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Abstract	
	

Seismic	 nowcasting	 uses	 counts	 of	 small	 earthquakes	 as	 proxy	 data	 to	
estimate	the	current	dynamical	state	of	an	earthquake	fault	system.		The	result	is	an	
Earthquake	Potential	Score	(EPS)	that	characterizes	the	current	state	of	progress	of	
a	defined	geographic	region	through	its	nominal	earthquake	"cycle".	 	The	count	of	
small	 earthquakes	 since	 the	 last	 large	 earthquake	 is	 the	 natural	 time	 that	 has	
elapsed	since	 the	 large	 earthquake	 (Varotsos	et	al.,	2006).	 	 In	 addition	 to	natural	
time,	 there	 are	 other	 ways	 to	 characterize	 small	 earthquakes	 that	 include	 other	
types	of	data.		One	of	these	is	Shannon	Information	Entropy	("information"),	an	idea	
that	was	pioneered	by	Shannon	(1948).		As	a	first	step	to	adding	seismic	information	
into	 the	 nowcasting	method,	 we	 develop	 a	method	 for	 incorporating	magnitude	
information	into	the	natural	time	counts	by	using	event	self-information.		We	find	in	
this	first	application	of	seismic	information	entropy	that	the	EPS	values	are	similar	
to	the	values	using	only	natural	time.			
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Introduction	
	 The	 determination	 of	 earthquake	 risk	 for	 geographic	 regions	 is	 an	 old	

problem	that	has	been	associated	with	the	development	of	methods	for	forecasting	
and	 prediction	 (Holliday	 et	 al,	 2016;	 Scholz,	 2002;	WGCEP1).	 	 In	many	ways,	 the	
problem	of	earthquake	forecasting	bears	similarities	to	the	problem	of	forecasting	
in	weather	 and	 economic	 systems	 (Jolliffe	 and	 Stephenson,	 2003;	OECD2).	 	 In	 all	
these	cases,	probabilities	of	future	activity	are	calculated	using	physical	or	statistical	
models,	and	then	validated	by	backtesting	and	prospective	testing.			

	 An	 associated	question	 is	 the	degree	 to	which	past	 and	present	conditions	
convey	information	about	future	conditions.		For	the	case	of	weather	forecasting,	the	
continual	 improvement	 of	 forecasting	 methods	 is	 evidence	 that	 there	 is	
considerable	information	contained	in	past	data,	and	that	the	improvement	of	data	
acquisition	via	satellite	observations	maps	into	better	probabilities	of	future	activity	
(Marshall	et	al.,	2006).	

	 An	important	goal	is	therefore	to	quantify	the	amount	of	information	that	is	
contained	 in	 past	 activity.	 	 In	 order	 to	 address	 this	 question,	we	 begin	 with	 the	
simpler	idea	of	nowcasting,	and	apply	ideas	from	the	field	of	Shannon	Information	
Entropy.	 	Nowcasting	 is	a	simpler	form	of	 risk	estimation	than	 forecasting,	and	is	
therefore	readily	amenable	to	analysis	of	information	content.			
	
Nowcasting	

Nowcasting	 refers	 to	 the	use	 of	 proxy	data	 to	 estimate	 the	 current	dynamical	
state	 of	 a	 driven	 complex	 system	 such	 as	 earthquakes,	 neural	 networks,	 or	 the	
financial	markets	(Rundle	et	al.,	2016;	refs).		In	previous	papers	(Rundle	et	al.,	2016,	
2017,	2018),	a	method	 to	nowcast	 earthquakes	has	been	presented	based	on	 the	
natural	time	count	of	small	earthquakes	after	the	last	large	earthquake	in	a	defined,	
seismically	active	geographic	region.			

The	 basic	 idea	 is	 that	 the	 recurring	 pattern,	 or	 cycle,	 of	 "large	 earthquake-
quiescence-large	 earthquake"	 is	 characterized	 by	 an	 "earthquake	 clock"	 that	 in	
some	way	quantitatively	describes	the	region	(e.g.,	Rogerson,	2018;	Hill	and	Prejean,	
2007).		Nowcasting	is	a	method	that	can	be	used	to	statistically	define	the	current	
state	of	this	earthquake	clock.	

In	the	nowcasting	method,	a	"large"	geographic	region	is	 identified	 in	which	a	
"local"	region	of	 interest	 is	embedded.	 	The	primary	assumption	in	the	method	 is	
that	the	frequency-magnitude	statistics	of	the	large	region	are	the	same	as	the	those	
of	 the	 local	 region.	 	 From	a	practical	 standpoint,	 this	 implies	 that	 the	Gutenberg-
Richter	b-value	is	assumed	to	be	the	same	in	both	regions.				

In	addition	to	these	points,	there	have	been	a	series	of	papers	discussing	the	idea	
of	 earthquake	 triggering.	 	 This	 is	 associated	 with	 the	 idea	 of	 "clock	 advance"	
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whereby	a	previous	earthquake	will	advance	the	earthquake	clock	of	the	region	of	
interest	so	that	a	large	earthquake	would	occur	sooner	than	it	otherwise	would	(e.g.,	
Gomberg	 et	 al.,	 1998;	 Savage	 and	 Marone,	 2008;	 Rogerson,	 2018).	 	 For	 these	
applications,	it	is	important	to	understand	the	current	state	of	the	earthquake	clock,	
since	a	clock	advance	early	 in	the	earthquake	cycle	may	not	be	as	significant	as	a	
clock	 advance	 late	 in	 the	 earthquake	 cycle.	 	 Nowcasting	 provides	 at	 least	 an	
approximate	answer	to	the	question	of	the	current	state	of	the	earthquake	clock.	

	
Data	

The	nowcasting	 technique	 relies	 on	 seismic	 catalogs	 that	 are	 complete,	 in	 the	
sense	that	all	events	whose	magnitude	is	larger	than	a	completeness	threshold	have	
been	detected.		In	the	large	geographic	region,	many	large	earthquakes	are	required	
to	define	the	inter-event	statistics	of	the	small	earthquakes	in	natural	time.			

As	an	example,	this	paper	considers	the	"large"	geographic	region	to	be	the	entire	
Earth,	and	the	"small"	regions	to	be	polygonal	source	regions	for	great	earthquakes.		
More	 specifically,	 we	 consider	 "large"	 earthquakes	 of	 magnitude	 ! ≥ 7.9,	 and	
"small"	earthquakes	of	magnitude	6 ≤ ! < 7.9.	 	An	example	is	shown	in	Figure	1,	
which	displays	all	earthquakes	of	magnitude	! ≥ 7.9	occurring	since	1900,	together	
with	14	polygonal	source	regions.	 	Note	 that	while	 the	exact	choice	of	the	source	
regions	is	arbitrary,	they	nevertheless	encompass	earthquake	fault	segments	upon	
which	historic	earthquakes	are	known	have	occurred.		These	polygons	were	chosen	
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using	methods	analogous	to	those	used	to	define	seismic	gap	segments	in	previous	
studies	(Kelleher	et	al.,	1973;		Nishenko,	1991;	Scholz,	2002).	

We	then	construct	a	histogram	for	the	number	of	small	earthquakes	between	the	
large	earthquakes	in	the	large	geographic	region.		Focusing	next	on	the	small	region,	
we	count	the	number	of	small	earthquakes	that	have	occurred	since	the	last	large	
earthquake.		Comparing	this	natural	time	count	(Varotsos	et	al.,	2006;	Holliday	et	al,	
2006)	 to	 the	 histogram	 in	 the	 large	 region	 determines	 the	 Earthquake	 Potential	
Score	(EPS)	from	the	Cumulative	Distribution	Function	(CDF)	constructed	from	the	
natural	time	histogram.	

An	example	of	the	EPS	score	is	
shown	 in	 Figure	 2	 for	 the	
Kamchatka	 source	 polygon.	 The	
M9.0	 Kamchatka	 earthquake	
occurred	 in	 that	 polygonal	 source	
region	on	November	4,	1952	(ref).		
An	 associated	 tsunami	 generated	
by	the	earthquake	led	to	the	deaths	
of	10,000	to	15,000	persons	in	the	
Kuril	islands	(WSSPC3).		Runups	as	
high	 as	 15	meters	were	observed	
locally,	 and	 runups	 as	 large	 as	 1	
meter	were	observed	 as	 far	 away	
as	California.	

The	 (green)	 vertical	 bars	 in	
Figure	1	represent	the	numbers	of		
6 ≤ ! < 7.9	earthquakes	between	
the	! ≥ 7.9	great	earthquakes	that	

occurred	worldwide	since	1950.		The	red	curve	ascending	from	lower	left	to	upper	
right	 is	the	CDF	corresponding	 to	 the	histogram.	 	The	current	count	of	251	small	
earthquakes	having	magnitudes	6 ≤ ! < 7.9	since	the	great	earthquake	in	1950	is	
indicated	 by	 the	 red	 dot	 in	 Figure	 1,	 leading	 to	 an	 EPS	 value	 of	 70.4%.	 	 The	
interpretation	of	this	statistic	 is	 that	the	Kamchatka	source	polygon	has	achieved	
70.4%	of	 the	progress	of	 the	 typical	 earthquake	 cycle	characterizing	global	great	
earthquakes,	in	terms	of	the	number	of	small	earthquakes	intervening	between	the	
great	earthquakes.			

The	current	values	of	EPS	scores	for	the	other	13	source	polygons	is	shown	in	
Table	1.		In	some	cases,	the	largest	catalog	earthquake	that	occurred	in	the	source	
polygon	is	less	than	M7.9,	and	is	indicated	in	the	4th	column.		In	other	columns...		
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Shannon	Information	Entropy	
Shannon	 information	 entropy	 was	 developed	 as	 a	 means	 to	 characterize	 the	

information	 content	 transmitted	 between	 a	 source	 and	 a	 receiver	 by	means	of	 a	
communication	channel	(Shannon,	1948;	Cover	and	Thomas,	1991;	Stone,	2015).		In	
his	1948	paper,	Shannon	described	a	method	for	computing	a	metric	for	the	information	
delivered	from	a	source	to	a	receiver	using	only	binary	(yes/no)	decisions.	 Given	an	
“alphabet”	of	symbols,	Shannon	showed	that	the	number	of	decisions	needed	to	send	a	
symbol	 from	 the	 source	 to	 the	 receiver	 defines	 the	 information	 content	 ref	 of	 the	
communication.	He	related	this	to	the	degree	of	surprise,	or	“surprisal”,	of	unanticipated	
content	embedded	in	the	signal.	

The	 typical	 example	 is	 "Alice"	 sending	 a	word	 to	 "Bob"	 by	means	of	 a	 binary	
digital	communication	device.		Alice	must	send	the	message	letter-by-letter.		So	the	
question	is,	how	many	binary	digits	must	Alice	send	to	convey	a	single	letter?		If	each	
letter	 in	 the	 alphabet	 is	 equally	 probable	 (it	 is	 not!),	 the	 answer	 is	 4.7	 bits	 of	
information.		This	value	can	be	determined	by	the	use	of	equation	(1)	below,	using	
a	letter	probability	)* =

,

-.
.				

The	 principal	 objective	 of	 the	 present	 paper	 is	 to	 examine	 the	 role	 of	 Shannon	
information	entropy,	and	similar	arguments,	in	earthquake	physics,	and	by	extension,	in	
other	driven	threshold	systems.	We	take	a	somewhat	different	approach	than	(Giguere	
et	al.,	2018)	who	used	information	theory	to	derive	a	new	magnitude-frequency	relation	
for	earthquake	magnitudes.	Here	we	use	the	known	earthquake	frequency-magnitude	
statistics	 to	confront	 the	 issue	of	how	to	measure	 the	 amount	of	 information	 that	 an	
earthquake	occurrence	is	delivering	to	an	observer.	This	problem	may	have	significance	
to	the	problem	of	earthquake	forecasting	and	nowcasting	ref.	

A	reason	to	believe	that	information	might	be	contained	in	earthquake	sequences	
is	the	idea	that	neural	networks		and	earthquakes	bear	strong	similarities	in	terms	
of	the	governing	equations	(Rundle	et	al.,	2002;	Hopfield,	1994;	Hertz	and	Hopfield,	
1995).	 	 It	 is	 known	 that	 neural	 networks	 convey	 information,	 and	 that	 Shannon	
information	 entropy	methods	 are	 used	 to	 characterize	 their	 information	 content	
(Marzen	et	al.,	2015;	Marzen	and	Crutchfield,	2017).			

In	these	neural	network	systems,	it	is	known	that	neurons	are	simple	elements	
that	 emit	 action	 potentials	 or	 voltage	 "spikes"	 in	 response	 to	 driving	 currents	
(Hopfield,	 1994).	 	Once	 a	 neuron	 fires,	 typically	 at	 a	 level	 of	 -53	mV,	 the	 voltage	
resets	to	around	-70	mV,	followed	by	a	refractory	period	during	which	the	neuron	
does	not	fire.		It	is	believed	that	the	information	is	contained	in	the	temporal	spacing	
between	the	spikes.			

	 On	the	other	hand,	earthquakes	are	caused	by	tectonic	driving	forces	that	lead	
to	 a	 sudden	 slip	 event	 associated	with	 a	 sudden	 change	 in	 fault	 stress	 or	 stress	
"spike".	 	 While	 neural	 networks	 are	 an	 electrical	 system,	 earthquakes	 are	 a	
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mechanical	system.		The	common	features	of	these	two	systems	have	been	listed	by	
(Hopfield,	 Hertz	 and	Hopfield,	 and	Rundle	 et	 al).	 For	 these	 reasons,	we	pursue	 a	
program	similar	to	the	(Marzen	et	al.,	2015;	Marzen	and	Crutchfield,	2017)	approach	
to	 analyze	 the	 information	 content	 of	 earthquake	 sequences.	 	We	 begin	with	 an	
analysis	of	the	information	contained	by	the	magnitude	of	the	events	in	earthquake	
sample	sequences.			

To	understand	information	entropy,	 one	 starts	with	 an	 “alphabet”	of	 symbols,	 each	
symbol	indexed	by	the	integer	i.	In	our	case,	the	alphabet	will	be	a	sequence	of	discrete	
magnitude	“bins”	centered	on	a	value	mi,	each	bin	being	of	width	∆m	→	0.	Although	we	
will	use	earthquake	magnitude,	some	studies	suggest	that	additional	information	might	
be	found	by	evaluating	the	probabilities	of	earthquake	 intervals.		The	probability	that	an	
earthquake	has	a	magnitude	mi	is	denoted	as		)* .			

For	a	system	having	discrete	states	indexed	by	an	integer	i,	Shannon	defined	the	
self-information	Ii	as:	

/* = 	− log-()*)	 	 	 	 	 (1)		
(Cover	and	Thomas,	1991;	Stone,	2015).			

The	equation	for	average	or	expectation	of	Shannon	self-information	is:	
	

/	 ≡	< /* >	= 	∑ )* log-()*)* 	 	 	 	 (2)	
	
Note	that	it	is	required	that	0 ≤ )* ≤ 1	and	that	∑ )** 	= 	1.		As	a	result,	/ ≥ 0.		Also,	note	

that	by	construction,	/	is	an	expectation	or	average.		As	a	common	practice,	we	will	refer	to	
/	as	simply	the	Shannon	information.	

Although	we	will	use	earthquake	magnitude,	the	neural	network	studies	suggest	that	
additional	 information	might	 be	 found	 by	evaluating	 the	 probabilities	 of	 earthquake	
intervals.	 	 In	 this	 respect,	 we	 might	 find	 ourselves	 discussing	 the	 similarities	 and	
distinctions	between	magnitude	entropy	and	interval	entropy.	Similarly,	we	might	find	
ways	 to	 evaluate	 entropy	of	 slip-rate	distributions,	 and	other	 earthquake	 related	
quantities.	 A	 potentially	 important	 question	might	 be,	 is	 entropy	 change	 in	 one	
variable	correlated	with	entropy	change	 in	another	variable?	This	might	imply	some	
sort	of	information	principle	important	to	earthquake	predictability.	
	
Magnitude		Information			

We	first	examine	magnitude	information,	and	to	do	so,	we	start	with	the	Gutenberg-	
Richter	distribution:	

<(≥ =) = 10>?@A 	 	 	 	 	 (3)	
	

Equation	(5)	can	be	interpreted	as	the	survivor	distribution:	
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	B(=	|=D) 	≡ 	<(≥ =)	 	 	 	 	 (4)	
	

for	 magnitudes	 m,	 given	 the	 catalog	 completeness	 magnitude	 mc.	 	 The	 associated	
cumulative	distribution	function	P(m	|	mc)	is	then:	
	

E(=|=D) = 10>?@A 	 	 	 	 	 (5)	
	

Using	the	substitution	F ≡ G ln(10),	the	associated	probability	density	function	
I(=)	in	magnitude	space	is	then	found	from	differentiating	(5):	

	I(=) = FJK(AL?A) 	 	 	 	 	 	 (6)	
	

We	note	that	the	for	the	discrete	
case,	 the	 probability	 p(m∆)	 that	 the	
magnitude	lies	between	(m,	m	+	∆m)	
is:		

	
)(=∆) = E(= ≤ =∆ ≤ = + ∆=)	

=	10@(AL?	A)(1 − 10?@∆A)		
	 (7)	

where	Δ=	is	the	coarse-grained	
magnitude	element.	

In	 this	 case,	 the	 “alphabet”	 of	
symbols	 being	 transmitted	 is	 the	
sequence	of	magnitude	bins	beginning	
at	 the	 completeness	 magnitude	 mc,	
and	 having	 width	 ∆m.	 For	 this	
numerical	calculation,	 the	probability	
for	a	bin	centered	on	magnitude	value	
m	can	be	obtained	from	equation	(6):	

	
)(=P) = Q(=P)Δ=	 = 	FJ(AL?A)	Δ=		 	 	 (8)	

	
Results	

Following	on	the	approach	of	Giguere	et	al.	(2018)	and	Rundle	et	al.	(2018),	we	
wish	to	extend	the	natural	time	count	in	the	nowcasting	technique	to	a	statistic	that	
includes	not	 only	 the	natural	 time	 count,	 but	 also	 the	 earthquake	magnitude.	 	 In	
future	 work,	 we	 also	 want	 to	 account	 for	 the	 time	 intervals	 between	 small	
earthquakes,	 but	 for	 the	 present,	 we	 focus	 on	magnitude.	 	 Results	 are	 shown	 in	
Figure	2.			
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We	 replace	 the	
counts	 of	 small	
earthquakes	 with	 the	
sum	 of	 the	 self	
information	 in	
magnitude	 space	 using	
equations	 (1)	 and	 	 (8)	
(see	 Giguere	 et	 al.,	
2018;	 Rundle	 et	 al.,	
2018).	 	 Further,	 we	
assume	that	the	coarse	-
grained	 magnitude	
element	 is	given	by	 the	
typical	 magnitude	

resolution	of	Δ= ≈ 0.1.		The	result	is	shown	in	Figure	3	for	the	same	polygon	as	in	
Figure	 2,	 the	 Kamchatka	 source	 polygon,	 source	 of	 the	 1952	 M9.0	 Kamchatka	
earthquake	and	tsunami.		Here	the	EPS	is	64.8%,	compared	to	the	previous	natural	
time	count-based	value	of	70.4%.	

Comparing	 Figures	
2	and	3,	 it	 can	be	seen	
that	 there	 is	 relatively	
little	 difference	
between	 the	values	 for	
the	 EPS.	 	 Data	 for	 the	
remainder	 of	 the	 13	
source	 polygons	 is	
shown	 in	 Table	 2,	
analogous	 to	 Table	 1.		
As	 is	 discussed	 more	
extensively	 in	 Giguere	
et	 al.	 (2018),	 most	 of	
the	 information	 is	
contained	 in	 the	

smaller	events,	primarily	because	there	are	so	many	more	of	them.			This	raises	the	
question	of	whether	this	method	could	be	modified	to	more	strongly	emphasize	the	
larger	of	the	small	events.			
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To	 emphasize	 this	 last	 point,	 we	 show	 in	 Figure	 4	 the	 frequency-magnitude	
relation	for	a	region	of	radius	1000	km	around	Tokyo,	Japan.		In	Figure	4a,	data	are	
for	 the	 time	 interval	 from	 1/1/1970	 through	 the	 last	 event	 prior	 to	 the	 M9.1	
earthquake	 on	 March	 11,	 2011.	 	 Figure	 4b	 shows	 the	 data	 following	 the	 M7.7	
aftershock	up	to	the	present.			

Figure	4a	shows	that	the	data	are	well	fit	at	almost	all	magnitude	intervals	by	a	

Gutenberg-Richter	scaling	line	having	a	slope,	or	b-value	of	1.0	±	0.1.	 	This	can	be	
considered	to	be	the	long-term	average	behavior	of	earthquakes	in	the	region.		On	
the	other	hand,	the	data	in	Figure	4b	show	that	the	scaling	line	is	first	re-established	
at	 the	 small	 magnitude	 end,	 and	 that	 there	 is	 a	 deficiency	 of	 larger	 magnitude	
earthquakes	relative	to	the	scaling	line.		The	b-value	of	the	scaling	line	is	1.04	±	0.1,	
nearly	 the	 same	 as	 in	 Figure	 4a.	 This	 deficit	 in	 larger	 earthquakes	 is	 eventually	
removed	as	larger	earthquakes	occur.			

	
Summary	and	Conclusions	

This	 paper	 has	 been	 concerned	with	 a	 first	 study	 to	 incorporate	measures	 of	
Shannon	information	entropy	into	the	nowcasting	method.		A	question	that	has	been	
addressed	elsewhere	is	the	issue	of	the	sensitivity	of	the	EPS	values	to	the	data	used	
to	define	the	histogram	and	therefore	the	CDF.		We	have	shown	in	companion	papers	
(Rundle	et	al.,	2017;	Rundle	et	al.,	2018)	that	the	nowcasting	method	is	generally	not	
very	sensitive	to	the	choice	of	large	spatial	region	defining	the	histogram,	leading	to	
a	standard	error	of	approximately	±	10%.		However,	the	method	is	strongly	sensitive	
to	issues	of	catalog	completeness	(Rundle	et	al.,	2018).		

We	have	found	that	in	this	first	study,	the	results	of	using	magnitude	information	



 10 

are	similar	 to	those	 found	using	only	natural	time	counts	of	events.	 	The	primary	
reason	for	this	is	that	even	though	large	magnitude	events	carry	more	information	
than	 small	 magnitude	 events,	 there	 are	 many	 more	 small	 magnitude	 events	 at	
approximately	the	catalog	completeness	magnitude.		Thus	the	information	entropy	
at	these	small	events	dominates	the	total	self-information	sum.		Further	work	will	
investigate	techniques	to	focus	attention	on	primarily	the	largest	events.		In	future	
work	we	also	plan	to	incorporate	temporal	information	in	the	Shannon	information	
measures	through	the	use	of	methods	similar	to	those	developed	in	connection	with	
models	 for	 Epidemic	 Type	 Aftershock	 Sequences	 and	 their	 derivative	 methods	
(Ogata,	2004;	Helmstetter	and	Sornette,	2003;	Turcotte	et	al.,	2007).	
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