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We give a systematic expansion of the crypticity—a recently introduced measure of the inacces-
sibility of a stationary process’s internal state information. This leads to a hierarchy of k-cryptic
processes and allows us to identify finite-state processes that have infinite cryptic order—the internal
state information is present across arbitrarily long, observed sequences. The crypticity expansion is
exact in both the finite- and infinite-order cases. It turns out that k-crypticity is complementary to
the Markovian finite-order property that describes state information in processes. One application
of these results is an efficient expansion of the excess entropy—the mutual information between a
process’s infinite past and infinite future—that is finite and exact for finite-order cryptic processes.
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INTRODUCTION

The data of phenomena come to us through observa-
tion. A large fraction of the theoretical activity of model
building, though, focuses on internal mechanism. How
are observation and modeling related? A first step is to
frame the problem in terms of hidden processes—internal
mechanisms probed via instruments that, in particular,
need not accurately report a process’s internal state. A
practical second step is to measure the difference between
internal structure and the information in observations.

We recently established that the amount of observed
information a process communicates from the past to the
future—the excess entropy—is the mutual information
between its forward- and reverse-time minimal causal
representations [1, 2]. This closed-form expression gives
a concrete connection between the observed information
and a process’s internal structure.

Excess entropy, and related mutual information quan-
tities, are widely used diagnostics for complex systems.
They have been applied to detect the presence of orga-
nization in dynamical systems [3, |4, 5, 6], in spin sys-
tems [7, (8, 9], in neurobiological systems [10, [11], and
even in language [12, 13], to mention only a very few uses.
Thus, understanding how much internal state structure
is reflected in the excess entropy is critical to whether or
not these and other studies of complex systems can draw
structural inferences about the internal mechanisms that
produce observed behavior.

Unfortunately, there is a fundamental problem. The
excess entropy is not the internal state information the
process stores—rather, the latter is the process’s statis-
tical complexity [1, 2]. On the positive side, there is a
diagnostic. The difference between, if you will, experi-
ment and theory (between observed information and in-
ternal structure) is controlled by the difference between
a process’s excess entropy and its statistical complex-
ity. This difference is called the crypticity—how much

internal state information is inaccessible [1,2]. Here we
introduce a classification of processes using a systematic
expansion of crypticity.

The starting point is computational mechanics’s min-
imal causal representation of a stochastic process P—
the e-machine [14, 15]. There, a process is viewed as a
channel that communicates information from the past,
X = .. X_3X_5X_,, to the future, X = XoX; Xo.. ..
(X; takes values in a finite measurement alphabet A.)
The excess entropy is the shared (or mutual) informa-
tion between the past and the future: E = I[y; )_()} The
amount of historical information that a process stores
in the present is different. It is given by the Shan-
non information C,, = H[S] of the distribution over the
e-machine’s causal states S. C,, is called the statistical
complexity and the causal states are sets of pasts @ that
are equivalent for prediction [14]:

()= {7 Pr(X|7)=Pr(X|T)}. (1)

Causal states have a Markovian property that they ren-
der the past and future statistically independent; they
shield the future from the past [15]:

Pr(X, X|S) = Pr(X|S) Pr(X|S) . (2)

e-Machines are also unifilar [14,/16]: From the start state,
each observed sequence ...x_3xr_sx_1 ... corresponds to
one and only one sequence of causal states. The signature
of unifilarity is that on knowing the current state and
measurement, the uncertainty in the next state vanishes:
H[S:11|8:, Xt] = 0.

Although they are not the same, the basic relation-
ship between these quantities is clear: E is the process’s
channel utilization and C, is the sophistication of that
channel. Their difference, one of our main concerns in
the following, indicates how a process stores, manipu-
lates, and hides internal state information.

Until recently, E could not be as directly calculated
from the e-machine as the process’s entropy rate h, and



its statistical complexity. References [1] and [2] solved
this problem, giving a closed-form expression for the ex-
cess entropy:

E=1I[S"87], 3)

where St are the causal states of the process scanned in
the “forward” direction and S~ are the causal states of
the process scanned in the “reverse” time direction.
This result comes in a historical context. Some
time ago, an explicit expression for the excess entropy
had been developed from the Hamiltonian for one-
dimensional spin chains with range-R interactions [8]:

E=C,—Rh, . (4)

One-dimensional spin chains are special cases of order-R
Markov processes. For this more general class of pro-
cesses, a similar, but slightly less compact form is known:

E=H[X{| - Rh, (5)

where X = Xg,..., Xg_1. It has also been known for
some time that the statistical complexity is an upper
bound on the excess entropy [16]:

E<C,,
which follows from the equality derived there:
E=C, - HSHX].

Using forward and reverse e-machines, Ref. [1] ex-
tended this, deriving the closed-form expression for E in
Eq. (3) and two new bounds on E: E < C; and E < C,‘f.
It also showed that:

HIST|X] = H[S|S™] (6)

and identified this quantity as controlling how a process
hides its internal state information. For this reason, it is
called the process’s crypticity:

Xt =H[SHX] . (7)

In the context of forward and reverse e-machines, one
must distinguish two crypticities; depending on the scan
direction one has:

xt=H[ST|S ] or
X~ =H[S7|ST].

In the following we will not concern ourselves with reverse
representations and so can simplify the notation, using
C,, for C;f and x for x+.

Here we show that, for a restricted class of processes,
the crypticity in Eq. (6) can be systematically expanded
to give an alternative closed-form to the excess entropy
in Eq. (3). One ancillary benefit is a new and, we argue,
natural hierarchy of processes in terms of information
accessibility.

K-CRYPTICITY

The process classifications based on spin-block length
and order-R Markov are useful. They give some insight
into the nature of the kinds of process we can encounter
and, concretely, they allow for closed-form expressions for
the excess entropy (and other system properties). In a
similar vein, we wish to carve the space of processes with
a new blade. We define the class of k-cryptic processes
and develop their properties and closed-form expressions
for their excess entropies.

For convenience, we need to introduce several short-
hands. First, to denote a symbol sequence that begins
at time ¢ and is L symbols long, we write X . Note that
XL includes X111, but not Xy 7. Second, to denote a
symbol sequence that begins at time ¢ and continues on
to infinity, we write X ;. Analogously, the causal state at
time t is denoted &;, and a sequence of states beginning
at time ¢ that is L states long is denoted Sf.

Definition. The k-crypticity criterion is satisfied when
—
H[S[Xo] =0 (8)

Definition. A k-cryptic process is one for which the pro-
cess’s e-machine satisfies the k-crypticity criterion.

Definition. An oo-cryptic process is one for which the
process’s e-machine does not satisfy the k-crypticity cri-
terion for any finite k.

Lemma 1. H[Sk|)_(>0] is a nonincreasing function of k.

Proof. This follows directly from stationarity and the fact
that conditioning on more random variables cannot in-
crease entropy:

— — —
H[Spi1|X o] = H[Sk| X _1] < H[S| X ] .
O

Lemma 2. If P is k-cryptic, then P is also j-cryptic for
all j > k.

Proof. Being k-cryptic implies H[8k|)—(>0] = 0. Applying
— —

Lem. 1, H[S;|Xo] < H[S;g|Xo] = 0. By positivity of

entropy, we conclude that P is also j-cryptic. O

This provides us with a new way of partitioning the
space of processes. We create a parametrized class
of sets {x« k = 0,1,2,...}, where x, = {P
P is k-cryptic and not (k — 1)-cryptic}.

The following result provides a connection to a very
familiar class of processes.

Proposition 1. If a process P is order-k Markov, then
it is k-cryptic.



Proof. If P is order-k Markov, then H[S;|Xk] = 0. Con-
ditioning on more variables does not increase uncertainty,
So:

—_
H[Si| X, Xk =0.

But the lefthand side is H[Sk|)-()0]. Therefore, P is
k-cryptic. O

Note that the converse of Prop. [I is not true. For ex-
ample, the Even Process (EP), the Random Noisy Copy
Process (RnC), and the Random Insertion Process (RIP)
(see Ref. [1] and Ref. [2]), are all 1-cryptic, but are not
order-R Markov for any finite R.

Note also that Prop. [1] does not preclude an order-k
Markov process from being j-cryptic, where j < k. Later
we will show an example demonstrating this.

Given a process, in general one will not know its cryp-
tic order. One way to investigate this is to study the
sequence of estimates of x at different orders. To this
end, we define the k-cryptic approximation.

Definition. The k-cryptic approximation is defined as

x(k) = H[So| X5, S] -

The k-Cryptic Expansion

We will now develop a systematic expansion of x to or-
der k in which x(k) appears directly and the k-crypticity
criterion plays the role of an error term.

Theorem 1. The process crypticity is given by

X = x(k) + H[Si| X] - (9)

Proof. We calculate directly, starting from the definition,
adding and subtracting the k-crypticity criterion term
from x’s definition, Eq. (7):

X = H[So| X o] — H[Sk| X o] + H[Sk| X o] -

We claim that the first two terms are x(k). Expanding
the conditionals in the purported x(k) terms and then
canceling, we get joint distributions:

— — — —
HI[So| X o] — H[SK| X o] = H[So, X o] — H[Sk, Xo] -

Now, splitting the future into two pieces and using this
to write conditionals, the righthand side becomes:

HIX 1|So, X5 + H[So, X}] — H[X 1| Sy, X] — H[S. X .

Appealing to the e-machine’s unifilarity, we then have:

H[X 1 |Sk] + H[So, X§] — H[X 1|8k, X§] — H[Sk, X}] .

Now, applying causal shielding gives:
HIX |Si] + H[So, XE] — H[X 4|8 — H[Sk, X£] .
Canceling terms, this simplifies to:
H[So, X§] — H[Sk, Xg] -
We now re-expand, using unifilarity to give:
H[So, X§,Sk] — H[Sk, X{] .

Finally, we combine these, using the definition of condi-
tional entropy, to simplify again:

H[So|XE,Sk] -

Note that this is our definition of x (k).
This establishes our original claim:

X = x(k) + H[S|Xo] ,

with the k-crypticity criterion playing the role of an ap-
proximation error.

O

Corollary 1. A process P is k-cryptic if and only if

x = x(k) .

Proof. Given the order-k expansion of y just developed,
we now assume the k-crypticity criterion is satisfied; viz.,

H[Sk|)_(>0] = 0. Thus, we have from Eq. (9):

x = x(k) -
Likewise, assuming x = x(k) requires, by Eq. (9) that
—
H|[S;| X o] = 0 and thus the process is k-cryptic. O

Corollary 2. For any process, x(0) = 0.

Proof.
x(0) = H[So| X7, So]
= H{[So|So]
=0.
[
Convergence

Proposition 2. The approzimation x(k) is a nonde-
creasing function of k.

Proof. Lem. 1] showed that H [Sk|)_()o] is a nonincreasing
function of k. By Thm.[1, x(k) must be a nondecreasing
function of k. O

Corollary 3. Once x(k) reaches the value x, x(j) = x
forall j > k.



Proof. If there exists such a k, then by Thm.[1 the process
is k-cryptic. By Lem. [2] the process is j-cryptic for all
j > k. Again, by Thm.[1] x(j) = x. O

Corollary 4. If there is a k > 1 for which x(k) = 0,
then x(1) = 0.

Proof. By positivity of the conditional entropy
H[S0|Xo,81], x(1) > 0. By the nondecreasing property
of x(k) from Prop. 2, x(1) < x(k) = 0. Therefore,
x(1) = 0. O

Corollary 5. If x(1) =0, then x(k) =0 for all k.
Proof. Applying stationarity, x(1) = H[Sy|Xo,S1] =
H[Sk| Xk, Sk+1].  We are given x(1) = 0 and so

H[Sk|Xk,Sk+1] = 0. We use this below. Expanding
x(k+1),

The third line follows from x(1) = 0. By Prop. 2| x(k +
1) > x(k). Therefore, x(k + 1) = x(k). Finally, using
x(1) = 0, we have by induction that x(k) = 0 for all
k. O

Corollary 6. If there is a k > 1 for which x(k) = 0,
then x(j) =0 for all j > 1.
Proof. This follows by composing Cor.4]with Cor. O

Together, the proposition and its corollaries show that
x(k) is a nondecreasing function of k which, if it reaches
x at a finite k, remains at that value for all larger k.

Proposition 3. The cryptic approzimation x (k) con-
verges to x as k — o0.

Proof. Note that x = limy_., H[So|X{] and recall that
x(k) = H[So|XE,S;]. We show that the difference ap-
proaches zero:
H[So|X§] — H[So| X5, Si]
= H|[So, X§] — H[X]
— H[So, X¢5, Sk] + H[ Xy, Sk]
= H[So, Xg] — H[Xg)]
— H[So, X§] + H[X{, Sk]
= H[Xy, S| — H[Xp]

= H[Sk|X5] -
Moreover, limy .o, H[S;|XE] = 0 by the ¢ map from
pasts to causal states of Eq. (1). Therefore, as k — oo,
x(k) — x. O

Excess Entropy for k-Cryptic Processes

Given a k-cryptic process, we can calculate its excess
entropy in a form that involves a sum of o< |A*| terms,
where each term involves products of k£ matrices. Specif-
ically, we have the following.

Corollary 7. A process P is k-cryptic if and only if
E=0C,—x(k).

Proof. From Ref. [1], we have E = C,, — x, and by Cor.[L,
x = x(k). Together, these complete the proof. O

The following proposition is a simple and useful con-
sequence of the class of k-cryptic processes.

Corollary 8. A process P is 0-cryptic if and only if
E=C,.

Proof. If P is O-cryptic, then E = C,, — x(0) and Cor.
says that x(0) = 0. To establish the opposite direction,
note that E = C, implies x = 0. Applying Cor. 2| shows
X = x(0), and so the process is 0-cryptic by Cor.[1. O

Crypticity of Spin Chains

Now, we provide results on the crypticity of one-
dimensional spin chains to complement prior results on
Markovity and excess entropy. First recall Eq. (5), which
gives the excess entropy for order-R Markov processes:

E=H[Xf]-Rh, .
By Prop. /1, such processes are also R-cryptic and so:
E=C,—x(R).

One-dimensional spin chains are precisely those or-
der-R Markov processes for which the statistical com-
plexity, C\, = H[SR], equals the entropy over R-blocks,
H[XJ]. Reference [8] stated a condition under which
equality held in terms of transfer matrices. Here, we
state a simpler condition by equating two chain-rule ex-
pansions of H[X{, Sg]:

H[X('|Sr] + H[Sg] = H[Sr|X¢'] + H[X{] -
Since the process is Markov, H[Sz|X{&] = 0 and thus:

HIX(| = H[SE) <+ H[X|Sp]=0.
In words, spin chains are processes for which there exists
a one-to-one correspondence between the R-blocks and
the causal states, confirming the interpretation specified
in Ref. [8].

The above equations also show that spin chains have
X(R) = Rh,,. Here we provide another proof:



Proposition 4.

HIXJISel =0 < x(R)=Rh,,  (10)

where h,, is the process’s entropy rate.

Proof. The proof is a direct calculation:

Proposition 5. Periodic processes are 0-cryptic.

Proof. Periodic processes are order-R Markov spin
chains, so E = C,, — Rh,,. Since h, = 0, E = C,. By
Cor. [8 the process is 0-cryptic. O

Proposition 6. An order-R spin chain with positive en-
tropy rate is not (R — 1)-cryptic.

Proof. Assume that the order-R Markov spin chain is
(R — 1)-cryptic.

For R > 1, if the process is (R — 1)-cryptic, then by
Cor.[1 x(R—1) = x. Combining this with the above
Prop.[4, we have y(R—1) = (R—1)h, — H[X§* ' |Sgp_1].
If it is an order-R Markov spin chain, then we also have
from Eq. (4) that x = Rh,. Combining this with the
previous equation, we find that H[XZ |Sg_1] = —h,.
By positivity of conditional entropies, we have reached a
contradiction. Therefore an order-R Markov spin chain
must not be (R — 1)-cryptic.

For R = 0, the proof also holds since negative cryptic
orders are not defined. O

Proposition 7. An order-R spin chain with positive en-
tropy rate is not k-cryptic for any 0 < k < R.

Proof. By Lem.[2, if the process where k-cryptic for some
0 < k < R, then it would also be (R — 1)-cryptic. By
Prop.[6, this is not true. Therefore, the primitive orders
of Markovity and crypticity are the same. O

EXAMPLES

It is helpful to see crypticity in action. We now turn
to a number of examples to illustrate how various orders
of crypticity manifest themselves in e-machine structure
and what kinds of processes are cryptic and so hide in-
ternal state information from an observer. For details
(transition matrices, notation, and the like) not included

in the following and for complementary discussions and
analyses of them, see Refs. [1, 2, 17].

We start at the bottom of the crypticity hierarchy with
a 0-cryptic process and then show examples of 1-cryptic
and 2-cryptic processes. Continuing up the hierarchy, we
generalize and give a parametrized family of processes
that are k-cryptic. Finally, we demonstrate an example
that is co-cryptic.

It should be pointed out, though, that these examples
were hand-chosen to illustrate some of the range of pos-
sible processes in terms of cryptic and Markov orders. If
one were to encounter a process in the wild, its cryptic
order would not be known and the calculation of cryptic-
ity would require that one determines the cryptic order.
One can estimate the cryptic order by calculating the
cryptic approximation until it appears to have converged
or computational power has run out. Alternatively, one
might deduce the order exactly via some other technique,
as we do in the upcoming examples. Of course, we wish
to note that Ref. [1] demonstrates how to calculate x
without any knowledge of the cryptic order.

Even Process: 0-Cryptic

Figure [1] gives the e-machine for the Even Process.
The Even Process produces binary sequences in which all
blocks of uninterrupted 1s are even in length, bounded
by 0s. Further, after each even length is reached, there
is a probability p of breaking the block of 1s by inserting
one or more 0s.

1—pll

o

11

FIG. 1: A O-cryptic process: Even Process. The transitions
denote the probability p of generating symbol z as p|x.

Reference [2] showed that the Even Process is 0-cryptic
with a statistical complexity of C,, = H (1/(2 —p)), an
entropy rate of h, = H(p)/(2 — p), and crypticity of
x = 0. Note that H(p) is the binary entropy function.
If p= 1, then E = C, = logy(3) — £ bits. (As Ref. [2]
notes, these closed-form expressions for €}, and E have
been known for some time.)

To see why the Even Process is O-cryptic, first note
that the semi-infinite string )_50 =1,1,1... occurs with
probability zero. So with probability one, a given future
will have only a finite number of 1s before a 0 is seen.
Once the 0 is seen, it is straightforward to count the
number of 1s preceding it. If the number of 1s is even,
then Sy, the causal state that preceded this future, is A.
Otherwise, it is B. In either case, we know the causal
state with certainty, and so, H[SO\)_(zO] =0.

It is important to note that this process is not order-R



Markov for any finite R [17]. Nonetheless, our new ex-
pression for E is valid. This shows the broadening of our
ability to calculate E even for low complexity processes
that are, in effect, infinite-order Markov.

Golden Mean Process: 1-Cryptic

Figure [2] shows the e-machine for the Golden Mean
Process [17]. The Golden Mean Process is one in which
no two Os occur consecutively. After each 1, there is a
probability p of generating a 0. As sequence length grows,
the ratio of the number of allowed words of length L to
the number of allowed words at length L — 1 approaches
the golden ratio; hence, its name. The Golden Mean
Process e-machine looks remarkably similar to that for
the Even Process. The informational analysis, however,
shows that they have markedly different properties.

1 —p|0

()8

11
FIG. 2: A 1-cryptic process: Golden Mean Process.
Reference [2] showed that the Golden Mean Process
has the same statistical complexity and entropy rate
as the Even Process: C, = H(1/(2—-p)) and h, =

H(p)/(2 — p). However, the crypticity is not zero (for
0 < p < 1). From Cor.[1 we calculate:

(1)

H[So| X5, 8]

H[So|X;]

Pr(0)H[So| Xo = 0] + Pr(1)H[So| X = 1]
H(p)/(2—-p) .

X

[ | .
=

If p =1, C, = log,(3) — 2 bits, excess entropy E =
log,(3) — % bits, and crypticity x = % bits. Thus, the
excess entropy differs from that of the Even Process. (As
with the Even Process, these closed-form expressions for
C,, and E have been known for some time.)

The Golden Mean Process is 1-cryptic. To see why, it
is enough to note that it is order-1 Markov. By Prop.
it is l-cryptic. We know it is not O-cryptic since any
future beginning with 1 could have originated in either
state A or B. In addition, the spin-block expression for
excess entropy of Ref. [17], Eq. (4) here, applies for an
R =1 Markov chain.

Butterfly Process: 2-Cryptic

The next example, the Butterfly Process of Fig. [3, il-
lustrates, in a more explicit way than possible with the

previous processes, the role that crypticity plays and how
it can be understood in terms of an e-machine’s struc-
ture. Most of the explanation does not require calculat-
ing much, if anything.

It is first instructive to see why the Butterfly Process
is not 1-cryptic.

If we can find a family {79} such that H[Sl|)_(>0 =
T'o] # 0, then the total conditional entropy will be pos-
itive and, thus, the machine will not be 1-cryptic. To
show that this can happen, consider the future 7o =
(0,1,2,4,4,4,...). It is clear that the state following 1
must be A. Thus, in order to generate 0 or 1 before ar-
riving at A, the state pair (Sp,S1) can be either (B, C)
or (D,FE). This uncertainty in S; is enough to break
the criterion, and this occurs for the family of futures
beginning with 01.

To see that the process is 2-cryptic, notice that the two
paths (B, C) and (D, E) converge on A. Therefore, there
is no uncertainty in Sy given this future. It is reasonably
straightforward to see that indeed any two-symbol word
(X0, X1) will lead to a unique causal state. This is be-
cause the Butterfly Process is a very limited version of
an 8-symbol, order-2 Markov process.

Note that the transition matrix is doubly-stochastic
and so the stationary distribution is uniform. The statis-
tical complexity is rather direct in this case: C,, = log, 5.
We now can calculate x using Cor. [1:

X = x(2)
= H[So| X7, 8]
= H[So|X{]
= Pr(01) - H[Sy| X2 = 01]
+ Pr(12) - H[Sp| X2 = 12]
+ Pr(13) - H[Sy| X3 = 13]
1 1 1
_E¢+EJ+E4
3 .
0 bits.

From Cor.[7, we get an excess entropy of

E=C, —x(2)

3
:1 _——
0825 10

~ 2.0219 bits.

For comparison, if we had assumed the Butterfly Pro-
cess was 1-cryptic, then we would have:
E=Cu—x(1)
= Cy — (HI[So, Xo] — H[S1, X))
~ log2(5) — (3.3219 — 2.5062)
= log 2(5) — 0.8156 ~ 1.5063 bits.

We can see that this is substantially below the true value:
a 25% error.
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FIG. 3: A 2-cryptic process: Butterfly Process over a 6-
symbol alphabet.

Restricted Golden Mean: k-Cryptic

Now, we turn to illustrate a crypticity-parametrized
family of processes, giving examples of k-cryptic pro-
cesses for any k. We call this family the Restricted
Golden Mean as its support is a restriction of the Golden
Mean support. (See Fig.[4/for its e-machines.) The k =1
member of the family is exactly the Golden Mean.

It is straightforward to see that this process is order-k
Markov since each word of length k induces just one
causal state. Proposition [T then implies it is (at most)
k-cryptic. In order to show that it is not (k — 1)-cryptic,
consider the case 7o = 1%0>°. The first (k — 1) 1s will
induce a mixture over states k and 0. The following fu-
ture T = 10 is consistent with both states k and 0.
Therefore, the (k — 1)-crypticity criterion is not satisfied.
Therefore, it is k-cryptic.

FIG. 4: k-cryptic processes: Restricted Golden Mean Family.

For arbitrary k, there are k + 1 causal states and the
stationary distribution is:

_ 2 1 1 1
TT\kt2k+2k+2 k2]
The statistical complexity is

2
CH = 10g2(k+2) — m .
For the k-th member of the family, we have for the cryp-
ticity:

2k

XZX(k):m~

And the excess entropy follows directly from Cor. [7:

2(k+1)
E:CM_X:10g2(k)+2)_k7«|»2 ,
which diverges with k. (Calculational details are found
in Ref. [18].)

Stretched Golden Mean

The Stretched Golden Mean is a family of processes
that does not occupy the same support as the Golden
Mean. Instead of requiring that blocks of Os are of length
1, we require that they are of length k. The e-machine
for this process is shown in Fig. 5!

Again, it is straightforward to see that this process is
order-k Markov. To see that it is not O-cryptic, note that:

— — —
H[So| X o] = H[So| X0 =0, X1] + H[So| X0 =1, X 4]

—
H[So|Xo =1, X4]

v

2 —
:m_)ZH[S(ﬂXO:].,Xl:?l]
Z 1

2 - oo
ZmH[SXm:l ]
2
k+2
>0.

To see that this family is 1-cryptic, first note that if
Xp = 1, then & = 0. Next, consider the case when
Xo = 0. If the future 7’1 = 1°°, then S; = k. Similarly,
if the future 7, = 0"1°°, then S; = k — n.

This family provides an example for which the cryptic
order is strictly less than the Markov order. In this case,
the cryptic order is fixed at 1 for all k, while the Markov
order is k. Note that the separation between the Markov
and cryptic order can grow arbitrarily large and, thus,
the two properties are clearly not redundant.



FIG. 5: k-cryptic processes: Stretched Golden Mean Family.

The stationary distribution is the same as for the Re-
stricted Golden Mean and so, then, is the statistical com-
plexity. In addition, we have:

x = x(1)
- H[SO‘X07$1]
=h, .
Consequently,
E=C,-x=C,—h, .

Nemo Process: oco-Cryptic

We close our cryptic process bestiary with a (very)
finite-state process that has infinite cryptic order: The
three-state Nemo Process. Over no finite-length sequence
will all of the internal state information be present in the
observations. The Nemo Process e-machine is shown in
Fig.[6.

Its stationary state distribution is

. A B C
3—2p (1 1=p 1_p>’

from which one calculates the statistical complexity:

2(1-p)
m logy(1—p) .

Pr(S)=n=

Cu = logy(3 — 2p) —

The Nemo Process is not a finite-cryptic process. That
is, there exists no finite &k for which H[Sk|)—(>0] =0. To
show this, we must demonstrate that there exists a family
of futures such that for each future H [Sk|)_()0 =7]>0.
The family of futures we use begins with all Os and then
has a 1. Intuitively, the 1 is chosen because it is a syn-
chronizing word for the process—after observing a 1, the

1—p|0 1—4¢|0

1/0
FIG. 6: The oo-cryptic Nemo Process.

e-machine is always in state A. Then, causal shielding
will decouple the infinite future from the first few sym-
bols, thereby allowing us to compute the conditional en-
tropies for the entire family of futures.

First, recall the shorthand:

Pr(Sk| X o) = Jim Pr(Sp|X7) .

Without loss of generality, assume k£ < L. Then,

Pr(XE, S, XE)

Pr(X{)
_ Pr(XI£|X(])€’ Sk) Pr(X(I)Cv Sk)
- Pr(X()
_ Pr(X}|Sk) Pr(X§, Si)
BT

Pr(Sk|X0L) =

where the last step is possible since the causal states are
Markovian [15], shielding the past from the future. Each
of these quantities is given by:
Pr(X} = w|S, =0) = [T™1],
Pr(XF =w, S = 0) = [xT™)],
Pr(X} =w) =7T™1 .

where T) = T@o)(@1) ... 7(@L-1) 1 is a column vector
of 1s, and T[Si), =Pr(§’' =0/, X = z|S = o). To establish
H[Sk|)_(>0] > 0 for any k, we rely on using values of k
that are multiples of three. So, we concentrate on the
following for n =0,1,2,...:

HI[S3 | X3+ = 0°71, X 5044] > 0 .

Since 1 is a synchronizing word, we can greatly simplify
the conditional probability distribution. First, we freely



include the synchronized causal state A and rewrite the
conditional distribution as a fraction:

Pr(Sa,| X§"H = 0371, X g041)

= Pr(S3, | X3 = 0°71, Syi1 = A, X3us1)
_ Pr(Ss,, X5" ! = 0°"1,S3p41 = A,)_()3n+1)
PI'(Xgn+1 == O3n1783n+1 == 147 )—(>31’L+1) .

N
Then, we factor everything except X s,+1 out of the nu-
merator and make use of causal shielding to simplify the
conditional. For example, the numerator becomes:

Pr(Ss,, Xg" T = 0°"1, S341 = A, )—(>3n+1>
— .
= Pr(X 3,41[S3n, X" = 0°"1, S341 = A)
X Pr(Ssp, X§" T =071, 85,41 = A)
-
= PT(X3n+1|83n+1 = A)
x Pr(Szn, Xg" T = 0%"1, 83,41 = A)

= Pr()_(>3n+1|83n+1 = A) PI‘(Sgn, 3n+1 03n1) .
Similarly, the denominator becomes:
Pr(X3" = 01, S3np1 = A, X3011)
= Pr()—(>3n+1\83n+1 = A) Pr(Xg"+1 = 03n1) .

Combining these results, we obtain a finite form for the
entropy of Ss,, conditioned on a family of infinite futures,
first noting;:

Pr(Sa| X3 = 0971, X 3,41) = Pr(Sa, | X3!

Thus, for all 7'3,41, we have:

N
H[S3,| X" = 0%"1, X311 = T 3011
= H[S3,| X3 = 03"1] .

Now, we are ready to compute the conditional entropy

for the entire family. First, note that 7 raised to the

third power is a diagonal matrix with each element equal
o(l—p)(1—gq). Thus, for j =1,2,3...

(O], = (1 =p) (1 —q)

Using all of the above relations, we can easily calculate:

A B C
1

35— (p 0 q(l—p))-

Thus, for p,q € (0,1), we have:

Pr(Ss, | X"+ = 0°"1) =

=0°"1) .

.
H[S3,| X 0]
.
> H([S3,| X5" T = 0%"1, X 5541]
—
- Y P (Xg"+1 — 031, X g1 = ?3n+1)

E>3n+l
x H[S3,| X3+
H[83n|Xgn+1

-
=0%"1, X 3041 = T 3n+1]
=0°"1]

x 3 Pr (Xg’"“ = 031, X341 = ?MH)

_
T 3n+1

— H[S3n|X§n+1 Odnl] Pr(X37L+1 Odnl)

:< P g, 322 a0—p)) 3—2p>
3—-2p 0 p 3-2p q(1-p)
X [(1=p)(1—q)*"

>0.

So, any time k is a multiple of three, H[Sk|)—(>0] > 0.
Finally, suppose (k mod 3) = 4, where i # 0. That
is, suppose k is not a multiple of three. By Lem. [T,
H[SM?O] > H[Sk+i|)_()o] and, since we just showed that
the latter quantity is always strictly greater than zero,
we conclude that H [Sk|)_()0] > 0 for every value of k.

The above establishes that the Nemo Process does not
satisfy the k-crypticity criterion for any finite k. Thus,
the Nemo process is co-cryptic. This means that we can-
not make use of the k-cryptic approximation to calculate
x or E.

Fortunately, the techniques introduced in Refs. [1] and
[2] do not rely on an approximation method. To avoid
ambiguity, denote the statistical complexity we just com-
puted as CI. When those techniques are applied to
the Nemo Process, we find that the process is causally
reversible (C)f = C)) and has the following forward-
reverse causal-state conditional distribution:

A B C
. D 0 q(1 —p)
Pr(§TIS§7) = mE 0 q p(1—gq)
qa p(l-q) 0
With this, one can calculate E, in closed-form, via:
E= C:[ —~ H[ST|ST].

(Again, calculational details are provided in Ref. [18].)

CONCLUSION

Calculating the excess entropy [ [Y,f] is, at first
blush, a daunting task. We are asking for a mutual in-
formation between two irif}nite sets of random variables.
Appealing to E = I[S; X], we use the compact repre-
sentation of the e-machine to reduce one infinite set (the
past) to a (usually) finite set. A process’s k-crypticity
captures something similar about the infinite set of fu-
ture variables and allows us to further compact our form



for excess entropy, reducing an infinite variable set to a
finite one. The resulting stratification of process space
is a novel way of thinking about its structure and, as
long as we know in which stratum we lie, we can rapidly
calculate many quantities of interest.

Unfortunately, in the general case, one will not know
a priori a process’s cryptic order. Worse, as far as we are
aware, there is no known finite method for calculating
the cryptic order. This strikes us as an interesting open
problem and challenge.

If, by construction or by some other means, one does
know it, then, as we showed, crypticity and E can be
calculated using the crypticity expansion. Failing this,
though, one might consider using the expansion to search
for the order. There is no known stopping criterion, so
this search may not find k£ in finite time. Moreover,
the expansion is a calculation that grows exponentially
in computational complexity with cryptic order, as we
noted. Devising a stopping criterion would be very use-
ful to such a search.

Even without knowing the k-crypticity, the expansion
is often still useful. For use in estimating E, it provides
us with a bound from above. This is complementary to
the lower bound one finds using the typical expansion
E(L) = H[X¥] — h,L [17]. Using these upper and lower
bounds, one may determine that for a given purpose, the
estimate of x or E is within an acceptable tolerance.

The crypticity hierarchy is a revealing way to carve
the space of processes in that it concerns how they hide
internal state information from an observer. The exam-
ples were chosen to illustrate several features of this new
view. The Even Process, a canonical example of order-oo
Markov, resides instead at the very bottom of this lad-
der. The two example families show us how k-cryptic
is neither a parallel nor independent concept to order-R
Markov. Finally, we see in the last example an appar-
ently simple process with oo-crypticity.

The general lesson is that internal state information
need not be immediately available in measurement val-
ues, but instead may be spread over long measurement
sequences. If a process is k-cryptic and k is finite, then
internal state information is accessible over sequences of
length k. The existence, as we demonstrated, of processes
that are oco-cryptic is rather sobering. Interpreted as a
statement of the impossibility of extracting state infor-
mation, it reminds us of earlier work on hidden spatial
dynamical systems that exhibit a similar encrypting of
internal structure in observed spacetime patterns [19].

Due to the exponentially growing computational ef-
fort to search for the cryptic order and, concretely, the
existence of oco-cryptic processes, the general theory in-
troduced in Ref. [1] and Ref. [2] is seen to be necessary.
It allows one to directly calculate E and crypticity and
to do so efficiently.
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