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We show in detail how to determine the time-reversed representation of a stationary hidden
stochastic process from linear combinations of its forward-time e-machine causal states. This also
gives a check for the k-cryptic expansion recently introduced to explore the temporal range over

which internal state information is spread.

PACS numbers:

INTRODUCTION

We introduced a new system “invariant”—the cryp-
ticity x—for stationary hidden stochastic processes to
capture how much internal state information is directly
accessible (or not) from observations [I-H]. Two ap-
proaches to calculate y were given. The first, reported
in Ref. [1] and Ref. [2], used the so-called mized-state
method, which employs linear combinations of a pro-
cess’s forward-time e-machine. The second, appearing
in Ref. [3], developed a systematic expansion (k) as a
function of the length k of observed sequences over which
internal state information can be extracted. The mixed-
state method is the most efficient way to calculate cryp-
ticity and other important system properties, such as the
excess entropy E,; since it avoids having to write out all
of the terms required for calculating x(k). It also does
not rely on knowing in advance a process’s cryptic order.

As such, we reported results in Ref. E] that use the
mixed-state method to, in a sense, calibrate the x(k)
expansion and to understand its convergence.

Here we provide the calculational details behind those
results. Generally, though, the goal is to find out what
a stochastic process looks like when scanned in the “op-
posite” time direction. Specifically, starting with a given
e-machine M of a process, calculate its reverse-time rep-
resentation M ~. (The latter is not always minimal and
so not, in that case, an e-machine.) This is done in two
steps: (i) time-reverse M, producing M= T (M), and (ii)
convert M to a unifilar presentation U/ (M\ ) using mixed
states, which are linear combinations of the states of M.

In the following, we show how to implement these steps
for the various example processes presented in Ref. [E]
the Butterfly, Restricted Golden Mean, and Nemo Pro-
cesses. We jump directly into the calculations, assuming
the reader is familiar with Refs. [1], [2], and [3]. Those
references provide, in addition, more discussion and mo-
tivation and reasonable list of citations.
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FIG. 1: A 2-cryptic process: The e-machine representation
of the Butterfly Process. Edge labels t|z give the probability

t = Té?, of making a transition and from causal state o to
causal state ¢’ and seeing symbol z.

BUTTERFLY PROCESS

Figure [ shows the e-machine for Ref. [3]’s Butter-
fly process—an output process over eight symbols A =
{0,1,...,7}.

Since its transition matrices are doubly stochastic, the
stationary state distribution is uniform. This immedi-
ately gives its stored information: the statistical com-
plexity is C,, = logy(5) bits. It also makes the construc-
tion of the time-reverse machine straightforward: We
simply reverse the directions of all the arrows. (See Fig.
1) Note that the time-reverse presentation is no longer
unifilar and, therefore, it is not the reversed process’s
e-machine.

Due to this we must calculate the mixed-state pre-
sentation to find a unifilar presentation. The calculated
mixed states and the words which induce them are given
in Table [l

The result is the reverse e-machine shown in Fig. Bl
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FIG. 2: Time-reversed Butterfly Process.

Allowed Words|u or Previous Word
0 (0.2,0.2.0)
1 0,0,4.0,3)
2 (1,0,0,0,0)
3 2
4 (0,1,0,0,0)
5 (0,0,0,1,0)
6 (0,0,1,0,0)
7 (0,0,0,0,1)
02 2
03 2
04 4
05 5
10 0
16 6
17 7
21 1
42 2
44 4
53 2
55 5
60 4
66 6
70 5
7 7

TABLE I: Calculating the time-reversed Butterfly Process’s
e-machine via the forward e-machine’s mixed states. The 5-
vector denotes the mixed-state distribution p(w) reached after
having seen the corresponding allowed word w. If the word
leads to a unique state with probability one, we give instead
the state’s name.

Note that it has two more states than the original (for-
ward) e-machine of Fig. [Il

The stationary distribution of this reversed machine
is 7 = (0.1,0.2,0.2,0.15,0.15,0.1,0.1). Now we are in

position to calculate E using the result of Ref. [1]:

E=C,—-x (1)
E=C, - HSX] (2)
=C, — H[ST|S™ = " (X)) . (3)

In this case, we find a crypticity of:

x = H[S'|S7]
1 1 1 1

'3 0, 3 0)] + 0.2H[(0,0, 5,0, 5)]
+0.2H][(1,0,0,0,0)] + 0.15H][(0,1,0,0,0)]
+0.15H[(0,0,0,1,0)] + 0.1H[(0,0,1,0,0)]
+0.1H](0,0,0,0,1)]

=01+0.2

= (.3 bits.

— 0.1H[(0

So, E = log,(5) — 0.3 & 2.0219 bits, in accord with the
result calculated via Thm. 1 of Ref. |3].

FIG. 3: Reverse Butterfly Process.

RESTRICTED GOLDEN MEAN PROCESS

For reference, we give the family of labeled transition
matrices for the binary Restricted Golden Mean Process
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Its e-machine is given in Fig. [ and its stationary distri-
bution is:
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FIG. 4: The e-machine for the Restricted Golden Mean Pro-
cess.

Through other methods, we can show that the RGMP
is reversible. We “push” RGMP to an edge machine pre-
sentation and “pull” 7(RGMP) also the same type of
presentation. (An edge machine presentation of a ma-
chine M has states that are the edges of M.) These
machines are the same. Therefore, the forward and re-
verse e-machines are the same and, moreover, we can use
the same mixed-state inducing word list. It is easy to see
that one such list is (0,01,011,...,01%). Table [ gives
the mixed states for these allowed words. It is also rea-
sonably clear from the above mixed-state presentation
that these correspond to the recurrent causal states for
the time-reversed process’s e-machine.
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FIG. 5: Time-reversed presentation of the Restricted Golden
Mean Process.

FIG. 6: Reverse Restricted Golden Mean Process.

With this, we can now compute x using H[ST|S™], as
follows:

H[ST|S™ =0] = H[(1,0%)] = 0 and

1 111 1
+i1c— ny __ k—n
HISHS™ = 0(1)"] = (5, 04", o oo o]
So that, in general, we have:
k-1
1 1 111 1
HISTIS 1=y —H[(—, 0" — —
(57157 n:1k+2 [(2"’ 12192937 ’2”)]
2 1 111 1
Hl(— — — — il
+2+k [(2k721 22 237 72k)]



Allowed Words w or Previous Word

0 (1,0%)
1 ey whe)
ot (2,077, 3)
10 0
11 i LL 1)
0(1): forlgngk 1(%701k—nk7j2i21531717%)1
1(1) fOr 1I§n§k k7n+1(217’11 ) ,12*12*22*317,%)
0(1) (g 3127955+ 2%)
()" 0(1)*
o(1)*0 0
0(1)*1 0(1)

TABLE II: Calculating the reversed RGMP using mixed
states over the e-machine states.

It can then be shown that:

1 .., 111 1
H[(EJ) 7???77%)]
1 111 1
=l grgeg )
=220

Therefore, returning to the causal-state-conditional en-
tropy of interest, we have:

k—1
_ 1 n 2 _
HIS'ST) = 175 ) 2= 207) 4 57 (2 -2077)
n=1

= - ) 22 -2 - 2 -2 )

2k
k427

With a few more steps, we arrive at our destination—the
RGMP’s informational quantities:

2
=log2 2) — ——
Cp=log2(k+2) - ==,
2k
X—m, and

2k +1
E:kg%k+%—~%%%l.

NEMO PROCESS

We now demonstrate how to calculate y and E for
Ref. ﬂg]’s oo-cryptic process—the Nemo Process—using
mixed-state methods. As emphasized in Ref. B], the
k-cryptic expansion there cannot be applied in this case.
Thus, the Nemo Process demonstrates that Refs. ﬁl] and
E]’s mixed-state method is essential.

Figure [0 shows M™, the e-machine for the forward-
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FIG. 7: The e-machine for the co-cryptic Nemo Process.

scanned Nemo Process. Its transition matrices are:

A B C
A 0 1—-p 0
T =p|[ o 0 1 | and
c\l—-¢ 0 0
A B C
Afp 0 O
T™™=p5l0 0 0
C\q 0 O

The stationary state distribution is the normalized left-
eigenvector of T'= T 4+ 71 and is given by:

A B C

1
+ _ _ _ .
i 3—2p(1 I=p 1 p)

Pr(S™)

Then, the statistical complexity is the Shannon entropy
over these states:

C, = HISH
2(1—p)
3-2

= log,(3 — 2p) — 2 logy(1—p) .

The next step is to construct the time-reversed presen-
tation MT = T(M™), shown in Fig. Bl The transition
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FIG. 8: The time-reversed presentation, Mt = T(MT), of
the Nemo Process.

matrices of this machine are:

A B C
N Af0 0 (1-q)(1-p)
7O — Bl1 0 0 and
c\o 1 0
A B c
B Afp 0 ql-p)
T™W=pnl0 o0 0
c\o o0 0

Finally, we construct the mixed-state presentation of
the time-reversed presentation, U (M ™), which is shown
in Fig. On doing so, we obtain the following mixed
states:

) A C
D=v(l)= —— 1-p) ),
D= = (p a p))

A B C

p+a—mpg

) A B C
F=v(001) = ——— 1—q) 0).
(001) = = e (q p(1—q) )

These mixed states form the reverse e-machine causal
states, which are exactly the same as the forward
e-machine. Thus, the Nemo Process is causally reversible.
The mixed states are distributions giving the probabili-
ties of the forward causal states conditioned on a reverse
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FIG. 9: The reverse e-machine for the Nemo Process.

causal state:

A B c
1 D (p 0 q(1—p)
Pr(STS)=—E| 0 1—
(STIs7) paap—— q p(1—q)
F\q p(l-gq) 0

We use this to directly compute:

_ 1 D p+q—Dpq
H[ST|ST] = { lo ()
(571571 3—=2p|p+q—pg &2 P

L a1 -p) log, <p+q—pq>}

p+q—pq q(1 —p)
2(1—29)[ q ) <p+q—pq>
ogy (| ————
3—2p |p+4q—pq q
1— —
+p( q) 102<p+q pq)}
p+aq—pq p(1—q)
Finally, we have:
E=C, — H[S*S]
2(1-p)
3—2p

1 <p+q—pq>
0go
p

= logy(3 —2p) — log, (1 —p)

1 [ D
3—2p|lp+q—pq

L a0 =p) log, <p+q—pq)]

p+q—pq q(1 —p)

2(1—19)[ q log <p+q—pq>
3-2p |p+q—pg 7 q

p(1—q) <p+qpq)]
4 B2 o, (ETIZPT
pta—pg 22\ p(l—q)

CONCLUSION

The detailed calculations make evident that Refs. ﬂ]
and E]’s mixed-state method gives a new level of di-



rect analysis for the informational properties of station-
ary stochastic processes, such as the crypticity and the
excess entropy. The complementary approach given by
the crypticity expansion x(k) is useful in understand-
ing information accessibility—how internal state infor-
mation is spread over time in measurement sequences B]
Nonetheless, while x(k) can be calculated in particular
finite cases, the mixed-state method is the most general
and efficient method.
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