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Markov chains are a natural and well understood tool for describing one-dimensional patterns in
time or space. We show how to infer k-th order Markov chains, for arbitrary k, from finite data
by applying Bayesian methods to both parameter estimation and model-order selection. Extending
existing results for multinomial models of discrete data, we connect inference to statistical mechanics
through information-theoretic (type theory) techniques. We establish a direct relationship between
Bayesian evidence and the partition function which allows for straightforward calculation of the
expectation and variance of the conditional relative entropy and the source entropy rate. Finally,
we introduce a novel method that uses finite data-size scaling with model-order comparison to infer
the structure of out-of-class processes.
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I. INTRODUCTION

Statistical inference of models from small data samples
is a vital tool in the understanding of natural systems. In
many problems of interest data consists of a sequence of
letters from a finite alphabet. Examples include analysis
of sequence information in biopolymers [1, 2], investi-
gation of one-dimensional spin systems [3], modeling of
natural languages [4], and coarse-grained representations
of chaotic dynamics [5, 6]. This diversity of potential ap-
plication has resulted in the development of a variety of
models for describing discrete-valued data series.

We consider the k-th order Markov chain model class
which uses the previous k letters in a sequence to predict
the next letter. Inference of Markov chains from data
has a long history in mathematical statistics. Early work
focused on maximum likelihood methods for estimating
the parameters of the Markov chain [7–9]. This work of-
ten assumed a given fixed model order. It also typically
relied on the assumed asymptotic normality of the likeli-
hood when estimating regions of confidence and when im-
plementing model comparison. As a result, the realm of
application has been limited to data sources where these
conditions are met. One consequence of these assump-
tions has been that data sources which exhibit forbidden
words, symbol sequences which are not allowed, cannot
be analyzed with these methods. This type of data vio-
lates the assumed normality of the likelihood function.

More recently, model comparison in the maximum like-
lihood approach has been extended using various infor-
mation criteria. These methods for model selection are
based on extensions of the likelihood ratio and allow the
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comparison of more than two models at a time. The most
widely used of these methods are Akaike’s information
criteria (AIC) [10] and the Bayesian information crite-
ria (BIC) [11]. Although the latter is called Bayesian, it
does not employ Bayesian model comparison in the ways
we will present here. In addition to model selection us-
ing information criteria, methods from the information
theory and neural network communities have also been
developed. Two of the most widely employed are min-
imum description length (MDL) [12] and structural risk
minimization [13]. It has been shown that MDL and
Bayesian methods obtain similar results in some situa-
tions [14]. However, to the best of our knowledge, struc-
tural risk minimization has not been adapted to Markov
chain inference.

We consider Bayesian inference of the Markov chain
model class, extending previous results [2, 4, 15, 16]. We
provide the details necessary to infer a Markov chain of
arbitrary order, choose the appropriate order (or weight
orders according to their probability), and estimate the
data source’s entropy rate. The latter is important for
estimating the intrinsic randomness and achievable com-
pression rates for an information source [17]. The ability
to weight Markov chain orders according their probabil-
ity is also unique to Bayesian methods and unavailable
in the model selection techniques discussed above.

In much of the literature just cited, steps of the in-
ference process are divided into (i) point estimation of
model parameters, (ii) model comparison (hypothesis
testing), and (iii) estimation of functions of the model
parameters. Here we will show that Bayesian inference
connects all of these steps, using a unified set of ideas.
Parameter estimation is the first step of inference, model
comparison a second level, and estimation of the entropy
rate a final step, intimately related to the mathematical
structure underlying the inference process. This view of
connecting model to data provides a powerful and unique
understanding of inference not available in the classical
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statistics approach to these problems. As we demon-
strate, each of these steps is vital and implementation of
one step without the others does not provide a complete
analysis of the data-model connection.

The combination of inference of model parameters,
comparison of performance across model orders, and esti-
mation of entropy rates provides an effective tool for un-
derstanding Markov chain models themselves. Remark-
ably, this is true even when the generating data source is
outside of the Markov chain model class. Model compar-
ison provides a sense of the structure of the data source,
whereas estimates of the entropy rate provide a descrip-
tion of the inherent randomness. Bayesian inference, in-
formation theory, and tools from statistical mechanics
presented here touch on all of these issues within a uni-
fied framework.

We develop this as follows, assuming a passing famil-
iarity with Bayesian methods and statistical mechanics.
First, we discuss estimation of Markov chain parame-
ters using Bayesian methods, emphasizing the use of the
complete marginal posterior density for each parameter,
rather than point estimates with error bars. Second, we
consider selection of the appropriate memory k given
a particular data set, demonstrating that a mixture of
orders may often be more appropriate than selecting a
single order. In this way, we present a thoroughgoing
Bayesian approach to the inference problem. These first
two parts exploit different forms of Bayes’ theorem to
connect data and model.

Third, we consider the mathematical structure of the
evidence (or marginal likelihood) and draw connections
to statistical mechanics. In this discussion we present a
method for estimating entropy rates by taking derivatives
of a partition function formed from elements of each step
of the inference procedure. Last, we apply these tools to
three example information sources of increasing complex-
ity. The first example belongs to the Markov chain model
class, but the other two are examples of hidden Markov
models (HMMs) that fall outside of that class. We show
that the methods developed here provide a powerful tool
for understanding data from these sources, even when
they do not belong to the model class being assumed.

II. INFERRING MODEL PARAMETERS

In the first level of Bayesian inference we develop a sys-
tematic relation between the data D, the chosen model
M , and the vector of model parameters θ. The object of
interest in the inference of model parameters is the pos-
terior probability density P (θ|D,M). This is the prob-
ability of the model parameters given the observed data
and chosen model. To find the posterior we first con-
sider the joint distribution P (θ,D|M) over the data and
model parameters given that one has chosen model M .
This can be factored in two ways: P (θ|D,M)P (D|M)
or P (D|θ,M)P (θ|M). Setting these equal and solving

for the posterior we obtain Bayes’ theorem:

P (θ|D,M) =
P (D|θ,M) P (θ|M)

P (D|M)
. (1)

The prior P (θ|M) specifies a distribution over the
model parameters. We take a pragmatic view of the
prior, considering its specification to be a statement of as-
sumptions about the chosen model class. The likelihood
P (D|θ,M) describes the probability of the data given
the model. Finally, the evidence (or marginal likelihood)
P (D|M) is the probability of the data given the model.
In the following sections we describe each of the quanti-
ties in detail on our path to giving an explicit expression
for the posterior.

A. Markov chains

The first step in inference is to clearly state the as-
sumptions which make up the model. This is the foun-
dation for writing down the likelihood of a data sample
and informs the choice of prior. We assume that a sin-
gle data set D of length N is the starting point of the
inference and that it consists of symbols st from a finite
alphabet A:

D = s0s1 . . . sN−1 , st ∈ A . (2)

We introduce the notation ←−s k
t to indicate a length-k se-

quence of letters ending at position t: e.g., ←−s 2
4 = s3s4.

The k-th order Markov chain model class assumes a
finite memory and stationarity in the data source. The
finite memory condition, a generalization of the conven-
tional Markov property, can be written

p(D) = p(←−s k
k−1)

N−2
∏

t=k−1

p(st+1|
←−s k

t ) , (3)

thereby factoring into terms that depend only on the pre-
vious word of length-k. The stationarity condition can
be expressed

p(st|
←−s k

t−1) = p(st+m|
←−s k

t+m−1) (4)

for any (t,m). Equation (4) results in a simplification of
the notation since we no longer need to track the position
index: p(st = s|←−s k

t−1 =←−s k) = p(s|←−s k) for any t. Given
these two assumptions, the model parameters of the k-th
order Markov chain Mk are

θk =
{

p(s|←−s k) : s ∈ A,←−s k ∈ Ak
}

. (5)

A normalization constraint is placed on them:
∑

s∈A p(s|
←−s k) = 1 for each word ←−s k.

The next step is to write down the elements of Bayes’
theorem specific to the k-th order Markov chain.
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B. Likelihood

Given a sample of data D = s0s1 . . . sN−1, the like-
lihood can be written down using the Markov property
of Eq. (3) and the stationarity of Eq. (4). This results in
the form

P (D|θk,Mk) =
∏

s∈A

∏

←−s k∈Ak

p(s|←−s k)n(←−s ks), (6)

where n(←−s ks) is the number of times the word ←−s ks oc-
curs in the sample D. For future use we also introduce
notation for the number of times a word←−s k has been ob-
served n(←−s k) =

∑

s∈A n(←−s ks). We note that Eq. (6) is

conditioned on the start sequence ←−s k
k−1 = s0s1 . . . sk−1.

C. Prior

The prior P (θ|M) is used to specify assumptions about
the model to be inferred, before the data is considered.
Here we consider conjugate priors for which the posterior
distribution has the same functional form as the prior.
This allows us to derive exact expressions for many quan-
tities of interest in inference. This provides a powerful
tool for understanding what information is gained during
inference and, especially, model comparison.

The exact form of the prior is determined by our as-
signment of hyperparameters α(←−s ks) for the prior that
balance the strength of the modeling assumptions en-
coded in the prior against the weight of the data. For a
k-th order Markov chain, there is one hyperparameter for
each word ←−s ks, given the alphabet under consideration.
A useful way to think about the assignment of values
to the hyperparameters is to relate them to fake counts
ñ(←−s ks), such that α(←−s ks) = ñ(←−s ks) + 1. In this way,
the α(←−s ks) can be set to reflect knowledge of the data
source and the strength of these prior assumptions can
be properly weighted in relation to the real data counts
n(←−s ks).

The conjugate prior for Markov chain inference is a
product of Dirichlet distributions, one for each word←−s k.
It restates the finite-memory assumption from the model
definition:

P (θk|Mk) =
∏

←−s k∈Ak

{

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))

× δ(1−
∑

s∈A

p(s|←−s k)) (7)

×
∏

s∈A

p(s|←−s k)α(←−s ks)−1

}

.

(See App. A for relevant properties of Dirichlet distri-
butions.) The prior’s hyperparameters {α(←−s ks)} must
be real and positive. We also introduce the more com-
pact notation α(←−s k) =

∑

s∈A α(←−s ks). The function
Γ(x) = (x− 1)! is the well known Gamma function. The

δ-function constrains the model parameters to be prop-
erly normalized:

∑

s∈A p(s|
←−s k) = 1 for each ←−s k.

Given this functional form, there are at least two ways
to interpret what the prior says about the Markov chain
parameters θk. In addition to considering fake counts
ñ(·), as discussed above, we can consider the range of
fluctuations in the estimated p(s|←−s k). Classical statis-
tics would dictate describing the fluctuations via a single
value with “error bars”. This can be accomplished by
finding the average and variance of p(s|←−s k) with respect
to the prior. The result is:

Eprior[p(s|
←−s k)] =

α(←−s ks)

α(←−s k)
, (8)

Varprior[p(s|
←−s k)] =

α(←−s ks)(α(←−s k)− α(←−s ks))

α(←−s k)2(1 + α(←−s k))
.(9)

A second method, more in line with traditional
Bayesian estimation, is to consider the marginal distribu-
tion for each model parameter. For a Dirichlet distribu-
tion, the marginal for any one parameter will be a Beta
distribution. This analytic form for the marginal den-
sity is one of the benefits of choosing the conjugate prior.
With this knowledge, a probability density can be pro-
vided for each Markov chain parameter given a particular
setting for the hyperparameters α(←−s ks). In this way, the
prior can be assigned and analyzed in substantial detail.

A common assumption in model inference is to assume
all things are a-priori equal. This can be expressed by
assigning α(←−s ks) = 1 for all←−s k ∈ Ak and s ∈ A, adding
no fake counts ñ(←−s ks). This assignment results in a
uniform prior distribution over the model parameters and
a prior expectation:

Eprior[p(s|
←−s k)] = 1/|A| . (10)

D. Evidence

Given the likelihood and prior derived above, the evi-
dence P (D|M) is seen to be a simple normalization term
in Bayes’ theorem. In fact, the evidence provides the
probability of the data given the model Mk and so plays
a fundamental role in model comparison and, in partic-
ular, in selecting model order. Formally, the definition
is

P (D|Mk) =

∫

dθk P (D|θk,Mk)P (θk|Mk), (11)

where we can see that this term can be interpreted as
an average of the likelihood over the prior distribution.
Applying this to the likelihood in Eq. (6) and the prior



4

in Eq. (7) produces

P (D|Mk) =
∏

←−s k∈Ak

{

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))

(12)

×

∏

s∈A Γ(n(←−s ks) + α(←−s ks))

Γ(n(←−s k) + α(←−s k))

}

.

As we will see, this analytic expression results in the abil-
ity to make useful connections to statistical mechanics
techniques when estimating entropy rates. This is an-
other benefit of choosing the conjugate prior with known
properties.

E. Posterior

Using Bayes’ theorem Eq. (1), the results of the three
previous sections can be combined to obtain the posterior
distribution over the parameters of the k-th order Markov
chain. One finds:

P (θk|D,Mk) =
∏

←−s k∈Ak

{

Γ(n(←−s k) + α(←−s k))
∏

s∈A Γ(n(←−s ks) + α(←−s ks))

× δ(1−
∑

s∈A

p(s|←−s k)) (13)

×
∏

s∈A

p(s|←−s k)n(←−s ks)+α(←−s ks)−1

}

.

As discussed in the selection of the prior, the resulting
form is a Dirichlet distribution with modified parameters.
Again, this is a result of choosing the conjugate prior: cf.
the forms of Eq. (7) and Eq. (13).

From the form in Eq. (13), the estimation of the model
parameters p(s|←−s k) and the uncertainty of these esti-
mates can be given using the known properties of the
Dirichlet distribution. As with the prior, there are two
main ways to understand what the posterior tells us
about the fluctuations in the estimated Markov chain
parameters. The first uses a point estimate with “er-
ror bars”. We obtain these from the mean and variance
of the p(s|←−s k) with respect to the posterior, finding

Epost[p(s|
←−s k)] =

n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)
, (14)

Varpost[p(s|
←−s k)] =

n(←−s ks) + α(←−s ks)

(n(←−s k) + α(←−s k))2

(15)

×
(n(←−s k) + α(←−s k))− (n(←−s ks) + α(←−s ks))

(n(←−s k) + α(←−s k) + 1)
.

This is the posterior mean estimate (PME) of the model
parameters.

A deeper understanding of Eq. (14) is obtained through
a simple factoring:

Epost[p(s|
←−s k)] =

1

n(←−s k) + α(←−s k)

[

n(←−s k)

(

n(←−s ks)

n(←−s k)

)

(16)

+ α(←−s k)

(

α(←−s ks)

α(←−s k)

)]

,

where n(←−s ks)/n(←−s k) is the maximum likelihood
estimate (MLE) of the model parameters and
α(←−s ks)/α(←−s k) is the prior expectation given in Eq. (8).
In this form, it is apparent that the posterior mean
estimate is a weighted sum of the MLE and prior
expectation. As a result, we can say that the posterior
mean and maximum likelihood estimates converge to
the same value for n(←−s k) ≫ α(←−s k). Only when the
data is scarce, or the prior is set with strong conviction,
does the Bayesian estimate add corrections to the MLE.

A second method for analyzing the resulting posterior
density is to consider the marginal density for each pa-
rameter. As discussed with the prior, the marginal for
a Dirichlet distribution is a Beta distribution. As a re-
sult, we can either provide regions of confidence for each
parameter or simply inspect the density function. The
latter provides much more information about the infer-
ence being made than the point estimation given above.
In our examples, to follow shortly, we give plots of the
marginal posterior density for various parameters of in-
terest. This will demonstrate the wealth of information
this method provides.

Before we move on, we make a final point regarding
the estimation of inference uncertainty. The form of the
posterior is not meant to reflect the potential fluctuations
of the data source. Instead, the width of the distribution
reflects the possible Markov chain parameters which are
consistent with observed data sample. These are distinct
notions and should not be conflated.

F. Predictive distribution

Once we have an inferred model, a common task is
to estimate the probability of a new observation D(new)

given the previous data and estimated model. This is
implemented by taking an average of the likelihood of
the new data

P (D(new)|θk,Mk) =
∏

←−s k∈Ak,s∈A

p(s|←−s k)m(←−s ks) (17)

with respect to the posterior distribution [18]:

P (D(new)|D,Mk) =

∫

dθkP (D(new)|θk,Mk) (18)

× P (θk|D,Mk) .

We introduce the notation m(←−s ks) to indicate the num-
ber of times the word←−s ks occurs inD(new). This method
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has the desirable property, compared to point estimates,
that it takes into account the uncertainty in the model
parameters θk as reflected in the form of the posterior
distribution.

The evaluation of Eq. (18) follows the same path as
the calculation for the evidence and produces a similar
form; we find:

P (D(new)|D,Mk) =
∏

←−s k∈Ak

{

Γ(n(←−s k) + α(←−s k))
∏

s∈A Γ(n(←−s ks) + α(←−s ks))

(19)

×

∏

s∈A Γ(n(←−s ks) +m(←−s ks) + α(←−s ks))

Γ(n(←−s k) +m(←−s k) + α(←−s k))

}

.

III. MODEL COMPARISON

With the ability to infer a Markov chain of a given
order k, a common-sense question is to ask how do we
choose the correct order given a particular data set?
Bayesian methods have a systematic way to address this
through the use of model comparison.

In many ways, the procedure is analogous to infer-
ring model parameters themselves, which we just laid
out, though at a higher level of modeling. We start by
enumerating the set of model orders to be compared:
M = {Mk}

kmax

kmin
, where kmin and kmax correspond to

the minimum and maximum order to be inferred, respec-
tively. Although we will not consider an independent,
identically distributed (IID) model (memoryless: k = 0)
here, we do note that this could be included using the
same techniques described below.

We start with the joint probability P (Mk,D|M) of a
particular model Mk ∈M and data sample D, factoring
it in two ways following Bayes’ theorem. Solving for the
probability of a particular model we obtain:

P (Mk|D,M) =
P (D|Mk,M)P (Mk|M)

P (D|M)
, (20)

where the denominator is the sum given by

P (D|M) =
∑

M
′

k
∈M

P (D|M′k,M)P (M′k|M) . (21)

The probability of a particular model in the set under
consideration is driven by two components: the evidence
P (D|Mk,M), derived in Eq. (12), and the prior over
model orders P (Mk|M).

Two common priors in model comparison are: (i) all
models are equally likely and (ii) models should be pe-
nalized for the number of free parameters used to fit the
data. In the first instance P (Mk|M) = 1/|M| is the
same for all orders k. However, this factor cancels out
because it appears in both the numerator and denomi-
nator. As a result, the probability of models using this

prior becomes

P (Mk|D,M) =
P (D|Mk,M)

∑

M
′

k
∈M P (D|M′k,M)

. (22)

In the second case, a common penalty for the number
of model parameters is

P (Mk|M) =
exp(−|Mk|)

∑

M
′

k
∈M exp(−|M′k|)

, (23)

where |Mk| is the number of free parameters in the
model. For a k-th order Markov chain, the number of
free parameters is

|Mk| = |A|
k(|A| − 1) , (24)

where |A| is the size of the alphabet. Thus, model prob-
abilities under this prior take on the form

P (Mk|D,M) =
P (D|Mk,M) exp(−|Mk|)

∑

M
′

k
P (D|M′k,M) exp(−|M′k|)

. (25)

We note that the normalization sum in Eq. (23) cancels
because it appears in both the numerator and denomina-
tor of the above equation.

Bayesian model comparison has a natural Occam’s ra-
zor in the model comparison process [18]. This means
there is a natural preference for smaller models even when
a uniform prior over model orders is applied. In this light,
a penalty for the number of model parameters can be
seen as a very cautious form of model comparison. Both
of these priors, Eq. (22) and Eq. (25), will be considered
in the examples.

A note is in order on computational implementation.
In general, the resulting probabilities can be extremely
small, easily resulting in numerical underflow if the equa-
tions are not implemented with care. As mentioned
in [16], computation with extended logarithms can be
used to alleviate these concerns.

IV. INFORMATION THEORY, STATISTICAL
MECHANICS, AND ENTROPY RATES

An important property of an information source is its
entropy rate hµ, which indicates the degree of intrinsic
randomness and controls the achievable compression of
its realizations. A first attempt at estimating a source’s
entropy rate might consist of plugging a Markov chain’s
estimated model parameters into the known expression
for hµ [17]. However, this does not accurately reflect
the posterior distribution derived above. This observa-
tion leaves two realistic alternatives. The first option is
to sample model parameters from the posterior distribu-
tion. These samples can then be used to calculate a set
of entropy-rate estimates that reflect the underlying pos-
terior distribution. A second option, which we take here,
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is to adapt methods from type theory [17] and statisti-
cal mechanics previously developed from IID models [19]
to Markov chains. To the best of our knowledge this is
the first time these ideas have been extended to inferring
Markov chains; although cf. [20].

In simple terms, type theory shows that the probabil-
ity of an observed sequence can be written in terms of
the Kullback-Leibler (KL) distance and the entropy rate.
When applied to the Markov chain inference problem the
resulting form suggests a connection to statistical me-
chanics. For example, we will show that averages of the
KL-distance and entropy rate with respect to the poste-
rior are found by taking simple derivatives of a partition
function.

The connection between inference and information the-
ory starts by considering the product of the prior Eq. (7)
and likelihood Eq. (6):

P (θk|Mk)P (D|θk,Mk) = P (D, θk|Mk) . (26)

This forms a joint distribution over the observed data
D and model parameters θk given the model order Mk.
Denoting the normalization constant from the prior as Z
to save space, this joint distribution is

P (D, θk|Mk) = Z
∏

←−s k,s

p(s|←−s k)n(←−s ks)+α(←−s ks)−1. (27)

This form can be written, without approximation, in
terms of conditional relative entropies D[·‖·] and entropy
rate hµ[·]:

P (D, θk|Mk) = Z 2−βk(D[Q‖P ]+hµ[Q]) (28)

× 2+|A|k+1(D[U‖P ]+hµ[U ]) ,

where βk =
∑

←−s k,s

[

n(←−s ks) + α(←−s ks)
]

and the distribu-

tion of true parameters is P = {p(←−s k), p(s|←−s k)}. The
distributions Q and U are given by

Q =

{

q(←−s k) =
n(←−s k) + α(←−s k)

βk

, (29)

q(s|←−s k) =
n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)

}

U =

{

u(←−s k) =
1

|A|k
, u(s|←−s k) =

1

|A|

}

. (30)

Q is the distribution defined by the posterior mean and
U is a uniform distribution. The information-theoretic
quantities used above are given by

D[Q‖P ] =
∑

s,←−s k

q(←−s k)q(s|←−s k) log2

q(s|←−s k)

p(s|←−s k)
(31)

hµ[Q] = −
∑

s,←−s k

q(←−s k)q(s|←−s k) log2 q(s|
←−s k) . (32)

The form of Eq. (28) and its relation to the evidence sug-
gests a connection to statistical mechanics: the evidence

P (D|Mk) =
∫

dθkP (D, θk|Mk) is a partition function
Z = P (D|Mk). Using conventional techniques, the ex-
pectation and variance of the “energy”

E(Q,P ) = D[Q‖P ] + hµ[Q] (33)

are obtained by taking derivatives of the logarithm of the
partition function with respect to βk:

Epost[E(Q,P ) ] = −
1

log 2

∂

∂βk

logZ (34)

Varpost[E(Q,P ) ] =
1

log 2

∂2

∂β2
k

logZ . (35)

The factors of log 2 in the above expressions come from
the decision to use base 2 logarithms in the definition
of our information-theoretic quantities. This results in
values in bits rather than nats [17].

To evaluate the above expression, we take advantage
of the known form for the evidence provided in Eq. (12).
With the definitions αk =

∑

←−s k α(←−s k) and

R =

{

r(←−s k) =
α(←−s k)

αk

, r(s|←−s k) =
α(←−s ks)

α(←−s k)

}

, (36)

the negative logarithm of the partition function can be
written

− logZ =
∑

←−s k,s

log Γ
[

αkr(
←−s k)r(s|←−s k)

]

(37)

−
∑

←−s k

log Γ
[

αkr(
←−s k)

]

+
∑

←−s k

log Γ
[

βkq(
←−s k)

]

−
∑

←−s k,s

log Γ
[

βkq(
←−s k)q(s|←−s k)

]

.

From this expression, the desired expectation is found by
taking derivatives with respect to βk; we find that

Epost[E(Q,P ) ] =
1

log 2

∑

←−s k

q(←−s k)ψ(0)
[

βkq(
←−s k)

]

−
1

log 2

∑

←−s k,s

q(←−s k)q(s|←−s k)ψ(0)
[

βkq(
←−s k)q(s|←−s k)

]

.

(38)

The variance is obtained by taking a second derivative
with respect to βk, producing

Varpost[E(Q,P ) ] = −
1

log 2

∑

←−s k

q(←−s k)2ψ(1)
[

βkq(
←−s k)

]

+
1

log 2

∑

←−s k,s

q(←−s k)2q(s|←−s k)2ψ(1)
[

βkq(
←−s k)q(s|←−s k)

]

.

(39)

In both of the above the polygamma function is defined
ψ(n)(x) = dn+1/dxn+1 log Γ(x). (For further details, con-
sult a reference such as [21].)
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From the form of Eq. (38) and Eq. (39), the meaning
is not immediately clear. We can use an expansion of the
n = 0 polygamma function

ψ(0)(x) = log x− 1/2x+O(x−2) , (40)

valid for x ≫ 1, however, to obtain an asymptotic form
for Eq. (38); we find

Epost[E(Q,P ) ] = H[q(←−s k)q(s|←−s k)]−H[q(←−s k)]

+
1

2βk

|A|k(|A| − 1) +O(1/β2
k). (41)

The block entropies used in Eq. (41) are defined as follows

H[q(←−s k)] = −
∑

←−s k

q(←−s k) log2 q(
←−s k) (42)

H[q(←−s k)q(s|←−s k)] = −
∑

←−s k,s

q(←−s k)q(s|←−s k)

× log2 q(
←−s k)q(s|←−s k) , (43)

where the distributions {q(←−s k), q(s|←−s k)} are defined
in Eq. (29). From this we see that the first two terms
make up the entropy rate hµ[Q] = H[q(←−s k)q(s|←−s k)] −
H[q(←−s k)] and the last term is associated with the con-
ditional relative entropy between the posterior mean dis-
tribution Q and true distribution P .

In summary, we have found the average of the condi-
tional relative entropy and entropy rate with respect to
the posterior density. This was accomplished by making
connections to statistical mechanics through type theory.
Unlike sampling from the posterior to estimate the en-
tropy rate, this method results in an analytic form which
approaches hµ[P ] as the inverse of the data size. This
method for approximating hµ also provides a computa-
tional benefit. No eigenstates have to be found from the
Markov transition matrix, allowing for the storage of val-
ues in sparse data structures. This provides a distinct
computational advantage when large orders or alphabets
are considered.

Finally, it might seem awkward to use the expecta-
tion of Eq. (33) for estimation of the entropy rate. This
method was chosen because it is the form that naturally
appears in writing down the likelihood-prior combination
in Eq. (28). As a result of using this method, most of the
results obtained above are without approximation. We
were also able to show this expectation converges to the
desired value in a well behaved manner.

V. EXAMPLES

To explore how the above produces a robust inference
procedure, let’s now consider the statistical inference of
a series of increasingly complex data sources. The first,
called the golden mean process is a first order Markov
chain. The second data source is called the even process
and cannot be represented by a Markov chain with finite

k. However, this source is a deterministic hidden Markov
model (HMM). This means the current state and next
output symbol uniquely determine the next state. Fi-
nally, we consider the simple nondeterministic source, so
named since it’s smallest representation is as a nondeter-
ministic HMM. Nondeterminism here refers to the HMM
structure: the current state and next output symbol do
not uniquely determine the next state. (This source is
represented by an infinite ǫ-machine—an infinite-state
deterministic HMM [22, 23].)

The examples we have chosen may at first seem rather
simple and abstract. However, these data sources have
direct relevance to many areas of current research. For
example, the golden mean and simple nondeterminis-
tic sources appear in binary encoding of data from the
chaotic logistic map [22] and are therefore of interest
to researchers in the symbolic dynamics of deterministic
chaos [5, 6]. As a second example, we mention analysis of
experimental data from single molecule experiments [24].
In particular, experiments involving the Holliday junc-
tion appear to demonstrate Markov and hidden Markov
dynamics in the transitions between physical conforma-
tions [25, 26]. Models of data from these experiments
would again be very similar in nature to the golden mean
and simple nondeterministic processes.

The golden mean, even, and simple nondeterministic
processes can all be written down as models with two in-
ternal states—call them A and B. However, the complex-
ity of the data generated from each source is of markedly
different character. Our goal in this section is to con-
sider the three main steps in inference to analyze them.
First, we consider inference of a first-order Markov chain
to demonstrate the estimation of model parameters with
uncertainty. Second, we consider model comparison for a
range of orders k. This allows us to discover structure in
the data source even though the true model class cannot
be captured in all cases. Finally, we consider estimation
of entropy rates from these data sources, investigating
how randomness is expressed in the sources.

To investigate these processes we consider average data
counts, rather than sample counts from specific realiza-
tions, as we want to focus specifically on the average
performance of Bayesian inference. To do this we take
advantage of the known form of the sources. Each is de-
scribed by a transition matrix T , which gives transitions
between states A and B:

T =

[

p(A|A) p(B|A)
p(A|B) p(B|B)

]

. (44)

Although two of our data sources are not finite Markov
chains, the transition matrix between internal states is
Markov. This means the matrix is stochastic (all rows
sum to one) and we are guaranteed an eigenstate ~π
with eigenvalue one: ~π T = ~π. This eigenstate de-
scribes the asymptotic distribution over internal states:
~π = [p(A), p(B)].

The transition matrix can be divided into labeled ma-
trices T (s) that contain the elements of T which output
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symbol s. For our binary data sources one has

T = T (0) + T (1). (45)

Using these matrices, the average probability of words
can be estimated for each process of interest. For exam-
ple, the probability of word 01 can be found using

p(01) = ~π T (0)T (1)~η , (46)

where ~η is a column vector with all 1’s. In this way, for
any data size N , we estimate the average count for a
word of length k + 1 as

n(←−s ks) = (N − k) p(←−s ks) . (47)

We note that there are N − k words of length k + 1 in
a sample of length N , resulting in the factor of (N −
k) rather than N in above expression. Average counts,
obtained this way, will be the basis for all of the examples
to follow.

In the estimation of the true entropy rate for the ex-
amples we use the formula

hµ = −
∑

v∈{A,B}

p(v)
∑

s∈A

p(s|v) log2 p(s|v) (48)

for the the golden mean and even processes. In this for-

mula, p(s|v) = T
(s)
v· is the probability of a letter s given

the state v and p(v) is the asymptotic probability of the
state v which can be found as discussed above. For the
simple nondeterministic source this closed-form expres-
sion cannot be applied and the entropy rate must be
found using more involved methods; see [22] for further
details.

A. Golden mean process: In-class modeling

The golden mean process can be represented by a sim-
ple 1st-order Markov chain over a binary alphabet char-
acterized by a single (shortest) forbidden word 00. The
defining labeled transition matrices for this data source
are given by

T (0) =

[

0 1/2
0 0

]

, T (1) =

[

1/2 0
1 0

]

. (49)

Figure 1 provides a graphical representation of the cor-
responding hidden Markov chain. Inspection reveals a
simple relation between the internal states A and B and
the output symbols 0 and 1. An observation of 0 indi-
cates a transition to internal state B and a 1 corresponds
to state A, making this process a Markov chain over 0s
and 1s.

For the golden mean process the eigenstate is ~π =
[p(A), p(B)] = (2/3, 1/3). With this vector and the la-
beled transition matrices any desired word count can be
found as discussed above.

A B

1|1/2 1|1

0|1/2

FIG. 1: A deterministic hidden Markov chain for the golden
mean process. Edges are labeled with the output symbol and
the transition probability: symbol | probability.

1. Estimation of M1 Parameters

To demonstrate the effective inference of the Markov
chain parameters for the golden mean process we consider
average counts for a variety of data sizes N . For each
size, the marginal posterior for the parameters p(0|1) and
p(1|0) is plotted in Fig. 2. The results demonstrate that
the shape of the posterior effectively describes the distri-
bution of possible model parameters at each N and con-
verges to the correct values of p(0|1) = 1/2 and p(1|0) = 1
with increasing data.

Point estimates with a variance can be provided for
each of the parameters, but these numbers by themselves
can be misleading. However, the estimate obtained by
using the mean and variance of the posterior are a more
effective description of the inference process than a max-
imum likelihood estimate with estimated error given by a
Gaussian approximation of the likelihood alone. As Fig. 2
demonstrates, in fact, a Gaussian approximation of un-
certainty is an ineffective description of our knowledge
when the Markov chain parameters are near their upper
or lower limits at 0 and 1. Probably the most effective set
of numbers to provide consists of the mean of the poste-
rior and a region of confidence. These would most accu-
rately describe asymmetries in the uncertainty of model
parameters. Although we will not do that here, a brief
description of finding regions of confidence is provided
in App. A.

2. Selecting the Model Order k

Now consider the selection of the appropriate order
k from golden mean realizations. As discussed above,
the golden mean process is a first-order Markov chain
(k = 1). As a result, we would expect model comparison
to select this order from the possibilities considered. To
demonstrate this, we consider orders k = 1− 4 and per-
form model comparison with a uniform prior over orders
(Eq. (22)) and with a penalty for the number of model
parameters (Eq. (25)).

The results of the model comparisons are given
in Fig. 3. The top panel shows the probability for each
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FIG. 2: A plot of the inference of M1 model parameters for
the golden mean process. For each data sample size N , the
marginal posterior is plotted for the parameters of interest:
p(0|1) in the top panel and p(1|0) in the lower panel. The true

values of the parameters are p(0|1) = 1/2 and p(1|0) = 1.

order k as a function of the sample size, using a uniform
prior. For this prior over orders, M1 is selected with any
reasonable amount of data. However, there does seem to
be a possibility to over-fit for small data size N ≤ 100.
The bottom panel shows the model probability with a
penalty prior over model order k. This removes the over-
fitting at small data sizes and produces an offset which
must be overcome by the data before higher k is selected.
This example is not meant to argue for the penalty prior
over model orders. In fact, Bayesian model comparison
with a uniform prior does an effective job using a rela-
tively small sample size.

3. Estimation of Entropy Rate

We can also demonstrate the convergence of the aver-
age for E(Q,P ) = D[Q‖P ] + hµ[Q] given in Eq. (38) to
the correct entropy rate for the golden mean process. We
choose to show this convergence for all orders k = 1− 4
discussed in the previous section. This exercise demon-
strates that all orders greater than or equal to k = 1
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FIG. 3: Model comparison for Markov chains of order k =
1 − 4 using average counts from the golden mean process.
Sample sizes from N = 100 to N = 1, 000 in steps of ∆N = 5
are used to generate these plots. The top panel displays the
model probabilities using a uniform prior over orders k. The
bottom panel displays the effect of a penalty for model size.
Note: for most values of N the data from M3 and M4 overlap.

effectively capture the entropy rate. However, the con-
vergence to the correct values for higher-order k takes
more data because of a larger initial value of D[Q‖P ].
This larger value is simply due to the larger number of
parameters for higher-order Markov chains.

In evaluating the value of D[Q‖P ] + hµ[Q] for differ-
ent sample lengths, we expect that the PME estimate
Q will converge to the true distribution P . As a result,
the conditional relative entropy should go to zero with
increasing N . For the golden mean process, the known
value of the entropy rate is hµ = 2/3 bits per symbol.
Inspection of Fig. 4 demonstrates the expected conver-
gence of the average from Eq. (38) to the true entropy
rate.

The result of our model comparison from the previous
section could also be used in the estimation of the entropy
rate. As we saw in Fig. 3, there are ranges of sample
length N where the probability of orders k = 1, 2 are
both nonzero. In principle, an estimate of hµ should
be made by weighting the values obtained for each k by
the corresponding order probability P (Mk|D,M). As
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FIG. 4: The convergence of Epost[ E(Q, P ) ] to the true en-
tropy rate hµ = 2/3 bits per symbol (indicated by the
gray horizontal line) for the the golden mean process. As
demonstrated in Eq. (41), the conditional relative entropy
D[Q‖P ] → 0 as 1/N . This results in the convergence of hµ[Q]
to the true entropy rate.

we can see from Fig. 4, the estimates of the entropy rate
for k = 1, 2 are also very similar in this range of N . As a
result, this additional procedure would not have a large
effect for entropy-rate estimation.

B. Even process: Out-of-class modeling

We now consider a more difficult data source called the
even process. The defining labeled transition matrices are
given by

T (0) =

[

1/2 0
0 0

]

, T (1) =

[

0 1/2
1 0

]

. (50)

As can be seen in Fig. 5, the node-edge structure is
identical to the golden mean process but the output sym-
bols on the edges have been changed slightly. As a re-
sult of this shuffle, though, the states A and B can no
longer be associated with a simple sequence of 0’s and
1’s. Whereas the golden mean has the irreducible set of
forbidden words F = {00}, the even process has a count-
ably infinite set F = {012n+10 : n = 0, 1, 2, . . .} [22].

In simple terms, the even process produces blocks of
1’s which are even in length. This is a much more com-
plicated type of memory than we saw in the golden mean
process. For the Markov chain model class, where a word
of length k is used to predict the next letter, this would
require an infinite order k. It would be necessary to keep
track of all even and odd strings of 1’s, irrespective of
the length. As a result, the properties of the even pro-
cess mean that a finite Markov chain cannot represent
this data source.

This example is then a demonstration of what can be
learned in a case of out-of-class modeling. We are inter-
ested, therefore, in how well Markov chains approximate

A B

0|1/2 1|1

1|1/2

FIG. 5: Deterministic hidden Markov chain representation
of the even process. This process cannot be represented
as a finite-order (nonhidden) Markov chain over the output
symbols 0s and 1s. The set of irreducible forbidden words
F = {012n+10 : n = 0, 1, 2, . . .} reflects the fact that the pro-
cess generates blocks of 1’s, bounded by 0s, that are even in
length, at any length.

the even process. We expect that model comparison will
select larger k as the size of the data sample increases.
Does the model selection tell us anything about the un-
derlying data source despite the inability to exactly cap-
ture its properties? As we will see, we do obtain in-
triguing hints of the true nature of the even process from
model comparison. Finally, can we estimate the entropy
rate of the process with a Markov chain? As we will see,
a high k is needed to do this effectively.

1. Estimation of M1 Parameters

In this section we consider an M1 approximation of
the even process. We expect the resulting model to accu-
rately capture length-2 word probabilities as N increases.
In this example, we consider the true model to be the best
approximation possible by a k = 1 Markov chain. From
the labeled transition matrices given above we can cal-
culate the appropriate values for p(0|1) and p(1|0) using
the methods described above. Starting from the asymp-
totic distribution ~π = [p(A), p(B)] = [2/3, 1/3] we obtain
p(0|1) = p(10)/p(1) = 1/4 and p(1|0) = p(01)/p(0) =
1/2.

As we can see from Fig. 6, a first-order Markov chain
can be inferred without difficulty. The values obtained
are exactly as we found above. However, these values
do not really tell us much about the nature of the data
source by themselves. This points to the important role
of model comparison and entropy-rate estimation in un-
derstanding this data.

2. Selecting the Model Order k

Now consider the selection of Markov chain order
k = 1−4 for a range of data sizes N . Recall that the even
process cannot be represented by a finite-order Markov
chain over the output symbols 0 and 1. As a consequence,
we expect higher k to be selected with increasing data N ,



11

0

5

10

15

20

P
[
p
(1
|0

)
]

P
[
p
(1
|0

)
]

0 0.2 0.4 0.6 0.8 1

p(1|0)p(1|0)

N = 50
N = 100
N = 200
N = 400

0

5

10

15

20
P

[
p
(0
|1

)
]

P
[
p
(0
|1

)
]

0 0.2 0.4 0.6 0.8 1

p(0|1)p(0|1)

N = 50
N = 100
N = 200
N = 400

FIG. 6: A plot of the inference of M1 model parameters for the
even process. For a variety of sample sizes N , the marginal
posterior for p(0|1) (top panel) and p(1|0) (bottom panel) are
shown. The true values of the parameters are p(0|1) = 1/4
and p(1|0) = 1/2.

as more data statistically justifies more complex models.
This is what happens, in fact, but the way in which or-
ders are selected as we increase N provides structural
information we could not obtain from the inference of a
Markov chain of fixed order.

If we consider Fig. 7, an interesting pattern becomes
apparent. Orders with even k are preferred over odd.
In this way model selection is hinting at the underlying
structure of the source. This model class cannot repre-
sent the even process in a compact way, but inference and
model comparison combined have provided useful infor-
mation about the hidden structure of the source.

In this example we also have regions where the proba-
bility of multiple orders k are equally probable. The sam-
ple size at which this occurs depends on the prior over
orders which is employed. When this happens, properties
estimated from the Markov chain model class should use
a weighted sum of the various orders. In the estimation
of entropy rates this is not as critical. At sample sizes
where the order probabilities are similar, the estimated
entropy rates are also similar.
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FIG. 7: Model comparison for Markov chains of order k = 1−
4 for average data from the even process. The top panel shows
the model comparison with a uniform prior over the possible
orders k. The bottom panel demonstrates model comparison
with a penalty for the number of model parameters. In both
cases the k = 4 model is chosen over lower orders as the
amount of data available increases.

3. Estimation of Entropy Rate

Entropy rate estimation for the even process turns
out to be a more difficult task than one might expect.
In Fig. 8 we see that Markov chains of orders 1−6 are un-
able to effectively capture the true entropy rate. In fact,
experience shows that an order k = 10 Markov chain or
higher is needed to get close to the true value of hµ = 2/3
bits per symbol. Note also the factor of 20 longer real-
izations that are required compared, say, to the golden
mean example.

As discussed above, a weighted sum of Epost[D[Q‖P ]+
hµ[Q] ] could be employed in this example. For the esti-
mate this is not critical since the different orders provide
roughly the same value at these points. In fact, these
points correspond to where the estimates of E(Q,P )
cross in Fig. 8. They are samples sizes where apparent
randomness can be explained by structure and increased
order k.
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FIG. 8: The convergence of Epost[ D[Q‖P ] + hµ[Q] ] to the
true entropy rate hµ = 2/3 bits per symbol for the the even
process. The true value is indicated by the horizontal gray
line. Experience shows that a k = 10 Markov chain and
sufficient data is needed to effectively approximate the true
value of hµ.

C. Simple Nondeterministic Source: Out-of-class
modeling

The simple nondeterministic source adds another level
of challenge to inference. As its name suggests, it is de-
scribed by a nondeterministic HMM. Considering Fig. 9
we can see that a 1 is produced on every transition ex-
cept for the B → A edge. This means there are many
paths through the internal states that produce the same
observable sequence of 0s and 1s. The defining labeled
transition matrices for this process are given by

T (0) =

[

0 0
1/2 0

]

, T (1) =

[

1/2 1/2
0 1/2

]

. (51)

Using the state-to-state transition matrix T = T (0) +
T (1), we find the asymptotic distribution for the hidden
states to be ~π = [p(A), p(B)] = [1/2, 1/2]. Each of the
hidden states is equally likely; however, a 1 is always
produced from state A, while there is an equal chance of
obtaining a 0 or 1 from state B.

1. Estimation of M1 Parameters

Using the asymptotic distribution derived above, the
parameters of an inferred first-order Markov chain should
approach p(0|1) = p(10)/p(1) = 1/3 and p(1|0) =
p(01)/p(0) = 1. As we can see from Fig. 10, the inference
process captures these values very effectively despite the
out-of-class data source.

2. Selecting the Model Order k

Here we consider the comparison of Markov chain mod-
els of orders k = 1−4 when applied to data from the sim-

A B

1|1/2 1|1/20|1/2

1|1/2

FIG. 9: A hidden Markov chain representation of the sim-
ple nondeterministic process. This example also cannot be
represented as a finite-order Markov chain over output 0 and
1 sequences. It, however, is more complicated than the two
previous examples: Only the observation of a 0 provides the
observer with information regarding the internal state of the
underlying process; observing a 1 leaves the internal state
ambiguous.

ple nondeterministic source. As with the even process,
we expect increasing order to be selected as the amount
of available data increases. In Fig. 11 we see that this
exactly what happens.

Unlike the even process, there is no preference for even
orders. Instead, we observe a systematic increase in se-
lected order with larger data sets. We do note that the
amount of data needed to select a higher order does seem
to be larger than for the even process. Here the distribu-
tion over words is more important and more subtle than
the support of the distribution (those words with positive
probability).

3. Estimation of Entropy Rate

Estimation of the entropy rate for the simple nonde-
terministic source provides an interesting contrast to the
previous examples. As discussed when introducing the
examples, this data source is a nondeterministic HMM
and the entropy rate cannot be directly calculated us-
ing Eq. (48) [27]. However, a value of hµ ≈ 0.677867 bits
per symbol has been obtained analytically in [22].

Figure 12 shows the results of entropy-rate estimation
using Markov chains of order k = 1 − 6. These results
demonstrate that the entropy rate can be effectively es-
timated with low-order k and relatively small data sam-
ples. This is an interesting result, as we might expect
estimation of the entropy rate to be most difficult in this
example. Instead we find that the even process was a
more difficult test case.

VI. DISCUSSION

The examples presented above provide several interest-
ing lessons in inference, model comparison, and estimat-
ing randomness. The combination of these three ideas
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FIG. 10: Marginal density for M1 model parameters for the
simple nondeterministic process: The curves for each data
size N demonstrate a well behaved convergence to the correct
values, p(0|1) = 1/3 and p(1|0) = 1.

applied to a data source provides information and intu-
ition about the structure of the underlying system, even
when modeling out-of-class processes.

In the examples of Mk estimates for each of the sources
we see that the Bayesian methods provide a powerful
and consistent description of Markov chain model pa-
rameters. The marginal density accurately describes
the uncertainty associated with these estimates, reflect-
ing asymmetries which point estimation with error bars
cannot capture. In addition, the methods described in
App. A can be used to generate regions of confidence of
any type.

Although the estimates obtained for the Markov chain
model parameters were consistent with the data source
for words up to length k + 1, they did not capture the
true nature of the system under consideration. This
demonstrates that estimation of model parameters with-
out some kind of model comparison can be very mislead-
ing. Only with the comparison of different orders did
some indication of the true properties of the data source
become clear. Without this step, misguided interpreta-
tions are easily obtained.

For the golden mean process, a k = 1 Markov chain,
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FIG. 11: Model comparison for Markov chains of order k =
1− 4 for data from the simple nondeterministic process. The
top panel shows the model comparison with a uniform prior
over the possible orders k. The bottom panel demonstrates
model comparison with a penalty for the number of model
parameters. Note the scale on the horizontal axis—it takes
much more data for the model comparison to pick out higher
orders for this process compared to the previous examples.
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FIG. 13: A plot of model comparison, with a penalty for
model size, for a single time series of length 1, 000 from the
even process. Model comparison is performed on sub-samples
of the time series, starting with the first 100 symbols and
increasing the data size considered in increments of 2 until
the full sample is analyzed. Although noisy, the results are
consistent with the bottom panel of Fig. 7 and demonstrate
a preference for even k over odd.

the results of model comparison were predictably uninter-
esting. This is a good indication that the correct model
class is being employed. However, with the even process
a much more complicated model comparison was found.
In this case, a selection of even k over odd hinted at the
distinguishing properties of the source. In a similar way,
the results of model comparison for the simple nondeter-
ministic source selected increasing order with larger N .
In both out-of-class modeling examples, the increase in
selected order without end is a good indication that the
data source is not in the Markov chain class. (A parallel
technique is found in hierarchical ǫ-machine reconstruc-
tion [22].) Alternatively, there is an indication that very
high-order dependencies are important in the description
of the process. Either way, the behavior seen in model
order selection gives key indications that a more complex
dynamic is at work and all results must be treated with
caution.

Next, we considered the estimation of entropy rates
for the example data sources. In two of the cases: the
golden mean process and the simple nondeterministic
source short data streams were adequate. This is not
unexpected for the golden mean, but for the SNS this
might be considered surprising. For the even process, the
estimation of the entropy rate was markedly more diffi-
cult. For this data source, the countably infinite number
of forbidden words makes the support of the word dis-
tribution at a given length important. As a result, a
larger amount of data and a higher-order Markov chain
are needed to find the correct estimate of randomness
from that data source. In this way, each of the steps in
Bayesian inference allow one to separate structure from
randomness.

Before moving onto the conclusion, we will mention
two issues of interest to researchers who wish to employ

the ideas developed here. First, we consider the analy-
sis of a single time series. In the examples of Sec. V we
used average data to clearly demonstrate typical behav-
ior of the inference procedures. By way of contrast, we
present the results of model comparison for a single time
series of length 1, 000 from the even process in Fig. 13.
In this example we employ a prior with a penalty for
model size. (This should be compared with the bottom
panel of Fig. 7.) The same preference for even order k
over odd is demonstrated in the consideration of a single
time series, where sampling fluctuations dominate. This
nontrivial example shows that the ideas developed here
can be applied in situations where average data is not
available.

Finally, we compare this method to well known alter-
natives such as Hidden Markov models and ǫ-machines.
As we demonstrated Markov chains can be inferred in de-
tail, allowing for estimation of entropy rates even for data
sources outside of the model class. However, the struc-
ture of the data source is not always captured effectively.
For example, a k = 10 Markov chain with 210 states can
be used to estimate hµ for the even process but the most
compact 2-state HMM representation is not found. To
quantify structure, or statistical complexity, in a more
meaningful way methods such as ǫ-machine reconstruc-
tion must be considered [22, 28]. That model class can
exactly represent the golden mean and even process ex-
amples. To capture the simple nondeterministic source
the general HMM model class, without restrictions for
determinism, must be considered. Although ǫ-machines
and HMMs are more powerful model classes, inference
techniques in the style presented here are not available
at this time. A similar set of techniques for parameter
estimation, model (structure) comparison, and entropy-
rate estimation using Bayesian methods will have to be
developed.

VII. CONCLUSION

We considered Bayesian inference of k-th order Markov
chain models. This included estimating model parame-
ters for a given k, model comparison between orders, and
estimation of randomness in the form of entropy rates.
In most approaches to inference, these three aspects are
treated as separate, but related endeavors. However, we
find them to be intimately related. An estimate of model
parameters without a sense of whether the correct model
is being used is misguided at best. Model comparison
provides a window into this problem by comparing vari-
ous orders k within the model class. Finally, estimating
randomness in the form of an entropy rate provides more
information about the trade-off between structure and
randomness. To do this we developed a connection to
the statistical mechanical partition function, from which
averages and variances were directly calculable. For the
even process, structure was perceived as randomness and
for the SNS randomness was easily estimated and struc-
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ture was more difficult to find. These insights, despite
the out-of-class data, demonstrate the power of combin-
ing these three methods into one effective tool for in-
vestigating structure and randomness in finite strings of
discrete data.
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APPENDIX A

1. Dirichlet Distribution

We supply a brief overview of the Dirichlet distribution
for completeness. For more information, a reference such
as [29] should be consulted. In simple terms, the Dirich-
let distribution is the multinomial generalization of the
Beta distribution. The probability density function for q
elements is given by

Dir({pi}) =
Γ(α)

∏q−1
i=0 Γ(αi)

δ(1−

q−1
∑

i=0

pi)

q−1
∏

i=0

pαi−1
i . (A1)

The variates must satisfy pi ∈ [0, 1] and
∑q−1

i=0 pi = 1.
The hyperparameters {αi} of the distribution, must be

real and positive. We use the notation α =
∑q−1

i=0 αi.
The average, variance, and covariance of the parameters
pi are given by, respectively,

E[pj ] =
αj

α
, (A2)

Var[pj ] =
αj (α− αj)

α2 (1 + α)
, (A3)

Cov[pj , pl] = −
αjαl

α2 (1 + α)
, j 6= l. (A4)

2. Marginal distributions

An important part of understanding uncertainty in in-
ference is the ability to find regions of confidence from
a marginal density. The marginal is obtained from the
posterior by integrating out the dependence on all param-
eters except for the parameter of interest. For a Dirichlet
distribution, the marginal density is known to be a Beta
distribution [29],

Beta(pi) =
Γ(α)

Γ(αi)Γ(α− αi)
pαi−1

i (1− pi)
α−αi−1

. (A5)

3. Regions of confidence from the marginal density

From the marginal density provided in Eq. (A5) a cu-
mulative distribution function can be obtained using the
incomplete Beta integral:

Pr(pi ≤ x) =

∫ x

0

dpi Beta(pi) . (A6)

Using this form, the probability that a Markov chain
parameter will be between a and b can be found using
Pr(a ≤ pi ≤ b) = Pr(pi ≤ b) − Pr(pi ≤ a). For a con-
fidence level R, between zero and one, we then want to
find (a, b) such that R = Pr(a ≤ pi ≤ b). The incom-
plete Beta integral and its inverse can be found using
computational methods; see [30–33] for details.
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[14] P. M. Vitányi and M. Li, IEEE Trans. Inform. Theory
46(2), 446 (2000).

[15] P. Baldi and S. Brunak, Bioinformatics: The Machine

Learning Approach (MIT Press, Cambridge, 2001).
[16] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Bio-

logical Sequence Analysis (Cambridge University Press,
Cambridge, 1998).

[17] T. M. Cover and J. A. Thomas, Elements of Information

Theory (Wiley-Interscience, New York, 1991).
[18] D. J. C. MacKay, Information Theory, Inference, and

Learning Algorithms (Cambridge University Press, Cam-
bridge, 2003).

[19] I. Samengo, Phys. Rev. E 65, 46124 (2002).
[20] K. Young and J. P. Crutchfield, Chaos, Solitons, and

Fractals 4, 5 (1994).
[21] M. Abramowitz and I. A. Stegun, Handbook of Mathe-

matical Functions (Dover, New York, 1965).
[22] J. P. Crutchfield, Physica D 75, 11 (1994).
[23] D. R. Upper, Ph.D. thesis, University of California,

Berkeley (1997), Published by University Microfilms Intl,
Ann Arbor, Michigan.

[24] G. K. Schenter, H. P. Lu, and X. S. Xie, Jour. Phys.
Chem. A 103, 10477 (1999).
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