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Abstract

Current analyses of genomes from numerous species show
that the diversity of organism’s functional and behavioral
characters is not proportional to the number of genes that en-
code the organism. We investigate the hypothesis that the
diversity of organismal character is due to hierarchical orga-
nization. We do this with the recently introduced model of
thefinitary process soup, which allows for a detailed mathe-
matical and quantitative analysis of the population dynamics
of structural complexity. Here we show that global complex-
ity in the finitary process soup is due to the emergence of
successively higher levels of organization, that the hierarchi-
cal structure appears spontaneously, and that the process of
structural innovation is facilitated by the discovery and main-
tenance of relatively noncomplex, but general individuals in
a population.

Santa Fe Institute Working Paper 06-03-008;
arxiv.org:nlin.AO/0603001

Introduction
Recent estimates have shown that the genomes of many
species consist of a surprisingly similar number of genes de-
spite some being markedly more sophisticated and diverse
in their behaviors. Humans have only 30% more genes that
the wormCaenorhabditis elegans; humans, mice, and rats
have nearly the same number (Lynch and Conery, 2003; Rat
Genome Sequencing Project Consortium, 2004). Moreover,
many of those genes serve to maintain elementary processes
and are shared across species, which greatly reduces the
number of genes available to account for diversity. One con-
cludes that individual genes cannot directly code for the full
array of individual functional and morphological characters
of a species, as genetic determinism would have it. From
what, then, do the sophistication and diversity of organismal
form and behavior arise?

Here we investigate the hypothesis that these arise from
a hierarchy of interactions between genes and between in-
teracting gene complexes. A hierarchy of gene interactions,
being comprised of subsets of available genes, allows for an
exponentially larger range of functions and behaviors than
direct gene-to-function coding. We will use a recently intro-
duced pre-biotic evolutionary model—thefinitary process

soup—of the population dynamics of structural complex-
ity (Crutchfield and G̈ornerup, 2006). Specifically, we will
show that global complexity in the finitary process soup is
due to the emergence of successively higher levels of orga-
nization. Importantly, hierarchical structure appears sponta-
neously and is facilitated by the discovery and maintenance
of relatively noncomplex, but general individuals in a pop-
ulation. These results, in concert with the minimal assump-
tions and simplicity of the finitary process soup, strongly
suggest that an evolving system’s sophistication, complex-
ity, and functional diversity derive from its hierarchicalor-
ganization.

Modeling Pre-Biology
Prior to the existence of highly sophisticated entities acted
on by evolutionary forces, replicative objects relied on far
more basic mechanisms for maintenance and growth. How-
ever, these objects managed to transform, not only them-
selves, but also indirectly the very transformations by which
they changed (R̈ossler, 1979) in order to eventually support
the mechanisms of natural selection. How did the transition
from raw interaction to evolutionary change take place? Is it
possible to pinpoint generic properties, however basic, that
would have enabled a system of simple interacting objects
to take the first few steps towards biotic organization?

To explore these questions in terms of structural complex-
ity we developed a theoretical model borrowing from com-
putation theory (Hopcroft and Ullman, 1979) and computa-
tional mechanics (Crutchfield and Young, 1989; Crutchfield,
1994). In this system—thefinitary process soup(Crutchfield
and G̈ornerup, 2006)—elementary objects, as represented
by ε-machines, interact and generate new objects in a well
stirred flow reactor.

Choosingε-machines as the interacting, replicating ob-
jects, it turns out, brings a number of advantages. Most par-
ticularly, there is a well developed theory of their structural
properties found in the framework of computational me-
chanics. In contrast with individuals in previous, relatedpre-
biotic models—such as machine language programs (Ras-
mussen et al., 1990; Rasmussen et al., 1992; Ray, 1991;
Adami and Brown, 1994), tags (Farmer et al., 1986; Bagley



et al., 1989),λ-expressions (Fontana, 1991), and cellular au-
tomata (Crutchfield and Mitchell, 1995),ε-machines have a
well defined (and calculable) notion of structural complex-
ity. For the cases of machine language andλ-calculus, in
contrast, it is known that algorithms do not even exist to cal-
culate such properties since these representations are com-
putation universal (Brookshear, 1989). Another important
distinction with prior pre-biotic models is that the individ-
uals in the finitary process soup do not have two separate
modes of operation—one of representation or storage and
one for functioning and transformation. The individuals are
simply objects whose internal structure determines how they
interact. The benefit of this when modeling prebiotic evo-
lution is that there is no assumed distinction between gene
and protein (Schr̈odinger, 1967; von Neumann, 1966) or
between data and program (Rasmussen et al., 1990; Ras-
mussen et al., 1992; Ray, 1991; Adami and Brown, 1994).

ε-Machines
Individuals in the finitary process soup are objects that store
and transform information. In the vocabulary of informa-
tion theory they arecommunication channels(Cover and
Thomas, 1991). Here we focus on a type of finite-memory
channel, called a finitaryε-machine, as our preferred rep-
resentation of an evolving information-processing individ-
ual. To understand what this choice captures we can think
of these individuals in terms of how they compactly describe
stochastic processes.

A processis a discrete-valued, discrete-time stationary
stochastic information source (Cover and Thomas, 1991). A
process is most directly described by the bi-infinite sequence
it produces of random variablesSt over an alphabetA :

↔
S= ...St−1StSt+1... (1)

and the distribution P(
↔
S) over those sequences. At each mo-

mentt, we think of the bi-infinite sequence as consisting of

a history
←
St and a future

→
St subsequence:

↔
S=
←
St
→
St .

A process stores information in its setS of causal states.
Mathematically, these are the members of the range of the

mapε :
←
S 7→ 2

←
S from histories to sets of histories

ε(
←
s) = {

←
s
′
|P(
→
S |
←
S=

←
s) = P(

→
S |
←
S=

←
s
′
)} , (2)

where 2
←
S is the power set of histories

←
S . That is, the causal

stateS of a history
←
s is the set of histories that all have

the same probability distribution of futures. The transition
from one causal stateSi to anotherS j while emitting the
symbols∈A is given by a set of labeled transition matrices:

T = {T(s)
i j : s∈ A}, in which

T(s)
i j ≡ P(S ′ = S j ,

→
S

1
= s|S = Si) , (3)
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Figure 1: Exampleε-machines:TA has a single causal state
and, according to its transition labels, is the identity func-
tion. TB consists of causal statesA andB and two transitions.
TB accepts two input strings, either 1010. . . or 0101. . ., and
flips 0s to 1s and vice versa as it produces an output string.
Note that the function’s domain and range are the same.TC

has the same domain and range asTB, but does not exchange
0s and 1s.

whereS is the current casual state,S ′ its successor, and
→
S

1

the next symbol in the sequence.
A process’ε-machineis the ordered pair{S ,T }. Finitary

ε-machines are stochastic finite-state machines with the fol-
lowing properties (Crutchfield and Young, 1989): (i) All re-
current states form a single strongly connected component.
(ii) All transitions are deterministic in the specific sensethat
a causal state together with the next symbol determine a
unique next state. (iii) The set of causal states is finite and
minimal.

In the finitary process soup we use the alphabetA =
{0|0,0|1,1|0,1|1} consisting of pairsin | out of input and
output symbols over a binary alphabetB = {0,1}. When
used in this wayε-machines read in strings overB and emit
strings overB . Accordingly, they should be viewed as map-

pings from one process
↔
Sinput to another

↔
Soutput. They are, in

fact, simply functions, each with a domain (the set of strings
that can be read) and with a range (the set of strings that can
be produced). In this way, we considerε-machines as mod-
els of objects that store and transform information. In the
following we will take the transitions from each causal state
to have equal probabilities. Figure 1 shows several examples
of simpleε-machines.

Given thatε-machines are transformations, one can ask
how much processing they do—how much structure do they
add to the inputs when producing an output? Due to the
properties mentioned above, one can answer this question
precisely. Ignoring input and output symbols, the state-
to-state transition probabilities are given by anε-machine’s
stochastic connection matrix: T ≡

∑
s∈A T(s). The causal-

state probability distributionpS is given by the left eigen-
vector ofT associated with eigenvalue 1 and normalized in
probability. If M is an ε-machine, then the amount of in-
formation storage it has, and can add to an input process, is
given byM’s structural complexity

Cµ(M)≡−
∑

v∈S

pS (v) log2 pS (v) . (4)
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Figure 2: Interaction network for theε-machines of Fig. 1.
It is a meta-machine.

ε-Machine Interaction
ε-machines interact by functional composition. Two ma-
chinesTA and TB that act on each other result in a third
TC = TB◦TA, whereTC (i) has the domain ofTA and the range
of TB and (ii) is minimized. IfTA andTB are incompatible,
e.g., the domain ofTB does not overlap with the range of
TA, the interaction produces nothing—it is considered elas-
tic. During composition the size of the resultingε-machine
can grow very rapidly (geometrically):|TC| ≤ |TB|× |TA|.

Interaction Network
We monitor the interactions of objects in the soup via the
interaction networkG . This is represented as a graph whose
nodes correspond toε-machines and whose transitions cor-
respond to interactions. IfTk = Tj ◦Ti occurs in the soup,
then the edge fromTi to Tk is labeledTj . One can represent
G with the binary matrices:

G
(k)
i j =

{
1 if Tk = Tj ◦Ti

0 otherwise.
(5)

For the set ofε-machines in Fig. 1, for example, we have
the interaction graph shown in Fig. 2 that is given by the
matrices:

G (A) =




1 0 0
0 0 0
0 0 0



 , G (B) =




0 1 0
1 0 1
0 1 0



 , and

G (C) =




0 0 1
0 1 0
1 0 1



 .

To measure the diversity of interactions in a population
we define theinteraction network complexity

Cµ(G) =−
∑

fi , f j , fk>0

vk
i j

Vk log2

vk
i j

Vk , (6)

where

vk
i j =

{
fi f j , Tk = Tj ◦Ti has occurred,
0, otherwise,

(7)

Vk =
∑

lmvk
lm is a normalizing factor, andfi is the fraction

of ε-machine typei in the soup. In order to emphasize our
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Figure 3: The meta-machine to which that in Fig. 2 decays
under the population dynamics of Eq. (8).

interest in actual reproduction pathways, we consider only
those that have occurred in the soup.

Meta-Machines
Given a populationP of ε-machines, we define ameta-
machineΩ ⊂ P to be a connected set ofε-machines that is
invariant under composition. That is,Ω is a meta-machine if
and only if (i)Tj ◦Ti ∈Ω for all Ti ,Tj ∈Ω, (ii) for all Tk ∈Ω,
there existsTi ,Tj ∈ Ω such thatTk = Tj ◦Ti , and (iii) there
is a nondirected path between every pair of nodes inΩ’s in-
teraction networkGΩ. The interactions in Fig. 2 describe a
meta-machine of Fig. 1’sε-machines.

The meta-machine captures the notion of a self-
replicating and autonomous entity and is consistent with
Maturana and Varela’sautopoietic set(Varela et al., 1974),
Eigen and Schuster’shypercycle (Schuster, 1977) and
Fontana and Buss’organization(Fontana and Buss, 1996).

Population Dynamics
We employ a continuously stirred flow reactor with an influx
rate Φin that consists of a populationP of N ε-machines.
The dynamics of the population is iteratively ruled by com-
positions and replacements as follows:

1. ε-machineGeneration:

(a) With probabilityΦin generate a randomε-machineTR

(influx).
(b) With probability 1−Φin (reaction):

i. SelectTA andTB randomly.
ii. Form the compositionTC = TB◦TA.

2. ε-machineOutflux:

(a) Select anε-machineTD randomly from the population.
(b) ReplaceTD with eitherTC or TR.

Below, TR will be uniformly sampled from the set of all
two-stateε-machines. This set is also used when initializing
the population. The insertion ofTR corresponds to the influx
while the removal ofTD corresponds to the outflux. The lat-
ter keeps the population size constant. Note that there is no
spatial dependence in this model;ε-machines are picked uni-
formly from the population for each replication. The finitary
process soup here is a well stirred gas of reacting objects.

When there is no influx (Φin=0) and the population is
closed with respect to composition, the population dynamics
is described by a finite-dimensional set of equations:

f(k)t = ft−1 ·G
(k)
i j · f

T
t−1Z−1

, (8)
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Figure 4: (a) Population-averagedε-machine complexity
〈Cµ(T)〉 and (b) run-averaged interaction network complex-
ity 〈Cµ(G)〉 as a function of timet and influx rateΦin for a
population ofN = 100 objects. (Reprinted with permission
from (Crutchfield and G̈ornerup, 2006).)

wheref(k)t is the frequency ofε-machine typek at timet and
Z−1 is a normalization factor.

In addition to capturing the notion of self-replicating en-
tities, meta-machines also describe an important type of in-
variant set of the population dynamics. Formally, we have

Ω = G ◦Ω . (9)

These invariant sets can be stable or unstable under the pop-
ulation dynamics. Note that the meta-machine of Fig. 2
is unstable: onlyTA producesTAs. As such, over time
the population dynamics will decay to the meta-machine of
Fig. 3, which describes a soup consisting only ofTBs and
TCs. This example also happens to illustrate that copying—
implemented here by the identity objectTA—need not dom-
inate the population and so does not have to be removed by
hand, as done in several prior pre-biotic models. It can decay
away due to the intrinsic population dynamics.

Simulations
A system constrained by closure forms one useful base case
that allows for a straightforward analysis of the population
dynamics. It does not permit, however, for the innovation of
structural novelties in the soup on either the level of individ-
ual objects (ε-machines) or on the level of their interactions.
What we are interested in is the possibility of open-ended
evolution of ε-machines and their meta-machines. When
enabled as an open system, both with respect to composi-
tion and influx, the soup constitutes a constructive dynam-
ical system and the population dynamics of Eq. (8) do
not strictly apply. (The open-ended population dynamics of
epochal evolution is required (Crutchfield and van Nimwe-
gen, 2000).)

We first set the influx rate to zero in order to study dy-
namics that is ruled only by compositional transformations.
One important first observation is that almost the complete
set of machine types that are represented in the soup’s ini-
tial random population is replaced over time. Thus, even
at the earliest times, the soup generates genuine novelty.
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Figure 5: Meta-machine decomposition in a closed soup: 15
separate runs withN = 500. While the minimal 4-element
meta-machineΩ4 (shown) dominates the soup,Cµ(G) is
bounded by 4 bits. Once outflux removes one of itsε-
machines, rapidlyΩ4 decays toΩ2, a 2-element meta-
machine (shown). (Ω4 does not contain a sub-meta-machine
of 3 ε-machines.) At this pointCµ(G) is bounded by 2 bits.
After some period of time,Ω2 decays toΩ1, a single self-
reproducingε-machine (shown), andCµ(G) is fixed at 0.

The population-averaged individual complexity〈Cµ(T)〉 in-
creases initially, as Fig. 4(a) (Φin ≈ 0) from (Crutchfield and
Görnerup, 2006) shows. Theε-machines are to some extent
shaped by the selective pressure coming from outflux and
by geometric growth due to composition. The turn-over is
due to the dominance of nonreproducingε-machines in the
initial population.〈Cµ(T)〉 subsequently declines since it is
favorable to be simple as it takes a more extensive stochas-
tic search to find reproductive interactions that include more
complexε-machines.

Note (Fig. 4(b),Φin ≈ 0) that the run-averaged interac-
tion complexity〈Cµ(G)〉 reaches a significantly higher value
than〈Cµ(T)〉, implying that the population’s structural com-
plexity derives from its network of interactions rather than
the complexity of its constituent individuals.〈Cµ(G)〉 con-
tinues to grow while compositional paths are discovered
and created. A maximum is eventually reached after which
〈Cµ(G)〉 declines and settles down to zero when one sin-
gle type of self-reproducingε-machine takes over the whole
population.

By monitoring the individual run values ofCµ(G) rather
than the ensemble average, one sees that they form plateaus
as shown in Fig. 5. The plateaus—atCµ(G) = 4 bits and,
most notably, atCµ(G) = 2 bits and 0 bits—are determined
by the largest meta-machine that is present at a given time.
Being a closed set, the meta-machine does not allow any
novelε-machines to survive and this gives the upper bound
onCµ(G). As oneε-machine type is removed fromΩ by the
outflux, the meta-machine decomposes and the upper bound
onCµ(G) lowers. This produces a stepwise and irreversible
succession of meta-machine decompositions.
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Figure 6: Meta-machine hierarchy of dynamical composi-
tion and decomposition. Dots denoteε-machines. An iso-
lated dot denotes a self-replicatingε-machine. Solid lines

denoteTA
TB−→ TC transitions. Dashed lines denoteTB

TA−→ TC

transitions. Although all possible transitions are used bythe
meta-machines shown, they are represented in a simplified
way according toΩ4; cf. Fig. 5.

Thus, in the case of zero influx, one sees that the soup
moves from one extreme to another. It is completely dis-
ordered initially, generates structural complexity in itsindi-
viduals and in its interaction network, runs out of resources
(poorly reproducingε-machines that are consumed by out-
flux), and decomposes down to a single type of simple self-
reproducingε-machine.

Although Fig. 5 shows only three plateaus, there is in
principle one plateau for every meta-machine that at some
point is the largest one generated by the soup. The diagram
in Fig. 6 summarizes our results from a more extensive and
systematic survey of meta-machine hierarchies from a series
of runs withN = 500. It gives one illuminating example of
how the soup spontaneously generates hierarchies of meta-
machines.

Leaving closed soups behind, we now investigate the ef-
fects of influx. Recall the population-averagedε-machine
complexity 〈Cµ(T)〉 and the run-averaged interaction net-
work complexity〈Cµ(G)〉 as a function oft andΦin shown
in Fig. 4. Over time,〈Cµ(T)〉 behaves similarly forΦin > 0
as it does whenΦin = 0. It increases rapidly initially,
reaches a peak, and declines to a steady state. Notably,
the emergence of complex organizations of interaction net-
works occurs where the average structural complexity of the
ε-machines is low. Stationary〈Cµ(T)〉 is instead maximized

at a relatively high influx rate (Φin ≈ 0.75) at which〈Cµ(G)〉
is small compared to its maximum. AsΦin is increased, so
is 〈Cµ(G)〉 at large times. 〈Cµ(G)〉 is maximized around
Φin ≈ 0.1. For higher influx rates, individual novelty has
a deleterious effect on the sophistication of a population’s
interaction network. Existing reproductive paths do not per-
sist due to the low rate of successful compositions of highly
structured (and so specialized) individuals. We found that
the maximum network complexitŷCµ(G) grows slowly and
linearly over time at≈ 7.6·10−4 bits/replication.

Summary and Conclusions
To understand the basic mechanisms driving the evolution-
ary emergence of structural complexity in a quantitative and
tractable pre-biotic setting, we investigated a well stirred
soup of ε-machines (finite-memory communication chan-
nels) that react with each other by composition and so gen-
erate newε-machines. When the soup is open with respect
to composition and influx, it spontaneously builds structural
complexity on the level of transformative relations among
the ε-machines rather than in theε-machine individuals
themselves. This growth is facilitated by the use of relatively
non-complex individuals that represent general and elemen-
tary local functions rather than highly specialized individu-
als. The soup thus maintains local simplicity and general-
ity in order to build up hierarchical structures that support
global complexity. Novel computational representations are
intrinsically introduced in the form of meta-machines that,
in turn, are interrelated in a hierarchy of composition and
decomposition. Computationally powerful local representa-
tions are thus not necessary (nor effective) in order for the
emergence and growth of complex replicative processes in
the finitary process soup. Meta-machines in closed soups
eventually decay. ForCµ(G) to maintain and grow the soup
must be fed with novel material in the form of randomε-
machines. Otherwise, any spontaneously generated meta-
machines are decomposed (due to finite-population sam-
pling) and the population eventually consists of a single type
of trivially self-reproducingε-machine. At an intermediate
influx rate, however, the interaction network complexity is
not only maintained but grows linearly with time. This, then,
suggests the possibility of open-ended evolution of increas-
ingly sophisticated organizations.
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