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Abstract

Symbolic dynamics has proven to be an invaluable tool inyairad the mecha-
nisms that lead to unpredictability and random behaviordnlinear dynamical
systems. Surprisingly, a discrete partition of continustage space can produce
a coarse-grained description of the behavior that acdyrdéscribes the invari-
ant properties of an underlying chaotic attractor. In pattir, measures of the
rate of information production—the topological and metri¢repy rates—can be
estimated from the outputs of Markov or generating partgioHere we develop
Bayesian inference fdt-th order Markov chains as a method for finding gener-
ating partitions and estimating entropy rates. To the bestioknowledge, this
is the first time inference methods have been applied to theclsdor generat-
ing partitions from finite samples of data. The combinatibpartition selection
and model inference enables us to analyze the resultingleaitypof the coarse-
grained model in ways not considered before.

1 Introduction

Research on chaotic dynamical systems during the last j@dys produced a new vision of the
origins of randomness. It is now widely understood that olestrandomness can be generated by
low-dimensional deterministic systems that exhibit a ¢teeatttractor. Today, when confronted with
what appears to be a high-dimensional stochastic procee:iawv asks whether or not the process
is instead a hidden low-dimensional, but nonlinear dynaimgystem. This awareness, though,
requires a new way of looking at apparently random data gtheetic dynamics are very sensitive
to the measurement process [1]. As it turns out, this is bdilessing and a curse.



Symbolic dynamics, as one of a suite of tools in dynamicalesys theory, in its most basic form
addresses this issue by considering a coarse-grained ¥@eamtinuous dynamics.In this sense,
any finite-precision instrument that measures a chaottesysduces a symbolic representation of
the underlying continuous-valued behavior.

To effectively model time series of discrete data from a twttus-state system two concerns must
be addressed. First, we must consider the measurementniesit and the representation of the
true dynamics which it provides. In the process of instrurnmdesign we consider the effect of
projecting a continuous state space onto a finite set ofidtsiegions, describing measurement
with finite resolution. Second, we must consider the infeeeof models based on this data. The
relation between these steps is more subtle than one miglecex As we will demonstrate, on
the one hand, in the measurement of chaotic data, the insttushould be designed to maximize
the entropy rate of the resulting data stream. This allowestorextract as much information from
each measurement as possible. On the other hand, modelriogestrives to minimize the apparent
randomness (entropy rate) over a class of alternative modilis reflects a search for determinism
and structure in the data.

Here we address the interplay between optimal instrumerdsoptimal models by analyzing a
relatively simple nonlinear system. We consider the desfdnnary-output instruments for chaotic
maps with additive noise. We then use Bayesian inferencé:aharder Markov chain to model the
resulting data stream. Our model system is a one-dimenrisibaatic map with additive noise [4, 5]

i1 = f(oe) + & 1)

wheret = 0,1,2,..., 2; € [0,1], and¢; ~ N(0,0?) is Gaussian random variable with mean zero
and variancer?. To start we consider the design of instruments in the zeisenlimit. This is the
regime of most previous work in symbolic dynamics and presid convenient frame of reference.

The construction of a symbolic dynamics representation afratinuous-state system goes as fol-
lows [2]. We assume time is discrete and consider a midpom the state space M to itself

f: M — M. This space can partitioned into a finite $&t= {I; : U;I; = M, I; N I; = 0,i # j}

of nonoverlapping regions in many ways. The most powerfudakled aMarkov partition and
must satisfy two conditions. First, the image of each regipmust be a union of intervals:
f(I;) = U; I;,Vi. Second, the mag(1;), restricted to an interval, must be one-to-one and onto. If
a Markov partition cannot be found for the system under aw@rsition, the next best coarse-graining
is called agenerating partition. For one-dimensional maps, these are often easily found)ube
extrema off (x)—its critical points. The critical points in the map are used to divide the stadéesp
into intervals; over which f is monotone. Note that Markov partitions are generating,tie
converse is not generally true. One might be concerned withthese methods scale to problems
in higher dimensions. These ideas have been successfylliedgo two dimensional maps and
systems of ordinary differential equations [2]. In praetithese examples have employed compari-
son of the system of interest with one-dimensional maps aad approximate generating partitions
with great success.

Given any partitiorfP = {I,}, then, a series of continuous-valued st&Xes= xzz; ... 21 Can
be projected onto its symbolic representat®os sgs; ... sy_1. The latter is simply the associated
sequence of partition-element indices. This is done by uhefian operatorr(z;) = s; that returns
a unique symbot; = i for eachl; from an alphabe#d whenzx; € I;.

The central result in symbolic dynamics establishes trgihgia generating partition, increasingly
long sequences of observed symbols identify smaller antlermegions of the state space. Starting
the system in such a region produces the associated measursymbol sequence. In the limit
of infinite symbol sequences, the result is a discrete-symdpyesentation of a continuous-state
system—a representation that, as we will show, is often masieeto analyze. In this way a
chosen partition creates a symbol sequen@e) = S which describes the continuous dynamics as
a sequence of symbols. The choice of partition then is etgrivéo our instrument-design problem.

The effectiveness of a partition (in the zero-noise limd@hde quantified by estimating the en-
tropy rate of the resulting symbolic sequence. To do this wesidler lengtht words s* =

For a recent overview consult [2] and for a review of current apfiims see [3] and references therein.



8iSi+1 -+ - Si+—1- Theblock entropy of length-L sequences obtained from partitinis then
Hy(P)=— Y p(s")log,p(s"), @)
sle AL

wherep(s’) is the probability of observing the woed’ € AL, From the block entropy thentropy
rate can be estimated as the following limit

. Hp(P)
h(P) = Jim == ®
In practice, it is often more accurate to calculate the lesigestimate of the entropy rate using
hur(P) = Hp(P) — Hp—1(P) . 4

Another key result in symbolic dynamics says that the entafghe original continuous system is
found using generating partitions [6, 7]. In particulag thue entropy rate maximizes the estimated
entropy rates:
h, = maxh,(P) . 5
= maxh, (P) ©)

Thus, translated into a statement about experiment desigmesults tell us to design an instrument
so that it maximizes the observed entropy rate. This refthetfact that we want each measurement
to produce the most information possible.

As a useful benchmark on this, useful only in the case whenmwesvkf (), Piesin's Identity [8]
tells us that the value dif,, is equal to the sum of the positive Lyapunov characteristipaents:
hy =3, A;". For one-dimensional maps there is a single Lyapunov exganeich is numerically
estimated from the map and observed trajectofyr; } using

N
. 1
A= lim = 2_; log, | f'(1)) - (6)

Taken altogether, these results tell us how to design otruiment for effective observation of
deterministic chaos. Notably, in the presence of noise b shieorems exist. However, [4, 5]
demonstrated the methods developed above are robust inethenge of noise.

In any case, we view the output of the instrument as a stachasicess. A sample realizatidn of
length NV with measurements taken from a finite alphabet is the bastsifdnference problemd =
s0s1---Sn-1, St € A. Forour purposes here, the sample is generated by a padftaontinuous-
state sequences from iterations of a one-dimensional magp draotic attractor. This means, in
particular, that the stochastic process is stationary. Weéeirae, in addition, that the alphabet is
binary A = {0,1}. This assumption is motivated by our application to a uniaiadap with a
single critical point. A decision point at this critical ve produces the assumed binary alphabet
and results in the most compact coarse-graining of the diafarinciple, larger alphabets could be
considered, but this would affect the inference procességting fewer samples of a larger alphabet
without gaining any new information. As a result we choosedimple binary alphabet.

2 Bayesian inference of:-th order Markov chains

Given a method for instrument design the next step is to esim model from the observed mea-
surements. Here we choose to use the model cladsoader Markov chains and Bayesian inference
as the model estimation and selection paradigm.

Thek-th order Markov chain model class makes two strong assomptbout the data sample. The
first is an assumption of finite memory. In other words, thebptility of s, depends only on the
previousk symbols in the data sample. We introduce the more compaationts ¥ = s; 4. ...s;

to indicate a lengthk sequence of measurements ending at tim&he finite memory assumption
is then equivalent to saying the probability of the obsemath can be factored into the product of
terms with the formp(s;|’s ¥). The second assumption is stationarity. This means theapility of
observed sequences does not change with the time positioa drata samplei(s;| 5 F) = p(s|s )



for any indext. As noted above, this assumption is satisfied by the datamstr@roduced. The
first assumption, however, is often not true of chaotic systeThey can generate time series with
infinitely long temporal correlations. Thus, in some casesmay be confronted with out-of-class
modeling.

The k-th order Markov chain model cladsl, has a set of parametefs = {p(s|5%) : s €
A, 5% € A*}. In the Bayesian inference of the model parametgrsve must write down the
likelihood P(D|6y, M},) and the priorP(6;|M;,) and then calculate the evident¥D|My). The
posterior distributionP (6, | D, My, is obtained from Bayes’ theorem

P(D|6k7Mk¢) P(ek)‘Mk) (7)
P (D|My) '

The posterior describes the distribution of model pararseig given the model clasd1, and

observed datd). From this the expectation of the model parameters can bedfalong with

estimates of the uncertainty in the expectations. In tHewdhg sections we outline the specification
of these quantities following [9, 10].

P (0x|D,My,) =

2.1 Likelihood

Within the M, model class, the likelihood of an observed data sample enddy
PDIO M) = [[ T p(sI55)"), ®)
SEA GTke Ak

wheren (‘s *s) is the number of times the word *s occurs in sampléD. We note that Eq. (8) is
conditioned on the start sequenge |, = sps1 ... sk_1.

2.2 Prior

The prior is used to describe knowledge about the model.claghe case of th&1;, model class,
we choose a product of Dirichlet distributions—the so-chtlenjugate prior [9, 10]. Its form is

'« ?k <_
PO = T po gy 80— S5 Tl 549, @)
SkeAk s€A seA s€A
where a(s%) = Y _, a('s"s) andT'(z) is the gamma function. The prior's parameters

{a(5*s) 1 s € A, 5% € A*} are assigned to reflect knowledge of the system at hand antcheus
real and positive. An intuition for the meaning of the paréangcan be obtained by considering the
mean of the Dirichlet prior, which is

(0% ?ks
Eprior[p(5|?k)] = a((<§k)> . (20)

In practice, a common assignmenti§s *s) = 1 for all parameters. This produces a uniform prior
over the model parameters, reflected by the expect@®isp(s| s *)] = 1/|.A]. Unless otherwise
stated, all inference in the following uses the uniform prio

2.3 Evidence

The evidence can be seen as a simple normalization term iesBéneorem. However, when model
comparison of different orders and estimation of entropgsare considered, this term becomes a
fundamental part of the analysis. The evidence is defined

P(DIM) = [ dBi P(DI6 M P(OIMS) (11)

It gives the probability of the dat& given the model orde¥1,. For the likelihood and prior derived
above, the evidence is found analytically

H T(a(5F)  TLeaT(n(5%s) +a(5"s))
[TieaT(a(5Fs)) I(n(s*)+a(s* :

P(D|M,) = (12)

TheAk



2.4 Posterior

The posterior distribution is constructed from the elersel@rived above according to Bayes’ the-
orem Eq. (7), resulting in a product of Dirichlet distritaris. This form is a result of choosing the
conjugate prior and generates the familiar form

POxD,M:) =[] ) )
’ - —
SkeAk H?EA Sk ) a( s ks))
« 1 _ Zp H p S‘ —k n(s s)+a(5rs)—1 ) (13)
s€A s€A

The mean for the model parametéfsaccording to the posterior distribution is then
—k n(sks) + a(5Fs)
Epost[p(sl s )] = n(?k) —l—a(?k)

Given these estimates of the model parameigrshe next step is to decide which orders best
for a given data sample.

(14)

3 Model comparison of ordersk

Bayesian model comparison is very similar to the paramet@mation process discussed above.
We start by enumerating the set of model orders to consider {My, : k € [kmin, kmaz) - The
probability of a particular order can be found by considgtiwo factorings of the joint distribution
P(My, D|M). Solving for the probability of a particular order we obtain

P(D|M,, M) P(My| M)
P(DIM)

where the denominator is given by the suMD|M) = >_,, g P(D|My, M)P(Mj|M).

This expression is driven by two components: the evidegRtB|M;, M) derived above and the

prior over model order® (M| M). Two common priors are a uniform prior over orders and an

exponential penalty for the size of the mod&|M/;| M) = exp(—|My]). For ak-th order Markov

chain the size of the model, or number of free parametersyéndy M| = |A|*(JA| — 1). To
illustrate the method we will consider only the prior ovedersk with a penalty for model size.

(15)

4 Estimating entropy rates

The entropy rate of an inferred Markov chain can be estimbjeextending the method for inde-
pendent identically distributed (11D) models of discretgal[11] usingype theory [12]. In simple
terms, type theory shows that the probability of an obsesezpience can be suggestively rewritten
in terms of theKullback-Leibler (KL) distance and the entropy rate Eq. (3). This form suggast
connection to statistical mechanics and this, in turnyalas to find average information-theoretic
guantities over the posterior by taking derivatives. Inltdrge data limit, the KL distance vanishes
and we are left with the desired estimation of the Markov mlsantropy rate.

We introduce this new method for computing the entropy ratetfio reasons. First, the result is
a true average over the posterior distribution, reflectingadherence to Bayesian methods. Sec-
ond, this result provides a computationally efficient metfar entropy rate estimation without need
for linear algebra packages. This provides a distinct bewsien large alphabets or Markov chain
ordersk are considered. The complete development is beyond oueswme, but will appear else-
where. However, we will provide a brief sketch of the delimatand quote the resulting estimator.

The connection we draw between inference and informatiearthstarts by considering the product
of the prior Eq. (9) and likelihood Eq. (8}(0x|My)P(D|0r, My) = P(D, 6,,|My). This product
forms a joint distribution over the observed déaand model parametefg given the model class
M,.. Writing the normalization constant from the prior Zsto save space, this joint distribution
can be written, without approximation, in terms of condiaibrelative entropie®|-||-] and entropy
ratesh,,[-]

P(D,0;|M},) = 7 9~ Br(PIQIIPI+h,.[Q) o+ A"+ (DIU| Pl+h, [U]) 7 (16)



wheregy, =3 < , n(s*s) + a(s*s). The set of probabilities used above are

n( ’“)—i—a( k) e n(SFs) +a(shs)
{q R = N an
— — 1
v = {q<sk> FICEOEE (18)

where @) is the distribution defined by the posterior medn,is a uniform distribution, and
P = {p(5%),p(s| %)} are the “true” parameters given the model class. The inféamaheory
guantities are given by

_ =k q(s]s ")
hQl = - Z ) logy q(s|5") . (20)

s, 5k

The form of Eq. (16) and its relation to the evidence motigatee connection to statistical me-
chanics. We think of the evidencB(D|My) = [dfyP(D,0;|My) as apartition function
Z = P(D|My). Using conventional techniques from statistical mechgriice expectation and
variance ofD[Q|| P] + h,[Q] are obtained by taking derivatives oflog Z with respect ta3;. In
this sense|[Q|| P] + h,[Q] plays the role of an internal energy agiglis comparable to an inverse
temperature. We take advantage of the known form for theeexgie provided in Eq. (12) to calculate
the desired expectation resulting in

Epost[D[Q”P] + h[QH =

oz 2 150 [Bra(5)] (21)

o 2 AT (o FHael 5]

where the polygamma function is definedyd®) (z) = d"*+'/dz"*" log I'(z). The meaning of the
terms on the RHS of Eq. (21) is not immediately clear. Howewer can use an expansion of the
n = 0 polygamma function)(®) (z) = logz — 1/2x + O(x~2), which is valid forz > 1, to find
the asymptotic form

Epos{ D[Q|[P] + hu[Q]] = Hr1[Q] — Hi[Q] + ﬁIA\k(I«‘H —-1). (22)

From this expansion we can see that the first two terms makéei@ntropy rateh,,[Q] =
Hi+1[Q] — Hg[Q]. And the last term must be associated with the conditionative entropy
between the posterior mean estimate (PME) distribu€poand the true distributio®. Assum-
ing the conditions for the approximation in Eq. (22) holde factor1/j; tells us that the desired
expectation will approach the entropy rateldd/, whereN is the length of the data sample.

5 Experimental setup

Now that we have our instrument design and model inferendbads fully specified we can de-
scribe the experimental setup used to test them. Data fromlaiions of the one-dimensional
logistic map, given byf(x;) = rx:(1 — ), at the chaotic value af = 4.0 was the basis for the
analysis. A fluctuation level of = 10~3 was used for the added noise. A random initial condition
in the unit interval was generated and one thousand trarstigps, not analyzed, were generated to
find a typical state on the chaotic attractor. Next, a singie tseriesrg, 1, ..., zy_1 Of length

N = 10* was produced.

A family of binary partitionsP(d) = {“0” ~ = € [0,d), “1” ~ x € [d, 1]} of the continuous-
valued states was produced for two hundred decision pdibetween) and1. That is, values in
the state time series which satisfied< d were assigned symb6land all others were assignéd
Given the symbolic representation of the data for a padicphrtition?(d), Markov chains from
orderk = 1to k = 8 were inferred and model comparison was used to select thee thrdt most
effectively described the data. Then, using the selectedeimealues of entropy rate, (d) versus
decision pointl were produced.



6 Results

The results of our experiments are presented in Fig. 1. Theraganel of Fig. 1(a) shows the
entropy rateh, (d) versus decision point estimated using Eq. (21). Note thernéi d depen-
dence ofh,(d). The dashed line shows an accurate numerical estimate ai#pinov exponent
using Eq. (6). Itis also known to be= 1 bit per symbol from analytic results. We note thaf(d)

is zero at the extremes df = 0 andd = 1; the data stream there is ai or all 0s, respectively.
The entropy rate estimate reaches a maximumh at 1/2. For this decision point the estimated
entropy rate is approximately equal to the Lyapunov expgnedicating this instrument results in
a generating partition and satisfies Piesin’s identityalet,fthis value ofl is also known to produce
a Markov partition.

The top panel of Fig. 1(a) shows the Markov chain ordased to produce the entropy rate estimate
for each value ofi. This dependence ahis also complicated in ways one might not expect. The
order k has two minima (ignoringl = 0 andd = 1) atd = 1/2 andd = f~!(1/2). These
indicate that the model size is minimized for those instratse This is another indication of the
Markov partition forr = 4.0 andd = 1/2. These results confirm that the maximum entropy-rate
instrument produces the most effective instrument fonaisbf deterministic chaos in the presence
of dynamical noise. The model order is minimized at the getirgy partition.
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Figure 1: Analysis of a single data stream of length= 10* from the logistic map at = 4.0 with
a noise leveb = 1073. Two hundred evenly spaced decision poitts [0, 1] were used to define
measurement partitions.

Now let’s consider the model-order estimation processtireThe bottom panel of Fig. 1(b) shows
the estimated entropy ratg, (k) versus model order for four different decision points. Aatieke
minimum in the entropy rate for a givehselects the model order. This reflects an optimization
for the most structure and smallest Markov chain represientaf the data produced by a given
instrument. The top panel in this figure shows the model pitibaversusk for the same set of
decision points, illustrating exactly this point. The prisver model orders, which penalizes for
model size, selects the Markov chain with lowkstnd smallest entropy rate.



7 Conclusion

We analyzed the degree of randomness generated by detsfimifiaotic systems with a small
amount of additive noise. Appealing to the well developebtly of symbolic dynamics, we demon-
strated that this required a two-step procedure: first, #mefal design of a measuring instrument
and, second, effective model-order inference from theltiagudata stream. The instrument should
be designed to be maximally informative and the model imfeeeshould produce the most compact
description in the model class. In carrying these stepsmapaarent conflict appeared: in the first
step of instrument design, the entropy rate was maximizetiid second, it was minimized. More-
over, it was seen that instrument design must precede muféeténce. In fact, performing the steps
in the reverse order leads to nonsensical results, suchirasthe one or the other extreme decision
pointd =0ord = 1.

The lessons learned are very simply summarized: Use alleofittta and nothing but the data.
For deterministic chaos careful decision point analysigpéed with Bayesian inference and model
comparison accomplishes both of theses goals.
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