casts observables, given by the
measurable map X : Ω → X , as random variables Xt

distributed according to the pushforward measure:

µXt (BX ) = µt
(
X−1(BX )

)
,

for BX ∈ ΣX . Thus, we can write Xt’s distribution in
terms of the initial measure µ0:

Pr(Xt ∈ BX ) =

∫

BX

dµXt

=

∫

X−1(BX )

dµt

=

∫

Φ−t
(
X−1(BX )

) dµ0 . (5)

This is analogous to writing, as done in Eq. (3), obser-
vations xt in terms of the initial state ω0 and the action
of Koopman operators on the measurement observable
X. Recall that the two operators are dual, so that these
two perspectives are equivalent. If there is initial uncer-
tainty over system states, then the observables become
random variables. The Koopman operator then evolves
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observable random variables that are distributed accord-
ing to the action of Perron-Frobenius operators on the
initial distribution.

Thus, given an initial uncertainty measure over sys-
tem states, a dynamical process is a stochastic pro-
cess {. . . , X−1, X0, X1, . . . }—a time series of random
variables—with realizations {. . . , x−1, x0, x1, . . .}. Note
that the random variables in {. . . , X−1, X0, X1, . . . } are
actually (measurable) functions of two variables: Xt =
X(t, ω0). Fixing ω0 produces a realization, or sample
path, . . . , x−1, x0, x1, . . . of the stochastic process. From
our setup, the realization . . . , x−1, x0, x1, . . . for a given
ω0 is the result of applying the map X to each ωt in the
orbit generated by ω0. We consider continuous maps X
so that realizations {xt = X(ωt) : ωt = Φt(ω0)} are also
continuous curves in t.

We emphasize again that evolution operators are de-
fined in Eqs. (2) and (4) in terms of the Platonic model
Φ. As such, they are yet other ways of expressing the
true governing physics of a given system. In particular,
they provide the true physics of partial observations.

C. Nonequilibrium Statistical Mechanics

Equation (3) expresses the time series of measurement
observations in terms of Koopman operators and an un-
known initial Platonic state ω0. In contrast, Eq. (5)
expresses the measurement observables as a continuous
stochastic process using Perron-Frobenius operators and
an initial probability distribution µ0 over the Platonic
states. To compensate for not knowing the exact initial
state ω0, one can ask, is there a natural choice for an
initial distribution µ0 over Ω induced by observations?
This key question leads directly to statistical mechanics.

The standard choice for µ0 is the invariant measure µ∗
given by P tµ∗ = µ∗. For the ergodic systems considered
here µ∗ is guaranteed to exist and to be reached asymp-
totically (see Appendix A). The following employs this
commonly-invoked “equilibrium case” to review instan-
taneous data-driven models. Note that, by definition,
taking the invariant measure µ∗ as µ0 leads to µt = µ∗
for all t. Due to this, the random variable observables
in Eq. (5) have time-independent distributions. In this
case, the stochastic process over measurement observ-
ables is a stationary stochastic process. Clearly though,
assuming the invariant measure µ∗ precludes nonasymp-
totic “nonequilibrium”behaviors that we ultimately wish
to also capture.

The preceding defined dynamical processes as stochas-
tic processes generated by deterministic dynamical sys-
tems. To set the stage for the nonequilibrium generaliza-
tion with time-dependent measures used later for history-
dependent models, recall that underlying system states
ωt can not be uniquely identified from an observation xt
due to the noninvertibility of the measurement observable
function X. This setup admits a natural nonasymptotic
measure induced by a single observation xt = X(ωt) that

we now define.

Consider a dynamical system (Ω,ΣΩ, ν,Φ) and a sin-
gle observation xt = X(ωt) at an arbitrary time t. Since
the observation mapping X is not invertible there can
be many ωt ∈ Ω yielding the observed value xt under
X. (This is directly related to the non-uniqueness of
model inversion when assimilating physics-based mod-
els). Thus, for a given observation xt define the set
Bt ∈ ΣΩ as:

Bt = X−1(xt) = {ωt ∈ Ω | X(ωt) = xt} . (6)

Note that Bt is ν-measurable.

Following Refs. [16, 19]’s minimal bias argument there
is a natural measure dµt = ρtdν defined through the
density ρt that is constant over Bt and zero elsewhere, so
that Pr(ωt ∈ b ⊆ Bt) = ν(b)/ν(Bt). The Maximum En-
tropy Principle (MEP) says that the distribution which
maximizes entropy subject to known constraints creates
the minimally-biased prior distribution that is spread out
as much as possible, up to given constraints. If the only
constraint given is the support set, MEP reduces to the
Principle of Indifference and assigns uniform probability
over the set.

In what way is the noninvariant measure µt a nonequi-
librium generalization of the equilibrium measure µ∗?
The nonequilibrium behaviors allowed by ergodic systems
with dynamics Φ which have no explicit time-dependence
are those of relaxation processes [39]. According to
the attractor-basin formalism described in Appendix A,
these processes limit to equilibrium distributions given by
the invariant measure µ∗. Theorem 4.5 in Ref. [39] es-
tablishes the correspondence between the invariant mea-
sure µ∗ and thermodynamic equilibrium for these sys-
tems. Hence, any other measure µ is a nonequilibrium
distribution that asymptotically limits to the equilibrium
distribution. The measure µt is a nonequilibrium mea-
sure naturally induced through partial observations.

Note that there is a wide range of nonequilibrium phe-
nomena beyond relaxation processes. For instance, an in-
variant measure may correspond to an equilibrium steady
state or a nonequilibrium steady state [40] that absorbs
and dissipates energy from its surroundings. These more
general far-from-equilibrium processes that include ther-
mal driving require explicit time-dependence in the dy-
namics [41]. Detailed thermodynamic analysis is not our
primary concern as yet, but the formalism introduced
here readily extends to such settings by including explicit
time-dependence in the Koopman and Perron-Frobenius
operators. See, for example, the dynamics governed by
Ref. [42]’s time-dependent rate-matrices. In that lan-
guage, the development here applies in the special case
of a fixed time-independent protocol with relaxation to
the associated invariant distribution.

As seen shortly, the two measures µ∗ and µt repre-
sent different sets of assumptions used to motivate and
interpret the behavior of data-driven models. Neither is
typically known explicitly, but is rather inferred approx-



9

imately from observations. Kernel methods are particu-
larly useful for this in practice [3, 43]. The nonequilib-
rium measure µt is more closely aligned with the mod-
eling approach of physics-based models. Its construction
requires knowledge of the set Bt of Platonic states consis-
tent with the observation xt, much like the construction
of the data image ut that is the approximation of the Pla-
tonic state most consistent with xt. Ultimately though,
both µ∗ and µt are insightful in their own way for un-
derstanding implicit data-driven models, and so both are
discussed in detail in what follows.

VI. INSTANTANEOUS IMPLICIT MODELS

With the physics of dynamical processes laid out us-
ing the machinery of Koopman and Perron-Frobenius
evolution operators, we return to the question of opti-
mal prediction. Section IV outlined the challenges of
using physics-based modeling for prediction. Circum-
venting explicit inference of unobserved degrees of free-
dom requires learning, directly from observation, evolu-
tion rules for the variables that are accessible through
instrument measurements. Pushing this further, we ex-
plore learning implicit models that predict the evolution
of the observables—models given in a more flexible, pos-
sibly more abstract, form than differential equations-of-
motion.

A. Instantaneous Predictive Distributions

The most basic form of prediction for a dynamical
process is instantaneous: Given a single observation
xt = X(ωt), predict the observable at a single time in the
future xt+τ = X(ωt+τ ). Before reviewing the functional
Hilbert space approach for learning instantaneous im-
plicit models, we first theoretically analyze the problem
using evolution operators. We argue that the maximal
instantaneous predictive information available is given in
an instantaneous predictive distribution. We will later
see that the optimal Hilbert space model for instanta-
neous prediction is the expectation value of the instanta-
neous predictive distribution.

Given a single observation xt, Eq. (6) defined Bt as the
set of all possible Platonic states ωt consistent with the
observation xt such that X(ωt) = xt. This then defines
the set of all possible observables xt+τ that may be seen
at a later time by evolving each ωt ∈ Bt under Φτ and
applying the observable mapping X. Said another way,
the set of all possible future observables xt+τ is given
through the action of the Koopman operator by applying
the time-shifted observable Xτ = [UτX](ωt) to all ωt in
Bt.

Furthermore, we use the MEP measure µt over Bt
and the Perron-Frobenius operator to define the distri-
bution over possible future observables, supported on
the set {xt+τ = [UτX](ωt), for all ωt ∈ Bt}. This

distribution—the instantaneous predictive distribution—
is given as the pushforward of the time-evolved measure
µt+τ = P τµt along X, following Eq. (5):

Pr(UτX|Xt = xt) ∼ µXt+τ . (7)

To define the instantaneous predictive distribution, we
need some initial measure µt. Without additional in-
formation on the system, the choice of a MEP mea-
sure is most natural. What matters for our purposes
is that µt is supported on the set Bt and, thus, the
instantaneous predictive distributions are supported on
{xt+τ = [UτX](ωt), for all ωt ∈ Bt}. In practice, these
measures are estimated empirically from data and the
MEP is not typically invoked for µt’s empirical construc-
tion.

Also note that the formalism for instantaneous models
we now review is given in terms of the equilibrium mea-
sure µ∗, as is standard. However, instantaneous predic-
tive distributions cannot be expressed directly in terms of
µ∗. That said, the nonequilibrium construction of predic-
tive distributions just given is instructive for understand-
ing instantaneous models built using µ∗. The equilibrium
and nonequilibrium formulations of data-driven models
are more closely connected below for history-dependent
models using Wiener projections. Our introduction of
nonequilibrium measures is most impactful for history-
dependent models, as they provide insights not available
through use of the invariant measure.

B. Instantaneous Data-Driven Models

We now review instantaneous data-driven models and
their Hilbert space formalism. Following established
practice, we use the invariant measure µ∗.

Given the current observation data xt, the goal is to
construct a model T τ : X → X , called a target function,
that predicts what the instruments will read at a later
time t + τ [14]. This is depicted in Figure 1’s middle
column. On the one hand, recall that for physics-based
models we assume the system’s governing equations of
motion Φ are known, and that one of the main chal-
lenges is to infer from partial observations xt = X(ωt) the
underlying Platonic state ωt that the equations evolve.
On the other hand, the data-driven paradigm flips this
around to work directly with the measurement observa-
tions xt, without directly inferring ωt. In point of fact,
an appropriate set of governing equations for xt is gen-
erally not know a priori. They may not even be desired.
Instead, the goal is to learn a model T τ from the mea-
surement data.

In some cases we can learn T τ as closed-form equations
using Galerkin projections of Φ onto X [44]. In many
cases, though, the evolution of xt cannot be adequately
described by a set of closed-form equations [45]. Thus,
we seek more general forms for T τ that are measurable
mappings from X into X . For example, neural networks
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[46] are universal function approximators [47] and so are
able, in principle, to represent T τ .

As the name suggests, a modeler cannot simply write
down an implicit model. Rather, implicit models are im-
plemented algorithmically and learned from data. From
the discussion above, the Koopman operator provides the
ground truth for prediction—the equivalent of the Pla-
tonic model. Following Ref. [14], the mean-squared error
for model T τ is given as:

∥∥T τ ◦X − UτX
∥∥2

L2(µ∗)
. (8)

From the Koopman operator definition and Fig. 1’s
commutation relations, the measurement data
{x0, x1, . . . , xT }, used to learn T τ , contain samples
of the Koopman operator’s action. That is, for an
observation xt = X(ωt), a later observation is:

xt+τ = X(ωt+τ )

= Xτ (ωt)

= [UτX](ωt) .

Empirically, the Koopman operator’s action is approx-
imated through the action of the shift operator [3, 14].
And so, the ground truth for training T τ is found by
simply looking up in the observed data {x0, x1, . . . , xT }
what happens after time τ . In this way, given xt ∈
{x0, x1, . . . , xT }, 0 ≤ t < (T − τ), x̃t = T τ (xt) is the
prediction made by T τ . With the ground truth given by
xt+τ ∈ {x0, x1, . . . , xT }, a parametric model (e.g., neural
network) T τ is trained by minimizing ‖xt+τ − x̃t‖2 over
the training data, 0 ≤ t < (T − τ).

C. Analog Forecasting

Analog forecasting, dating back at least to Ref. [48],
is one of the oldest methods for approximating T τ im-
plicitly from data. The basic procedure is to predict a
system’s future by finding the value recorded in past
observations (the analog) that is most similar to the
present observation and then use the following value in
the recorded history as the forecast.

Formally, let {x0, x1, x2, . . . , xT } be the finite set of his-
torical observations—the training data set. Then, given
the current observation Xt = x, with t > T , identify x’s
analog xa in the training set. This is typically imple-
mented with Euclidean distance:

a = argmin
i∈{0,...,T−τ}

D(x, xi) .

The forecast xt+τ of x for τ time steps into the future is
given by the analog forecast xa+τ ∈ {x0, x1, x2, . . . , xT }.
That is, the analog forecast simply looks up what hap-
pened in the training data set τ time steps after the ana-

log:

T τAF(x) = xa+τ . (9)

Analog forecasting is used for the data-driven prediction
examples given below in Section X.

D. Optimal Hilbert Space Models

As data-driven models, target functions T τ map a sin-
gle input to a single output. As such, target functions live
in a function space. Since inner products and orthogonal
projections play an important role in the development,
we seek target functions as elements of a Hilbert space.
The following reviews the Hilbert space formulation of
instantaneous data-driven models [3, 14, 15].

Recall that partial observations of a dynamical sys-
tem (Ω,Φ) induce a time-dependent probability mea-
sure µt over Ω. For simplicity when using instantaneous
models, in the asymptotic limit we employ the invari-
ant ergodic measure µ∗. This leads to the probability
space (Ω,ΣΩ, µ∗) and measurement observables as ran-
dom variables given by the measurable map X : Ω→ X .
The space X is often referred to as the covariate space
and X the covariate map.

More generally, we may consider a response space Y
and the (measurable) response map Y : Ω → Y. The
target function is then a measurable mapping from co-
variates to a response: T τ : X → Y. In our dynamical
setting, the covariate and response spaces are the same—
the observation instrument readings: Y = X = Rn. The
response map is the time-shifted measurement observable
Y = Xτ = X◦Φτ : Ω→ X . Note that X and Y = Xτ are
both random variables over the same probability space
(Ω,ΣΩ, µ∗) since xt = X(ωt) and yt = xt+τ = Xτ (ωt).
This is what makes T τ predictive.

Consider the Hilbert spaces:

H := {f : Ω→ X :

∫

Ω

f2(ω)dµ∗(ω) <∞} , (10)

V := {g : X → X : g ◦X ∈ H} , and

HX := {f ∈ H : f = g ◦X for some g ∈ V } .

Note thatH = L2(µ∗)—the set of square-integrable func-
tions of the full system state ω. And, HX is the Hilbert
subspace of L2(µ∗) containing functions fX that depend
only on the observable degrees of freedom xt = X(ωt).
Then V = L2(µX∗ ), where µX∗ is the pushforward of µ∗
along X, is the set of functions over the measurement ob-
servables such that composition with the observable map
X is square integrable. Since the observables X ∈ H
are what is accessible, the set V is what is at our dis-
posal to build implicit models. However, since Koopman
operators Uτ act on functions in H, we must compose
elements of V with X for proper comparison with U t’s
action. Specifically, the ground-truth for the future ob-
servation is given by Xt+τ = UτX which lives in the
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space H, while the functions available for us to learn are
in the subspace HX .

Equation (8) identifies the unique minimizer—the op-
timal T τ . Denote it Zτ . In statistics, this estimator is
known as the regression function, as well as the condi-
tional expectation function. That is:

E[UτX|X] = Zτ

:= argmin
g∈V

‖g ◦X − UτX‖2L2(µ∗)
. (11)

The conditional expectation E[·|X] is the (nonlinear) or-
thogonal projection PX : H → HX from H onto HX .
Thus, Zτ = PXU

τXt. This is the best approximation of
Xt+τ = UτX ∈ H available using functions restricted to
the subspace HX .

For a given learned target function (data-driven model)
T τ , we decompose its error via the regression function
Zτ :

E(T τ ) := ‖T τ ◦X − UτX‖2 (12)

= Θ(T τ ) + ΞτX . (13)

The excess generalization error Θ(T τ ) = ‖T τ − Zτ‖2
measures how far a given model is from the optimal so-
lution, while ΞτX is the intrinsic error due to the partial
observations X of a given system (Ω,Φ). For a given
physical system with instrument measurements X, the
regression function Zτ represents the maximum predic-
tive skill an instantaneous data-driven model can achieve.
ΞτX is then the unavoidable error incurred from only be-
ing able to measure X. Increasing instrument coverage
and expanding X can decrease ΞτX .

The conditional expectation E[UτX|X] can be ex-
pressed as the expectation of a probability measure sup-
ported on the set {xt+τ = [UτX](ωt), for all ωt ∈ Bt}—
the instantaneous predictive distribution. Although we
directly formulated the instantaneous predictive distri-
bution in Eq. (7) using the nonequilibrium measure µt,
these predictive distributions cannot be directly formu-
lated as an L2(µ∗) measure [3]. That said, they provide
insight into the intrinsic error of Zτ , regardless of which
measure is used for the nonlinear projection of Eq. (11).
As Zτ is the expectation of this distribution, the intrin-
sic error is then seen as the variance of the predictive
distribution. Later, we will give explicit constructions of
history-dependent generalizations of predictive distribu-
tions.

Empirical Hilbert Spaces While L2(µ∗) is theoreti-
cally convenient, it is not a workable space for empirical
models [49]. This is because functions in L2(µ∗) can-
not be distinguished with a finite set of samples, but the
latter is what is empirically available. Data-driven algo-
rithms thus typically employ reproducing kernel Hilbert
spaces (RKHSs), which have well-defined point evalua-
tions. For more on RKHS methods, as well as empir-
ical sample measures and their convergence, see Refs.
[3, 14, 50, 51].

VII. MORI-ZWANZIG FORMALISM OF
DYNAMICAL PROCESSES

Although Eq. (11) defines the optimal instantaneous
model, the optimal model still has an associated intrinsic
error—the variance of the instantaneous predictive dis-
tribution. With the same Hilbert space and projection
operator formalism used to define Zτ , the Mori-Zwanzig
formalism provides the full equations of motion for the
observable degrees of freedom by projecting the system
dynamics onto those degrees of freedom [5]. The com-
position of the Mori-Zwanzig equation reveals terms in
addition to Zτ that lead to the intrinsic error when not
accounted for in instantaneous models. Crucially, the
additional terms show that partial observation induces a
memory dependence in dynamical processes. This then
motivates the use of history-dependent models for in-
creased predictive skill over instantaneous models.

The Mori-Zwanzig setting is a special case of the
partially-observed dynamical systems considered so far.
There is an underlying true system (Ω,Φ) and a nonin-
vertible mapping X : Ω → X . In the Mori-Zwanzig set-
ting, the variables x = X(ω) are known as ω’s resolved
degrees of freedom. Denoting the remaining unresolved
degrees of freedom x̃, then ω = (x, x̃). The standard
formulation of the Mori-Zwanzig equation in statistical
mechanics assumes (Ω,Φ) to be Hamiltonian and consid-
ers projections of densities ρ(ω) and their time evolution
by the Liouville operator [4]. Importantly, the equation
can be derived in our more general setting of dissipative
systems using the Koopman operator [6, 15].

The goal is to predict the future values of the resolved
degrees of freedom using only information available from
them. That is, the task is to express the evolution of the
resolved variables—the dynamics governing the dynam-
ical process—in terms of the resolved variables as much
as possible. We do this by projecting the Koopman oper-
ator’s action onto the resolved degrees of freedom. This
is possible since the dynamics of dynamical processes is
given in terms of Koopman operators, as shown above.

Referring Eq. (10)’s Hilbert spaces—i.e., H =
L2(µ∗)—the discrete-time derivation expands the Koop-
man operator U t+1 : H → H via the Dyson formula:

U t+1 =

t∑

k=0

U t−kPU(QU)k + (QU)t+1 . (14)

In this, P is an orthogonal projection operator from H to
a subspace HΨ ⊆ HX ⊂ H spanned by basis functions
Ψ(x) that depend only on the resolved variables x =
X(ω). And, Q = I − P is the orthogonal projection to
the unresolved variables.

Recall that X ∈ H is the observation function that
returns data gathered from measurement recordings of
an underlying physical system Ω. Forming new ob-
servable functions in the projected space HΨ uses ob-
servation measurements in X and functions ψ(x) of
them. This is in contrast to introducing new measure-



12

ment instruments—instruments that would enlarge the
resolved-variable space HX . In finite subspace projection
algorithms, P projects into the subspace HΨ spanned by
the basis of dictionary functions Ψ.

In discrete time, the dynamics of the resolved variables
are generated via:

xt+1 = X(ωt+1)

= Xt+1(ω0)

= [U t+1X](ω0) .

The discrete-time Mori-Zwanzig equation then follows by
applying the expansion in Eq. (14) to the unit-shift ob-
servable Xt+1 = U t+1X ∈ H. Skipping algebra and
notational simplifications [15], this yields:

xt+1 = M0(xt) +

t∑

k=1

Mk(xt−k) + ξt+1(ω0) . (15)

The key is that this expression is exact. It gives the true
evolution of the measurement observables, equivalent to
the action of the full infinite-dimensional Koopman op-
erator.

The first term M0(xt) describes Markovian evolution.
It gives the best Markov approximation of Φ1 under pro-
jection P . That is, M0 is the best approximation of the
unit-step dynamics by a function of the current observ-
able only. It is the optimal target function Z1 defined
above when the nonlinear projection given in Eq. (11) is
used in Eq. (14). The last term ξt+1(ω0) is the orthog-
onal term originating from the initial unresolved com-
ponents. The second term captures longer-range sta-
tistical dependencies with a discrete convolution of a
memory kernel that depends on the orthogonal terms:
Mk ◦X = P (ξk ◦Φ) ◦X. (Statistical mechanics refers to
this orthogonal dependence of memory as a fluctuation-
dissipation relation.) All terms depend on the particular
projection operator P used. (For example, the terms
M0 and {Mk} may be linear—i.e., matrices—for certain
choices of P [7].)

Appendix B gives an alternative derivation of the Mori-
Zwanzig equation, following the original Hamiltonian sta-
tistical mechanics treatment. For those unfamiliar with
the Mori-Zwanzig formalism, this provides additional in-
sight and physical intuition, starting from Hamilton’s
equations.

A comparison is in order between the Mori-Zwanzig
perspective of Koopman operator projections in Eq. (15)
versus the data-driven approaches for finite-dimensional
Galerkin projections of the Koopman operator. The lat-
ter are presented in Appendix D; namely, Dynamic Mode
Decomposition (DMD) and Extended Dynamic Mode
Decomposition (EDMD). Both DMD and EDMD are in-
stantaneous models and, as such, only approximate the
Markovian term M0. Both do so using linear finite sub-
space projections onto HΨ ⊆ HX . DMD uses the simple
dictionary Ψ = {fX} consisting of only the identity func-

tion fX ; while EDMD uses arbitrary dictionaries Ψ of ba-
sis functions. In contrast, while data-driven approaches
to Mori-Zwanzig evolution operators also use finite sub-
space projections HΨ ⊆ HX [5, 7, 52], they do so for the
memory kernels as well as for the Markovian component.

Comparing further, EDMD seeks a Galerkin approx-
imation of the Koopman operator itself, with a sin-
gle matrix, while Mori-Zwanzig evolution approximates
projections of the Koopman operator action specifically
on functions of the resolved degrees of freedom. Para-
phrasing Ref. [7]: “EDMD seeks a point Uτ

XΨ(xt) in
HΨ that minimizes the error between the point and
Ψ(xt+τ ), whereas Mori-Zwanzig simply projects Ψ(xt+τ )
onto HΨ”.

The crucial insight of the Mori-Zwanzig equation
Eq. (15) is that partially observing dynamical systems
induces a memory dependence in the observable degrees
of freedom. Optimal instantaneous models are thus
not fully optimal as data-driven Hilbert space models.
History-dependent models will reduce intrinsic error and
improve predictive skill. Moreover, the dependence of the
memory kernels on the orthogonal unresolved degrees of
freedom indicates that the memory dependence accounts
for the effects of the unresolved variables on the dynamics
of the resolved variables. Recall that much of the effort
in physics-based models comes in explicitly inferring the
unobserved degrees of freedom and their dynamical ef-
fects.

VIII. DELAY-COORDINATE EMBEDDINGS

A key step in bridging physics-based and data-driven
approaches to prediction comes through the formulation
of memory as reconstruction embeddings [53]. Their in-
trinsic geometry illuminates how memory of partial ob-
servations implicitly encodes effects of the unobserved
degrees of freedom.

Starting with a scalar time series {xt, t ∈ N+},
the task is to reconstruct an effective state space of
embedding dimension m in which the effective states
evolve as a deterministic dynamical system. In short,
m is set large enough that the orbits in the recon-
structed state space do not intersect. A derivative-
coordinate embedding of a measurement observable xt
develops a reconstructed state space from ←−x mt =
{ẋt, ẍt, . . . , dmxt/dtm} [8]. A delay-coordinate embedding

uses ←−x m,δt = {xt, xt−δ, xt−2δ, . . . , xt−(m−1)δ} with lag δ
[9]. Due to its familiarity we discuss delay-coordinate
embeddings, despite the extra required optimization over
lag δ that may be required in practice. Unless otherwise
stated, we take δ = 1. For continuous-time systems the
lag is given in units of the measurement sample rate ∆t.

The original work on coordinate embeddings estab-
lished that the geometry of the asymptotic attractor of
(Ω,Φ) can be reconstructed, up to diffeomorphism, from
embeddings ←−x m of partial observations x = X(ω) for
sufficiently large m [8, 9]. The intuitive idea is that the
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additional values in the embedding←−x m essentially act to
fill in the degrees of freedom of ω missing from X. The
reconstructed orbit ←−x mt of the embedding traces out an
attractor that is geometrically equivalent to that gener-
ated by the full system state ωt.

Geometrically, embeddings encode the unobserved de-
grees of freedom in the histories of the observed degrees
of freedom. Moreover, the Koopman operator acting
on a delay embedding observables implicitly encodes the
unobserved degrees of freedom in a dynamically useful
way [11–13]. In fact, the Koopman operator acting on
delay-coordinate embeddings corresponds to the Laplace-
Beltrami operator describing the attractor geometry [12].
In the asymptotic limit with evolution on the attractor,
this correspondence allows employing geometric tools,
such as heat kernels and diffusion maps, in data-driven
modeling [3].

The details of how evolution operators acting on delay-
coordinate embeddings dynamically encode the unob-
served degrees of freedom will be examined thoroughly
below. First though, we show the classical example of
how delay embeddings geometrically encode unobserved
degrees of freedom with the Lorenz 63 attractor. Later,
we will return to this example to demonstrate the dy-
namical encoding of the unobserved degrees of freedom
using analog forecasting.

Example Reconstruction The following gives an em-
pirical demonstration that delay embeddings can geomet-
rically “fill in the gaps” of missing degrees of freedom the
three-dimensional Lorenz 63 system:

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz .

Figure 2(a) shows the attractor revealed by their numer-
ical solution with parameters σ = 10.0, ρ = 28.0, and
β = 8/3. For comparison, Fig. 2(b) shows the attractor
reconstructed using delay-coordinate embeddings of the
x variable alone with δ = 4 and m = 7. The delay-
reconstructed attractor is a “squished” version of the
original, but is (approximately) geometrically equivalent.
The simulation and delay embedding reconstruction were
performed using the DynamicalSystems.jl package in Ju-
lia [54].

IX. HISTORY-DEPENDENT MODELS

Many history-dependent model classes, such as recur-
rent neural networks [46] , are more readily understood

as mappings
←−T τ from pasts (delay embeddings) to fu-

ture observations, rather than as fitting the paradigms
of Markov and memory kernels from the Mori-Zwanzig
equation. Generalizing the instantaneous case given in
Eq. (8), the mean-squared error of history-dependent
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FIG. 2. (a) Full 3D attractor from numerical solutions of
Lorenz equations. (b) Delay-embedding reconstruction at-
tractor using x variable only with embedding dimension m =
7 and lag δ = 4. The first three dimensions {xt, xt−4, xt−8}
are shown.

Hilbert space models is:

‖←−T τ ◦←−Xk − UτX‖2L2(µ∗)
. (16)

As in the instantaneous case, we identify the unique min-
imizer of Eq. (16) as the optimal history-dependent
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Hilbert space model. This optimum is achieved by
formally connecting the Mori-Zwanzig formalism with
delay-coordinate embeddings using Wiener projections of
the Koopman operator.

Before detailing Wiener projections, it is helpful to first
review two standard orthogonal projections. Both use
the L2(µ) inner product. For now, we follow Ref. [6] and
use the invariant measure µ∗:

〈f, g〉L2(µ∗) =

∫

Ω

f g dµ∗ .

Equation (11) defined the optimal instantaneous model
Zτ as the conditional expectation function that mini-
mizes the L2(µ∗) norm between g ◦X and UτX. This is
known as the nonlinear or infinite-rank projection, used
by Ref. [55], of UτX from H into HX .

In contrast, the linear projection used by Ref. [56],
also known as a finite-rank or finite-subspace projection,
is defined in terms of an orthogonal set Ψ of size N on
the space V of functions of the observed variables. That
is:

Pf =

N∑

i=1

〈f, φi〉L2(µ∗) ψi , (17)

where {φi = ψi ◦X}Ni=1.
In the infinite-rank limit Ψ → V , this linear pro-

jection converges to the nonlinear conditional expecta-
tion projection. As with EDMD, the challenge for data-
driven methods that employ finite-subspace projections
[7, 14, 15, 57] is to find an effective finite basis Ψ.

A. Equilibrium Wiener Projections

Using these instantaneous projections, the standard
Mori-Zwanzig formalism embodies history dependence of
the observed variables in the collection of memory ker-
nels. In contrast, Wiener projections incorporate his-
tory dependence directly into the projection operators
via delay-coordinate embeddings. Specifically, the linear
Wiener projections replace the single L2(µ∗) inner prod-
uct with:

〈f, g〉W := lim
k→∞

1

k

k∑

τ=1

∫

Ω

[U−τf ][U−τg]dµ∗ , (18)

in the linear projection in Eq. (17). That is, L2(µ∗) inner
products of the reverse-time-shifted observables are taken
at all times into the infinite past.

Although the original formulation of Wiener projec-
tions, Eq. (18), is given in terms of the equilibrium invari-
ant measure, the physical intuition is similar to a move
common in nonequilibrium statistical mechanics. Statis-
tics of a dynamical variable can equivalently be thought
of in two ways. They can be either the stochastic time-
evolution of a “state variable”, for example Langevin dy-

namics, or the idea of “state variable” can be replaced
by dynamical trajectories, with statistics over trajecto-
ries considered. The standard formulation of the Mori-
Zwanzig in Eq. (15) is akin to the first perspective. In
fact, the Mori-Zwanzig equation is often known as the
generalized Langevin equation. The use of Wiener pro-
jections is akin to the second, where projections of time-
dependent “state variables” are replaced with projections
of trajectories (delay coordinate embeddings).

Applying a discrete-time Wiener projection PW to the
discrete-time Koopman operator, as first introduced in
Ref. [6], results in:

U t+1 = U tPWU + (QWU)t+1 . (19)

As expected, there is no longer a temporal convolution
over memory kernels; only a Markov term and an or-
thogonal term. In the setting of quantum statistical me-
chanics, Ref. [58] gives a similar expression using time-
dependent projection operators.

Furthermore, Ref. [15] argues that, if the conditions of
the delay embedding theorem [9] are met, the orthogonal
term vanishes. Thus, in the ideal case, Mori-Zwanzig evo-
lution with delay-coordinate embeddings reduces to only
a single Markov term that corresponds to the nonlinear
Wiener projection of U t+1X:

xt+1 = E[U t+1X|←−X ]

=
←−
M0(←−x t) , (20)

for embedding dimension m sufficiently large to satisfy
the delay-embedding theorem.

In the nonideal case, particularly with finite k, the or-
thogonal term does not vanish and there may be mem-
ory effects at Markov order larger than that spanned
by finite pasts ←−x kt . Therefore, as with standard (in-
stantaneous) Mori-Zwanzig Markov approximations, the
stochastic evolution of finite pasts is modeled by the fi-

nite Markov operator
←−
Mk

0(←−x k) plus an effective “noise”
term:

Pr(Xt+1|
←−
Xk =←−x k) =

←−
Mk

0(←−x k) + noise . (21)

A finite model of this form is found in the HAVOK
method [10, 13], based on Hankel DMD [11]. This finds

the best-fit linear approximation for
←−
Mk

0 with the lead-
ing components of the singular value decomposition of
the Hankel matrix, whose columns are time-ordered de-
lay embeddings. The last few components are then fit to
the noise.

We emphasize that the Wiener projection approach to
Mori-Zwanzig evolution is useful as it provides a direct
connection to delay-coordinate embeddings and their in-
trinsic geometry. Theoretically, though, it merely rear-
ranges memory dependence in the observable degrees of
freedom. Delineating the practical advantages or disad-
vantages of Wiener projections over the standard Mori-
Zwanzig formalism requires further investigation. Note,
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though, that the algorithms given by Ref. [7] for re-
constructing the Markov and memory kernels of the lat-
ter employ two-time correlation functions of the observed
variables. These are closely related to the instantaneous
predictive distributions described above.

B. Nonequilibrium Wiener Projections

For another perspective on how the orthogonal term
in Eq. (19) may vanish, it is instructive to formulate
Wiener projections using nonequilibrium time-dependent
measures, rather than the equilibrium invariant measure.
In statistical mechanics, in fact, the invariant measure is
taken to be exactly that of the equilibrium distribution,
with the L2 inner products being equilibrium correlations
and the Mori-Zwanzig equation’s validity holding only
near equilibrium [41].

First, we introduce the history-dependent generaliza-
tion of the time-dependent Maximum Entropy measures
introduced in Section V. The history-dependent gener-
alization of the Maximum Entropy Principle is known as
Maximum Caliber [18, 19]. In short, given a time series
of constraints up to the present moment, Maximum Cal-
iber constructs the least biased distribution at the current
time by maximizing the entropy while accommodating all
time-evolving constraints. If the constraints are given in
the form of expectation values, as is typical in statistical
mechanics, this results in generally intractable spacetime
path integrals.

As in the instantaneous case though, constraints for
partially-observed systems are simply support sets of pos-
sible ω consistent with observations x = X(ω). Now,
however, there are multiple time-evolving observations
{xt, xt−1, . . . , xt−k} in the form of delay embeddings to
constrain the support sets over Ω.

Equation (6) defined the instantaneous set Bt ∈ ΣΩ

as the set X−1(xt) of all ωt consistent with the obser-
vation xt such that X(ωt) = xt. Rather than a sin-
gle instantaneous observation, consider now two sequen-

tial observations xt−1 and xt. Define
←−
B 2
t ∈ ΣΩ as the

set of ωt consistent with both observations such that
X(ωt) = xt and [U−1X](ωt) = X(Φ−1(ωt)) = xt−1.

Note that
←−
B 2
t ⊆ Bt. If the two sets are not equal, we

say that
←−
B 2
t = Bt ∩X−1(xt−1) refines Bt.

For a depth-k past←−x kt = {xt, xt−1, . . . , xt−k}—a k+1-

dimensional delay embedding—we define the set
←−
B k
t as:

←−
B k
t := {ωt | X(ωt) = xt, [U

−1X](ωt) = xt−1, . . . ,

[U−kX](ωt) = xt−k} . (22)

Given the set
←−
B k
t , the Maximum Caliber distribution

is uniform over
←−
B k
t and zero elsewhere, as with the in-

stantaneous Maximum Entropy case. For finite k,
←−
B k
t is

ν-measurable and the Maximum Caliber measure ←−µ kt is

defined through the density←−ρ kt that is constant over
←−
B k
t

and zero elsewhere. If limk→∞
←−
B k
t is a discrete set, ←−µ∞t

is given as a sum of equally-weighted delta distributions.
With the Maximum Caliber measures in hand, we

can define nonequilibrium Wiener projections using the
nonequilibrium inner products:

〈ft, gt〉←−x k
t

:=
1

k

k∑

τ=1

∫

Ω

[U−τft][U
−τgt]d

←−µ kt , (23)

with ft = f(ωt) and gt = g(ωt) to emphasize that the in-
tegrals are all carried out over values of ωt for all terms in
the sum. Note that this inner product is identical to its
equilibrium counterpart in Eq. (18) except for the change
of measure. The conditional expectation in Eq. (20) can
be similarly defined using nonequilibrium Wiener projec-
tions defined by Eq. (23)’s inner product.

Unlike Eq. (18)’s equilibrium case, Eq. (23)’s inner
product is contingent on the observation ←−x kt that then
defines the measure ←−µ kt . In particular, we can analyze
the sequential refinement behavior of ←−µ kt and their sup-

port sets
←−
B k
t with increasing depth k of the observed past←−x kt . This is shown in Fig. 3. Moreover, we can directly

construct the predictive distributions whose expectation
gives Eq. (20)’s conditional expectation using the (non-
linear) nonequilibrium Wiener projections.

C. Predictive Distributions

In the instantaneous case, recall that Bt = X−1(xt) is
the set of all ωt consistent with observation xt such that
X(xt) = ωt. The set of possible observables xt+τ that
may be seen at a later time τ are given by the Koopman
operator as {xt+τ = [UτX](ωt) for all ωt ∈ Bt}. This set
is the support of the instantaneous predictive distribution
µXt+τ—the pushforward of P τµt along X.

For two sequential observations, we may expect that
there are some, if not many, ωt in Bt that are not in←−
B 2
t . That is, there may be ωt such that X(ωt) = xt but

X
(
Φ−1(ωt)

)
6= xt−1. As more observations are recorded,

there may be increasingly fewer ωt whose reverse orbit
is consistent with the observed values ←−x kt . Therefore,←−
B k
t ⊆ Bt and, in some cases,

←−
B k
t is a proper subset of

Bt with ν(
←−
B k
t ) < ν(Bt). That is, the state space volume

ν(
←−
B k
t ) is monotonically nonincreasing as k grows and it

may decrease for increasing k. Figure 3 illustrates the
dynamical refinement of Maximum Caliber support sets.

We are now ready to examine the consequences of re-
finement on history-dependent predictive distributions.
The latter are constructed as for instantaneous pre-
dictive distributions, using uniform initial measures

over
←−
B k
t rather than Bt. The predictive distribution

Pr(U t+τX|←−Xk
t = ←−x kt ) is supported on the set {xt+τ =

[UτX](ωt) for all ωt ∈
←−
B k
t } and is distributed accord-

ing to the pushforward of P τ←−µ kt along X, as shown in
Fig. 4 (b).
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FIG. 3. Sequential support sets of Maximum Caliber measures for past lengths k = {0, 1, 2, 3}: The earliest observation xt−3

alone produces the k = 0 support set B(t−3) = X−1(xt−3). The next observation xt−2, together with xt−3 yields
←−
B 1

(t−2) =

B(t−3) ∩X−1(xt−2). Similarly, xt−1 gives
←−
B 2

(t−1) =
←−
B 1

(t−2) ∩X−1(xt−1) and, finally, xt gives
←−
B 3
t =
←−
B 2

(t−1) ∩X−1(xt−1). Unit-
length orbits of ωτ ∈ Ω consistent with the subsequent observation xτ+1 are shown in blue, while those inconsistent with the

subsequent observation are red. The depiction shows strict refinement at each time, so that
←−
B 3
t ⊂
←−
B 2

(t−1) ⊂
←−
B 1

(t−2) ⊂ B(t−3).

If ν(
←−
B k
t ) < ν(Bt), then the initial measure ←−µ kt is

more constrained than µt. And so, P τ←−µ kt is also be
more constrained than P τµt. In this case, the predic-

tive distribution Pr(U t+τX|←−Xk
t = ←−x kt ) has lower en-

tropy than the instantaneous Pr(U t+τX|Xt = xt). Here,
“entropy” refers the size of a distribution’s support.

The volume of {xt+τ = [UτX](ωt) for all ωt ∈
←−
B k
t }

is no larger than that of its instantaneous counterpart

{xt+τ = [UτX](ωt) for all ωt ∈ Bt} since
←−
B k
t ⊆ Bt and

UτX is measurable. Note that for distributions with a
density ρ, the size of the effective support set—the typ-
ical set—is given by 2h(ρ), where h(ρ) is the differential
entropy of ρ [59].

Taking τ = 1, consider the optimal history-dependent

target function
←−
Z k = E[U t+1X|←−Xk

t = ←−x kt ] and the in-
stantaneous optimal Z = E[U t+1X|Xt = xt]. From the

arguments above, ν(
←−
B k
t ) < ν(Bt) implies that

←−
Z k is

a more accurate estimator of xt+1 = [U t+1X](ωt) than
the instantaneous optimal Z. This follows since there is

less variance in Pr(U t+1X|←−Xk
t =←−x kt )—it is more tightly

concentrated about its mean than Pr(U t+1X|Xt = xt).
Such a conclusion is in line with the intuition that the
intrinsic error of instantaneous models derives from the
unobserved degrees of freedom and that including past
observations in the form of delay-coordinate embeddings
accounts for the missing degrees of freedom.

It is natural to ask what happens in the k → ∞
limit of infinitely-many past observations. Reference [15]
concludes that, for sufficiently large k, the estimator

E[U t+1X|←−X t] = Xt+1 is the identity map that yields the
true evolution of xt+1. In the nonequilibrium case, this

implies that, as k → ∞, the size ν(
←−
B∞t ) vanishes, with

only a single ωt consistent with the infinite set of obser-
vations in←−x∞t . As a consequence, there is a unique value

xt+1 = [U1X](ωt) for ωt ∈
←−
B∞t = {ωt}. Similarly, ←−µ∞t

is a δ-distribution at ωt in this case, with←−µ∞t+1 = P 1←−µ∞t
also a δ-distribution at ωt+1 = Φ1(ωt). The conditional

distribution Pr(U t+1X|←−X∞t ←−x∞t ) is then a δ-distribution
with support on the single xt+1 = X

(
Φ1(ωt)

)
. See

Fig. 4(c).

This clearly shows how coordinate embeddings recover
the unobserved degrees of freedom and effectively act as
an equivalent to the full underlying Platonic state ω. In
the ideal case, as the length of an embedding increases

to infinity, the corresponding size of the set
←−
B k
t of pos-

sible initial conditions goes to zero, as does the variance
of the resulting predictive distribution. Thus, there is an
a.e. one-to-one correspondence between infinite-length
delay embeddings and Platonic system states ω. The as-
sociated predictive distribution converges, in a thermo-
dynamic limit, to the true value of the next observable,
given by the Wiener projection of U t+1X.

Consider, for example, the simple harmonic oscillator.
The underlying state ω is two-dimensional: ω = (r, p).
Assume access only to position: X(ω) = r. The evolu-
tion of position is described by sine waves r(t) = sin(t).
At a given time instant, we cannot determine the momen-
tum from the instantaneous position alone and, there-
fore, cannot determine the full underlying state ω. How-
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FIG. 4. Operator-theoretic construction of predictive distributions: (a) Instantaneous case, with depth-k = 0 past consisting
of a single observation xt. (b) Intermediate case, with depth-k past ←−x kt . (c) Limiting case, with lim k → ∞ depth past ←−x∞t .
In all cases, the initial measure µt is uniform on the set of all ωt consistent with observation ←−x kt . The initial measure is then
propagated forward in time with the Perron-Frobenius operator P τ and, finally, the predictive distribution is given according
to the pushforward of µt+τ = P τµt along the observable mapping X. (c) depicts the case when there is one and only one
initial Platonic state ωt consistent with the ∞-length observation ←−x∞t . Then, the prediction converges to the true evolution
xt+τ = X

(
Φτ (ωt)

)
= [UτX](ωt).
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ever, there are only two momenta associated with each
instantaneous position—call them positive and negative.
Following Fig. 4’s procedure for constructing predictive
distributions, there are two corresponding system states
and so two corresponding future position values at time
t+ dt. Call these up (for positive momentum) and down
(for negative momentum). If we include a single infinites-
imal past value from time t− dt, this is a.e. sufficient to
distinguish if the momentum term is positive or negative
at that time. Thus, except for the turning points (that
are measure zero), including that single past value pro-
duces a δ-distribution for the inferred µ0 and, thus, gives
the exact future prediction using Eq. (20).

This convergence, however, is not guaranteed. The

size of
←−
B k
t may decrease with increasing k, but it does

not necessarily always do so. Interestingly, while chaotic
instabilities make future predictions challenging, they ac-
tually aid in this convergence. Trajectory divergence
in forward time [31] means convergence in reverse time.
Generating partitions XG of symbolic processes, detailed
in Appendix C, are a rigorous case where this is known

to hold [60]. In that setting,
←−
B k
t is the element of the

dynamical refinement of the generating partition corre-
sponding to the observed symbol sequence ←−x kt . In the

limit of infinitely-many observations the size ν(
←−
B k
t ) of

the refined partition elements vanishes and almost-every
infinite-length symbol sequence corresponds to a unique
system state ω ∈ [0, 1]. Generating partitions on chaotic
maps of the unit interval are a rigorous case where the

a.e. convergence of
←−
B∞t to a single {ωt} is achieved.

X. SUPPORTING EXAMPLES

We now provide examples to demonstrate the abil-
ity of delay-coordinate embeddings and Wiener projec-
tions of Koopman operators to dynamically encode un-
observed degrees of freedom in practice. The data-
driven models for these demonstrations mostly employ
analog forecasting, Eq. (9), due to its simplicity and
flexibility. Various classes of analog forecasting target
functions are formed based on what inputs are given,
with appropriate distances computed to find the analog.
Fully-observed instantaneous, partially-observed instan-
taneous, and partially-observed history-dependent target
functions are all considered.

We emphasize that our theoretical framework applies
to all history-dependent data driven models. Analog
forecasting, as one such model, is ideal for our demonstra-
tions due to how transparently different types of input—
e.g., delay embeddings—are used to make predictions
and how predictions made from different inputs can be
compared in a straightforward manner. In practice, ana-
log forecasting may not be the most efficient or effec-
tive method for history-dependent data-driven forecast-
ing [61].

A. Lorenz 63

First, we demonstrate that delay coordinate embed-
dings can act to fill-in missing degrees of freedom in a
dynamically meaningful way; Fig. 5 provides a dynam-
ical complement to Fig. 2’s geometric demonstration of
encoding unobserved degrees of freedom in the Lorenz 63
system. That is, analog forecast target functions for both
cases shown to be geometrically equivalent in Fig. 2 have
the same predictive skill.

As a baseline, consider the fully-observed case with
X(ωt) = ωt = (xt, yt, zt). Figure 5(a) shows an instanta-
neous analog forecast that employs the full state variable
as T (xt, yt, zt). This is plotted alongside a numerical in-
tegration of the equations of motion in units of Lyapunov
time.

For comparison, Fig. 5(b) shows an instantaneous ana-
log forecast via T (xt) using only the first coordinate x.
While the analog forecast using the full state variable
(x, y, z) tracks the numerical integration for almost four
Lyapunov times, the analog forecast using only the in-
stantaneous x variable diverges immediately. Despite
this quantitative divergence, the analog forecast using
only x produces a qualitatively consistent forecast, cap-
turing behavior expected of the Lorenz system with os-
cillations within, and jumps between, the two attractor
lobes.

Fig. 5(c) shows an analog forecast using delay-
coordinate embeddings ←−x mt of the x variable with
T (xt, xt−δ, . . . , xt−(m−1)δ). This is, in fact, the same de-
lay embeddings used above in Fig. 2(b) with δ = 4 and
m = 7. As with the forecast shown in Fig. 5(b), the
forecast in (c) only has access to information in the x
variable. However, as can be seen, including informa-
tion from past observations of x, in the form of delay
embeddings, results in a model with essentially the same
predictive skill as the fully-observed case shown in (a),
with divergence again occurring at about four Lyapunov
times.

This shows that, at least in simple low-dimensional
cases, delay embeddings fill in the gaps and so become
effective proxies for the missing degrees of freedom in
implicit predictive models. As far as we are aware,
the equivalence of predictive skill between an instanta-
neous full-state model and a history-dependent partially-
observed model has not been previously demonstrated.

To emphasize the generality of our theoretical re-
sults, Fig. 5 (d) shows a reservoir computing forecast
of the x variable alone using an echo-state neural net-
work [62]. As a form of recurrent neural network, echo-
state network reservoir computers are history depen-
dent, T τRC(xt, xt−1, . . . , xt−k), with a “fading memory”
(or “echo state”) property that means they do not de-
pend on values arbitrarily-far in the past [63]. Although
inputting past x values is not exactly the same as the
delay embedding used in Fig. 5 (c), we see a similar fore-
cast.

The connection between delay-coordinate embed-
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(c) Delay Embedding Analog Forecast
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(d) Reservoir Computing Forecast

TRC(xt, xt−1, . . . , xt−k)

FIG. 5. Analog forecasting the Lorenz 63 system using different prediction variables. (a) All three Lorenz variables (x, y, z)
are used to compute the analog, with only the trajectory of the x variable shown. (b) The x variable alone is used to compute
the analog. (c) Delay embeddings of the x variables alone, using the same embedding parameters δ = 4 and m = 7 used in
Fig. 2(b). The forecast using delay-embeddings in (c) is essentially identical to the forecast using the full system state in (a).
(d) A forecast of the x variable alone using an echo-state network reservoir computer is given for comparison. The forecasts of
the reservoir computer are made as functions of past observations of x, although it is not the same delay embedding used in
the analog forecast in (c).

dings and reservoir computing was explored recently in
Ref. [64]. It was found that reservoir computers are, in
fact, equivalent to nonlinear regression on delay embed-
dings. As Ref. [65] pointed out, a linear regression on
delay embeddings is essentially equivalent to predictions
made using Hankel DMD [11]. The linear feature vec-
tor of delay embeddings used for regression is a flattened
Hankel matrix. Thus, the nonlinear feature vectors used
in Ref. [64] show that reservoir computer network pre-
dictions are akin to an extended Hankel DMD method
(EHDMD). Note that a connection between EDMD and
reservoir computers was utilized in Ref. [66] for finite-
dimensional Koopman approximation.

As detailed in Appendix D, the extended dynami-
cal mode decomposition (EDMD) reconstructs a finite-
dimensional approximation of the Koopman operator us-

ing a dictionary of basis functions for finite subspace pro-
jection. The approximated EDMD operator is a gener-
alized Galerkin projection of the Koopman operator in
the finite subspace spanned by the dictionary functions.
The original dynamic mode decomposition (DMD) is a
projection into a finite subspace spanned by linear mono-
mials, with a dictionary of just the identity function. We
can thus understand Hankel DMD as an approximation
using linear finite subspace Wiener projections. An ex-
tended Hankel DMD thus would use Wiener projections
with a larger finite subspace spanned by nonlinear func-
tions on delay coordinate embeddings. Recall that op-
timal history-dependent data-driven models in Eq. (20)
are given by the full nonlinear Wiener projections that fi-
nite subspace projections limit to with increasingly large
dictionaries. Thus the nonlinear regression of delay em-
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beddings in Ref. [64] will limit to optimal prediction with
increasingly-many nonlinear feature vectors. This regres-
sion on delay embeddings is in fact very similar to the
NARMAX method in Ref. [6] that motivated the intro-
duction of Wiener projections.

B. Lorenz 96

The Lorenz 63 model is useful to connect the geometric
encoding of the unobserved degrees of freedom by delay
embeddings with the dynamical encoding of the unob-
served degrees of freedom by history-dependent models.
However, it is a low-dimensional system, so that even
when just a single degree of freedom is accessible, there
are only two that are inaccessible.

In this example we demonstrate the effects in
increasing-length input pasts with a higher-dimensional
system using a 50-dimensional Lorenz 96 model. Each
degree of freedom xi in the model evolves according to
local interactions as

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F ,

with periodic boundary conditions. We set F = 4.6 and
numerical integration is performed with a time step ∆t =
0.01. Again we use analog forecasting as the data-driven
model, which has access to only a single degree of freedom
xt = X(ωt) = x1

t .
Figure 6 shows four analog forecast predictions of x1

t

in the Lorenz 96 system using history-dependent target
functions of the form T (xt, xt−1, . . . , xt−k). Each pre-
diction is made with a different value of past depth k.
As delay-coordinate embeddings, the embedding dimen-
sion is k and we use a unit lag δ = 1. Like those in
Fig. 5, predictions are made iteratively, with the target
functions outputting a single prediction at the next time
step.

The lowest-memory prediction is made with k = 3 and
is shown in Fig. 6(a). The forecast follows the numerical
integration for over 200 integration time steps before di-
verging. The mean-squared error of the prediction over
the 1000 time-step window is 3.35. Predictions made
with k = 20 are shown in Fig. 6(b). While it diverges
from the numerical integration sooner than the k = 3
model, the quasi-periodicity of the Lorenz 96 system al-
lows the forecast to closely track the numerical integra-
tion again at later times. The mean-squared error for the
k = 20 model is thus slightly lower, at 3.18. Increasing
the past depth to k = 80, shown in Fig. 6(c), provides a
more noticeable improvement in predictive skill. This is
apparent visually, and is reflected in the mean-squared er-
ror value of 1.72. Finally, increasing to k = 120, roughly
the ideal 2N + 1 embedding dimension, provides a dra-
matic improvement. The data-driven model closely fol-
lows the numerical integration for most of the 1000 time-
step prediction window, giving a mean-squared error of
0.15.

Similar results are shown in Fig. 4 of Ref. [15] for a 5-
dimensional Lorenz 96 model with F = 8.0. The authors
use the more sophisticated kernel analog forecasting al-
gorithm, first introduced in Ref. [57]. Related results can
also be found in Ref. [67].

We emphasize again that convergence of history-
dependent data-driven models to the true dynamics is
not guaranteed. The results shown in these experiments
should not be expected as generic behavior for data-
driven models. However, they serve as clear demonstra-
tions of the ability for data-driven models to implicitly
encode the effects of unobserved degrees of freedom. This
ability provides a physical basis for the efficacy of data-
driven predictive models, and provides a bridge connect-
ing them to physics-based models.

C. Transient Dynamics of the Circle Map Lattice

The Lorenz-63 and Lorenz-96 models are the standard
proving grounds for data-driven forecasting of dynamical
systems. As we have seen, they are useful for demonstrat-
ing the convergence of delay embedding models to the
true dynamics of the full system. That said, the above
examples involve forecasting asymptotic dynamics on an
attractor. As we have emphasized throughout, however,
our formalism does not require an asymptotic invariant
measure that corresponds to equilibrium dynamics on an
attractor. Our MaxCal measures also apply to transient
nonequilibrium dynamics that include relaxation to an
asymptotic attractor.

Nonequilibrium transient dynamics are particularly
relevant to spatially-extended dynamical systems for
which the relaxation time to an attractor may grow faster
than exponential in system size [68]. Many real-world
forecasting problems, particularly in Earth Sciences, in-
volve forecasting components of large spatial systems. In
such cases, it is not a given that there is an asymptotic
invariant measure. Nonetheless, data-driven models have
been empirically successful in forecasting real-world spa-
tial systems [21–24]. Crucially then, our formalism ap-
plies to large spatial systems that are not guaranteed to
be evolving on an invariant attractor.

Here, we demonstrate nonequilibrium transient dy-
namics of spatial systems using a coupled map lat-
tice [68]. A one-dimensional map lattice is a spatially-
extended dynamical system that evolves configurations
on a discrete spatial lattice Z in discrete time steps ac-
cording to the local dynamics:

ω(r, t+ 1) = (1− α)f
(
ω(r, t)

)

+
α

2

[
f
(
ω(r + 1, t)

)
+ f

(
ω(r− 1, t)

)]
,

(24)

where r is the spatial index, t is the time index, α is the
coupling strength, and f is an iterated map of the unit
interval: ω(t+1) = f

(
ω(t)

)
, ω ∈ [0, 1]. We use the circle
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(a) Past Depth k = 3 (b) Past Depth k = 20

(c) Past Depth k = 80 (d) Past Depth k = 120

FIG. 6. Analog forecasting the Lorenz 96 system using input pasts of increasing depth. All predictions are made iteratively with
analog forecast target functions of the form T (xt, xt−1, . . . , xt−k). Model predictions as a function of integration time-steps are
given for four values of past depth k.

map [69]:

f(ω) = ω + γ − K

2π
sin(2πω) mod 1 ,

where γ is a phase shift and K is the strength of the
nonlinearity.

An example of the transient dynamics of the circle map
lattice is shown in Fig. 7 (a), with phase shift γ = 0.5,
nonlinearity K = 1.0, and coupling strength α = 1.0.
The spatial lattice has N = 100 sites and has periodic
boundary conditions. The vertical axis is the spatial di-
mension and the horizontal axis is time, evolving forward
from left to right. The dynamics can be qualitatively de-
scribed in terms of stable domain regions with domain
wall dislocations between them [70]. In this case, the
domains correspond to regions that are period-2 in time,
space, or both. As can be seen around r = 70 and t = 100
in Fig. 7 (a), wandering dislocations may undergo pair-
wise annihilation, resolving into a now-stable domain re-

gion. Thus, the dynamics asymptotically limit to either
a single domain or multiple domains with stable disloca-
tion interfaces; potentially with a single unstable dislo-
cation meandering through space. Empirically, a single
spatially-periodic domain is the most common attractor
when evolved from IID random initial conditions.

With a spatial lattice of N = 100 sites, much of the
transient behavior resolves into domains after just 100
time steps using nonlinearity K = 1.0 and coupling
α = 1.0. To train a data-driven model to predict tran-
sient dislocation behaviors, the model could be trained on
an ensemble of many short-time runs with different ini-
tial conditions. Alternatively, we used slightly perturbed
parameters with K = 0.96 and α = 1.002 that produce
qualitatively similar behavior, but with markedly longer-
lived transients. The conditions that allow for disloca-
tions to merge and resolve into domains are stricter, al-
though after sufficiently many time steps (∼ 106) most
initial conditions resolve to the spatially-periodic domain
attractor.
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(a) Transient Nonequilibrium Dynamics

(b) True Dynamics to be Forecasted

(c) Data-Driven Forecast

FIG. 7. Circle-map coupled-map lattice: (a) Transient
nonequilibrium dynamics. (b) True dynamics of a particu-
lar instance of the map lattice that is forecasted in (c) using
a composition of local analog forecasts.

Since the transient dynamics clearly manifest when
viewing the system’s full spatial evolution, we performed
a composite data-driven prediction of the full system us-
ing partial observations in the following way. With N =
100 spatial sites, the systems can be considered as 100
coupled time series. Forecasts are made for each lattice
site n ∈ {1, 2, . . . , 100} and the predicted time series are
then shown together as an evolving spatial field in Fig. 7
(c). Each individual forecast, however, is made using an
analog forecast of partial observation delay embeddings.
In particular, for each site n the past values (delay em-
beddings) of the site plus the past values of all its 10 left
nearest neighbors {n− 1, n− 2, . . . , n− 10} and all its 10
right nearest neighbors {n+1, n+2, . . . , n+10} are used

as inputs to T τAF. This amounts to combining 21 delay-
embedding vectors. Therefore, principle component anal-
ysis (PCA) is used for dimensionality reduction for more
efficient calculation of the analogs [71]. The global evo-
lution of all 100 sites for 104 time steps is used for train-
ing. The forecast was performed using the Julia package
TimeSeriesPrediction.jl, with cubic shell embeddings
creating the local nearest-neighbor delay embeddings and
their PCA reductions.

Comparing the composite forecast shown in Fig. 7 (c)
with the true map lattice evolution in Fig. 7 (b), we
see that while the details of the dislocation dynamics do
not match, the over qualitative behavior is captured. In
particular, the stable spatially-periodic domains are per-
fectly captured, with an imperfectly captured dislocation
running between.

The difficulty in predicting the detailed behavior of dis-
locations is not surprising, particularly for analog meth-
ods. Using results from ergodic theory, particularly Kac’s
lemma, Ref. [61] shows the data requirements for a good
analog forecast grow exponentially with the number of
degrees of freedom for asymptotic dynamics on an at-
tractor.

In light of this, the physically-reasonable analog fore-
casts shown Fig. 7 (c) are made possible by two factors.
First, the local interactions imply the effective degrees of
freedom for making local predictions is smaller than the
number of sites on the lattice. In this case, the dynamics
of an individual site depends only on the site’s value and
those of its immediate nearest neighbors. Second, the
nonlinearity and coupling strength parameters we have
chosen extend the transient dynamics so that there is a
local quasistationary measure [68]. Although the global
dynamic is out of equilibrium with transient dislocation
behavior, the local dynamics that produce this behavior
do not change over time. The system is conditionally
stationary.

We emphasize that analog forecasting is used for this
demonstration due to its transparency, particularly with
the clear dependence on delay coordinate embedding in-
puts. Again, the generality of our theoretical frame-
work applies to any history-dependent data-driven model
of spatially-extended dynamical systems, like the popu-
lar Kuramoto-Sivashinsky model [71–73] or the growing
body of work on turbulent fluid flows [74].

XI. A UNIFIED FRAMEWORK

Taken all together, our development provides a uni-
fied framework for modeling complex systems from par-
tial observations. Now, with it laid out, we can connect
physics-based and data-driven prediction. We find that
the two, seemingly disparate, paradigms fall at two ex-
tremes of the same spectrum: physics-based models are
fully explicit and data-driven models are fully implicit.

Recall that physics models reconstruct a coarse-
grained data image ut = ←−a (←−x kt ) that explicitly fills in
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missing degrees of freedom using data assimilation over

past observations. The model dynamic Φ̃τα evolves data
images ut by explicitly computing the interactions among
its degrees of freedom. In this way, the orbits of data im-
ages are generated by:

ut+τ = Φ̃τα(ut)

= Φ̃τα
(←−a (←−x kt )

)
.

This is reminiscent of Hilbert space models
←−T τ (←−x k),

although the above technically evolves data images.
However, due to the explicit nature of data images we

can define simulated measurements x̃t = X̃(ut) that pro-
duce instrumental readings for the data images. In this
way, we predict instrument readings using physics models
via:

xt+τ = M̃τ
0 (←−x kt )

= [X̃ ◦ Φ̃τα ◦←−a ](←−x kt ) , (25)

Again, this is all implemented explicitly in terms of in-
teractions among the observed and inferred unobserved
degrees of freedom.

Equation (25) now clearly parallels the optimal
history-dependent Hilbert space model:

xt+τ =
←−
Mτ

0(←−x kt )

= [PWU
τX](←−x kt ) . (26)

Rather than explicitly fill-in the missing degrees of free-
dom with assimilated data images, data-driven models
use the intrinsic geometry of coordinate embeddings to
implicitly fill-in the missing variables. Whereas physics
models attempt to directly approximate Platonic differ-
ential equations-of-motion, data-driven models attempt
to approximate the action of the Platonic Koopman op-
erator on embedding coordinates via Wiener projections.
And, as we demonstrated, they may converge to the Pla-
tonic model in the limit of infinite-length embeddings.

Markovian closure in their dynamics motivated our
introducing Platonic models. Model parametrizations,
though, are used for physics models if the data images
cannot provide adequate closure. Analogously, if a finite-
dimensional embedding does not provide adequate clo-
sure, there is still a nonzero orthogonal component in the
Mori-Zwanzig equation resulting from the Wiener projec-
tion on the action of the Koopman operator. In this case,
a noise term can be added as a stochastic parametrization
to alleviate the lack of closure [52].

Between fully-explicit and fully-implicit models lies
a spectrum including history-dependent models that
combine implicit and explicit modeling. In particular,
the spectrum encompasses the recent trend in physics-
informed machine learning (PIML) [25–27]. There,
known physical constraints are explicitly incorporated
into the model, usually in the form of conservation laws.
The model is then trained from data to implicitly learn

the dynamics while maintaining the explicitly enforced
constraints.

The unified framework allows clearly evaluating the
advantages and disadvantages of various modeling
paradigms. Having explicit access to degrees of freedom
in physics-based models allows for their direct manipu-
lation in the model. This greatly facilitates, for exam-
ple, making projections of future climate outcomes un-
der various anthropogenic forcing scenarios. Such uses of
physics-based models are becoming increasingly common
under the heading of digital twins [75, 76].

That said, on the one hand, difficulties arise with
physics models. This is particularly the case for predic-
tion and especially when confronted with the poor cover-
age provided by observed degrees of freedom. Said sim-
ply, it is challenging to construct good data images that
approximate the system state well. Similarly, if there are
many important interactions to track, such as in the cli-
mate system, it is impossible to explicitly account for all
interactions and so parametrizations are required. Com-
pounding these problems, generally, it is not clear how to
construct appropriate or effective parametrizations. Due
to all these challenges, implicit approaches are increas-
ingly being added to physics models, particularly to pro-
vide data-driven parametrizations [77–80].

On the other hand, though famously difficult to inter-
pret, data-driven models often excel at straightforward
prediction and forecasting tasks. This is no longer sur-
prising. The unified framework provided a physical ex-
planation for this success. While data-driven models can
converge to the Platonic model in the limit, however,
in practice, they must be learned from finite resources.
Deep learning models, in particular, can be prohibitively
computationally expensive to train. Adding known phys-
ical constraints, when applicable, can help such models
converge more quickly. The lesson is that models should
not implicitly learn already-known features; the latter
should be incorporated explicitly.

XII. CONCLUSION

Many modeling applications attempt to predict a phys-
ical system’s future behavior but can access only a small
subset of the system degrees of freedom. Historically, pre-
dictions with partial observations have relied on physics-
based models that explicitly fill-in missing degrees of free-
dom using data assimilation and parametrization. In
this, the physics models provide approximate solutions
to the governing equations of motion—the system’s true
dynamics or Platonic model. Data-driven approaches, in
contrast, learn the dynamics of the observed variables us-
ing implicit representations of all the degrees of freedom
through delay-coordinate embeddings.

We demonstrated how the maximal predictive informa-
tion available to a data-driven model—information from
past observations of the accessible variables—is given by
the predictive distributions. We gave an explicit con-
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struction using Koopman and Perron-Frobenius opera-
tors. Most data-driven models are Hilbert space mod-
els, in the form of a target function, that map past
observations forward in time. Maximum Caliber mea-
sures were used to develop a nonequilibrium version of
Wiener projections for the Mori-Zwanzig formalism. Us-
ing this, we showed that optimal Hilbert space mod-
els correspond to expectation values of the predictive
distributions. Building on the intuition from generat-
ing partitions of symbolic processes, this insight illumi-
nated how optimal Hilbert space models converge to the
true evolution of the accessible variables, in the limit of
infinite-length coordinate embeddings. We also showed
how Wiener projections provide a clear theoretical con-
nection between data-driven and physics-based models.

At first blush, the empirical success of data-driven
models is counterintuitive. Indeed, by definition, they
know nothing of the underlying physics governing the full
system. And yet, they still learn, and from only partial
observations, to predict the true evolution; i.e., they con-
verge to the Platonic model. Upon reflection, however,
we recognize that our understanding and mathematical
formulation of physical laws did not spontaneously mani-
fest. They formed and evolved over generations precisely
through our observations and interactions with the nat-
ural world. The development of science has been data-
driven and successful at that. And so, it is not surprising
that data-driven models “learn physics” from observa-
tions alone.

What is perhaps discomforting, though, is the im-
plicit and often uninterpretable manner in which most
data-driven methods learn to approximate the governing
physics. We hope that the detailed investigations of im-
plicit models given here alleviates at least some of this
puzzle. It must also be remembered that initially there
was a great deal of discomfort with explicit numerical
physics models. After all, complicated numerical models
are very much “black box” in ways similar to data-driven
models, particularly deep learning models. The behavior
that emerges in complicated physics models often cannot
be deduced directly from the inputs given to that model.
If a numerical model produces unphysical or otherwise
pathological behaviors, it is often not immediately clear
how to diagnose and address the concern [36, 37].

Returning to our motivating question, Is there a best
way to predict a given physical system from partial ob-
servations? At present, it does not seem that there is
a universally “best” approach. When working with fi-
nite data and finite computational resources, all methods
have their advantages and disadvantages. We sought to
convey the commonality among seemingly disparate ap-
proaches to predicting complex systems from partial ob-
servations. Our goal was to illuminate the theoretical un-
derpinnings of implicit and explicit models. Finding com-
monality in a unified predictive framework should help
build confidence in the models currently employed. And,
hopefully, this will pave the way forward to models with
ever more predictive skill and structural interpretability.

At which point, the science of complex systems will have
moved closer to automated theory building [81].
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Appendix A: Ergodicity and Invariant Measures

In contrast to conservative Hamiltonian systems—
the default assumption for statistical mechanics—many
physical, chemical, and biological systems display dissi-
pative and nonasymptotic behaviors that demand atten-
tion for a full understanding. We now define these be-
haviors in detail. This, in turn, highlights the application
breadth of the unified framework.

A system’s phase space consists of all of its allowed
configurations. A primary goal in dynamical systems
theory is to identify the key state-space structures that
guide and constrain a system’s complex behaviors [31].
We wish to capture them explicitly in our development.
This requires a slightly more general presentation than
is usually given for ergodic theory.

Invariant sets are subsets of a system’s states that map
onto themselves under a system’s dynamic. When per-
turbations from them return, they are stable invariant
sets—called attractors. That set of states which tend
asymptotically to a given attractor is the attractor’s basin
of attraction. A given dynamical system can be decom-
posed into its invariant sets including attractors and their
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basins and the basin boundaries. Specifying these objects
delineates a system’s attractor-basin portrait—its com-
prehensive dynamically-relevant architecture.

Multistable systems are those with multiple attractors.
Transient, nonasymptotic behaviors reflect relaxation to
an attractor from states starting in its basin. The asymp-
totic stability of attractors meanwhile allows for the stan-
dard long-time analysis of ergodic systems. That is, the
standard setup for the measure-preserving and ergodic
dynamical systems of interest to us describes the evolu-
tion on an attractor.

We now formally define these concepts.
Consider the measure space (Ω,ΣΩ, ν) and a dynamic

Φ, where Ω is the state space, ΣΩ its Borel algebra, and
ν the Lebesgue measure. A set A ⊂ ΣΩ is a Φt-invariant

set if
(
Φt
)−1

(A) = A for all t > 0, where
(
Φt
)−1

(A) is
the pre-image of A under Φt. In contrast, A is a forward-
invariant set of Φt if for every ω ∈ A, Φt(ω) ∈ A for all
t > 0. Note that all Φt-invariant sets are necessarily also
forward-invariant, but not all forward-invariant sets are
Φt invariant.

An attractor of (Ω,ΣΩ, ν,Φ) is a set A ⊂ ΣΩ with the
following properties:

• A is a forward-invariant set of Ω under Φt,

• There exists an open set B ⊃ A, called the basin
of attraction of A such that for every ω ∈ B,
lim
t→∞

Φt(ω) ∈ A, and

• There is no proper subset of A with the first two
properties.

By definition, an attractor is a forward-invariant set.
However, due to the existence of its basin of attraction,
an attractor is not a Φt-invariant set. There are points

ω ∈ B \ A that are in the pre-image
(
Φt
)−1

(A) but not
in A. However, the full basin of attraction B for a given
attractor A is Φt-invariant. (The attractor itself is in its
basin A ⊂ B.) Every state in B limits to its attractor A.
And so, if there are states in the pre-image of B that are
not in B they, by definition, do not limit to A. Therefore,
any state not in the pre-image of B is not in B. In fact,
an alternative definition of the basin B of attractor A is
as the limit of pre-images of A: B = lim

t→∞

(
Φt
)−1

A.

Attractors and their basins of attraction decompose
a dynamical system into its dynamically-independent
components—the system’s attractor-basin portrait. For
a multistable system with multiple attractors, the basins
of attraction partition the state space Ω into equivalence
classes of states based on the attractor to which they
limit since orbits never cross basin boundaries. Without
loss of generality, the development considers dynamical
systems with a single attractor and Ω its basin of attrac-
tion, unless explicitly stated otherwise. For multistable
systems, each attractor and its basin may be analyzed
separately as if it were its own separate system. The full
attractor-basin portrait becomes relevant, though, when
one executes independent experimental trials that select

a wide range of initial states. Moreover, real-world sys-
tems are never fully isolated and this typically introduces
fluctuations that can drive a system between otherwise
noncommunicating basins.

Decomposing a dynamical system into independent
components raises the issues of ergodicity and ergodic
measures [33]. A dynamical system (Ω,ΣΩ, µ,Φ) is er-
godic and µ is an ergodic measure, if every Φt-invariant
set B is such that µ(B) = 1 or µ(B) = 0. For an er-
godic system, all Φt-invariant sets are trivial subsets of Ω.
From the definition of basins of attraction, a dynamical
system with a single basin of attraction or a multi-stable
system restricted to a single basin is ergodic.

Ergodic theory often considers a dynamical sys-
tem (Ω,ΣΩ, µ,Φ) with measure µ to also be measure-
preserving : µ

(
(Φt)−1(B)

)
= µ(B) for B ⊂ ΣΩ. An

equivalent statement is that the measure µ is invariant
under the dynamics Φ.

This is mathematically convenient for casting the be-
havior of dynamical processes as stationary stochastic
processes. However, it is too restrictive for our purposes,
as it does not capture relaxation to an attractor. Tran-
sient behavior during relaxation to an attractor A is dis-
sipative if it involves measurable subsets of B not in A,
known as wandering sets. In essence, measure is “carried
away” by wandering sets, and so the support of an in-
variant measure cannot include wandering sets. This can
also be seen from the definitions of invariant measures
and the Perron-Frobenius operator above in Eq. (4): a
measure is invariant if and only if it is a fixed point of
the Perron-Frobenius operator [33, Thm 4.1.1].

It is often of particular concern whether or not the
Lebesgue reference measure ν is invariant under the dy-
namics. Since ν provides a measure of state space vol-
ume, dynamics that preserve ν are said to be volume pre-
serving. Wandering sets, by definition, preclude volume
preservation. Hamiltonian systems, on the other hand,
are volume preserving due to Liouville’s theorem [4].
Since we consider only ergodic systems, there will always
be a physical invariant probability measure that may be
used, whether the system preserves volume or not. If
the Lebesgue measure is invariant (and so volume is pre-
served), the microcanonical distribution gives the equi-
librium invariant probability distribution. If Lebesgue
measure is not invariant, there will be still be a unique
asymptotic invariant measure. (More on this shortly.)
Our formalism works in all cases, but is particularly use-
ful for generalizing to nonasymptotic behaviors of sys-
tems that do not preserve phase space volume.

Note that when considering probability measures, the
terminology of measure-preserving dynamics should not
be confused with what we might call conservation of
measure (or conservation of probability). As standard,
we assume the dynamics Φ to be nonsingular such that
µ(Φ−t(B)) = 0 for all sets B with µ(B) = 0. This en-
sures the evolution of probability measures by Perron-
Frobenius operators are still probability measures.

To include transient behavior (relaxation to an attrac-
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tor), the following does not assume an invariant measure.
However, by restricting to ergodic dynamics (consider-
ing single basins of attraction at a time), this guaran-
tees the existence of a unique, nonsingular (with respect
to the Lebesgue volume measure) asymptotic invariant
measure:

µ∗(B) =

∫

B

ρ∗dν .

This follows since the L1 Perron-Frobenius operators
have a unique invariant density ρ∗ for ergodic dynam-
ics: P tρ∗ = ρ∗ [39, Thm 4.5]. (These measures play
a role roughly analogous to equilibrium macrostates in
thermodynamics.) That is, this measure is preserved by
dynamics on the attractor, to which the system is re-
stricted in the limit. Therefore, in the asymptotic limit
the ergodic theorem applies and time averages equal state
space averages for observables f :

lim
n→∞

1

n

n−1∑

k=0

f
(
Φk(ω)

)
=

1

µ∗(Ω)

∫

Ω

f(ω)dµ∗ .

In the asymptotic limit, the system trajectories set-
tle on the attractor and the resulting dynamical process
is distributed according to the asymptotic invariant mea-
sure µ∗(B). Thus, by definition, the process is stationary
only in the limit:

Pr(Xt ∈ BX ) =

∫

X−1(BX )

d(µ∗)t

=

∫

X−1(BX )

d(µ∗)t+τ

= Pr(Xt+τ ∈ BX ) .

Generally, though, µt 6= µt+τ .

Note that singular measures will not necessarily limit
to the nonsingular invariant measure. In particular, in
the above we have made use of singular measures given
as Dirac delta distributions and noted that the action
of the Perron-Frobenius operator on such measures is
equivalent to the dynamics acting on the center of the
Dirac distribution. For the deterministic dynamical sys-
tems considered here, the action of the Perron-Frobenius
operator does not “spread out” singular Dirac measures
into nonsingular measures.

Appendix B: Statistical Mechanics Treatment of
Mori-Zwanzig

This appendix briefly outlines the original statistical-
mechanical derivation of the Mori-Zwanzig equation.
This also gives context for the Koopman operator in
Hamiltonian systems that are perhaps more familiar in
statistical mechanics. This largely follows Secs. 10.3 and
10.4 in Ref. [4].

Recall that in Hamiltonian mechanics there are 2N
degrees of freedom corresponding to canonical positions
qk and momenta pk that evolve according to Hamilton’s
equations:

q̇k =
∂H
∂pk

and ṗk = − ∂H
∂qk

,

k = 1, . . . , N . As above, now consider the evolution of
functions (observables) A(q, p, t) and densities ρ(q, p, t).

Unlike the flow map semigroups used above, Hamilto-
nian dynamics are specified by a set of differential equa-
tions. Application of a Koopman operator to Hamilto-
nian systems thus requires the infinitesimal generator L
of the Koopman semigroup, defined as:

LA := lim
t→0

1

t
[U tA−A] .

The Koopman generator L is the Lie derivative of an
observable A along the vector field Φ(ω) when ω evolves
according to the differential equation [82]:

ω̇ =
d

dt
ω

= Φ(ω) .

The time derivative of observables, given by the Koop-
man generator, can be computed simply using the chain
rule:

d

dt
A = LA

= ∇A · Φ .

For Hamiltonian systems then:

d

dt
A(q, p, t) = LA

=
∑

k

[
∂A

∂pk
ṗk +

∂A

∂qk
q̇k

]

=
∑

k

[
∂A

∂qk

∂H
∂pk
− ∂A

∂pk

∂H
∂qk

]

= {A,H}
= iL̂A ,

where {·, ·} is the familiar Poisson bracket. As expected,
we find the Koopman generator L is dual to the Liouville

operator L̂ = −i{·,H} that evolves densities according to
the well-known Liouville equation:

d

dt
ρ(q, p, t) = −iL̂ρ .

This is the infinitesimal generator version of Koopman
operators being dual to Perron-Frobenius operators—
the Liouville operator is the generator of the Perron-
Frobenius semigroup for Hamiltonian systems. Note that
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the Koopman generator L is sometimes conflated with
the Liouville operator in statistical mechanics.

To further underscore the dual perspectives of observ-
ables and densities, consider the classical Hilbert space
induced by the expectation-value inner product:

〈A〉 =

∫
A(p, q)ρ(p, q) dqdp

= 〈A|ρ〉 ,

with bra-ket notation used for simplicity.

Starting at an initial time t = 0, consider the time
dependence residing in either the observable A or in
the density ρ. (Again, these options are the analogs of
the Heisenberg and Schrödinger pictures of quantum me-
chanics, respectively.) That is:

〈A〉t = 〈A(t)|ρ(0)〉
= 〈A(0)|ρ(t)〉 .

And, we can similarly express the time derivative as:

d

dt
〈A〉t = 〈iL̂A(t)|ρ(0)〉

= 〈A(0)| − iL̂ρ(t)〉 .

Having set up the machinery of Hilbert space dynam-
ics for Hamiltonian systems, we now examine the time
evolution of densities and observables projected into a
subspace of partial observations. As usual, consider the
noninvertible observable mapping X(p, q) that represents
(functions of) some, but not all, of the canonical posi-
tions and momenta—the accessible degrees of freedom.

The projection operator P̂ = |X〉〈X| can act on both
densities ρ and other observables A, yielding the com-
ponent of each in the subspace of the accessible degrees
of freedom. As before, there is an associated orthogo-

nal projection operator Q̂ such that the sum of the two

operators is the identity: P̂ + Q̂ = Î.

First, consider the evolution of densities in the acces-
sible subspace. Inserting the above identity into the Li-
ouville equation yields:

d

dt
|ρ(t)〉 = −iL̂|ρ(t)〉

= −iL̂(P̂ + Q̂)|ρ(t)〉
= −iL̂

[
|ρX(t)〉+ |ρO(t)〉

]
,

where |ρX(t)〉 = P̂ |ρ(t)〉 is the accessible component of

the density and |ρO(t)〉 = Q̂|ρ(t)〉 is the orthogonal inac-
cessible component.

Next, apply the projection operator P̂ to both sides of
the expanded Liouville equation to project the dynamics
of |ρ(t)〉 onto the accessible degrees of freedom. This

gives the time derivative of |ρX(t)〉:

P̂
d

dt
|ρ(t)〉 =

d

dt
|ρX(t)〉 (B1)

= −iP̂ L̂
[
|ρX(t)〉+ |ρO(t)〉

]
.

The first equality follows since the projection operator
does not have explicit time dependence and so commutes
with the time derivative.

Applying the orthogonal projection Q̂ gives the deriva-
tive of the orthogonal component |ρO(t)〉:

d

dt
|ρO(t)〉 = −iQ̂L̂

[
|ρX(t)〉+ |ρO(t)〉

]
.

Similar to the Dyson expansion, Laplace transforms can
be used to solve for |ρO(t)〉, yielding:

|ρO(t)〉 = e−iQ̂L̂t|ρO(0)〉 − i
∫ t

0

e−iQ̂L̂τ Q̂L̂|ρX(t− τ)〉 dτ .

Substituting into the expression for the time derivative of
|ρX(t)〉 in Eq. (B1) gives the desired kinetic equation [83]:

d

dt
|ρX(t)〉 =− iP̂ L̂|ρX(t)〉 (B2)

−
∫ t

0

P̂ L̂e−iQ̂L̂τ Q̂L̂|ρX(t− τ)〉 dτ

− iP̂ L̂e−iQ̂L̂t|ρO(0)〉 .

This has the familiar form of, in order, a Markov term
that depends only on the current value of the accessi-
ble component, a memory convolution of the accessible
component, and a residual orthogonal component from
the initial conditions. Note that Eq. (B2) is exact; no
approximations were used.

Obtaining the Mori-Zwanzig equation applies the time
derivative of |ρX(t)〉 in Eq. (B2) to compute the equa-
tion of motion for the expectation value 〈X〉(t) of the
accessible degrees of freedom. Plugging Eq. (B2) into
the expression:

d

dt
〈X〉(t) =

〈
X
d

dt
|ρX(t)

〉
(B3)

yields three terms: Markovian, memory, and orthogonal.

The Markov term is:

〈X| − iP̂ L̂|ρX(t)〉 = 〈X| − iP̂ L̂P̂ |ρ(t)〉 (B4)

= 〈X|(−iL̂)|X〉〈X|ρ(t)〉
= 〈Ẋ|X〉〈X〉(t)
:= Γ〈X〉(t) .
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The orthogonal term is:

〈X|P̂ (−iL̂)e−iQ̂L̂Q̂|ρ(0)〉 = 〈iL̂X|e−iQ̂L̂tQ̂|ρ(0)〉 (B5)

= 〈eiQ̂L̂tQ̂iL̂X|ρ(0)〉
= 〈F (t)|ρ(0)〉
= 〈F 〉(t) ,

where we have used |F (t)〉 := |e−iQ̂L̂tQ̂(−iL̂)X〉.
Finally, the integrand of the memory term is given as:

〈X|P̂ (iL̂)e−iQ̂L̂τ Q̂(−iL̂)P̂ |ρ(t− τ)〉 (B6)

= 〈X|(iL̂)e−iQ̂L̂τ Q̂(iL̂|X〉〈X〉(t− τ)

= 〈iL̂X|F (τ)〉〈X〉(t− τ)

= 〈Q̂iL̂X|F (τ)〉〈X〉(t− τ)

= 〈F (0)|F (τ)〉〈X〉(t− τ)

:= K(τ)〈X〉(t− τ) ,

noting that Q̂|F (t)〉 = |F (t)〉, since |F (t)〉 is in the inac-
cessible subspace orthogonal to |X〉.

Combining the three terms in Eqs. (B4), (B6), and
(B5), and using a delta weight function in the expectation
value inner product, we arrive at the continuous time
Mori-Zwanzig equation:

d

dt
X(t) = ΓX(t)−

∫ t

0

K(τ)X(t− τ)dτ + F (t) . (B7)

The detailed expressions, as in Eq. (B2), allow for ad-
ditional insight into the statistical mechanics of the Mori-
Zwanzig formalism. In particular, we see the orthogonal

subspace propagator e−iQ̂L̂t appear in both the orthogo-
nal term and the memory term. For the orthogonal term,
this represents degrees of freedom that were initially in
the inaccessible orthogonal subspace and remained in-
accessible for the duration up to time t. Whereas, its
presence in the memory term represents degrees of free-
dom that were accessible at time t − τ , then dissipated
into and propagated through the inaccessible subspace
and, finally, returned to the accessible subspace by time
t.

Appendix C: Optimal Finite-Precision Instruments
for Continuous Observables

The following temporarily leaves behind the fully-
continuous dynamical processes setting. Instead, it con-
siders discrete-time, discrete-valued symbolic processes
[60] and how they relate to discrete measurements of con-
tinuous dynamical systems. In this, the mapping X cor-
responds to a coarse-grain partition P of the state space
Ω. As with dynamical processes, X is many-to-one and
noninvertible, yielding fully-discrete stochastic processes
of observations. Rather than interpreting X as access-

ing only a subset of accessible degrees of freedom in ω,
for symbolic processes X is interpreted as a collection
of measurement instruments, each with access to all rel-
evant degrees of freedom, but only report the result of
finite-precision observations [84]. To avoid confusion, we
denote the observation function for symbolic processes as
XP.

1. Symbolic Processes from Generating Partitions

A symbolic measurement function XP : Ω → A gen-
erates a finite partition P of state space Ω, with every
ω ∈ Ω mapping to a partition element Pi such that

Pi ∩ Pj = ∅ for all Pi,Pj ∈ P and
⋃K
i Pi = Ω. Each

partition element Pi carries a label, or symbol ai ∈ A.
Without loss of generality, we will take label(Pi) = i,
with A = {0, 1, . . . ,K − 1} for K partition elements in
P. Using this, we can explicitly write the piecewise con-
stant symbolic measurement function XP in terms of the
partition elements as:

XP(ω) =

K−1∑

i=0

i1Pi
(ω) , (C1)

where:

1Pi
(ω) =

{
1 ω ∈ Pi
0 ω /∈ Pi

is the indicator function for partition element Pi.
Paralleling our development of dynamical processes,

we now consider symbol sequences generated by mea-
suring orbits of the underlying system (Ω,Φ). For an
initial value ω0 there is an initial symbol a0 = XP(ω0)—
an element of partition P. Similarly, XP ◦ Φ induces a
partition over Ω, denoted Φ−1P, such that each element
(Φ−1P)i is the set of all ω for which XP

(
Φ(ω)

)
= Pi.

That is, Φ−1P is a partition over Ω at the initial time
t0 where every ω0 in the same element of Φ−1P emits
the same symbol a1 = XP(ω1) = XP

(
Φ(ω0)

)
at the next

time t1. Each time step tn generates a new partition
ΦnP whose elements are all the points ω0 ∈ Ω such that
XP
(
Φn(ω0)

)
∈ Pi.

Importantly, an iterated partition refines the previous
partition. For two partitions P and Q, the refinement
P ∨ Q = {Pi ∩ Qj , for all Pi ∈ P and Qj ∈ Q} is also a
partition. The first refinement of P under Φ is P∨Φ−1P.
Its elements are all the points ω0 ∈ Ω that emit the same
symbol XP(ω0) for time t0 and that emit the same symbol
XP
(
Φ(ω0)

)
at the next time t1. Therefore, the refinement

P ∨ Φ−1P maps from Ω to two-symbol sequences a0a1

in A × A. In the limit, the full dynamical refinement
P∨Φ−1P∨Φ−2P∨· · · maps points in Ω to infinite-length
symbol sequences in A×A×A× · · · .

A partition P is generating if there is a one-to-one
correspondence, almost everywhere, between an initial
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condition ω0 ∈ Ω and the infinite sequence of symbols
{XP(ω0), XP

(
Φ(ω0)

)
, XP

(
Φ2(ω0)

)
, . . .} generated by ω0.

Thus, while the initial measurement symbol a0 = XP(ω0)
is far from sufficient to fully determine ω0, the full
infinite sequence of subsequent symbols does (almost-
everywhere) fully determine ω0 if P is a generating par-
tition. This occurs since the size of the dynamical re-
finement partition elements goes to zero in the infinite-
time limit. And, in turn, this requires the system to be
chaotic; exponential spreading of orbits in forward time
corresponds to exponential convergence in reverse time.

Due to all this, generating partitions provide a rigor-
ous notion of a “good” measurement device for which
information lost by a coarse single-time measurement is
recovered through an infinite-time limit of measurement
observations. The one-to-one correspondence property of
generating partitions emerges above when discussing the
potential convergence of data-driven models of partially-

observed systems. The set
←−
B k
t is the element of the

dynamical refinement of the generating partition corre-
sponding to the observed symbol sequence ←−x kt . In the

limit of infinitely-many observations the size ν(
←−
B k
t ) of

the refined partition elements vanishes and almost-every
infinite-length symbol sequence corresponds to a unique
system state ω ∈ [0, 1].

An important bridge between symbolic and dynami-
cal processes arises from the fact that the evolution of
partitions Φ−nP (not the dynamical refinements) is gov-
erned by discrete-time Koopman operators. The parti-
tion Φ−nP is generated by the time-shifted symbolic mea-
surement function XP ◦ Φn = UnXP. Therefore, again
paralleling dynamical processes, the symbol sequences
are given by {XP(ω0), [UXP](ω0), [U2XP](ω0), . . .}.

2. Generating Partition of the Logistic Map

A common arena for investigating symbolic processes
of chaotic dynamical systems considers continuous maps
on the unit interval Ω = [0, 1] [85, 86]. Here, we examine
the logistic map:

ωn+1 = Φ(ωn)

= rωn(1− ωn) ,

We set r = 4.
The binary partition G, shown in Fig. 8, with G0 =

[0, 1
2 ] and G1 = [ 1

2 , 1], is a generating partition of the
logistic map [86]. The corresponding symbolic measure-
ment function is the step function:

XG(ω) =

{
0 0 ≤ ω ≤ 0.5

1 0.5 ≤ ω ≤ 1
.

Note this function is in the general form of Eq. (C1).
The single-time evolved partition Φ−1G, also shown in

Fig. 8, is given by the single-time shift symbolic measure-

ωn

ωn+1

1

1

0.5

G 0 1

Φ−1G 0 1 0

G ∨ Φ−1G 0
0

0
1

1
1

1
0

Φ(ω) = 4ω(1− ω)

FIG. 8. Logistic map of the unit interval at r = 4: Shown
with generating partition G, the single-time evolved partition
Φ−1G, and the first dynamical refinement partition G∨Φ−1G.

ment function:

XG
(
Φ(ω)

)
= [UXG](ω) (C2)

=

{
1

1−
√

1
2

2 ≤ ω ≤ 1+
√

1
2

2

0 otherwise
. (C3)

The new boundary points
(

1−
√

1
2

)
/2 and

(
1 +

√
1
2

)
/2 of Φ−1G are the pre-images {Φ−1(ω)} of

the original boundary point ω = 1/2 of G.
Finally, the first dynamical refinement G∨Φ−1G, map-

ping Ω to two-symbol sequences, is also shown in Fig. 8.
From Fig. 8 we see that the dynamical refinement adds
the boundary points of Φ−1G to the original boundary
point of G.

Beyond rigorously formulating good measurement
devices—generating partitions—symbolic processes were
historically important for introducing concepts and
methods from discrete information and computation the-
ories into dynamical systems and ergodic theory, as noted
above. In particular, the Shannon entropy rate of a sym-
bolic process has a (possibly nonunique) supremum over
all possible partitions for a given iterated map. This is
the Kolmogorov-Sinai entropy. That is, the supremum
is achieved for generating partitions [87, 88]. Moreover,
the Kolmogorov-Sinai entropy is bounded by the posi-
tive Lyapunov exponents of the underlying system [89].
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This provides a rigorous link between the geometric insta-
bilities of deterministic chaos and observed randomness.
And, this explains, in part, why the weather is hard to
predict [90, 91].

Appendix D: Data-Driven Koopman Approximation

Given that Uτ provides the ground-truth for T τ , why
not use a data-driven approximation of Uτ for T τ?
Finite-dimensional approximations of U t are useful for
global spectral analysis of nonlinear systems, but they
are typically not optimal for predictive modeling, as we
now show.

Data-driven finite-dimensional—i.e., matrix—
approximations of Uτ are most generally understood
through the Extended Dynamic Mode Decomposition
(EDMD) algorithm [92, 93] shown in Fig. 9. Consider
a dictionary Ψ = [ψ1(x), . . . , ψk(x)]T of basis functions
in V . For simplicity, assume this is an orthonormal
set so that Ψ defines the closed Hilbert subspace
HΨ ⊆ HX ⊂ H spanned by Ψ ◦ X. Given a set of
training data {x0, x1, . . . , xT }, EDMD finds a (least
squares) best-fit matrix Uτ

X such that:

Ψ(xt+τ ) = Uτ
XΨ(xt) . (D1)

This is typically an overdetermined optimization, and so
it is common to pick a solution by applying the pseudoin-
verse Ψ+, giving:

[Uτ
X ]T = Ψ(xt+τ )Ψ+(xt) . (D2)

In the infinite data limit, Uτ
X converges to a Galerkin

projection of Uτ onto HΨ, so that:

〈ψj , Uτψi〉 = 〈ψj ,Uτ
Xψi〉 , (D3)

for all i, j = 1, . . . , k.
In the fully-observed case, where X is the identity

(X(ω) = x = ω), the Galerkin projection Uτ converges
to the true Koopman operator Uτ in the limit of an
infinitely-large dictionary Ψ, where HΨ → H [94]. How-
ever, in the partially-observed case, the dictionary is re-
stricted to functions of partial observations x only. Thus,
in the limit of an infinitely-large dictionary Ψ → V , we
only have that HΨ → HX . Therefore, Uτ

X cannot con-
verge to the full Uτ . We include the subscript X in Uτ

X
to signify this fundamental restriction.

Several difficulties arise in using Uτ
X as a predictive

model. First and foremost, the identity function fX(x) =
xmust be included in Ψ. (fX is sometimes called the full-
state observable in the Koopman literature, but we do
not as it is confusing in the setting of partially-observed
systems.) A prediction is then given as:

xt+τ = T τEDMD(xt)

= Uτ
X [fX ◦X](ωt) .

That is, the forecast is determined by the action of Uτ
X

on the identity observable fX ◦X.

To be clear, Uτ
X is an operator on the Hilbert sub-

space HΨ ⊆ HX ⊂ H of observables of the full under-
lying system Ω. However, due to the partial-observation
constraint it must always act on observables composed
with X. (And so, it can be thought of as acting on func-
tions of x.) However, the identity observable fX need
not be included in constructing the dictionary Ψ. The
constraint of requiring fX ∈ Ψ can be avoided through
the use of autoencoder neural networks to construct Uτ

X
[73, 95, 96]. The decoder of the network learns a nonlin-
ear map from HΨ → X that recovers fX as a nonlinear
combination of the elements of Ψ.

In practice, the distinction between discrete-time and
continuous-time systems can be important. For continu-
ous time, the gEDMD algorithm [97] should be employed
to approximate the Koopman generator. This is done by
using finite differences or automatic differentiation of the
observation time series.

A more serious difficulty in using EDMD for predic-
tion comes from its its lack of closure—leakage out of the
subspace HΨ. If HΨ is not a finite Koopman-invariant
subspace [98], then after several iterations Uτ [fX ◦ X]
eventually no longer lies within HΨ. Due to this, Uτ

X ’s
action differs from the true evolution given by Uτ ’s ac-
tion. Note that if HX is not a Koopman invariant sub-
space, then all instantaneous models T τ accrue a similar
prediction error. This is the intrinsic error ΞτX discussed
above, which is incurred for having only partial observa-
tions X of Ω.

In the infinite dictionary limit, Ψ→ V and so Uτ
X [fX ◦

X] = g ◦ X is always in HΨ = HX , for some g ∈ V .
Thus, EDMD converges in the limit to optimal target
function—regression function—Zτ in Eq. (11). Given
that the Koopman operator provides the ground-truth
for data-driven models, it is not surprising that the
EDMD approximation method for Uτ recovers the op-
timal instantaneous target function.

The difficulty is that EDMD never reaches the Ψ→ V
limit. Therefore, generally the leakage of Uτ

X [fX ◦ X]
out of HΨ may still lie within HX . Unlike the Ψ → V
limit, with leakage out of HX , this leakage is avoidable,
given a better choice of or larger dictionary Ψ. More-
over, the prediction error from the leakage compounds
over time. The choice of Ψ thus substantially impacts
EDMD’s predictive skill. In general, a finite invariant
subspace cannot be determined a priori. And, for that
matter, may not exist for a given physical system Ω with
a given X—the set of measurements that can be made
on Ω. Recent deep learning approaches [66, 73, 95, 96]
attempt to learn an optimal Ψ from data. Similarly,
kernel methods [99–101] are used to create a very large,
implicitly-defined, dictionary.

Note that employing the trivial dictionary Ψ = {fX},
which includes only the identity, yields the exact Dy-
namic Mode Decomposition (DMD) algorithm [102]. For
prediction DMD finds the optimal matrix (i.e. linear) so-
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ω0 ∈ Ω

System

x0 = X(ω0)

Observations

X : Ω→ X
[ψ1(x0), . . . , ψk(x0)]T

Galerkin Approximation

Ψ

ωt = Φt(ω0)

Φt

xt = X(ωt)
X : Ω→ X

[Ut
Xψ

1(x0), . . . ,Ut
Xψ

k(x0)]T

[ψ1(xt), . . . , ψ
k(xt)]

T

Ut
X

Ψ

minimize

Xt = U tX

FIG. 9. EDMD algorithm’s commuting diagram for finite-dimensional Galerkin approximation Uτ
X of U t onto HΨ ⊆ HX ⊂ H.

lution for T τ which minimizes the instantaneous target
function error in Eq. (8).

For complex, nonlinear systems, using a linear model
for prediction may seem like a bad idea. Interestingly,
though, “linear plus noise” models, such as Linear In-
verse Modeling (LIM) [102], can be reasonably effective
and are frequently used in climate science [103]. We are
not aware of attempts to generalize this to an Extended
Linear Inverse Model that implements EDMD plus noise.
The efficacy of LIM models suggests the tolerance in-
duced by noise may help alleviate the effects subspace
leakage.

Equations of Motion From Data A popular approach
for data-driven modeling learns an explicit closed-form
equation model for T τ . This is referred to as equation
discovery. The most common approach performs a dic-
tionary regression; sometimes also called symbolic regres-
sion [45, 104]. Like EDMD, a dictionary Ψ = [ψi, . . . , ψk]
of functions is chosen and a (typically sparse) regression

is performed to find the best-fit coefficients ai that mini-
mize ‖ẋt −

∑
i aiψ

i(xt)‖2. In fact, the dictionary regres-
sion approach to equation discovery is a special case of
gEDMD [97].

Whatever form of equation discovery is used, the ulti-
mate goal is to approximate ẋ = ΦX(x) with a closed-
form expression for ΦX . For partially-observed dynam-
ics, though, it is not guaranteed that ΦX will be well-
represented by closed-form equations of motion, even if
Φ is [45]. The insight that dictionary regression is a
special case of the gEDMD algorithm for approximat-
ing the Koopman generator illustrates that forcing T τ to
be closed-form is an unnecessary restriction. There are
certainly many advantages to having closed-form models,
including interpretability and extracting adjustable phys-
ical parameters. In contrast, for prediction our unified
framework demonstrates that it is often advantageous to
use implicit models for T τ .
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