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Abstract

Symbolic dynamics has proven to be an invaluable tool in analyzing the mecha-
nisms that lead to unpredictability and random behavior in nonlinear dynamical
systems. Surprisingly, a discrete partition of continuousstate space can produce
a coarse-grained description of the behavior that accurately describes the invari-
ant properties of an underlying chaotic attractor. In particular, measures of the
rate of information production—the topological and metric entropy rates—can be
estimated from the outputs of Markov or generating partitions. Here we develop
Bayesian inference fork-th order Markov chains as a method for finding gener-
ating partitions and estimating entropy rates. To the best of our knowledge, this
is the first time inference methods have been applied to the search for generat-
ing partitions from finite samples of data. The combination of partition selection
and model inference enables us to analyze the resulting complexity of the coarse-
grained model in ways not considered before.

1 Introduction

Research on chaotic dynamical systems during the last fortyyears produced a new vision of the
origins of randomness. It is now widely understood that observed randomness can be generated by
low-dimensional deterministic systems that exhibit a chaotic attractor. Today, when confronted with
what appears to be a high-dimensional stochastic process, one now asks whether or not the process
is instead a hidden low-dimensional, but nonlinear dynamical system. This awareness, though,
requires a new way of looking at apparently random data sincechaotic dynamics are very sensitive
to the measurement process [1]. As it turns out, this is both ablessing and a curse.



Symbolic dynamics, as one of a suite of tools in dynamical systems theory, in its most basic form
addresses this issue by considering a coarse-grained view of a continuous dynamics.1 In this sense,
any finite-precision instrument that measures a chaotic system induces a symbolic representation of
the underlying continuous-valued behavior.

To effectively model time series of discrete data from a continuous-state system two concerns must
be addressed. First, we must consider the measurement instrument and the representation of the
true dynamics which it provides. In the process of instrument design we consider the effect of
projecting a continuous state space onto a finite set of disjoint regions, describing measurement
with finite resolution. Second, we must consider the inference of models based on this data. The
relation between these steps is more subtle than one might expect. As we will demonstrate, on
the one hand, in the measurement of chaotic data, the instrument should be designed to maximize
the entropy rate of the resulting data stream. This allows one to extract as much information from
each measurement as possible. On the other hand, model inference strives to minimize the apparent
randomness (entropy rate) over a class of alternative models. This reflects a search for determinism
and structure in the data.

Here we address the interplay between optimal instruments and optimal models by analyzing a
relatively simple nonlinear system. We consider the designof binary-output instruments for chaotic
maps with additive noise. We then use Bayesian inference of ak-th order Markov chain to model the
resulting data stream. Our model system is a one-dimensional chaotic map with additive noise [4, 5]

xt+1 = f(xt) + ξt , (1)

wheret = 0, 1, 2, . . ., xt ∈ [0, 1], andξt ∼ N(0, σ2) is Gaussian random variable with mean zero
and varianceσ2. To start we consider the design of instruments in the zero-noise limit. This is the
regime of most previous work in symbolic dynamics and provides a convenient frame of reference.

The construction of a symbolic dynamics representation of acontinuous-state system goes as fol-
lows [2]. We assume time is discrete and consider a mapf from the state space M to itself
f : M → M . This space can partitioned into a finite setP = {Ii : ∪iIi = M, Ii ∩ Ij = ∅, i 6= j}
of nonoverlapping regions in many ways. The most powerful iscalled aMarkov partition and
must satisfy two conditions. First, the image of each regionIi must be a union of intervals:
f(Ii) = ∪j Ij ,∀ i. Second, the mapf(Ii), restricted to an interval, must be one-to-one and onto. If
a Markov partition cannot be found for the system under consideration, the next best coarse-graining
is called agenerating partition. For one-dimensional maps, these are often easily found using the
extrema off(x)—its critical points. The critical points in the map are used to divide the state space
into intervalsIi over whichf is monotone. Note that Markov partitions are generating, but the
converse is not generally true. One might be concerned with how these methods scale to problems
in higher dimensions. These ideas have been successfully applied to two dimensional maps and
systems of ordinary differential equations [2]. In practice, these examples have employed compari-
son of the system of interest with one-dimensional maps and used approximate generating partitions
with great success.

Given any partitionP = {Ii}, then, a series of continuous-valued statesX = x0x1 . . . xN−1 can
be projected onto its symbolic representationS = s0s1 . . . sN−1. The latter is simply the associated
sequence of partition-element indices. This is done by defining an operatorπ(xt) = st that returns
a unique symbolst = i for eachIi from an alphabetA whenxt ∈ Ii.

The central result in symbolic dynamics establishes that, using a generating partition, increasingly
long sequences of observed symbols identify smaller and smaller regions of the state space. Starting
the system in such a region produces the associated measurement symbol sequence. In the limit
of infinite symbol sequences, the result is a discrete-symbol representation of a continuous-state
system—a representation that, as we will show, is often much easier to analyze. In this way a
chosen partition creates a symbol sequenceπ(X) = S which describes the continuous dynamics as
a sequence of symbols. The choice of partition then is equivalent to our instrument-design problem.

The effectiveness of a partition (in the zero-noise limit) can be quantified by estimating the en-
tropy rate of the resulting symbolic sequence. To do this we consider length-L words s

L =

1For a recent overview consult [2] and for a review of current applications see [3] and references therein.



sisi+1 . . . si+L−1. Theblock entropy of length-L sequences obtained from partitionP is then

HL(P) = −
∑

s
L∈AL

p(sL) log2 p(s
L) , (2)

wherep(sL) is the probability of observing the wordsL ∈ AL. From the block entropy theentropy
rate can be estimated as the following limit

hµ(P) = lim
L→∞

HL(P)

L
. (3)

In practice, it is often more accurate to calculate the length-L estimate of the entropy rate using

hµL(P) = HL(P)−HL−1(P) . (4)

Another key result in symbolic dynamics says that the entropy of the original continuous system is
found using generating partitions [6, 7]. In particular, the true entropy rate maximizes the estimated
entropy rates:

hµ = max
{P}

hµ(P) . (5)

Thus, translated into a statement about experiment design,the results tell us to design an instrument
so that it maximizes the observed entropy rate. This reflectsthe fact that we want each measurement
to produce the most information possible.

As a useful benchmark on this, useful only in the case when we know f(x), Piesin’s Identity [8]
tells us that the value ofhµ is equal to the sum of the positive Lyapunov characteristic exponents:
hµ =

∑

i λ
+
i . For one-dimensional maps there is a single Lyapunov exponent which is numerically

estimated from the mapf and observed trajectory{xt} using

λ = lim
N→∞

1

N

N
∑

t=1

log2 |f
′(xt)| . (6)

Taken altogether, these results tell us how to design our instrument for effective observation of
deterministic chaos. Notably, in the presence of noise no such theorems exist. However, [4, 5]
demonstrated the methods developed above are robust in the presence of noise.

In any case, we view the output of the instrument as a stochastic process. A sample realizationD of
lengthN with measurements taken from a finite alphabet is the basis for our inference problem:D =
s0s1 . . . sN−1 , st ∈ A. For our purposes here, the sample is generated by a partition of continuous-
state sequences from iterations of a one-dimensional map ona chaotic attractor. This means, in
particular, that the stochastic process is stationary. We assume, in addition, that the alphabet is
binaryA = {0, 1}. This assumption is motivated by our application to a unimodal map with a
single critical point. A decision point at this critical value produces the assumed binary alphabet
and results in the most compact coarse-graining of the data.In principle, larger alphabets could be
considered, but this would affect the inference process by creating fewer samples of a larger alphabet
without gaining any new information. As a result we choose the simple binary alphabet.

2 Bayesian inference ofk-th order Markov chains

Given a method for instrument design the next step is to estimate a model from the observed mea-
surements. Here we choose to use the model class ofk-order Markov chains and Bayesian inference
as the model estimation and selection paradigm.

Thek-th order Markov chain model class makes two strong assumptions about the data sample. The
first is an assumption of finite memory. In other words, the probability of st depends only on the
previousk symbols in the data sample. We introduce the more compact notation←−s k

t = st−k+1 . . . st

to indicate a length-k sequence of measurements ending at timet. The finite memory assumption
is then equivalent to saying the probability of the observeddata can be factored into the product of
terms with the formp(st|

←−s k
t ). The second assumption is stationarity. This means the probability of

observed sequences does not change with the time position inthe data sample:p(st|
←−s k

t ) = p(s|←−s k)



for any indext. As noted above, this assumption is satisfied by the data streams produced. The
first assumption, however, is often not true of chaotic systems. They can generate time series with
infinitely long temporal correlations. Thus, in some cases,we may be confronted with out-of-class
modeling.

The k-th order Markov chain model classMk has a set of parametersθk = {p(s|←−s k) : s ∈
A,←−s k ∈ Ak}. In the Bayesian inference of the model parametersθk we must write down the
likelihoodP (D|θk,Mk) and the priorP (θk|Mk) and then calculate the evidenceP (D|Mk). The
posterior distributionP (θk|D,Mk) is obtained from Bayes’ theorem

P (θk|D,Mk) =
P (D|θk,Mk) P (θk|Mk)

P (D|Mk)
. (7)

The posterior describes the distribution of model parameters θk given the model classMk and
observed dataD. From this the expectation of the model parameters can be found along with
estimates of the uncertainty in the expectations. In the following sections we outline the specification
of these quantities following [9, 10].

2.1 Likelihood

Within theMk model class, the likelihood of an observed data sample is given by

P (D|θk,Mk) =
∏

s∈A

∏

←−s k∈Ak

p(s|←−s k)n(←−s ks) , (8)

wheren(←−s ks) is the number of times the word←−s ks occurs in sampleD. We note that Eq. (8) is
conditioned on the start sequence←−s k

k−1 = s0s1 . . . sk−1.

2.2 Prior

The prior is used to describe knowledge about the model class. In the case of theMk model class,
we choose a product of Dirichlet distributions—the so-called conjugate prior [9, 10]. Its form is

P (θk|Mk) =
∏

←−s k∈Ak

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))
δ(1−

∑

s∈A

p(s|←−s k))
∏

s∈A

p(s|←−s k)α(←−s ks)−1 , (9)

where α(←−s k) =
∑

s∈A α(←−s ks) and Γ(x) is the gamma function. The prior’s parameters
{α(←−s ks) : s ∈ A,←−s k ∈ Ak} are assigned to reflect knowledge of the system at hand and must be
real and positive. An intuition for the meaning of the parameters can be obtained by considering the
mean of the Dirichlet prior, which is

Eprior[p(s|
←−s k)] =

α(←−s ks)

α(←−s k)
. (10)

In practice, a common assignment isα(←−s ks) = 1 for all parameters. This produces a uniform prior
over the model parameters, reflected by the expectationEprior[p(s|

←−s k)] = 1/|A|. Unless otherwise
stated, all inference in the following uses the uniform prior.

2.3 Evidence

The evidence can be seen as a simple normalization term in Bayes’ theorem. However, when model
comparison of different orders and estimation of entropy rates are considered, this term becomes a
fundamental part of the analysis. The evidence is defined

P (D|Mk) =

∫

dθk P (D|θk,Mk)P (θk|Mk) . (11)

It gives the probability of the dataD given the model orderMk. For the likelihood and prior derived
above, the evidence is found analytically

P (D|Mk) =
∏

←−s k∈Ak

Γ(α(←−s k))
∏

s∈A Γ(α(←−s ks))

∏

s∈A Γ(n(←−s ks) + α(←−s ks))

Γ(n(←−s k) + α(←−s k))
. (12)



2.4 Posterior

The posterior distribution is constructed from the elements derived above according to Bayes’ the-
orem Eq. (7), resulting in a product of Dirichlet distributions. This form is a result of choosing the
conjugate prior and generates the familiar form

P (θk|D,Mk) =
∏

←−s k∈Ak

Γ(n(←−s k) + α(←−s k))
∏

s∈A Γ(n(←−s ks) + α(←−s ks))

× δ(1−
∑

s∈A

p(s|←−s k))
∏

s∈A

p(s|←−s k)n(←−s ks)+α(←−s ks)−1 . (13)

The mean for the model parametersθk according to the posterior distribution is then

Epost[p(s|
←−s k)] =

n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)
. (14)

Given these estimates of the model parametersθk, the next step is to decide which orderk is best
for a given data sample.

3 Model comparison of ordersk

Bayesian model comparison is very similar to the parameter estimation process discussed above.
We start by enumerating the set of model orders to considerM = {Mk : k ∈ [kmin, kmax]}. The
probability of a particular order can be found by considering two factorings of the joint distribution
P (Mk,D|M). Solving for the probability of a particular order we obtain

P (Mk|D,M) =
P (D|Mk,M)P (Mk|M)

P (D|M)
. (15)

where the denominator is given by the sumP (D|M) =
∑

Mk′∈M P (D|Mk′ ,M)P (Mk′ |M).
This expression is driven by two components: the evidenceP (D|Mk,M) derived above and the
prior over model ordersP (Mk|M). Two common priors are a uniform prior over orders and an
exponential penalty for the size of the modelP (Mk|M) = exp(−|Mk|). For ak-th order Markov
chain the size of the model, or number of free parameters, is given by |Mk| = |A|

k(|A| − 1). To
illustrate the method we will consider only the prior over ordersk with a penalty for model size.

4 Estimating entropy rates

The entropy rate of an inferred Markov chain can be estimatedby extending the method for inde-
pendent identically distributed (IID) models of discrete data [11] usingtype theory [12]. In simple
terms, type theory shows that the probability of an observedsequence can be suggestively rewritten
in terms of theKullback-Leibler (KL) distance and the entropy rate Eq. (3). This form suggests a
connection to statistical mechanics and this, in turn, allows us to find average information-theoretic
quantities over the posterior by taking derivatives. In thelarge data limit, the KL distance vanishes
and we are left with the desired estimation of the Markov chain’s entropy rate.

We introduce this new method for computing the entropy rate for two reasons. First, the result is
a true average over the posterior distribution, reflecting an adherence to Bayesian methods. Sec-
ond, this result provides a computationally efficient method for entropy rate estimation without need
for linear algebra packages. This provides a distinct benefit when large alphabets or Markov chain
ordersk are considered. The complete development is beyond our scope here, but will appear else-
where. However, we will provide a brief sketch of the derivation and quote the resulting estimator.

The connection we draw between inference and information theory starts by considering the product
of the prior Eq. (9) and likelihood Eq. (8)P (θk|Mk)P (D|θk,Mk) = P (D, θk|Mk). This product
forms a joint distribution over the observed dataD and model parametersθk given the model class
Mk. Writing the normalization constant from the prior asZ to save space, this joint distribution
can be written, without approximation, in terms of conditional relative entropiesD[·‖·] and entropy
rateshµ[·]

P (D, θk|Mk) = Z 2−βk(D[Q‖P ]+hµ[Q])2+|A|k+1(D[U‖P ]+hµ[U ]) , (16)



whereβk =
∑

←−s k,s n(←−s ks) + α(←−s ks). The set of probabilities used above are

Q =

{

q(←−s k) =
n(←−s k) + α(←−s k)

βk

, q(s|←−s k) =
n(←−s ks) + α(←−s ks)

n(←−s k) + α(←−s k)

}

(17)

U =

{

q(←−s k) =
1

|A|k
, q(s|←−s k) =

1

|A|

}

, (18)

whereQ is the distribution defined by the posterior mean,U is a uniform distribution, and
P = {p(←−s k), p(s|←−s k)} are the “true” parameters given the model class. The information theory
quantities are given by

D[Q‖P ] =
∑

s,←−s k

q(←−s k)q(s|←−s k) log2

q(s|←−s k)

p(s|←−s k)
(19)

hµ[Q] = −
∑

s,←−s k

q(←−s k)q(s|←−s k) log2 q(s|
←−s k) . (20)

The form of Eq. (16) and its relation to the evidence motivates the connection to statistical me-
chanics. We think of the evidenceP (D|Mk) =

∫

dθkP (D, θk|Mk) as apartition function
Z = P (D|Mk). Using conventional techniques from statistical mechanics, the expectation and
variance ofD[Q‖P ] + hµ[Q] are obtained by taking derivatives of− logZ with respect toβk. In
this senseD[Q‖P ] + hµ[Q] plays the role of an internal energy andβk is comparable to an inverse
temperature. We take advantage of the known form for the evidence provided in Eq. (12) to calculate
the desired expectation resulting in

Epost[D[Q‖P ] + h[Q] ] =
1

log 2

∑

←−s k

q(←−s k)ψ(0)
[

βkq(
←−s k)

]

(21)

−
1

log 2

∑

←−s k,s

q(←−s k)q(s|←−s k)ψ(0)
[

βkq(
←−s k)q(s|←−s k)

]

,

where the polygamma function is defined asψ(n)(x) = dn+1/dxn+1 log Γ(x). The meaning of the
terms on the RHS of Eq. (21) is not immediately clear. However, we can use an expansion of the
n = 0 polygamma functionψ(0)(x) = log x − 1/2x + O(x−2), which is valid forx ≫ 1, to find
the asymptotic form

Epost[D[Q‖P ] + hµ[Q] ] = Hk+1[Q]−Hk[Q] +
1

2βk

|A|k(|A| − 1) . (22)

From this expansion we can see that the first two terms make up the entropy ratehµk[Q] =
Hk+1[Q] − Hk[Q]. And the last term must be associated with the conditional relative entropy
between the posterior mean estimate (PME) distributionQ and the true distributionP . Assum-
ing the conditions for the approximation in Eq. (22) hold, the factor1/βk tells us that the desired
expectation will approach the entropy rate as1/N , whereN is the length of the data sample.

5 Experimental setup

Now that we have our instrument design and model inference methods fully specified we can de-
scribe the experimental setup used to test them. Data from simulations of the one-dimensional
logistic map, given byf(xt) = rxt(1 − xt), at the chaotic value ofr = 4.0 was the basis for the
analysis. A fluctuation level ofσ = 10−3 was used for the added noise. A random initial condition
in the unit interval was generated and one thousand transient steps, not analyzed, were generated to
find a typical state on the chaotic attractor. Next, a single time seriesx0, x1, . . . , xN−1 of length
N = 104 was produced.

A family of binary partitionsP(d) = {“0” ∼ x ∈ [0, d), “1” ∼ x ∈ [d, 1]} of the continuous-
valued states was produced for two hundred decision pointsd between0 and1. That is, values in
the state time series which satisfiedxt < d were assigned symbol0 and all others were assigned1.
Given the symbolic representation of the data for a particular partitionP(d), Markov chains from
orderk = 1 to k = 8 were inferred and model comparison was used to select the order that most
effectively described the data. Then, using the selected model, values of entropy ratehµ(d) versus
decision pointd were produced.



6 Results

The results of our experiments are presented in Fig. 1. The bottom panel of Fig. 1(a) shows the
entropy ratehµ(d) versus decision point estimated using Eq. (21). Note the nontrivial d depen-
dence ofhµ(d). The dashed line shows an accurate numerical estimate of theLyapunov exponent
using Eq. (6). It is also known to beλ = 1 bit per symbol from analytic results. We note thathµ(d)
is zero at the extremes ofd = 0 andd = 1; the data stream there is all1s or all0s, respectively.
The entropy rate estimate reaches a maximum atd = 1/2. For this decision point the estimated
entropy rate is approximately equal to the Lyapunov exponent, indicating this instrument results in
a generating partition and satisfies Piesin’s identity. In fact, this value ofd is also known to produce
a Markov partition.

The top panel of Fig. 1(a) shows the Markov chain orderk used to produce the entropy rate estimate
for each value ofd. This dependence ond is also complicated in ways one might not expect. The
orderk has two minima (ignoringd = 0 andd = 1) at d = 1/2 andd = f−1(1/2). These
indicate that the model size is minimized for those instruments. This is another indication of the
Markov partition forr = 4.0 andd = 1/2. These results confirm that the maximum entropy-rate
instrument produces the most effective instrument for analysis of deterministic chaos in the presence
of dynamical noise. The model order is minimized at the generating partition.
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Figure 1: Analysis of a single data stream of lengthN = 104 from the logistic map atr = 4.0 with
a noise levelσ = 10−3. Two hundred evenly spaced decision pointsd ∈ [0, 1] were used to define
measurement partitions.

Now let’s consider the model-order estimation process directly. The bottom panel of Fig. 1(b) shows
the estimated entropy ratehµ(k) versus model order for four different decision points. A relative
minimum in the entropy rate for a givend selects the model order. This reflects an optimization
for the most structure and smallest Markov chain representation of the data produced by a given
instrument. The top panel in this figure shows the model probability versusk for the same set of
decision points, illustrating exactly this point. The prior over model orders, which penalizes for
model size, selects the Markov chain with lowestk and smallest entropy rate.



7 Conclusion

We analyzed the degree of randomness generated by deterministic chaotic systems with a small
amount of additive noise. Appealing to the well developed theory of symbolic dynamics, we demon-
strated that this required a two-step procedure: first, the careful design of a measuring instrument
and, second, effective model-order inference from the resulting data stream. The instrument should
be designed to be maximally informative and the model inference should produce the most compact
description in the model class. In carrying these steps out an apparent conflict appeared: in the first
step of instrument design, the entropy rate was maximized; in the second, it was minimized. More-
over, it was seen that instrument design must precede model inference. In fact, performing the steps
in the reverse order leads to nonsensical results, such as using the one or the other extreme decision
pointd = 0 or d = 1.

The lessons learned are very simply summarized: Use all of the data and nothing but the data.
For deterministic chaos careful decision point analysis coupled with Bayesian inference and model
comparison accomplishes both of theses goals.
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