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The partial information decomposition (PID) is perhaps the leading proposal for resolving in-
formation shared between a set of sources and a target into redundant, synergistic, and unique
constituents. Unfortunately, the PID framework has been hindered by a lack of a generally agreed-
upon, multivariate method of quantifying the constituents. Here, we take a step toward rectifying
this by developing a decomposition based on a new method that quantifies unique information. We
first develop a broadly applicable method—the dependency decomposition—that delineates how
statistical dependencies influence the structure of a joint distribution. The dependency decompo-
sition then allows us to define a measure of the information about a target that can be uniquely
attributed to a particular source as the least amount which the source-target statistical dependency
can influence the information shared between the sources and the target. The result is the first
measure that satisfies the core axioms of the PID framework while not satisfying the Blackwell
relation, which depends on a particular interpretation of how the variables are related. This makes
a key step forward to a practical PID.
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I. INTRODUCTION

Understanding how information is stored, modified, and
transmitted among the components of a complex sys-
tem is fundamental to the sciences. Application domains
where this would be particularly enlightening include
gene regulatory networks [1], neural coding [2], highly-
correlated electron systems, spin lattices [3], financial
markets [4], network design [5], and other complex sys-
tems whose large-scale organization is either not known
a priori or emerges spontaneously. Information theory’s
originator Claude Shannon [6] was open to the possible
benefits of such applications; he was also wary [7]. In an
early attempt to lay common foundations for multicom-
ponent, multivariate information Shannon [8] appealed to
Garrett Birkhoff’s lattice theory [9]. Many of the ques-
tions raised are still open today [10, 11].

Along these lines, but rather more recent, one partic-
ularly promising framework for accomplishing such a
decomposition is the partial information decomposition
(PID) [10]. Once a practitioner partitions a given set
of random variables into sources and a target, the frame-
work decomposes the information shared between the two
sets into interpretable, nonnegative components—in the
case of two sources: redundant, unique, and synergistic
informations. This task relies on two separate aspects
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of the framework: first, the overlapping source subsets
into which the information should be decomposed and,
second, the method of quantifying those informational
components.

Unfortunately, despite a great deal of effort [12-21], the
current consensus is (i) that the lattice needs to be modi-
fied [18-20, 22, 23] and (ii) that extant methods of quan-
tifying informational components [10, 12-14, 16, 17] are
not satisfactory in full multivariate generality due to ei-
ther only quantifying unique informations, being applica-
ble only to two-source distributions, or lacking nonnega-
tivity. Thus, the promise of a full informational analysis
of the organization of complex systems remains unreal-
ized after more than a half century.

The following addresses the second aspect—quantifying
the components. Inspired by early cybernetics—
specifically, Krippendorff’s lattice of system models (re-
viewed in Ref. [24])—we develop a general technique
for decomposing arbitrary multivariate information mea-
sures according to how they are influenced by statisti-
cal dependencies.! We then use this decomposition to
quantify the information that one variable uniquely has
about another. Reference [14]’s Igroja measure also di-
rectly quantifies unique information. However, depend-
ing upon one’s intuitions [26] it can be seen to inflate
redundancy [17]. Both our measure as well as Ref. [17]’s

! Since the development of this manuscript, it has come to the
authors’ attention that this structure had been independently
developed within the field of system science [25].



I.cs take into account the joint statistics of the sources,
but I..s does so at the expense of positivity. This makes
our proposal the only method of quantifying the partial
information decomposition that is nonnegative, respects
the source statistics, and satisfies the core axioms of the
PID framework.

Our development proceeds as follows. Section II reviews
the PID and Section IIT introduces our measure of unique
information. Section IV then compares our measure to
others on a variety of exemplar distributions, exploring
and contrasting its behavior. Section V discusses several
open conceptual issues and Section VI concludes. The
development requires a working knowledge of information
theory, such as found in standard texts [27-29)].

II. BACKGROUND

Consider a set of sources Xg, X1,...,X,_1 = Xo.n, and a
target Y. The amount of information the sources carry
about the target is quantified by their mutual informa-
tion:

I[Xom: Y] =1[Xo, X1, ...

= Zp(XO:na Y) 10g2

7Xn71 : Y]
p(XO:na Y)
p(Xom)p(Y)

The PID then assigns shared information to sets of source
groupings such that no (inner) set is subsumed by an-
other [10]. In this way, the PID quantifies what informa-
tion about the target each of those groups has in com-
mon.

A. Antichain Lattices

The sets of groupings we consider are antichains:
A(Xoin) = {a € PH(PT(Xon)) : V51,82 € a, 81 € 52},

where PH(S) = P(S) \ {0} denotes the set of nonempty
subsets of set S. Antichains form a lattice [9], where one
antichain « is less than another 3 if each element in 3
subsumes some element of «:

a=p < Vs € 8,3s9 € a,85 C 57 .

Figure 1 graphically depicts antichain lattices for two and
three variables. There, for brevity’s sake, a dot separates

2 We subscript the joint variable with a Python-like array-slice
notation, which matches Dijkstra’s argument [30].
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FIG. 1. Lattice of antichains for (a) two (X, and X1) and (b)
three sources (Xo, X1, and X2): An antichain is represented
using a dot to separate sets and sets by concatenated indices;
e.g., {{Xo} {X1, X2}} is represented 0 - 12.

the sets within an antichain, and the groups of sources are
represented by their indices concatenated. For example,
0 - 12 represents the antichain {{Xo} {X1, X>2}}.

B. Shared Informations

Given the antichain lattice, one then assigns a quantity
of shared or redundant information to each antichain.
This should quantify the amount of information shared
by each set of sources within an antichain o about the tar-
get. This shared information will be denoted In [ — Y]

Reference [10] put forth several axioms that such a
measure should follow:

(S) In [a@ — Y] is unchanged under permutations of «.
(symmetry)

SR) In[i = Y] =1[X;:Y]. (self-redundancy)

(M) Forall a < 3, In[a = Y] <I5[8 = Y].
(monotonicity)

With a lattice of shared informations in hand, the par-
tial information Igla — Y] 1is defined as the Mobius
inversion [9] of the shared information:

Infa—=Y] =) T[3—=Y] . (1)

Bl
We further require that the following axiom hold:

(LP) I [a = Y] >0. (local positivity)



This ensures that the partial information decomposition
forms a partition of the sources-target mutual informa-
tion and contributes to the decomposition’s interpretabil-

ity.

C. The Bivariate Case

In the case of two inputs, the PID takes a particularly in-
tuitive form. First, following the self-redundancy axiom
(SR), the sources-target mutual information decomposes
into four components:

1[XoX,:Y]=15[0-1 = Y]+15[0 = Y]
+IL[1=-Y]+1501=Y], (2

and, again following (SR), each source-target mutual in-
formation consists of two components:

I[Xg:Y]=15[0-1=2Y]+15[0 = Y] (3)
I[X,:Y]=10-1-2Y]+13[1=>Y] . (4)

The components have quite natural interpretations.
I5[0-1 — Y] is the amount of information that the two
sources Xo and X, redundantly carry about the target
Y. Ip[0 = Y] and Ip[l — Y] quantify the amount of
information that sources Xy and X7, respectively, carry
uniquely about the target Y. Finally, Iy [01 — Y] is the
amount of information that sources Xy and X, synergis-
tically or collectively carry about the target Y.
Combining the above decompositions, we see that the
operational result of conditioning removes redundancy
but expresses synergistic effects:

I[X0Y|X1] :I[XQXl Y]—I[X1Y]
=IH[0—-Y]+I[01 - Y] .

Furthermore, the co-information [31] can be expressed
as:

I[X()XlY]ZI[X0Y]—I[X0Y|X1]
=15[0-1 Y] -Iy[01 > Y] .

This illustrates one of the PID’s strengths. It explains,
in a natural fashion, why the co-information can be neg-
ative. It is the difference between a distribution’s redun-
dancy and synergy.

The bivariate decomposition’s four terms are constrained
by the three self-redundancy constraints Eqs. (2) to (4).
This leaves one degree of freedom. Generally, though
not always [14], this is taken as Iy[0-1— Y] . There-
fore, specifying any component of the partial informa-
tion lattice determines the entire decomposition. In the

multivariate case, however, no single Iy [a = Y] (redun-
dancy, unique, synergistic, or otherwise), when combined
with relations to standard information-theoretic quanti-
ties, will determine the remainder of the values. For this
reason, one generally relies upon quantifying the In val-
ues to complete the decomposition via the Mébius inver-
sion.

Finally, in the bivariate case one further axiom has been
suggested [12], though not put forth in original PID:
(Id) In[0-1 = XoX1] =1 [Xo : X;] (identity)
This axiom ensures that simply concatenating indepen-
dent inputs does not result in redundant information.
The identity axiom, though intuitive in the case of two
inputs, suffers from several issues. Primarily, with three
or more sources it is known to be inconsistent with lo-
cal positivity (LP). Furthermore, it is not clear how to
extend this axiom to the multivariate case or even if it
should be extended. In short, though many proposed
methods of quantifying the PID satisfy the identity ax-
iom, it is certainly not universally accepted.

D. Extant Methods

Several methods can be easily set aside— Ijm; [18], Ia
[16], and I} [13, 18]—as suffering from significant draw-
backs. I,mi necessarily assigns a zero value to at least
one of the unique informations, doing so by dictating that
whichever source shares the least amount of information
with the target, it does so entirely redundantly with the
other sources. I, is based on the Gécs-Korner com-
mon information. And, so it is insensitive to any sort of
statistical correlation that is not a common random vari-
able. I, quantifies unique information from each source
directly using an upper bound on the secret key agree-
ment rate [32], but in a way that leads to inconsistent
redundancy and synergy values.

Now, we can turn to describe the four primary existing
methods for quantifying the PID. I,,, the first mea-
sure proposed [10], quantifies the average least informa-
tion the individual sources have about each target value.
It has been criticized [12, 13] for its behavior in certain
situations. For example, when the target simply concate-
nates two independent bit-sources, it decomposes those
two bits into one bit of redundancy and one of synergy.
This is in stark contrast to the more intuitive view that
the target contains two bits of unique information—one
from each source.

Iproj quantifies shared information using information
geometry [12]. Due to its foundation relying on the



Kullback-Leibler divergence, however, it does not nat-
urally generalize to measuring the shared information in
antichains of size three or greater.

Igrosa attempts to quantify unique information [14], as
does our approach. It does this by finding the mini-
mum [ [XZ' : Y\Xo:n\i] over all distributions that pre-
serve source-target marginal distributions. (The random
variable set Xg.,\;, excludes variable X;.) Depending
on one’s perspective on the roles of source and target
variables, however, Igroja can be seen to artificially
correlate the sources and thereby overestimate redun-
dancy [17, 26]. This leads the measure to quantify identi-
cal, though independent, source-target channels as fully
redundant. Furthermore, as a measure of unique infor-
mation, it cannot completely quantify the partial infor-
mation lattice when the number of sources exceeds two.

Finally, I..s quantifies redundant information by aggre-
gating the pointwise coinformation terms whose signs
agree with the signs of all the source-target marginal
pointwise mutual informations [17]. This measure seems
to avoid the issue used to criticize Iy, that of capturing
the “same quantity” rather than the “same information”.
Further, it respects the source statistics unlike Igroja-
Notably, it can be applied to antichains of any size. Un-
fortunately, it does so incurring the expense of negativity,
though one can argue that this is an accurate assessment
of information architecture.

With these measures, their approaches, and their limita-
tions in mind, we now turn to defining our measure of
unique information.

III. UNIQUE INFORMATION

We now propose a method to quantify partial informa-
tion based on terms of the form Iy[i — Y]—that is, the
unique information. We begin by discussing the notion
of dependencies and how to quantify their influence on
information measures. We then adapt this to quantify
how source-target dependencies influence the sources-
target mutual information. Our measure defines unique
information Ip[i — Y] as the least amount that the
X,;Y dependency can influence the shared information
I1[Xom:Y].

A. Constraint Lattice

We begin by defining the constraint lattice L(X), a lat-
tice of sets of subsets of variables. These subsets of vari-
ables are antichains, as in the partial information lat-
tice, but are further constrained and endowed with a

different ordering. Specifically, given a set of variables
¥ = {Xo, X1,...}, a constraint v is a nonempty subset of
Y. And, a constraint set o is a set of constraints that form
an antichain on ¥ and whose union covers ¥; they are an-
tichain covers [9]. Concretely, o € PT (P (X)) such that,
for all v1,v2 € 0, 11 € 72 and |Jo = X. The constraint
sets are required to be covers since we are not concerned
with each individual variable’s distribution, rather we are
concerned with how the variables are related. We refer
to these variable sets as constraints since we work with
families of distributions for which marginal distributions
over the variable sets are held fixed.

There is a natural partial order oy < 09 over constraint
sets:

o1 20y &= Vy €01,I12 €02,71 C 2.

Note that this relation is somewhat dual to that in the
PID and, furthermore, that the set of antichain covers is
a subset of all antichains. The lattice £(X) induced by
the partial order on ¥ = {X,Y, Z} is displayed in Fig. 2.
The intuition going forward is that each node (antichain)
in the lattice represents a set of constraints on marginal
distributions and the constraints at one level imply those
lower in the lattice.

B. Quantifying Dependencies

To quantify how each constraint set influences a distri-
bution p, we associate a maximum entropy distribution
with each constraint set o in the lattice. Specifically, con-
sider the set A, (o) of distributions that match marginals
in o with p:

Ap(o) ={q:p(v) =q(v), y€a} . (5)

To each constraint set o we associate the distribution in
A, (o) with maximal Shannon entropy:

po =argmax{H[¢] : g € Ap(0)} . (6)

This distribution includes no additional statistical struc-
ture beyond that constrained by o [33].

When an information measure, such as the mutual in-
formation, is computed relative to the maximum entropy
distribution p,, we subscript it with the constraint o. For
example, the mutual information between the joint vari-
able XY and the variable Z relative the the maximum
entropy distribution satisfying the constraint XY : YZ
is denoted Ixy.yz [XY : Z].

Given this lattice of maximum entropy distributions, we
can then compute any multivariate information measure
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FIG. 2. Constraint lattice of three random variables X, Y,
and Z. Blue edges (a, e, g, 1) correspond to adding constraint
XY, green (b, d, i, k) to adding XZ, and red (c, f, h, j) to
adding Y Z.

on those distributions and analyze how its value changes
moving across the lattice. Moves here correspond to
adding or subtracting dependencies. We call the lattice
of information measures applied to the maximum entropy
distributions the dependency structure of distribution p.

The dependency structure of a distribution is a broadly
applicable and robust method for analyzing how the
structure of a distribution affects its information content.
It is effectively a partial order on a multiverse associated
with p: Consider every possible alternative universe in
which select statistical dependencies are removed from p.
It allows each dependency to be studied in the context
of other dependencies, leading to a vastly more nuanced
view of the interactions among p’s variables. We believe
it will form the basis for a wide variety of information-
theoretic dependency analyses in the future.

We note that this dependency structure was in-
dependently — announced [34] after a preprint
(arxiv.org:1609.01233) of the present work ap-
peared. There, dependency structure minimizes
the Kullback-Leibler divergence, which is
to be equivalent to our maximum entropy ap-
proach [35]. A decomposition of total correlation
> H[X:] — H[X1,..., Xpn] was studied that, in the
case of three variables, amounts to decomposing each
conditional mutual information into two components:
eg, I[X:Y|Z] = Dk [ XY : XZ:YZ || XZ:YZ] +
Dk [XYZ || XY : XZ :YZ], where the latter is the
third-order connected information [36] and Dky, [P || Q]
is the Kullback-Liebler divergence [27]. In contrast to a
lattice decomposition of total correlations, the primary
contribution here applies any desired information mea-

known

sure to each node in the dependency structure. This

leads to a vast array of possible analyses.

As an example, consider the problem of determining
“causal pathways” in a network [37, 38].> Given two
paths between two network nodes, say A — B — C
and A — B’ — C, one would like to determine through
which pathway A’s behavior most strongly influences C.
This pathway is termed the causal pathway. Naively,
one might assume that the pathway whose links are
strongest is the more influential pathway or that it is the
pathway maximizing a multivariate information measure.
Consider, however, the case where A strongly influences
one aspect of B while another, independent aspect of
B strongly influences C. Here, A would have no influ-
ence whatsoever upon C in spite of the strong individual
links. Our dependency structure, in contrast, would eas-
ily detect this via Inp.pc[A: C] = 0, which quantifies
exactly how much A and C' are correlated through the
pathway A — B — (. In this fashion, determining
causal pathways in networks becomes straightforward:
For each potential pathway, consider the constraint con-
sisting of all its links and evaluate the influence measure
of choice (time-delayed mutual information, transfer en-
tropy, or similar) between the beginning and end of the
pathway. The value indicates the pathway’s strength as
quantified by the chosen measure (and whose interpre-
tation is dependent on the chosen measure). While this
example does not use the full dependency structure, it
does demonstrate the usefulness of considering informa-
tion measures in the context of only specific dependen-
cies. Furthermore, there exist other information-based
methods of determining causal pathways [37], however
this provides a novel and independent method of doing
S0.

Another application is the determination of drug interac-
tions. Given a dataset of responses to a variety of drugs,
one would like to determine which subsets of drugs inter-
act with one another. One method of doing so would be
to construct the dependency structure, quantifying each
node with the entropy. Then, the lowest node in the lat-
tice whose entropy is “close enough” (as determined by
context) to that of the true distribution contains the min-
imal set of constraints that give rise to the full structure
of the true distribution. That minimal set of constraints
determines the subset of variables that are necessarily
interacting. Note that this is an application of recon-
structability analysis [25] and does not use the flexibility
of employing a variety of information measures on the
lattice.

3 The term “causal” here is unfortunate, due to the great deal of
debate on determining causality without intervention [39].



C. Quantifying Unique Information

To measure the unique information that a source—say,
Xo—has about the target Y, we use the dependency
decomposition constructed from the mutual information
between sources and the target. Consider further the lat-
tice edges that correspond to the addition of a particular
constraint:

E(y) ={(o1,02) € L:v € 01,7 ¢ 02} .

For example, in Fig. 2’s constraint lattice F(XY") consists
of the following edges: (XY :Z,X:Y:2), (XY:XZ, X Z:
Y), (XY :YZYZ:X), and (XY : XZ:YZ,XZ:YZ).
These edges—Ilabeled a, d, g, and —are colored blue
there. We denote a change in information measure along
edge (o1,02) by AZl. For example, A7 I[XY : Z] =
L, [XY:Z] -1, [XY : Z].

Our measure Igep [i = Y] of unique information from
variable X; to the target Y is then defined using the
lattice £(X,Y, Xo:n\i):

Liep [t = Y] = min
(o1,02)EE(X,Y)

) Iy [ X Y X
= min )
IX X gumi:X0 YiX oY [Xi 1 Y [ Xoim\i]

{Ag; I [X(]:n . Y}}

That is, the information learned uniquely from Xj; is the
least change in sources-target mutual information among
all the edges that involve the addition of the X;Y con-
straint. Due to information-theoretic constraints (see
Appendix A), the edge difference achieving the mini-
mum must be one of either Ix,v.x,,..,v [X,» : Y|X0m\i] or
IXiXo;n\iiXiYixo;n\iY [Xl : Y‘XO:n\i]- This latter quantity
arises in directed reconstructability analysis [25], where
it has an interpretation similar to unique information. It
would not, however, result in a PID that satisfied (LP);
though, when combined as above with the first quantity,
local positivity is preserved. In the case of bivariate in-
puts, this measure of unique information results in a de-
composition that satisfies (S), (SR) (by construction),
(M), (LP), and (Id), as shown in Appendix C. In the
case of multivariate inputs, satisfying (Id) implies that
(LP) is not satisfied. Further, it is not clear whether Iqep
satisfies (M).

With a measure of unique information in hand, we now
need only describe how to determine the partial informa-
tion lattice. In the bivariate sources case, this is straight-
forward: self-redundancy (SR), the unique partial infor-
mation values, and the Mobius inversion Eq. (1) com-
plete the lattice. In the multivariate case, completion is
not generally possible. That said, in many relatively sim-
ple cases combining monotonicity (M), self-redundancy

SuM Pnt. UNQ.
Xo X1 Y Pr Xo X1 Y Pr
0 0 0 Va 0 1 1 VYa
0 1 1 Ya 1 0 11
1 0 11 0 2 21
1 1 2 s 2 0 21
BoowMm REDUCED OR(p)
Xo X1 Y Pr Xo XY Pr
0 0 11 0 00 1
0 0 21 0 01
0 2 0 s 0 1 1 (-p)fa
1 2 11 1 0 1 (-p)s
2 0 21 1 1 1 oA
2 1 2 1

FIG. 3. Four distributions of interest: SUM is constructed
with Xo, X1 as independent binary variables while Y is their
sum. PNT. UNQ. is from Ref. [41]. BooM was found through
a numeric search for distributions satisfying certain proper-
ties; namely, that Ip.o; and Isroja differ. REDUCED OR is
adapted from Ref. [17].

(SR), the unique values, and a few heuristics allow the
lattice to be determined. Though, due to Igp satisfying
the identity axiom such values may violate local positiv-
ity. The heuristics include using the Mobius inversion
on a subset of the lattice as a linear constraint. Several
techniques such as this are implemented in the Python
information theory package dit [40].

IV. EXAMPLES & COMPARISONS

We now demonstrate the behavior of our measure Igcp
on a variety of source-target examples. In simple cases—
RDN, SYN, Copy [13]— Igep agrees with Ipoi, IBrOJA
,and Ices. There are, however, distributions where Igep
differs from the rest. We concentrate on those.

Consider the REDUCED OR(0) and Sum distribu-
tions [17] in Fig. 3. For these Imin, Iproj, and Iprosa
all compute no unique information. Reference [17] pro-
vides an argument based on game theory that the chan-
nels Xo = Y and X; = Y being identical (a special
case of the Blackwell property (BP) [23]) does not im-
ply that unique information must vanish. Specifically,
the argument goes, the optimization performed in com-
puting Igroga artificially correlates the sources, though
this interpretation is dependent upon the perspective one
takes when considering the PID [26]. One can interpret
this as a sign that redundancy is being overestimated.



0 Imin Iproj IBROJA Iccs Idep
01 1 1 1 /2 0.68872
= 0 0 0 0 /2 0.31128
a1 0 0 0 /2 0.31128
0-1 1/ 1/2 1/2 0 0.18872
s 01 /2 /2 /2 0 1/4
50 0 0 0 1/2 1/4
g 1 0 0 0 1/2 /4
£0-1 1 1/2 1/2 0 14
01 0.29248 0.29248 0.12581 0.12581 0.08781
20 s 16 13 /3 0.37133
8 1 /6 /e /3 /3 0.37133
0-1 12 /2 1/3 /3 0.29533
TABLE I. Partial information decomposition of the Suwm,

PNT. UNQ., and BooM distributions.

In these instances, Ilgcp qualitatively agrees with Icg,
though they differ somewhat quantitatively. See Table I
for the exact values.

Reference [14] proves that Ip.o; and Igroja are distinct
measures. The only example produced, though, is the
somewhat opaque SUMMED DICE distribution. Here, we
offer BooM found in Fig. 3 as a more concrete example to
draw out such differences.* Table I gives the measures’
decomposition values. Interestingly, Inin agrees with
Iproj, while Ices agrees with Iproja. laep, however, is
distinct. All measures assign nonzero values to all four
partial informations. Thus, it is not clear if any particular
method is superior in this case.

Finally, consider the parametrized REDUCED OR(p) dis-
tribution, given in Fig. 3. Figure 4 graphs this distri-
bution’s decomposition for all measures.  Imin, Iproj,
and Iproja all produce the same decomposition as a
Iees and Igep differ from those three and
Imin’s, Iproj’s, and Iproja’s evaluation
of redundant and unique information is invariant with p.
And, in the cases of I.,; and Iproja this is due to the
source-target marginals being invariant with respect to
p [14]. We next argue that Igep’s decomposition—and
specifically the “kink” observed—is both intuitive and
reasonable.

function of p.
each other.

Generically, the source-target channels “overlap” inde-
pendent of p, so there is some invariant component
to the redundancy. Furthermore, consider the form
of some conditional distributions when the sources are
‘0 the distribution Pr(Y) = {0:1/2,1:1/2}, while

4 Although, it is not hard to find a simpler example. See the
dit [40] documentation for another: http://docs.dit.io/en/latest/
measures/pid.html#and-are-distinct.
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FIG. 4. Partial information decomposition of REDUCED
OR(p) as a function of p: The I4qep decomposition shows an
abrupt change in character at p = /2, corresponding to inde-
pendent source-target channels switching from underestimat-
ing the target distribution to overestimating. Under Igrosa
(and Imin and Iprej), the redundant and unique components
do not vary since the source-target marginals are invariant
with p. The I.s decomposition exhibits two p values of
nonsmoothness, each corresponds to a change in sign of a
coinformation component.

Pr(Y|Xo=0) = Pr(Y|X; =0) = {0:2/3,1:1/3}. Fi-
nally, Pr(Y|XoX1; =00) = {0:2/24p,1:p/24p}. The
source-target channels are independent of p, but the joint
sources-target channel depends upon it.

Consider the case of the two channels, Xy = Y and
X1 = Y, operating and independently influencing the
value of Y. Observation that Xo = 0 takes Pr (Y =0) =
/2 to Pr (Y =0) = 2/3—a factor of 4/3 larger, and sim-
ilarly for X; = 0. Together, one would then observe
that Pr (Y'|XoX; = 00) = {0:4/5,1:1/5}. That is, each
channel “pushes” Pr (Y = 0) 4/3 of the way from ‘0’ to-
ward ‘1’. This independent “pushing” occurs exactly at
p = 1/2. For p > 1/2, this independence assumption over-
estimates the probability of Y = 0. That is, there is addi-
tional redundancy between the two channels. For p < 1/2,
the “pushes” from the two channels do not account for
the true probability of Y = 0. That is, synergistic effects
Iyep cleanly reveals both of these features, while
Imin, Iproj, and Iproja miss them and I..s’s multiple
kinks makes it appear oversensitive.

occur.



V. DISCUSSION

We next describe several strengths of our Ige, mea-
sure when interpreting the behavior of the sources-target
mapping channel. The PID applied to a joint distribu-
tion naturally depends on selecting which variables are
considered sources and which target. In some cases—the
RDN and SYN distributions of Ref. [13]—the values of re-
dundancy and synergy are independent of these choices
and, in a sense, can be seen as a property of the joint dis-
tribution itself. In other cases—the AND distribution of
Ref. [13]—the values of redundancy and synergy are not
readily apparent in the joint distribution. The concept of
mechanistic redundancy—the existence of redundancy in
spite of independent sources—is a manifestation of this.
What we term nonholistic synergy—synergy in the PID
that does not arise from necessarily three-way interac-
tions (that is, the third-order connected information [36])
in the distribution—is also due to the choice of sources
and target. We next discuss how the dependency de-
composition and I4ep shed new insight into mechanistic
redundancy and nonholistic synergy.

There are two aspects of the PID that do not directly
reflect properties of the joint distribution, but rather are
determined by which variables are selected as sources and
which the target. The first involves redundancy, where
two sources may be independent but redundantly influ-
ence the target. The second involves synergy, where there
may be a lack of information at the triadic level of three-
way interdependency, yet the sources collectively influ-
ence the target. The dependency decomposition and Igep,
make these phenomena explicit.

A. Source versus Mechanistic Redundancy

An interesting concept within the PID domain is that of
mechanistic redundancy [12]. In its simplest form, this is
existence of redundant information when the sources are
independent. The AND distribution given in Table IT is a
prototype for this phenomenon. Though the two sources
Xo and X; are independent, all methods of quantify-
ing partial information ascribe nonzero redundancy to
this distribution. Through the lens of I4ep, this occurs
when the edge labeled | in Fig. 5 exceeds edge quantity
b—1 = c— h. This means that the channels Xo = Y and
X3 =Y are similar, so that when constraining just these
two marginals the maximum entropy distribution artifi-
cially correlates the two sources. This artificial correla-
tion must then be broken when constraining the sources’
marginal XX, leading to conditional dependence. (Sec-
tion VB below draws out this implication.)

AND

XO X1 Y Pr

0 0 01

0 1 0 Ya

1 0 01/

1 1 1 1
AND  Ipin Lvoj IBrOJA  locs Liep
o1 12 1 1 0.29248 0.27043
0 0 0 0 0.20752 0.22957
1 0 0 0 0.20752 0.22957

0-1 0.31128 0.31128 0.31128 0.10376 0.08170

TABLE II. AND distribution exemplifies both mechanistic
redundancy and nonholistic synergy.

Mechanistic redundancy is closely tied to the concept of
target monotonicity [23):

(TM) In [Xo - X1 = Y] > 10 [Xo- X1 — f(Y)] .
(target monotonicity)

Said colloquially, taking a function of the target cannot
increase redundancy. However, one of the following three
properties of a partial information measure must be false:

1. In [X(] - X1 — (X()Xl)} =0,
2. The possibility of mechanistic redundancy, or

3. Target monotonicity.

In effect, any given method of quantifying the PID cannot
simultaneously assign zero redundancy to the “two-bit
copy” distribution, allow mechanistic redundancy, and
obey target monotonicity. Igep does not satisfy (TM).
Reference [23] demonstrated a general construction that
maps a redundancy measure not satisfying (TM) to one
that does, in the process violating property Item 1 above.

B. Holistic versus Nonholistic Synergy

A notion somewhat complementary to mechanistic re-
dundancy is nonholistic synergy. Holistic synergy, or the
third-order connected information [36], is the difference
H [X()XlY] — HX0X1:X0Y:X1Y [X()XlY] This quantiﬁes
the amount of structure in the distribution that is only
constrained by the full triadic probability distribution,
not any subsets of marginals. This quantity appears as
the edge labeled m in Fig. 5. Nonholistic synergy, on the
other hand, is synergy that exists purely from the bivari-
ate relationships within the distribution. This appears as
k — min{b,i,k} = j — min{c, h,j} in Fig. 5. This quan-
tity has a natural interpretation: how much does the
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FIG. 5. Dependency structure for two source variables Xo

and X; and one target variable Y. Edges colored blue cor-
respond to adding constraint Xy Xi; edges colored green to
adding constraint Xo Y; and edges colored red to X; Y. The
unique information Igep [Xo — Y] is calculated by consider-
ing the least change in I, [XoX; : Y] along the green edges.
See Appendix B and Fig. 7 for identities among the edges
important for Igep.

constraint XY influence I1[XoX;:Y] in the context
of the other dyadic relationships (XoX;, X1Y), minus
the unique information Igep [0 — Y] . The total PID
synergy is then Igep [01 = Y] = m + k — min{b, i, k} =
m+ j —min{c, h,j}.

Here, again, the AND distribution seen in Table IT exem-
plifies the phenomenon. The AND distribution is com-
pletely defined by the constraint XgX; : XoY : XjY.
That is, the AND distribution is the only distribution
satisfying these pairwise constraints. This implies that
the holistic synergy is zero. In spite of this, all meth-
ods of quantifying partial information (correctly) assign
nonzero synergy to this distribution. This is a conse-
quence of coinformation being negative. This raises an
interesting question: are there triadic (three-way) depen-
dencies in the AND distribution? Notably, the distribu-
tion can be defined as the maximum entropy distribu-
tion satisfying certain pairwise marginals, yet it has neg-
ative co-information and therefore nonzero synergy and
exhibits conditional dependence.

C. Shortcomings

Iqep comes with its own concerns, however. First, it
is defined using a minimum. Besides being mildly aes-
thetically displeasing, this can lead to nondifferentiable
(though continuous) behavior, as seen in Fig. 4. Nondif-
ferentiability can be seen as natural, as we have argued,

if it coincides with a switch in qualitative behavior.

Perhaps more interestingly, Igcp does not correspond
to either the camel or elephant intuitions as described in
Ref. [26] which proposes information-theoretical cryptog-
raphy as a basis for unique information. In the relatively
straightforward example of the PNT. UNQ. distribu-
tion, Igep does not correspond with any other proposed
method of quantifying the PID. In this instance, it is
simple to state why I4ep quantifies the unique informa-
tion as 1/4bit: after constraining either XY or XY,
constraining the other only increases I[XoX;:Y] by
1/4bit; that is, the unique value of either XoY or X1V
is only a quarter because there exist contexts where that
is all it can contribute to I[XoX; :Y] . However, it is
difficult to see the operational meaning of this value. All
other proposed methods match one or another secret key
agreement rate. And so, they at least have a concrete
operational interpretation.

Finally, Igcp is a measure of unique information and so
it cannot alone be used to quantify the PID with three
or more sources. And, in the event where unique infor-
mations in concert with standard information measures
are in fact sufficient for quantifying the entire PID, Igcp
’s adherence to the identity axiom implies that it neces-
sarily does not obey local positivity with three or more
sources.

VI. CONCLUSION

We developed a promising new method I4, of quan-
tifying the partial information decomposition that cir-
cumvents many problems plaguing previous attempts. It
satisfies axioms (S), (SR), (M), (LP), and (Id); see
Appendix C. It does not, however, satisfy the Blackwell
property (BP) and so, like I.., it agrees with previ-
ous game-theoretic arguments raised in Ref. [17]. Unlike
Iecs, though, Igep satisfies (LP). This makes it the only
measure satisfying (Id) and (LP) which does not require
that redundancy is fixed by XpY : XiY.

The Ijep method does not overcome the negativity aris-
ing in the trivariate source explored in Refs. [18, 19, 22].
We agree with Ref. [22] that the likely solution is to em-
ploy a different lattice. We further believe that the flex-
ibility of our dependency structure could lead to meth-
ods of quantifying this hypothetical new lattice and to
elucidating many other challenges in decomposing joint
information, especially once the statistical significance of
its structure applied to empirical data is explored.



ACKNOWLEDGMENTS

The authors thank Robin Ince and Daniel Feldspar for
many helpful conversations. JPC thanks the Santa Fe
Institute for its hospitality during visits. JPC is an
SFI External Faculty member. This material is based

10

upon work supported by, or in part by, the UC Davis In-
tel Parallel Computing Center, John Templeton Founda-
tion grant 52095, Foundational Questions Institute grant
FQXi-RFP-1609, the U.S. Army Research Laboratory
and the U. S. Army Research Office under contracts
W911NF-13-1-0390 and W911NF-13-1-0340.

[1] A. J. Gates and L. M. Rocha. Control of complex net-
works requires both structure and dynamics. Scientific
reports, 6:24456, 2016. 1

[2] S. P. Faber, N. M. Timme, J. M. Beggs, and E. L. New-
man. Computation is concentrated in rich clubs of local
cortical neurons. bioRziv, page 290981, 2018. 1

[3] V. Vijayaraghavan, R. G. James, and J. P. Crutchfield.
Anatomy of a spin: the information-theoretic structure
of classical spin systems. Entropy, 19(5):214, 2017. 1

[4] R. G. James, B. D. M. Ayala, B. Zakirov, and J. P.
Crutchfield. Modes of information flow. arXiv preprint
arXiv:1808.06723, 2018. 1

[5] R. B. Arellano-Valle, J. E. Contreras-Reyes, and M. G.
Genton. Shannon entropy and mutual information for
multivariate skew-elliptical distributions. Scandinavian
Journal of Statistics, 40(1):42-62, 2013. 1

[6] C. E. Shannon. A mathematical theory of communica-
tion. Bell Sys. Tech. J., 27:379-423, 623—656, 1948. 1

[7] C. E. Shannon. The bandwagon. IEEE Transactions on
Information Theory, 2(3):3, 1956. 1

[8] C. E. Shannon. The lattice theory of information. Trans.
IRE Prof. Group Info. Th., 1(1):105-107, 1953. 1

[9] G. Birkhoff. Lattice Theory. American Mathematical
Society, Providence, Rhode Island, first edition, 1940. 1,
2, 4

[10] P. L. Williams and R. D. Beer. Nonnegative decomposi-
tion of multivariate information. arXiv:1004.2515. 1, 2,
3

[11] R. G. James and J. P. Crutchfield. Multivariate depen-
dence beyond shannon information. Entropy, 19(10):531,
2017. 1

[12] M. Harder, C. Salge, and D. Polani. Bivariate measure
of redundant information. Phys. Rev. E, 87(1):012130,
2013. 1, 3, 8

[13] V. Griffith and C. Koch. Quantifying synergistic mu-
tual information. In Guided Self-Organization: Inception,
pages 159—190. Springer, 2014. 3, 6, 8

[14] N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, and N. Ay.
Quantifying unique information. Entropy, 16(4):2161—
2183, 2014. 1, 3,4, 7

[15] D. Chicharro. Quantifying multivariate redundancy with
maximum entropy decompositions of mutual informa-
tion. arXiv:1708.03845.

[16] V. Griffith, E. K.P. Chong, R. G. James, C. J. Ellison,
and J. P. Crutchfield. Intersection information based on
common randomness. Entropy, 16(4):1985-2000, 2014.
1,3

[17] R. A.A. Ince. Measuring multivariate redundant informa-
tion with pointwise common change in surprisal. Entropy,
19(7):318, 2017. 1, 4, 6, 9

[18] N. Bertschinger, J. Rauh, E. Olbrich, and J. Jost. Shared
information-new insights and problems in decomposing
information in complex systems. In Proceedings of the
European Conference on Complex Systems 2012, pages
251-269. Springer, 2013. 1, 3, 9

[19] J. Rauh, N. Bertschinger, E. Olbrich, and J. Jost. Re-
considering unique information: Towards a multivari-
ate information decomposition. In Information Theory
(ISIT), 2014 IEEE International Symposium on, pages
2232-2236. IEEE, 2014. 9

[20] D. Chicharro and S. Panzeri. Redundancy and synergy
in dual decompositions of mutual information gain and
information loss. arXiv:1612.09522. 1

[21] P. K. Banerjee and V. Griffith. Synergy, redundancy and
common information. arXiv:1509.03706. 1

[22] J. Rauh. Secret sharing and shared information. Entropy,
19(11):601, 2017. 1, 9

[23] J. Rauh, P. K. Banerjee, E. Olbrich, J. Jost, and
N. Bertschinger. On extractable shared information. En-
tropy, 19(7):328, 2017. 1, 6, 8

[24] K. Krippendorff. Ross Ashby’s information theory: A bit
of history, some solutions to problems, and what we face
today. Intl. J. General Systems, 38(2):189-212, 2009. 1

[25] M. Zwick. An overview of reconstructability analysis.
Kybernetes, 33(5/6):877-905, 2004. 1, 5, 6

[26] R. G. James, J. Emenheiser, and J. P. Crutchfield. A
perspective on unique information: Directionality, intu-
itions, and secret key agreement. arXiv:1808.08606. 1,
4,6,9

[27] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience, New York, second edition,
2006. 2, 5

[28] D. MacKay. Information Theory, Inference, and Learn-
ing Algorithms. Cambridge University Press, Cambridge,
United Kingdom, 2003.

[29] R. W. Yeung. Information theory and network coding.
Springer, New York, 2008. 2

[30] E. W. Dijkstra. Why numbering should start at zero.
1982. 2

[31] A. J. Bell. The co-information lattice. In S. Makino
S. Amari, A. Cichocki and N. Murata, editors, Proc. Fifth
Intl. Workshop on Independent Component Analysis and
Blind Signal Separation, volume ICA 2003, pages 921—
926, New York, 2003. Springer. 3



[32] U. M. Maurer and S. Wolf. Unconditionally secure
key agreement and the intrinsic conditional information.
IEEE Transactions on Information Theory, 45(2):499—
514, 1999. 3

[33] E. T. Jaynes. Where do we stand on maximum entropy?
In E. T. Jaynes, editor, Essays on Probability, Statistics,
and Statistical Physics, page 210. Reidel, London, 1983.
4

[34] N. Virgo and D. Polani. Decomposing multivariate infor-
mation (abstract). 2017. Accessed 26 April 2018, https:
//www.mis.mpg.de/fileadmin/pdf/abstract_gsol8 3302.pdf. 5

[35] S. Amari. Information geometry on hierarchy of prob-
ability distributions. IEEE transactions on information
theory, 47(5):1701-1711, 2001. 5

[36] E. Schneidman, S. Still, M. J. Berry, and W. Bialek. Net-
work information and connected correlations. Phys. Rev.
Lett., 91(23):238701, 2003. 5, 8, 13

[37] J. Runge. Quantifying information transfer and media-
tion along causal pathways in complex systems. Phys.
Rev. E, 92(6):062829, 2015. 5

[38] J. Sun and E. M. Bollt. Causation entropy identifies indi-
rect influences, dominance of neighbors and anticipatory
couplings. Physica D: Nonlinear Phenomena, 267:49-57,
2014. 5

[39] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, New York, 1988. 5

[40] R. G. James, C. J. Ellison, and J. P. Crutchfield. dit:
a Python package for discrete information theory. The
Journal of Open Source Software, 3(25):738, 2018. 6, 7

[41] C. Finn and J. T. Lizier. Pointwise partial information
decomposition using the specificity and ambiguity lat-
tices. Entropy, 20(4):297, 2018. 6

11



Appendix A: Constrained Three-Variable Maximum
Entropy Distributions

Here, we characterize the maximum entropy distributions
defined in Eq. (6) and used to populate the dependency
structure. In particular, we give maximum entropy dis-
tributions for forms of marginal constraints that describe
the lowest three levels of the constraint lattice as shown
in Fig. 2.

Let us fix notation. Consider a joint distribution p(ABC)
and maximum entropy distributions for some constraint
set 0: p, (ABC). We label information measures and
other quantities that are computed relative to this con-
strained maximum entropy distribution with the sub-
script o: for example, Ha.p.c [ABC] refers to the en-
tropy of the product distribution p(abc) = p(a)p(b)p(c),
as this is the distribution consistent with the constraint
A : B : C and has maximum entropy. Such quanti-
ties without a subscript are calculated from the origi-
nal distribution. In our use of the dependency struc-
ture to quantify unique information, we are interested in
I, [AB:C] as this will represent the sources-target mu-
tual information.

The lowest node in the dependency lattice constrains
all single-variable marginal distributions, but no pair-
wise marginal distributions. With only single-variable
marginal distributions constrained, the maximum en-
tropy distribution is such that the variables are indepen-
dent, also known as the product distribution:

pa:p.c(ABC) = p(A)p(B)p(C) . (A1)

It can be seen that this must be the maximum entropy
distribution, since an increase in any mutual information
corresponds to an equal decrease in at least two condi-
tional entropies, resulting in a lower total entropy. The
informational structure of this distribution can be seen
in Fig. 6a.

The first row up in the constraint lattice captures those
antichains that contain one pairwise constraint and one
single-variable constraint. The maximum entropy distri-
bution corresponding to this constraint set is given by:

pac:3(ABC) = p(AC)p(B) . (A2)

All atoms of the information diagram that capture the
overlap of H[AC] and H [B] vanish. Again, it can be
seen that the maximum entropy distribution must take
this form, since any deviation from the information par-
titioning seen in Fig. 6b, which satisfies the constraint
AC : B, must result in an overall decrease to the en-
tropy.

The elements in the second row of the constraint lattice

(b) (c)

FIG. 6. Information diagrams corresponding to the max-
imum entropy distributions described in Egs. (A1) to (A3).
The four variables in subfigure (c) satisfy a+b+c+d = H[C],
b+c=1[A:C],and c+d=1[B:C].

include constraints on two pairwise marginal distribu-
tions each. These constraints both contain one of the
variables, and the maximum entropy distribution takes
on the following Markov form:

pac:sc(ABC) = p(A|C)p(B|C)p(C) . (A3)

This distribution forms a Markov chain A—o—C'—o—B and
therefore Inc.pc [A: B|C] = 0. To see that this must be
the form of the maximum entropy distribution, consider
the expansion:

H[ABC] = H[C] + H[A|C] + H [B|C] —1[A: B|C] .

The first three terms of the righthand side are constrained
by p(C), p(AC), and p(BC), respectively. Since the con-
ditional mutual information is necessarily nonnegative,
the final term being zero corresponds to the distribution
with the maximum entropy. Such a distribution is real-
ized by the given Markov chain. The mutual information
Iac:se [AB: (] is equal to:

. a.b.c)lo p(G')p(b?C)
I[A.C]—&-(%ép( .b,0)l B i p(ad)
ceC

The information diagrams for each of these three distri-
butions are given in Fig. 6.

With the structure of these distributions in hand, we now
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FIG. 7. The reduced form of the dependency lattice quanti-
fied by sources-target mutual information, with b =1[Xo:Y]
and ¢ =1 [X;:Y]. All edges are guaranteed to be nonnegative
except for [.

turn to proving several properties of the Ig., measure.

Appendix B: Sources-Target Dependency Structure

Interpreting the set of antichain covers as possible
marginal constraints on probability distributions, we de-
fined a dependency lattice that gradually introduces de-
pendencies into an otherwise unstructured distribution.
In this method of quantifying the partial information
decomposition, Iqep is defined according to the node-
node differences of the sources-target mutual information
I[X0X7 : Y]. These lattice edges are labeled in Fig. 5.

The maximum entropy distributions on the lowest three
levels of nodes follow the forms given in Appendix A.
By appropriately assigning Xy, X1, and Y to A, B, and
C, we obtain the relationships arising among the edges
summarized in Fig. 7 and the following results for the
sources-target mutual information:

Ixg:x, v [XoX1:Y] =0 (B1)
Ixox, v [XoX1:Y]=0 (B2)
Ix,v:x, [XoX1:Y] =1[X(:Y] (B3)
Ix,v:x, [XoX1:Y] =1[X1:Y] (B4)
Ixox, %,y [XoX1:Y] =1[X(:Y] (B5)
Ix,v:x,y [XoX1:Y] =1[X1:Y] (B6)

Now, we can simply read off the values of a through g,
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and derive other simple relationships:

a=e=9g=0

d=b=1[X(:Y]

f=c=1[X1:Y]
b+h=c+:i

b+j+m=c+k+m=1[XoX;:Y] .

Furthermore:

J= IX0X1:X0Y:X1Y [XoX1:Y]-1[X(:Y]
= Ix, X, Xov:xy Y [ X1 0 Y| Xo]
k=1Ixox::Xov:x,y [XoX1 : Y] —1[X; 1 Y]
[

= Ixox,:x,vix, v [(Xo t Y|Xq] .

Our first task is to demonstrate that all edges, save the
one labeled I, correspond to nonnegative differences in
the sources-target mutual information. The edges b and
¢ are given by mutual informations and so must be non-
negative. The edges h, i, j, and k are given by condi-
tional mutual informations computed relative to certain
maximum entropy distributions and, therefore, must also
be nonnegative. The edge labeled m is the third-order
connected information [36], which can be written as a
Kullback-Leibler divergence and so must also be nonneg-
This leaves only the edge | potentially negative.
These last two edges, [ and m, do not involve the addition

ative.

of a source-target constraint and so are not considered in
computing Igep.

Next, we demonstrate that only two edges meaningfully
contribute to the determination of I4ep. Since the coin-
formation IXOY:Xl [XO X1 : Y] = IXOY:Xl [XO Xl] is
necessarily nonnegative, we find that:

And so, in computing I4cp, one need only consider the
edges 1 and k (for Igep[Xo—Y] ) or h and j (for
Liep [X1 — YT]).

Appendix C: Bivariate Partial Information Igecp
Decomposition

This section establishes the properties of the bivariate
partial information decomposition induced by Iqep.



Self-redundancy

Property (SR): In[i = Y] =1[X;:Y].

The shared information for an antichain with a single
subset of source variables is precisely the mutual infor-
mation between those source variables and the target.

We take this axiom constructively, defining three of the
four shared informations I and providing three con-
straints on partial informations Iy in Egs. (2) to (4).

Nonnegativity

Property (LP): For all antichains o: Iy [oc — Y] > 0.

Every partial information value resulting from the mo-
bius inversion of the redundancy lattice is nonnegative.

We begin with the unique partial information from Xj.
Both arguments of the minimum in Igep [0 = Y] were
shown to be nonnegative in Appendix B:

IH[0 = Y] =I4ep [0 = Y] = min (i, k) >0 .

Using the self-redundancy axiom to define In [0 — Y] =
I1[Xo:Y] and knowing that I5[0 = Y] = min (i, k) <
I1[Xo:Y] from Appendix B, we have:

I5[0-15Y]=In[0>Y]-15[0 > Y] >0.

To determine the signs of the remaining two partial in-
formation atoms, we must consider the ordering of ¢ and

k.

Reductions are done by using results of Appendix B.
We repeatedly use the redundancy lattice inver-
sions: Ip[l—=Y] = In[1—=Y] —I5[0-1—=Y] and
IH)[01 - Y] =1,[01 = Y]-13[0-1 =2 Y]-Ip[0 = Y] -
Iy [1 — Y]

CASE 1: i < k.

[l Y]=c—(b—i)=h

>0,
Ib[01 >Y]=(c+k+m)—(c—h)—i—h
=m+k—1
>m
>0.
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CASE 2: k <.

Iyl > Y]=c—(b—k)
=J
>0,
Ip[01 = Y] =(b+j+m)— (b—k) —k—j
=m
>0.

In each case, the second unique information is found to
be equivalent to another nonnegative edge in the depen-
dency lattice. Additionally, the synergy is found to be
bounded from below by the “holistic” synergy m.

Monotonicity

Property M): a < = Inja = Y] <I4[f = Y].

For any two antichains «, 3, an ordering between them
implies the same ordering of their shared informations.

This follows immediately from (LP) above.

Symmetry

Property (S): Under source reorderings, the following is
invariant:

I[0—>Y] .

The dependency lattice is symmetric by design. Relabel-
ing the random variables is equivalent to an isomorphic
relabeling of the lattice. Therefore, we consider the effect
of completing the partial information decomposition by
either Igep [0 = Y] or Lgep [l — Y.

Computing Igep [0 = Y] = min (b, 4, k) gives I [1 — V] =
min (¢, b, j), although we never explicitly do the second
minimization. This requires simple algebra from the var-
ious multiple-paths constraints given in Appendix B. In
each of the Appendix C cases, 15[l — Y] was found to
be one of {c, h,j}. Straightforward algebra shows that it
is necessarily the minimum of them in each of the par-
ticular cases.

Identity

Property (Id):

]:3 [0 1— XQXl] =1 [X()ZXl] .



Consider sources Xy and X; and output ¥ = XyXi,
the concatenation of inputs. The mutual information
of either source with the target is simply the entropy
of that source. That is, b = H[Xy]. Using appropri-
ate permutations of Egs. (A2) and (A3) (A = Xy, B =
Y, C = X;), we find that i = H[Xy|X;]. Now, start-
ing at the constraint o = XoX; : X3Y as in Eq. (A3)
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(A= Xo,B = X31,C =Y), we see that additionally
constraining p(XoY) fully constrains the distribution to
its original form, with a sources-target mutual informa-
tion of H [XoX1]. That is, k¥ = H [X(|X;]. The minimum
of these three quantities gives Igep [0 — Y] = H [Xo|X1]
and therefore verifies the identity axiom.



