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Information flow between components of a system takes many forms and is key to understanding
the organization and functioning of large-scale, complex systems. We demonstrate three modalities
of information flow from time series X to time series Y . Intrinsic information flow exists when the
past of X is individually predictive of the present of Y , independent of Y ’s past; this is most com-
monly considered information flow. Shared information flow exists when X’s past is predictive of
Y ’s present in the same manner as Y ’s past; this occurs due to synchronization or common driving,
for example. Finally, synergistic information flow occurs when neither X’s nor Y ’s pasts are pre-
dictive of Y ’s present on their own, but taken together they are. The two most broadly-employed
information-theoretic methods of quantifying information flow—time-delayed mutual information
and transfer entropy—are both sensitive to a pair of these modalities: time-delayed mutual infor-
mation to both intrinsic and shared flow, and transfer entropy to both intrinsic and synergistic flow.
To quantify each mode individually we introduce our cryptographic flow ansatz, positing that intrin-
sic flow is synonymous with secret key agreement between X and Y . Based on this, we employ an
easily-computed secret-key-agreement bound—intrinsic mutual information—to quantify the three
flow modalities in a variety of systems including asymmetric flows and financial markets.
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I. INTRODUCTION

Information flow is an important signature of truly com-
plex systems—an incisive proxy for their structure and
behavior. Truly complex systems are becoming increas-
ingly familiar to most all the sciences and engineer-
ing. Certain expressed genes modulate the expression
of others, leading to structured biological processes in
metabolism, development, and evolution. The price of a
good signals scarcity and demand to consumers and pro-
ducers, respectively. During specific cognitive tasks, only
a small portion of the brain’s connectome is activated and
so determining the underlying subnetwork is critical to
identifying neural function. To these ends, methods of
tracking and quantifying information flow form a core
toolset for analyzing large-scale complex systems.
Methodologically, it is difficult to find an alternative
toolset with the many features that recommend using
information theory [1, 2] to analyze complex systems.
First, information accounts for any type of co-relation
[1]. Whereas, statistical correlation requires an under-
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lying model and typically captures only linear statisti-
cal dependencies [3]. Second, information is broadly ap-
plicable. Many systems across the sciences simply do
not have an “energy” and this precludes appealing to
physics-based modeling that starts from a system Hamil-
tonian. In contrast, information can be defined for me-
chanical, chemical, biological, social, and engineered sys-
tems. Third, information provides directly comparable
quantitative units across qualitatively different systems.
Pairwise statistical correlation comes in fixed, domain-
specific units—meters squared, concentration squared,
volts squared, dollars squared, and so on. Information
is universally measured in bits. Fourth, there is a rough
equivalence between probability theory and information
theory [4] and a substantial foundational overlap between
mathematical statistics and information theory; e.g., see
Refs. [5] and [1, Ch. 11]. Finally, and perhaps most
importantly, large-scale complex systems generate emer-
gent patterns—patterns that an analyst does not know a
priori. Information does not require prior knowledge of
an appropriate representational basis, which is essential
when attempting to discover new patterns not seen be-
fore [6]. Despite a number of technical challenges, to date
it appears that the tools of information are the most gen-
eral, workable alternative available in the pursuit of com-
plex systems. The following provides new results that
remove several of the remaining impediments.
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In particular, despite its long-lived intuitive appeal [7–
11], information flow is not yet a concretely defined con-
cept. One consequence is that many methods of cal-
culating it fail surprisingly when deployed in unfamiliar
contexts [12]. Here, we posit that these failures are not
directly due to shortcomings of the quantitative measures
themselves, but rather arise due to analysts adhering to
the concept of a unitary information flow. In contrast,
we demonstrate that the flow between two time-series, X
and Y , takes on three qualitatively distinct modes: in-
trinsic, shared, and synergistic information flows. Unfor-
tunately, to date methods of computing information flow
do not quantify these distinct modes. Here, we solve this
problem via a novel adaptation of cryptography.
Our development proceeds as follows. Section II dis-
cusses and exemplifies the three modes of information
flow. As an aid in this, App. A briefly reviews the
necessary notation and concepts from elementary prob-
ability (random variables X and Y ), time series (ran-
dom variable sequences Xt:t′), and information measures
(H[X] ,H[Y |X] , I[X : Y ] , I[X : Y |Z]). Section III then
surveys extant measures of information flow within mul-
tivariate time series. Section IV introduces our crypto-
graphic flow ansatz and shows how it isolates intrinsic
information flow and so yields the full three-way decom-
position of information flow. Section V explores compo-
nents of the decomposition in a variety of settings, in-
cluding asymmetric flows and financial indices.

II. MODES OF INFORMATION FLOW

Colloquially, information flow is the movement of infor-
mation from one agent or system to another. Unlike
many flows considered in physics, such as electric cur-
rent or fluid flow, there is no single conservation law for
information. This makes quantifying information flow
vastly more challenging. In light of this, definitions of in-
formation flow have been somewhat ad-hoc, though they
typically employ either some form of mutual informa-
tion [13] or quantify the influence one agent has on an-
other [14]. They are often backed with examples where
the proposed measure performs admirably, though per-
formance in other settings can be mixed or misleading.
We propose that this inconsistency is due to conflating
distinct modes of information flow.
Specifically, information flow from time series X to time
series Y can take three qualitatively distinct forms. The
first, intrinsic flow, is when the past behavior of the X
time series is directly predictive of the present behavior
of the Y time series in a fashion that the past behavior of
Y is not. For example, this occurs when an “upstream”

Intrinsic
X Y
0 1

0 0

1 0

0 1

0 0

0 0

1 0

0 1

Shared
X Y
0 0

1 1

0 0

1 1

0 0

1 1

0 0

1 1

Synergistic
X Y
0 1

0 1

1 1

1 0

0 1

0 1

1 1

0 0

FIG. 1. Modes of information flow: Intrinsic flow is exem-
plified by Y0 = X−1. Shared flow by Y0 = ¬X−1 = ¬Y−1.
Synergistic flow by Y0 = X−1 ⊕ Y−1.

X drives a “downstream” Y . The second mode, shared
flow, is when the present behavior of the Y time series
can be inferred from the prior behavior of either the X
time series or the Y time series. This occurs due to,
say, a common driver or synchronization within a sys-
tem. The third mode, synergistic flow, occurs when both
the past of the X time series and the past of the Y time
series are each independent of the present of the Y time
series, but when combined the two pasts become predic-
tive of it. This occurs in systems where the behavior of a
component strongly depends upon its context within the
system. Appendix B gives a more detailed rationale for
the three modalities of flow.

Markovian examples of these three types of flow are illus-
trated in Fig. 1. Exemplifying intrinsic flow is the case
where Xt is random and Y simply follows it: Y0 = X−1.
Shared flow is demonstrated with synchronization, where
Y0 = ¬X−1 = ¬Y−1, where ¬ is the “not” operation. Fi-
nally, synergistic flow can be seen whenXt is random and
Y0 = X−1⊕Y−1, where ⊕ is the exclusive-OR operation.
Both shared and synergistic flows are symmetric, in that
they cannot be said to originate from either X’s past or
Y ’s past. Whereas, intrinsic flow is uniquely attributed
to X’s past.

Now, the question is: How do we detect and quantify
these three forms of dependence from time series obser-
vations?
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III. EXTANT MEASURES OF INFORMATION
FLOW

Historically, information flow has been measured via the
time-delayed mutual information [15]:

I[X−1 :Y0] . (1)

It posits that information flow from X to Y is the infor-
mation shared between X’s past observations X−1 and
Y ’s present observation Y0. As such, it is sensitive to
both intrinsic and shared dependence, as seen in Fig. 2.
While time-delayed mutual information captures a re-
stricted notion of causality, it “. . . fails to distinguish in-
formation that is actually exchanged from shared infor-
mation due to common history and input signals ” [16].
That is, it conflates intrinsic and shared dependence.

To cleave away the shared dependence from the time-
delayed mutual information Ref. [16] proposed the trans-
fer entropy:

I[X−1 :Y0 |Y−1] , (2)

—the information shared by X’s past and Y ’s present,
given Y ’s past—and correctly intuited that the influences
of common history and input signals on shared infor-
mation “. . . are excluded by appropriate conditioning of
transition probabilities.” Unfortunately, this ignores the
possibility of conditional dependence. And, the transfer
entropy suffers as a result, failing to distinguish intrinsic
flow from synergistic flow; again, see Fig. 2. (That trans-
fer entropy separates into two components is not new, see
App. C.) Taken at face value, this presents the unfortu-
nate situation of being unable to quantify any specific
mode of information flow.

A short aside will highlight the issue here. Previous ef-
forts to measure flow rest on the misunderstanding that
conditioning is subtractive: “in our new approach, these
influences are excluded by appropriate conditioning of
transition probabilities” [16]. The erroneous assump-
tion here being that conditioning only excludes depen-
dency. In point of fact, information-theoretic condition-
ing and probabilistic conditioning, for that matter, are
generically not subtractive operations, as demonstrated
in Fig. 2 and Problem 10 in Chapter 2 of Ref. [17]. Ignor-
ing this has led to the belief that conditioning on more
and more time series results in a more incisive analysis
of information flow within a system [16, 18, 19]. It need
not.

Intrinsic
X−1 Y0 Y−1 Pr

0 0 0 1/4
0 0 1 1/4
1 1 0 1/4
1 1 1 1/4

Shared
X−1 Y0 Y−1 Pr

0 1 0 1/2
1 0 1 1/2

Synergistic
X−1 Y0 Y−1 Pr

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

I[X−1 :Y0] = 1
I[X−1 :Y0 | Y−1] = 1

I[X−1 :Y0] = 1
I[X−1 :Y0 | Y−1] = 0

I[X−1 :Y0] = 0
I[X−1 :Y0 | Y−1] = 1

FIG. 2. Three canonical types of dependence between two
variables X−1 and Y0 in the context of a third Y−1: (Left)
Intrinsic dependence exists between the first two variables in
spite of the third. (Middle) Shared dependence exists syn-
chronously with the third. (Right) Synergistic dependence
exists only when also observing the third.

IV. CRYPTOGRAPHIC COMMON
INFORMATION

Overcoming the challenge of information flow requires
adopting a different viewpoint—one that directly ad-
dresses when two system components, and only two sys-
tem components, possess common information. Solving
this would circumvent the open-ended issue of condition-
ing on all of a system’s other, possibly unspecified, vari-
ables besides the two of interest; a strategy that, on its
own, fatally ignores conditional dependence, as we just
argued. Thus, we must simultaneously solve a defini-
tional problem and a technical problem: respectively (i)
acknowledging distinct modes of flow and (ii) account-
ing for both conditional independence and dependence.
Our solution appeals to cryptography and the informa-
tion theory of two parties sharing secret keys. We intro-
duce an ansatz that directly quantifies intrinsic flow and,
thereby, completes the decomposition of information flow
into its three modes.
Consider again the flow of intrinsic information fromX−1
to Y0. The flow implicates some sort of dependency or
correlation between X and Y that can unambiguously
be attributed to X. Were this dependency able to be
reproduced from other aspects of the system, it could not
be said to have originated from X−1. This observation
evokes the cryptographic idea of secret key agreement and
leads to our ansatz:

Cryptographic Flow Ansatz

Intrinsic information flow exists exactly when
X−1 and Y0 can agree on a secret key, while the
past of the rest of the system eavesdrops.

Quantitatively, intrinsic information flow is the rate at
which information secret to X−1 and Y0 can be extracted
from observations of the system.
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A. Secret Key Agreement Rate

In this way, we identify the intrinsic information flow
as the secret-key agreement rate [20], which is defined
as follows. Consider a joint random variable (X,Y, Z),
where Alice has access to the X realizations, Bob the Y
realizations, and Eve the Z realizations. Given N IID
realizations of the joint variable, let XN denote Alice’s
observations, Y N Bob’s, and ZN Eve’s. Random variable
V represents the public communication that all three ob-
serve. Let S denote the secret key that Alice and Bob
wish to have in common.
Now, let SX and SY represent the secret keys that Al-
ice and Bob, respectively, distill from their private ob-
servations as well as from the public communication V :
SX = f(XN , V ) and SY = g(Y N , V ). In this, functions
f and g represent the mechanism by which Alice and Bob
construct their copy of secret key S. A secret key agree-
ment scheme defines the allowed public communications
V and mechanisms f and g. If the scheme is any good,
SX and SY will be identical and equal to S with high
probability: Pr(SX = SY = S) ≥ 1− ε. Moreover, being
secret, the key S should have arbitrarily small correlation
with Eve’s private observations Z and the public commu-
nication V : I

[
S : V,ZN

]
≤ ε. The secret-key agreement

rate S(X :Y || Z) then is the maximum rate R such that:

lim
N→∞

1
N

H[S] ≥ R− ε ,

for N > 0 and ε > 0. In other words, the secret key
agreement rate is the largest rate at which a secret key
S can be successfully produced.
Effectively, given realizations of the three-way joint ran-
dom variable, there exists a scheme by which Alice and
Bob can publicly exchange information and then distill
their public and private information into a secret key
upon which they both agree with arbitrarily high proba-
bility, but which has arbitrarily little information shared
with all information available to Eve. The challenge now
is to determine the secret-key extraction functions f and
g, as well as what public communication V is necessary.
See Ref. [21] for concrete examples.

B. An Easily Computed Upper Bound

Though we identified the secret key agreement rate with
intrinsic information flow, the nonconstructive nature of
its definition mandates we appeal to some proxy if we
wish to practically estimate it. While several lower and
upper bounds exist for the secret key agreement rate,
here we use the intrinsic mutual information [22]. We

recommend this upper bound due to its nontrivial behav-
ior (exemplified shortly) and relatively straightforward
estimation.
An eavesdropper not only has access to her observations
z, but also to any (local) modification Pr(z|z) of them.
Therefore, the ability of Alice and Bob to agree upon a
key cannot be reduced if Z is replaced by any “corrup-
tion” Z. This observation simplifies the secret key opti-
mization, leading to a constructive bound on the secret
key agreement rate:

S(X :Y || Z) ≤ min
Pr(z|z)

I
[
X : Y

∣∣ Z] (3)

= I[X : Y ↓ Z] . (4)

The last quantity—intrinsic mutual information—is
therefore an upper bound on the secret key agreement
rate. It can be easily verified that I[X : Y ↓ Z] is
bounded from above by both I[X : Y ] , when Pr(z|z)
is constant, and I[X : Y | Z] , when Pr(z|z) is the iden-
tity. Fortunately, this optimization is not difficult due
to the boundedness of Z. (In fact, |Z| ≤ |Z| [23]). Ap-
pendix D explains how to calculate the intrinsic mutual
information.
To illustrate its behavior, consider the distribution in
Fig. 3 [22]. This distribution has two qualitatively dis-
tinct sets of events. The first, encoded using 0s and 1s,
exhibits conditional dependence: any pair of X, Y , or Z
are independent, but given the third they are perfectly
correlated. The second, encoded using 2s and 3s, ex-
hibits conditional independence: any pair is perfectly cor-
related and is also correlated with the third. The mutual
information I[X : Y ] = H[1/2, 1/4, 1/4] = 3/2 bit, reflect-
ing that they share 01-, 2-, and 3-ness. However, the
conditional mutual information I[X : Y | Z] = 1/2 bit,
reflecting the conditional dependence that occurs half
the time. The mapping of Z to Z given in the table
demonstrates that the conditional dependence can be de-
stroyed while preserving the conditional independence:
I
[
X : Y

∣∣ Z] = 0 bit = I[X : Y ↓ Z]. This indicates that
both the mutual information and conditional mutual in-
formation misleadingly identify dependencies that do not
belong to X and Y alone, but rather are shared by, or
induced by, Z.

C. Flow Decomposition

Recall that we showed the time-delayed mutual infor-
mation I[X−1 :Y0] captures both intrinsic and shared
flows, while transfer entropy I[X−1 :Y0 |Y−1] captures
intrinsic and synergistic flows. Together with our crypto-
graphic flow ansatz that quantifies intrinsic flow, simple
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X Y Z Z Pr
0 0 0 0 1/8
0 1 1 0 1/8
1 0 1 0 1/8
1 1 0 0 1/8
2 2 2 2 1/4
3 3 3 3 1/4

I[X : Y ] = 3/2 bit

I[X : Y | Z] = 1/2 bit

I[X : Y ↓ Z] = 0 bit

FIG. 3. The intrinsic mutual information I[X : Y ↓ Z] can
be less than both I[X : Y ] and I[X : Y | Z] : The mutual
information I[X : Y ] captures the 01-, 2-, and 3-ness that is
shared by X and Y , while the conditional mutual information
I[X : Y | Z] captures the fact that knowledge of Z indicates
whether the 0s and 1s of X and Y are the same or different.
Neither of these dependencies are held by X and Y alone, and
so the intrinsic mutual information I[X : Y ↓ Z] vanishes.

Intrinsic
X−1 Y0 Y−1 Pr

0 0 0 1/4
0 0 1 1/4
1 1 0 1/4
1 1 1 1/4

Shared
X−1 Y0 Y−1 Pr

0 1 0 1/2
1 0 1 1/2

Synergistic
X−1 Y0 Y−1 Pr

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

intrinsic = 1
shared = 0

synergistic = 0

intrinsic = 0
shared = 1

synergistic = 0

intrinsic = 0
shared = 0

synergistic = 1

FIG. 4. Flow decomposition of the canonical dependency
types of Fig. 2: Each dependency type is associated with a
unique flow mode: intrinsic with intrinsic, shared with shared,
and synergistic with synergistic.

algebra now gives a full and constructive decomposition
of the distinct flow modes:

Intrinsic Flow: I[X−1 :Y0 ↓ Y−1]

Shared Flow: I[X−1 :Y0] − I[X−1 :Y0 ↓ Y−1]

Synergistic Flow: I[X−1 :Y0 |Y−1] − I[X−1 :Y0 ↓ Y−1]

To illustrate how this works, Fig. 4 returns to the canon-
ical dependency types of Section II and applies the de-
composition to each. In the case of the Intrinsic pair
of time series, we find that intrinsic flow is 1.0 bit while
shared and synergistic are both 0.0 bit. The synchronized
or Shared pair of time series decomposes with 1.0 bit of
shared flow, with 0.0 bit of both intrinsic and synergis-
tic flows. Finally, the Synergistic pair has no intrinsic or
shared information flow, but 1.0 bit of synergistic flow.
These observations justify the names given to the three
modes.

V. RESULTS

With their definitions and estimation methods laid out,
we now turn to demonstrate the diversity and advantage
of quantifying separate modes of information flow in set-
tings ranging from asymmetric flow to financial indices.

A. Asymmetric Information Flow?

At first blush, it seems difficult for there to be shared in-
formation flow from X to Y , but not from Y to X. Here,
we provide a relatively simple example and an intuitive
explanation of this phenomenon. Consider the following
(jointly) Markovian transition matrix defining a pair of
time series X and Y :

TX−1,Y−1→X0,Y0 =


0, 0 0, 1 1, 0

0, 0 0 1 0
0, 1 0 0 1
1, 0 4/9 5/9 0

 , (5)

with stationary distribution π = (2/11, 9/22, 9/22). The
time series’ temporal joint distribution is:

X−1 Y−1 X0 Y0 Pr
0 0 0 1 2/11
0 1 1 0 9/22
1 0 0 0 2/11
1 0 0 1 5/22

The joint time series has information flows from Y to
X of 0.526 200 bit intrinsic, 0.449 821 bit shared, and
0.0 bit synergistic; and from X to Y of 0.0 bit intrinsic,
0.044 381 bit shared, and 0.120 759 bit synergistic. Note
that from Y to X, the intrinsic information flow is equal
to the transfer entropy, while from Y to X the intrin-
sic information flow is equal to the time-delayed mutual
information.
To gain a more intuitive understanding of the asymmetry
in this, let us isolate the transition matrix corresponding
to the generation of the X time series:

T [X−1, Y−1 → X0] =


0 1

0, 0 1 0
0, 1 0 1
1, 0 1 0

 . (6)

In this instance, I[X−1 : Y−1] = 0.449 821 bit while
I[X−1 : Y−1|X0] = 0 bit. This indicates that the vari-
ables form a Markov chain X−1 −X0 − Y−1 and so any
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information X−1 and Y−1 share is contained within X0.
Therefore, the shared information flow is 0.449 821 bit.
From this, the intrinsic information flow from Y to X is
I[Y−1 : X0]−0.449 821 bit = 0.526 200 bit and synergistic
is I[Y−1 : X0|X−1]− 0.449 821 bit = 0.0 bit.
Looking toward the Y time series, we find the following
transition matrix:

T [X−1, Y−1 → Y0] =


0 1

0, 0 0 1
0, 1 1 0
1, 0 4/9 5/9

 . (7)

Here, consider a locally-modified Y ′−1 constructed by
passing Y−1 through a channel that preserves the value
0, but maps a 1 to a 0 with probability 16/45. This results
in the modified transition matrix:

T
[
X−1, Y

′
−1 → Y0

]
=


0 1

0, 0 4/9 5/9

0, 1 1 0
1, 0 4/9 5/9

 . (8)

Given Y ′−1, X−1, and Y0 are independent. This im-
plies that no information about Y0 can be uniquely
attributed to X−1, since there is a method of recon-
structing any influence X−1 has on Y0 using Y−1 alone.
We then conclude that the intrinsic information flow
from X to Y is 0.0 bit. Shared information flow is
then I[X−1 : Y0] = 0.044 381 bit, while synergistic flow
is I[X−1 : Y0|Y−1] = 0.120 759 bit.
These jointly Markovian time series exemplify the degree
of asymmetry that can exist in information flow. Specifi-
cally, it is not immediately obvious that shared informa-
tion flow—due to common driving or synchronization,
for example—can be large in one direction while small
or nonexistent in the other. These sorts of asymmetries
appear in a variety of data sets, and so its demonstration
in a relatively simple Markovian setting is pedagogically
helpful. These relationships are summarized in Fig. 5.

B. Financial Information Flows

We next analyze information flows between a financial in-
dex and its constituent stocks. The value of a financial in-
dex is the weighted average of the value of its constituent
stocks. Here, we highlight our analysis of the Standard
& Poor’s 500 (S&P 500), while App. E compares infor-
mation flows in the S&P 400 and S&P 600 indices. The
S&P 500 consists of 500 “large cap” stocks, whose total
value is approximately $23.9 trillion dollars or 80% of the

x y

FIG. 5. A representation of the information flows between
x and y. The color of an arrow corresponds to its mode:
red for intrinsic, green for shared, and blue for synergistic.
The width of an arrow corresponds to its strength: the wider
the arrow, the larger that flow mode. We see that there is
relatively little flow from x to y and its modes are shared and
synergistic, while there is significantly more information flow
from y to x and its modes are intrinsic and shared.
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FIG. 6. Distinct information flows within the “large cap” S&P
500 financial index. Axis scales are identical with minimum
0.0000 bit and maximum 0.0126 bit.

US market. The other indices are smaller, engineered to
reflect financial dynamics at other economic scales. The
time series consist of the sign of the change in the daily
closing price of each stock and the index between Jan-
uary 1st 2000 and December 31st 2008. We only include
stocks whose symbol was in the index for the entirety of
the date range. We estimate each information flow mea-
sure utilizing a past of length 1. These methods match
those of Ref. [24], where the transfer entropy between the
S&P 500 and its constituents was analyzed. As noted, in-
terpreting the transfer entropy as an information flow is
unclear.
To probe market behavior with our more refined scheme,
we evaluate the intrinsic, shared, and synergistic infor-
mation flows between each stock and its index. The S&P
500’s information flows are given in Fig. 6. The analy-
sis immediately reveals that intrinsic information flow is
heavily skewed: the index value drives many stock values,
but individual stock values are not directly predictive of
the index. Shared information flow also skews, but only
slightly. Thus, there is common behavior to both stock
values and the index value. This common behavior is
predictive of a stock’s value, but less predictive of the
index. Synergistic flow is also skewed, but in a differ-
ent way. Here, there is some joint feature of the prior
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values of the stock and index that is predictive of the
index value, but not so of the stock. In Ref. [24], the
asymmetry of the transfer entropy—the sum of intrinsic
and synergistic flows—in the S&P 500 was noted. Our
flow decomposition refines this asymmetry: stocks whose
transfer entropy skewed more heavily in index-to-stock
directly do so due to intrinsic information flow, while
those that skew more in the direction of stock-to-index
do so synergistically.
We can further analyze the behavior of specific stocks.
PEP (PepsiCo), for example, is strongly driven—via in-
trinsic flow—by the behavior of the S&P 500. LNC (Lin-
coln Financial Group) is most strongly influenced syner-
gistically by both its own past behavior combined with
the past behavior of the S&P 500. PCAR (PACCAR Inc)
is influenced in approximately equal measure by the S&P
500 intrinsically and in a shared fashion with its own be-
havior. OXY (Occidental Petroleum) operates virtually
independently from the S&P 500, with exceedingly little
information flow of any mode either to the stock from
the index or vice versa.
The S&P 400 and S&P 600 have also been analyzed, and
the results are in Appendix E. These mid- and small-cap
stocks generally have less total information flow in both
the stock-to-index and index-to-stock directions. Intrin-
sic flow is broader in these indices, without the significant
asymmetry seen in the S&P 500. Shared flow, however,
shows a strong asymmetry in the S&P 400 while is nonex-
istent in the S&P 600. Synergistic flow, again, shows
none of the asymmetry that is seen in the S&P 500.

VI. CONCLUSION

Detecting and quantifying information flow is both im-
portant and ill-defined—proposals to date have led to
ambiguous, misleading, or inconsistent interpretations of
behavior and structure. Conceptually, information flow
is the medium through which causality propagates. Here,
we proposed that one of the primary impediments to suc-
cessfully diagnosing information flow is that it is not a
singular concept. Rather, information flow can take on
several qualitatively distinct modes. The intrinsic infor-
mation flow is the mode most closely aligned with prior
intuitions, such as that motivating the transfer entropy
[16].
To quantify the intrinsic information flow, we proposed
the cryptographic flow ansatz that posits intrinsic flow
is synonymous with the ability to construct a secret key.
This obviated the infinite regress of conditioning on all of
a system’s other, possibly unspecified, components and
the effects arising from conflating conditional indepen-

dence and dependence. This enabled us to quantify in-
trinsic information flow using the intrinsic mutual infor-
mation, an easily computed upper bound on the secret
key agreement rate. With this in hand, the remaining
flow modes are quantified with the aid of the time de-
layed mutual information and the transfer entropy.
When appealing to cryptographic secret key agreement
rate, we made a choice to approximate it with the intrin-
sic mutual information. Though, tighter upper bounds
on the secret key agreement rate exist, they are generally
much more difficult to estimate [25]. This makes them
generally impractical in all but the smallest and simplest
of cases. There also exist lower bounds on the secret key
agreement rate [25], though these too are computation-
ally prohibitive for general practice. Presumably, using
improved bounds would be justified by an application’s
need for more accuracy.
Refinements aside, the distinct quantification of each
mode of information flow is broadly applicable. Demon-
strating its consistency and discriminating power, we
computed the intrinsic, shared, and synergistic informa-
tion flows for key base cases and between several financial
indices and their constituent stocks. As a new lens into
stock market dynamics, these led to a significantly more
nuanced view of the interactions between individual com-
panies and the market. For example, we discovered that
those stocks whose transfer entropy from the S&P 500 is
large are that way due to intrinsic flow; further there is
no stock that intrinsically drives the S&P 500.
Additionally, shared information flow is often entirely ne-
glected in analyses due to the prevailing opinion that
transfer entropy supplants time-delayed mutual informa-
tion whereas when considering information flow as mul-
timodal the latter plays a first-class role. Without ob-
servations such as these it is impossible to paint a com-
plete picture of how information is shuttled throughout a
complex system. Looking forward, we believe that quan-
tifying the distinct modes of information flow in an even
broader variety of settings will lead to substantial im-
provements in our understanding how a system and its
components interact to generate truly complex behavior.
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Appendix A: Background: Times Series and
Information

Let us summarize notation. We denote random vari-
ables using capital letters (X), realizations of random
variables using lower case (x), and the event space of
a random variable using calligraphics (X ). We de-
note a sequence of temporally-ordered random vari-
ables (a time series) using a Python-like slice notation:
Xt, Xt+1, Xt+2, . . . , Xt+τ−1 = Xt:t+τ . We suppress the
starting or ending index of a slice if it is infinite; to wit,
a bi-infinite time series is simply X:. Throughout we as-
sume stationarity—Xt:t+τ = X0:τ—and that time series
are ergodic. A time series is IID when it’s random vari-
ables are independent and identically distributed.

We next review several fundamental information-
theoretic measures; for a more detailed introduction
please refer to any standard text; e.g., Refs. [1, 26, 27].
The central measure of information theory is a random
variable’s entropy:

H[X] = −
∑
x∈X

p(x) log2 p(x) . (A1)

The entropy of a joint variable is defined similarly:

H[X,Y ] = −
∑

x,y∈X×Y
p(x, y) log2 p(x, y) . (A2)

These quantify the total amount of uncertainty that ex-
ists within a set of random variables. Given two random
variables, the conditional entropy quantifies uncertainty
of one given knowledge of the other:

H[X|Y ] = H[X,Y ]−H[Y ] . (A3)

That is, it is the uncertainty “left over” after the uncer-
tainty of Y is removed from the joint uncertainty of X
and Y .

Entropy is, generally, subadditive. Its degree of subaddi-
tivity is known as the mutual information and quantifies

the dependence between two variables:

I[X : Y ] = H[Y ] + H[X]−H[X,Y ] (A4)
= H[X,Y ]−H[X|Y ]−H[Y |X] (A5)

=
∑

x,y∈X ,Y
p(x, y) log2

p(x, y)
p(x)p(y) . (A6)

The conditional mutual information measures the ad-
ditional change in uncertainty about Y given X, when
given a third variable Z:

I[X : Y |Z] = H[Y |Z]−H[Y |X,Z] (A7)

=
∑

x,y,z∈X ,Y,Z
p(x, y|z) log2

p(x, y|z)
p(x|z)p(y|z) . (A8)

Note that conditioning can increase statistical depen-
dence; that is, I[X : Y |Z] > I[X : Y ]. This reflects the
fact that conditional mutual information is sensitive to
both intrinsic dependencies between X and Y , as well
as dependencies induced by Z. In other words, depen-
dence between X and Y may be revealed through their
relationship with Z. Such dependencies can occur even
when X and Y are independent: I[X : Y ] = 0.

References [28, 29] review how these elementary informa-
tion quantities extend to measure randomness and cor-
relation in time series.

Appendix B: Joint Analysis of Information Flow

To gain a greater understanding of how joint interac-
tions among time series lead to the three modes of in-
formation flow, consider all variables of interest simul-
taneously. Figure 7 represents all interactions of X−1,
X0, Y−1, and Y−1 in the form of an I-diagram [30].
Three of the regions are identically zero due to the con-
straints placed on Y−1; namely, that the variables form
a Markov chain X−1Y0—Y−1—Y−1. The time delayed
mutual information I[X−1 :Y0] = a + b + c; the trans-
fer entropy I[X−1 :Y0 |Y−1] = a; and the intrinsic flow
I[X−1 :Y0 ↓ Y−1] = a + b. Since the intrinsic mutual in-
formation is bound from above by the conditional mutual
information, we conclude that information atom b is nec-
essarily nonpositive.

As noted, intrinsic flow is given by a + b. Shared flow
is then given by the time delayed mutual information
minus the intrinsic flow, which is c. Synergistic flow is
given the transfer entropy minus the intrinsic flow, that
is, −b. Together, these measure the total flow or a+ c.
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X−1

Y0 Y−1

Y−1

0

0
0

a

b

c

FIG. 7. Analysis of how the three measures of informa-
tion flow are related. From the definition of intrinsic mu-
tual information, I

[
X−1Y0 : Y−1|Y−1

]
= I
[
X−1 : Y−1|Y−1

]
=

I
[
Y0 : Y−1|Y−1

]
= 0. Furthermore, b ≤ 0. I[X−1 :Y0] =

a + b + c, I[X−1 :Y0 |Y−1] = a, and I[X−1 :Y0 ↓ Y−1] = a + b.
From this, we can determine that intrinsic information flow
is a + b, shared information flow is c, and synergistic flow
is −b. Together, the total information flow is a + c =
I[X−1 : Y0]− I

[
X−1 : Y0 : Y−1|Y−1

]
.

Appendix C: Relationship With the Partial
Information Decomposition

The separation of transfer entropy into two components is
not a new idea. Utilizing the partial information decom-
position [31] Williams et al. [32] decompose the transfer
entropy from X to Y into two components: that uniquely
provided byX−1 (“state independent transfer”), and that
synergistically provided by both X−1 and Y−1 (“state de-
pendent transfer”):

I[X−1 :Y0 |Y−1] = I∩[X−1 → Y0 \ Y−1] + (C1)
I∩[X−1Y−1 → Y0] . (C2)

While our intrinsic and synergistic information flows are
qualitatively very similar to this idea, there are some im-
portant distinctions. First, it is well-known that the in-
trinsic mutual information, used here to quantify intrinsic
flow, is incompatible as a measure of unique information
within the partial information decomposition [33]. Sec-
ond, the goal in the partial information decomposition is
to decompose (for example) I[X−1, Y−1 : Y0]. Here, we
do not constrain our flows to any particular sum. This
is in line with the lack of any conservation law governing
information [34]. Furthermore, with the lack of widely
accepted method of computing the partial information
decomposition and the hints of incompleteness when the
number of inputs exceeds two [35], there is always the
unfortunate possibility that such an endeavor simply can
not be realized.

In
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x
→
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k

Intrinsic

Stock → Index

Shared Synergistic

FIG. 8. Information flows within the “mid cap” S&P 400.
Axis scales are identical with minimum 0.0000 bit and maxi-
mum 0.0025 bit.

In
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x
→
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k

Intrinsic
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Shared Synergistic

FIG. 9. Information flows within the “small cap” S&P 600.
Axis scales identical with minimum 0.0000 bit and maximum
0.0032 bit.

Appendix D: Computing the Intrinsic Mutual
Information

All computations were performed with dit [36]. Its imple-
mentation of the intrinsic mutual information utilizes the
basin hopping method from scipy.optimize. While this
calculation is straightforward for discrete probability dis-
tributions, there are significant difficulties in computing
the intrinsic mutual information for continuous random
variables. In essence, and barring a particularly clever
and unforeseen method, one must establish a repertoire
of potential transformations to apply to the variable Z.
The conditional mutual information then must be mini-
mized over the space of these transformations. Its eval-
uation can be performed using estimation methods such
as the standard KSG estimator [37].

Appendix E: Financial Indices Detailed Analysis

Here, we compare our analysis of the S&P 500 finan-
cial index in the main text to flows detected in the S&P
400 and S&P 600 indices. The S&P 400 consists of 400
“mid cap” stocks, whose total value is approximately $2.1
trillion dollars or 7% of the US market. The S&P 600
consists of 600 “small cap” stocks, whose total value is
approximately $896 billion dollars or 3% of the US mar-
ket.
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FIG. 10. Information flows in the S&P 500, 400, and 600
stock indices compared. Axis scales identical with minimum
0.0000 bit and maximum 0.0126 bit.

Again, the time series consist of the sign of the change
in the daily closing price of each stock and the index
between January 1st 2000 and December 31st 2008 for
stocks whose symbol was in the index for the entirety of
the date range. And, as for the S&P 500, we estimate

each information flow measure utilizing a past of length
1.

a. S&P 400

The information flows within the S&P 400 are illustrated
in Fig. 8. These mid cap stocks display very different dy-
namics than the large cap S&P 500. Neither the intrinsic
nor the synergistic flows display any marked asymme-
try in directionality. The shared information flow, how-
ever, demonstrates a strong asymmetry where the stock
and index are both predictive of the stock. Overall, the
amount of information flow is significantly smaller than
in the S&P 500.

b. S&P 600

The S&P 600 dynamics are again different from the large
and mid cap stocks. The intrinsic flows are skewed in a
similar manner as the S&P 500, though not as strongly.
Shared information flow, however, is effectively nonexis-
tent. Synergistic flows are largely symmetric, similar to
the mid cap stocks.

The dynamics of all three indices are displayed on equal
scales in Fig. 10.
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