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Building on parallels between geometric quantum mechanics and classical mechanics, we explore
an alternative basis for quantum thermodynamics that exploits the differential geometry of the
underlying state space. We focus on microcanonical and canonical ensembles, looking at the geometric
counterpart of Gibbs ensembles for distributions on the space of quantum states. We show that
one can define quantum heat and work in an intrinsic way, including single-trajectory work. We
reformulate thermodynamic entropy in a way that accords with classical, quantum, and information-
theoretic entropies. We give both the First and Second Laws of Thermodynamics and Jarzynki’s
Fluctuation Theorem. Overall, this results in a more transparent physics than conventionally
available. The mathematical structure and physical intuitions underlying classical and quantum
dynamics are seen to be closely aligned. The experimental relevance is brought out via a stochastic
model for chiral molecules (in the two-state approximation) and Josephson junctions. Numerically,
we demonstrate this invariably leads to the emergence of the geometric canonical ensemble.
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I. INTRODUCTION

Geometric quantum mechanics (GQM) exploits the tools
of differential geometry to analyze the phenomenology of
quantum systems. It does so by focusing on the interplay
between statistics and geometry of quantum state space.
For finite-dimensional quantum systems—that we con-
sider here—the state space H is isomorphic to a complex
projective space CPn of dimension n = D − 1, where
D := dim H. Our goal is to explore the statistical and
thermodynamic consequences of the geometric approach.
In particular, structural and informational properties can
be properly formulated. And, the close parallels in the
mathematical foundations of classical and quantum dy-
namics become clear.
To the best of our knowledge, the development of the
geometric formalisms started with early insights from
Strocchi [1] and then work by Kibble [2], Marsden [3],
Heslot [4], Gibbons [5], Ashtekar and Shilling [6, 7], and a
host of others [8–18]. Although geometric tools for quan-
tum mechanics are an interesting topic in their own right,
the following explores their consequences for statistical
mechanics and nonequilibrium thermodynamics.
As one example in this direction, Brody and Hughston
[19–21] showed that a statistical mechanics treatment of
quantum systems based on the geometric formulation
differs from standard quantum statistical mechanics: The
former can describe phase transitions away from the ther-
modynamic limit, the latter not [22]. This arises, most
directly, since the geometric formulation puts quantum
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mechanics on the same footing as the classical mechanics
of phase space [1, 4], bringing to light the symplectic ge-
ometry of quantum state space. It is then straightforward
to build on the principles of classical statistical mechanics
to layout a version of quantum statistical mechanics that
takes advantage of such state-space features.
That said, these insights do not come for free. The co-
nundrum of a consistent foundation of thermodynamic
behavior arises. On the one hand, we have quantum sta-
tistical mechanics—a description of macroscopic behavior
that, despite limitations, has proven to be remarkably
successful. On the other, transitioning from microphysics
to macrophysics via quantum mechanics is conceptually
different than via classical mechanics. Consistency be-
tween these approaches begs for a conceptually unique
route from microphysics to macrophysics.
With this broad perspective in mind, unifying the two co-
existing statistical mechanics of quantum systems, though
challenging, deserves further attention. To address the
challenge, the following advocates a geometric develop-
ment of a practical, macroscopic companion of geometric
quantum statistical mechanics—a geometric quantum
thermodynamics.
Beyond foundations, geometric quantum thermodynamics
is all the more timely due to recent success in driving
thermodynamics down to the mesoscopic scale. There
statistical fluctuations, quantum fluctuations, and col-
lective behavior not only cannot be neglected, but are
essential. Largely, this push is articulated in two research
thrusts: stochastic thermodynamics [23, 24] and quan-
tum thermodynamics [25, 26]. The following draws ideas
and tools from both, in effect showing that geometric
tools provide a robust and conceptually-incisive crossover
between them.
Our development unfolds as follows. First, it recalls the
basic elements of geometric quantum mechanics. Sec-
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ond, it shows how this formalism emerges naturally in
a thermodynamic context. Third, it describes our ver-
sion of the statistical treatment of geometric quantum
mechanics—what we refer to as geometric quantum sta-
tistical mechanics. Fourth, it builds on this to establish
two fundamental equations of geometric quantum ther-
modynamics. The first is a novel version of the first
law of quantum thermodynamics, with its definition of
quantum heat and quantum work. The second is a quan-
tum version of Jarzynski’s inequality—one that does not
require a two-time measurement scheme. Fifth, the devel-
opment proposes an experiment that highlights geometric
quantum thermodynamics’ practical relevance. Finally,
it expands on the geometric approach’s increasing rele-
vance to the thermodynamics of quantum information
and computing.

II. GEOMETRIC QUANTUM MECHANICS

Geometric quantum mechanics arose from efforts
to exploit differential geometry to probe the often-
counterintuitive behaviors of quantum systems. This
section summarizes the relevant concepts, adapting them
to our needs. Detailed expositions are found in the origi-
nal literature [1, 2, 4–7, 9–18]. Here, we present the main
ideas in a constructive way, focusing on the aspects that
are of direct relevance to thermodynamic behavior.
Any statistical mechanics requires an appropriate, work-
able concept of ensemble. To do this, one identifies ensem-
bles with coordinate-invariant measures on the space of
quantum states, a treatment first introduced in Ref. [19].
We call these distributions geometric quantum states and
in Ref. [27] we give a generic procedure to compute them
in a quantum thermodynamic setting of a small system
interacting with a large environment.
Achieving this, though, requires a series of technical steps.
The first identifies the manifold of pure states and defines
their observables. The second introduces a suitable metric,
scalar product, and coordinate-invariant volume element
for the pure-state manifold. From these, the third step
derives the evolution operator and equations of motion.
Finally, states are described via functionals that map
observables to scalar values. This is done so that the
associated ensembles are coordinate-invariant measures.
Our quantum system of interest has Hilbert space H of
finite dimension D. The space of pure states is there-
fore the complex projective space P (H) ∼ CPD−1 [10].
Given an arbitrary basis {|eα〉}D−1

α=0 a generic pure state
is parametrized by D complex homogeneous coordinates
Zα, up to normalization and an overall phase:

|ψ〉 =
D−1∑
α=0

Zα |eα〉 ,

where Z ∈ CD, Z ∼ λZ, and λ ∈ C/ {0}.

For example, the pure state Zqubit of a single qubit can
be given real coordinates: Zqubit = (√p,

√
1− peiν). An

observable O is a quadratic real function of the state. It
associates to each point of the pure-state manifold P (H)
the expectation value 〈ψ| O |ψ〉 of the corresponding op-
erator O on that state:

O(Z) =
∑
α,β

Oα,βZαZ
β (1)

and Oβ,α = Oα,β . And so, O(Z) ∈ R.

These complex projective spaces are Kahler spaces. This
means there is a function K, which in our case is K =
logZ · Z, from which one obtains both a metric g:

gαβ = 1
2∂α∂β logZ · Z ,

with gαβ = gβα, and a symplectic two-form:

Ω = 2igαβdZα ∧ dZ
β
,

using shorthand ∂α := ∂/∂Z
α. It is not too hard to see

that these two structures are parts of the Hermitian form
that defines the scalar product 〈ψ1|ψ2〉 in H. Indeed,
using the standard notation, one has [5]:

〈ψ1|ψ2〉 = g(Z1, Z2) + iΩ(Z1, Z2) ,

Each geometric term provides an independent volume
element.

Agreement between these volumes, together with invari-
ance under unitary transformations, selects a unique
coordinate-invariant volume element dVFS [19], based
on the Fubini-Study metric on CPD−1:

dVFS = 1
(D − 1)!

(
Ω
2

)
∧
(

Ω
2

)
∧ . . . ∧

(
Ω
2

)
(2a)

=
√

det g(Z,Z)dZdZ . (2b)

(See also Ref. [10] for a textbook treatment.) Equipped
with this unique volume element, the total volume of the
pure-state manifold CPD−1 is [5, 10]:

Vol (CPn) = πD−1

(D − 1)! .

Since symplectic geometry is the correct environment in
which to formulate classical mechanics, one can see how
the geometric formalism brings classical and quantum
mechanics closer together—a point previously raised by
Strocchi [1] and made particularly clear by Heslot [4].
Indeed, as in classical mechanics, the symplectic two-
form Ω is an antisymmetric tensor with two indices that
provides Poisson brackets, Hamiltonian vector fields, and
the respective dynamical evolution.
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Given two functions A and B on manifold P(H) we have:

Ω(A,B) = ∂αA∂βBΩαβ

= {A,B} ,

where we used Ω = 1
2ΩαβdZα ∧ dZ

β and Ωαβ = (Ω−1)αβ
is the inverse: ΩαγΩγβ = δαβ . Using the symplectic two-
form one can show that Schrödinger’s unitary evolution
under operator H is generated by a Killing vector field
VH as follows:

V αH = Ωαβ∂βh(Z) (3a)
dF

dt
= {F, h} (3b)

where h(Z) =
∑
αβ HαβZ

αZ
β and F : P(H) → R is a

real but otherwise arbitrary function. Indeed, it can be
shown that Schrödinger’s equation is nothing other than
Hamilton’s equations of motion in disguise [4, 10]:

d |ψt〉
dt

= −iH |ψt〉 ⇐⇒ dF

dt
= {F, h} , (4)

for all F . Here, we use units in which ~ = 1.

This framework naturally views a quantum system’s states
as the functional encoding that associates expectation
values with observables; as done in the C∗-algebra for-
mulation of quantum mechanics [28]. Thus, states are
described via functionals P [O] from the algebra A of
observables to the reals:

P [O] =
∫
P(H)

p(Z)O(Z)dVFS ∈ R ,

for p(Z) ≥ 0 and all O ∈ A. Here, p is the distribution
associated to the functional P . It is important to note here
that dVFS and O(Z) are both invariant under coordinate
changes. Thus, for P [O] to be a scalar, p(Z) must be
a scalar itself. A pure state |ψ〉 ∈ H is represented by
a Dirac-delta functional concentrated on a single point
of P(H). However, Dirac delta-functions δ(·) are not
invariant under coordinate changes: They transform with
the inverse of the Jacobian: δ → δ/detJ .

To build an invariant quantity, then, we divide it by
the square root √g of the metric’s determinant. This
transforms in the same way, making their ratio δ̃ = δ/

√
g

an invariant quantity. This is a standard rescaling that
turns coordinate-dependent measures, such as Cartesian
measure, into coordinate-invariant ones. And, this is how
the Fubini-Study measure Eq. (2) is defined from the
Cartesian product measure. Thus:

Pψ0 [O] =
∫
P(H)
δ̃[Z − Z0]O(Z)dVFS

= O(Z0)
= 〈ψ0| O |ψ0〉 , (5)

where:

δ̃[Z − Z0] = 1
√
g

∏
α

δ(Zα − Zα0 )

and:

δ(Zα − Zα0 ) = δ(Re[Zα]− Re[Zα0 ])δ(Im[Zα]− Im[Zα0 ]) .

This extends by linearity to ensembles ρ =∑M
k=1 pk |ψk〉 〈ψk| as:

Pρ[O] =
M∑
h=1

pk

∫
P(H)
δ̃[Z − Zk]O(Z)dVFS

=
M∑
h=1

pkO(Zk)

=
M∑
h=1

pk 〈ψk| O |ψk〉 .

It is now quite natural to consider generalized ensembles
that correspond to functionals with a continuous measure
on the pure-state manifold.

Such ensembles have appeared previously in Refs. [9, 19–
21] and elsewhere, where aspects of their properties have
been investigated extensively. For our purposes, it will be
useful to look at such ensembles from the following point
of view.

Consider a probability measure on the natural numbers:
{pk} such that pk ≥ 0 and

∑
k pk = 1. Now let Zk be a

countable collection of points in P(H), then δk(dZ) is the
Dirac measure concentrated on the point Zk. Then, given
{pk} one can define the measure µ(dZ) on P(H) as:

µ(dZ) =
∞∑
k=1

pkδk(dZ) , (6)

which gives precise meaning to the notion of a geometric
quantum state with support on a countably-infinite num-
ber of points. Indeed, with the measure in Eq.(6) and
arbitrary observable function O(Z) one has that:

P∞[O] =
∫
P(H)
O(Z)µ(dZ)

=
∞∑
k=1

pkO(Zk) .

In more general terms, calling B the Borel σ-algebra of
the open sets of P(H), then, this procedure defines a
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measure µ on P(H) such that for a set S ∈ B one has:

µ(S) =
∫
S

µ(dZ)

=
∞∑
k=1

pkI(Zk ∈ S) ,

where I(Zk ∈ S) is the indicator function which is 1 if
Zk ∈ S and zero otherwise.

The resulting geometric quantum state has all the prop-
erties desired of an appropriately-generalized pure-state
ensemble: It preserves normalization and convexity of
linear combinations, each of its elements are invariant
under coordinate changes, and the entire functional P∞
is also invariant under unitary transformations. With
some abuse of language, we will often refer to both the
functional P and their underlying measure µ as geometric
quantum states.

III. GEOMETRIC QUANTUM STATE AND
THE THERMODYNAMIC LIMIT

We are now equipped to address how the geometric for-
malism arises quite naturally for subsystems of a larger
system in a pure state; in particular, in a quantum ther-
modynamic setting.

If we have a bipartite system HAB = HA ⊗ HB and
|ψAB〉 =

∑
α,i ψ

αi
AB |aα〉 |bi〉 ∈ HAB , the partial trace over

the subsystem B is:

ρA =
dA∑

α,β=1
ρAαβ |aα〉〈aβ | ,

where:

ρAαβ =
dB∑
i=1

ψαiψ
βi

= (ψψ†)αβ .

dA and dB are A’s and B’s dimensions, respectively.
Hence, we can write the partial trace as:

ρA =
dB∑
j=1
|vj〉〈vj | ,

with |vi〉 ∈ HA given as:

|vi〉 :=
dA∑
α=1

ψαi |aα〉 .

However, |vj〉 is not normalized. To address this, we

notice that:

〈vj |vk〉 = (ψ†ψ)jk
= ρBjk

= 〈bj | ρB |bk〉 .

This gives:

pBk = ρBkk

=
dA∑
α=1

∣∣ψαk∣∣2 .

We see that 〈vj |vk〉 is a Gramian matrix of vectors
|vj〉 ∈ HA that conveys the information about the re-
duced state ρB on the subspace HA. Though the vectors
|vk〉 are not normalized, we readily define their normalized
counterpart:

|χk〉 := |vk〉√
〈vk|vk〉

=
dA∑
α=1

ψαk√∑dA
β=1 |ψβk|

2
|aα〉 .

And, eventually, we obtain:

ρA =
dB∑
k=1

pAk
∣∣χAk 〉〈χAk ∣∣ , (7)

where {|χj〉}dBj=1 is a set of dB pure states on HA which,
usually, are nonorthogonal. This provides the following
geometric quantum state, at fixed dB :

µAdB (dZ) :=
dB∑
k=1

pBk δχk (dZ) ,

where δχk is the Dirac measure with support only on the
point χk ∈ P(HA) corresponding to the ket |χk〉.

While it is possible to track all information about
{
pAk
}dB
k=1

for small dB, in the thermodynamic limit this rapidly
becomes infeasible. A probabilistic description becomes
more appropriate. One could object that this is not a
concern since, at each step in the limit, the spectral
decomposition ρA =

∑dA
i=1 λi |λi〉 〈λi|, where the λi are

the Schmidt coefficients of |ψAB〉, is always available.
However, this retains only ρA’s matrix elements, erasing
the information contained in the vectors |vj〉 =

√
pAj
∣∣χAj 〉.

That is, ρB has been erased from the description.
However, this information can be crucial to understand-
ing A’s behavior. The geometric formalism resolves this
issue as it naturally keeps the “relevant” information by
handling measures and probability distributions. In the
limit of a large “environment” B, despite the fact that
storing all information about the environment’s details
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is exponential in B’s size, the geometric quantum state’s
form (convex sum of Dirac deltas) facilitates working
with smooth approximations of increasing accuracy. It
does so by retaining the information about its “purifying
environment”.

Since we are interested here in the thermodynamics, one
needs to operationally define the thermodynamic-limit
procedure. We do so by confining ourselves to modular
systems and defining an iterative procedure. Modular
systems are those made by identical subsystems, each
described by a Hilbert space Hd of dimension d. Thus, we
imagine our system to contain NA such repetitive units,
while the environment contains NB ≥ NA. This means
HA = H⊗NAd and HB = H⊗NBd , so that dA = dNA and
dB = dNB . At any given iteration, the joint system will
always be in a pure state |ψAB(NB)〉 ∈ HA ⊗HB .

We also imagine that the system’s global dynamics has a
Hamiltonian HAB of fixed functional form. For example,
the XXZ model. Starting with NB = NA, at each step
we add one repetitive unit NB → NB + 1 and choose a
series of pure states {|ψAB(NB)〉}NB with the required
property that the limit of the average energy has to be
finite:

lim
NB→∞

〈ψAB(NB)|HAB |ψAB(NB)〉
NA +NB

= ε .

For example, one can decide to consistently pick the
ground state of the Hamiltonian HAB . In general, though,
there is no unique way of performing the procedure. How-
ever, with any specific choice of the series {|ψAB(NB)〉}NB
satisfying the constraint on average energy, the procedure
is well-defined, physical, and meaningful. It provides an
operational way to study the thermodynamic limit of the
geometric quantum state µAdB .

That said, by no means does this guarantee the limit
always exists. However, it does allow exploring it in
a physically meaningful way. In particular, given this
operational implementation of the thermodynamic limit,
we say that:

lim
dB→∞

µAdB = µA∞ ,

This requires a geometric quantum state µA∞ on P(HA)
such that, for any ε > 0 arbitrarily small, one can always
find some finite dB such that for any dB ≥ dB one has that
D(µAdB , µ

A
∞) ≤ ε. Here, D(µ, ν) is a notion of distance

between geometric quantum states that we take to be
the measure-theoretic counterpart of the total variation
distance: D(µ, ν) := supS∈B |µ(S)− ν(S)|, where B is
σ-algebra of P(H)’s Borel sets.

When the limit exists, we say that the thermodynamic
limit of the geometric quantum state is µA∞ or, equiva-

lently, PA∞:

PA∞ [O] =
∫
P(HA)
µA∞(dZ)O(Z)

=
∞∑
k=1

pAkO(χAk ) .

PA∞ is a functional whose operational meaning is under-
stood in terms of ensemble theory, as explained above.
Geometric quantum states describe ensembles of indepen-
dent and noninteracting instances of the same quantum
system whose pure states are distributed according to a
given probability distribution. Loosely speaking, if we
pick a random pure state out of the ensemble described by
PA∞, the probability of finding it in a small region around
Z is dPZ = µA∞(dZ).

IV. FROM GEOMETRY TO STATISTICS

Several observations serve to motivate defining statistical
mechanics using the geometric formalism. Consider a
large system consisting of a macroscopic number M of
qubits from which we extract, one by one, N qubit states.
Describing small subsystems of a macroscopic quantum
system places us in the realm of quantum statistical me-
chanics. It is therefore reasonable to assume that the
qubit states are distributed according to Gibbs’ canonical
state γβ = e−βH/Zβ . This is statistically meaningful
by means of ensemble theory and, thus, interpreted as
a collection of identical noninteracting systems, each in
an energy eigenstate, with relative frequency given by
Boltzmann rule.

However, one can see how the assumption that all systems
must be in one of the energy eigenstates can be relaxed.
After we extract the k-th sample from the macroscopic
system, that sample’s state is supposed to be an energy
eigenstate

∣∣∣E(k)
i

〉
with probability p(Z(|E(k)

i 〉)) ∝ e−βE
(k)
i .

A priori, however, there is no reason to assume that the
Hamiltonians Hk of all the samples are identical to each
other. In fact,

∣∣Ehi 〉 6= ∣∣Eki 〉 and Ehi 6= Eki . Even if
they are, in principle there is no reason why the qubits
should be in their energy eigenstates. This point was
originally made by Khinchin [29] and Schrödinger [30],
who advocated for the use of ensembles of wave-functions.

To address this, a description of the system’s state that
does not contain this assumption is provided by the contin-
uous counterpart of Gibbs canonical state, first introduced
in Ref. [19], written as the following functional:

Pβ [A] = 1
Qβ [h]

∫
P(H)
e−βh(Z)A(Z)dVFS ,
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where:

Qβ [h] =
∫
P(H)
e−βh(Z)dVFS ,

with h(Z) =
∑
αβ HαβZ

βZ
α. While this distribution

retains a characteristic feature of the canonical Gibbs
ensemble:

pβ
(
Z(|En〉)

)
pβ
(
Z(|Em〉)

) = e−β(En−Em) ,

it also extends this “Boltzmann” rule to arbitrary states:

− log
[
pβ
(
Z(|ψ〉)

)
pβ
(
Z(|φ〉)

) ] = β [h(Z(ψ))− h(Z(φ))] .

Therefore, formulating the statistical mechanics of quan-
tum states via the geometric formalism differs from the
standard development, based on an algebraic formalism.
This becomes obvious when we write the Gibbs canonical
density matrix γβ in the geometric formalism:

pGibbs(Z) =
D−1∑
k=0

e−βEk

Tr e−βH δ[Z − Z(|Ek〉)]

6= e−βh(Z)

Qβ [h] .

This makes explicit the standard formalism’s assump-
tion that the measure is Dirac-like—peaked on energy
eigenstates.
Despite quantum statistical mechanics’ undeniable suc-
cesses, this assumption is not, in general, justified. In
point of fact, it is the origin of the missing environmen-
tal information noted above. These arguments motivate
an alternative formulation of the statistical mechanics
of quantum systems, first introduced in Ref. [19]—one
based on geometric quantum states rather than on the
familiar density matrices.

V. STATISTICAL TREATMENT OF
GEOMETRIC QUANTUM MECHANICS

Representing a quantum system’s state as a continuous
mixed state was first broached, to our knowledge, by
Brody and Hughston [19, 20]. Our goal here is to advance
the idea, going from statistical mechanics to thermody-
namics. To set the stage for a geometric quantum thermo-
dynamics, the following first presents our version of their
results, derived via the formalism defined in Sec. III, and
then expands on them. We begin with the fundamental
postulate of classical statistical mechanics and its adap-
tation to quantum mechanics—the microcanonical and
canonical ensembles.

A. Classical microcanonical ensemble: A priori
equal probability

At its most basic level, the fundamental postulate of clas-
sical statistical mechanics is that, in an isolated system’s
phase space, microstates with equal energy have the same
chance of being populated. Calling ~q and ~p generalized
velocities and positions, which provide a coordinate frame
for the classical phase-space, the postulate corresponds to
assuming that the microcanonical probability distribution
Pmc of finding the system in a microstate (~p, ~q) is, at
equilibrium:

Pmc(~q, ~p) =
{

1/W (E) if E(~q, ~p) ∈ [E , E + δE ]
0 otherwise

.

Here, W (E) is the number of microstates (~q, ~p) belonging
to energy shell Imc := [E , E + δE ]:

W (E) =
∫
E(~q,~p)∈Imc

d~q ∧ d~p ,

with
∫
d~q ∧ d~p Pmc(~q, ~p) = 1.

B. Quantum microcanonical ensemble: A priori
equal probability

Quantum statistical mechanics relies on the quantum
version of the Gibbs ensemble. For macroscopic isolated
systems this is usually interpreted as the quantum system
having equal chance pmc to be in any one of the energy
eigenstates |En〉, as long as En ∈ Imc:

pmc(En) =
{

1/Wmc ifEn ∈ [E , E + δE ]
0 otherwise

.

Here, Wmc =
∑
En∈Imc

1 is the number of energy eigen-
states that belong to the microcanonical window Imc.
Thus, the equal-probability postulate provides the follow-
ing definition for the microcanonical density matrix:

ρmc = 1
Wmc

∑
En∈Imc

|En〉 〈En| .

Geometric quantum mechanics gives an alternative way
to extend equal-probability to quantum systems, which
we discuss now.

C. Geometric quantum microcanonical ensemble:
A priori equal probability

The following summarizes an approach to the statistical
mechanics of quantum systems first presented in Refs.
[19, 20, 22]. In geometric quantum mechanics the role
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of the Hamiltonian operator as the generator of unitary
dynamics is played by the real quadratic function:

h(Z) =
∑
αβ

HαβZ
αZ

β
,

where Hαβ are the matrix elements of the Hamiltonian
operator in a reference basis; see Eq. (3). As h is the
generator of Liouville dynamics on the pure-state manifold
P(H), it is easy to see that there is a straightforward
geometric implementation of the a-priori-equal-probability
postulate in the quantum setting:

pmc(Z) =
{

1/Ω(E) h(Z) ∈ Imc, for all Z ∈ P(H)
0 otherwise

.

Due to normalization, Ω(E) is the volume of the quantum-
state manifold enclosed by the microcanonical energy shell
Imc:

Ω(E) =
∫
h(Z)∈Imc

dVFS .

where dVFS is the Fubini-Study volume element intro-
duced in Sec. II. In probability-and-phase coordinate
Zα = √pαeiνα the volume element has the explicit form:

dVFS =
n∏
α=1

dpαdνα
2 .

Following Heslot [4], we introduce dimensional coordinates
via:

Zα = Xα + iY α√
~

,

where Xα and Y α are real numbers with dimensions
[X] =

[√
~
]

= Length
√

Mass/Time and [Y ] =
[√

~
]

=
Momentum

√
Time/Mass. The ratio X/Y is a pure num-

ber, while their product XY has the dimension ~ of an
action. Note that dpαdνα/2 = dXαdYα/~. This allows us
to write the Fubini-Study measure in a classical fashion:

dVFS =
D−1∏
α=1

dXαdY α

~

= d ~Xd~Y

~D−1 ,

where the Xα play the role of generalized coordinates
and Y α that of generalized momenta. However, it is
worth noting that the global geometry of the classical
phase-space differs substantially from that of P(H).

Given these definitions, it is now possible to calculate the
number of states Ω(E) ≈ ω(E)δE , where δE is the size of
the microcanonical energy shell and ω(E) is the density

of states:

ω(E) =
∫
h(Z)=E

dVFS

= πD−1

(D − 1)!

D−1∑
k=0

D−1∏
j 6=k,j=0

(E − Ek)+

(Ej − Ek) ,

where (x)+ := max(0, x). Since E ∈ [E0, Emax], there
exists an n such that E ∈]En, En+1[. This means that we
can stop the sum at k = n(E) since for all k > n we have
(E − Ek)+ = 0. This gives:

ω(E) = πD−1

(D − 1)!

n(E)∑
k=0

(D − 1)(E − Ek)D−2∏D−1
j 6=k,j=0(Ej − Ek)

. (8)

This is in agreement with Ref. [20]’s Eq. (5). Appendix
B 3 provides a detailed proof, using a convenient mathe-
matical result by Ref. [31].

Figure 1. Alternate ensembles in the geometric and standard
settings: Differences are plainly evident. Canonical probability
distributions on a qubit’s state manifold CP 1 with coordinates
Z = (Z0, Z1) = (

√
1− q,√qeiχ) where q ∈ [0, 1] and χ ∈

[−π, π]. CP 1 discretized using a 100-by-100 grid on the (q, χ)
coordinates exploiting the fact that, with these coordinates, the
Fubini-Study measure is directly proportional to the Cartesian
volume element dVFS = dqdχ/2. The Hamiltonian is H =
σx + σy + σz, with ~ = 1 and inverse temperature β = 5
(kB = 1). (Right) Gibbs ensemble where circles enclose the
positions around the coordinates of the respective eigenvectors(
q(|E0〉), χ(|E0〉)

)
= (0.789,−2.356) and

(
q(|E1〉), χ(|E1〉)

)
=

(0.211, 0.785). (Left) Geometric Canonical Ensemble.

D. Quantum canonical ensemble: Statistical
physics of quantum states

The geometric approach to microcanonical ensembles ex-
tends straightforwardly to the canonical case, defining
the continuous canonical ensemble as:

pβ(Z) = e−βh(Z)

Qβ [h] , (9)
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where:

Qβ [h] =
∫
P(H)
e−βh(Z)dVFS .

Reference [19] first proposed the general form of the canon-
ical partition function Qβ [h], working it out explicitly in
several low-dimensional cases. Follow-on work provided
an exact formula valid for arbitrary finite-dimensional
Hilbert spaces [20]. Appendix B 3 provides an alternative
proof and explicit examples of:

Qβ [h] =
D−1∑
k=0

e−βEk∏n
j=0,j 6=k(βEk − βEj)

. (10)

This is in full agreement with Ref. [20]’s Eq. (6).
With the ensembles laid out we can now see the emer-
gence of geometric quantum thermodynamics, with its
fundamental laws.

VI. GEOMETRIC QUANTUM
THERMODYNAMICS

With a consistent statistical geometric quantum mechan-
ics in hand, we can now formulate geometric quantum ther-
modynamics. This is modeled via the geometric canonical
state Eq. (9). Notice that, in this setting, an appropriate
entropy definition has yet to be given. Paralleling early
work by Gibbs, one can consider the functional:

Hq [p] = −kB

∫
P(H)
p(Z) log p(Z)dVFS .

An information-theoretic analysis of this quantity and its
relation with the von Neumann entropy was done in Ref.
[32]. This functional allows properly evaluating p(Z)’s
entropy if and only if the dimension of the support of
p has the same real dimension of CPn. Reference [33]
defined and explored the appropriate generalization to
geometric quantum states with generic support, including
fractal distributions.
Let’s consider Hq’s role, though, for the quantum foun-
dations of thermodynamics. For Eq. (9)’s geometric
canonical ensemble this gives:

Hq = β(U − F ) ,

where:

U :=
∫
P(H)
pβ(Z)h(Z)dVFS and

F := − 1
β

logQβ

are, respectively, the average energy and the free energy
arising from the geometric partition function Qβ .

This means that we can directly import a series of funda-
mental results from classical thermodynamics and statisti-
cal mechanics into the quantum setting, fully amortizing
the effort invested to develop the geometric formalism.

A. First Law

The first result is a straightforward derivation of the First
Law:

dU =
∫
P(H)
dVFSp(Z)dh(Z) +

∫
P(H)
dVFSdp(Z)h(Z)

= dW + dQ . (11)

We call the contribution dW work, since it arises from a
change in the Hamiltonian h(Z) generated by an external
control operating on the system. We call the contribution
dQ heat, as it is associated with a change in entropy.
Indeed, by direct computation one sees that:

dHq = βdQ and dF = dW .

This gives the standard form of the First Law for isother-
mal, quasi-static processes:

dU = TdHq + dF ,

where T := (kBβ)−1. Conforming to the conventional
statistical approach to thermodynamics, beyond energy
conservation, one can use the First Law to extract phe-
nomenological relations (e.g., Maxwell’s relation) that
hold at thermodynamic equilibrium: ∂U/∂Hq = T . In
this, the partial derivatives are intended as infinitesimal
changes occurring while maintaining the system at ther-
mal equilibrium.

B. Second Law

The Second Law follows from the Crooks [34] and Jarzyn-
ski [35] fluctuation theorems [26, 36, 37]. Their treatment
can be straightforwardly exploited, thanks to the Hamil-
tonian nature of Schrödinger’s equation when written on
the quantum-state manifold P(H).
As summarized in Eq. (3), given a Hamiltonian h(Z, λ) on
P(H) that depends on an externally-controlled parameter
λ = λ(t), the unitary evolution is given by the Liouville
equation Eq. (3) as in classical mechanics:

∂p(Z)
∂t

= {p(Z), h(Z, λ)} .

Notably, one can apply Jarzynski’s original argument [38]
to driven quantum systems, without the need to exploit
the two-times measurement scheme [26]. The setup is
standard.
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The ensemble of quantum systems starts in a geometric
canonical state defined by Eq. (9) and is then driven with
a Hamiltonian that depends on a parameter λ following
the time-dependent protocol λ = λ(t) with t ∈ [0, 1].
This leads directly to an ensemble of protocol realizations.
That said, we define the single-trajectory work as:

W =
∫ 1

0
λ̇(t)∂h

∂λ

(
Z(ψt), λ(t)

)
dt ,

where λ̇ = dλ/dt and Z(ψt) are the homogeneous coordi-
nates on CPD−1 for |ψt〉. Therefore, |ψt〉 are the solutions
of Eq. (4).
With these premises, Jarzynski’s original argument applies
mutatis mutandis to give:

〈
e−βW

〉
ens = Qβ [h(λf )]

Qβ [h(λi)]
= e−∆F , (12)

where λ(0) = λi and λ(1) = λf and 〈x〉ens denotes the
ensemble average over many protocol realizations. From
this, one directly applies Jensen’s inequality:〈

e−βW
〉

ens ≥ e
−β〈W 〉
ens

to obtain the Second Law’s familiar form:

〈W 〉ens ≥ F . (13)

VII. GEOMETRIC THERMALIZATION IN A
PHENOMENOLOGICAL MODEL

The validity of geometric quantum thermodynamics, as
defined above, hinges on the assumption of (geometric)
thermal equilibrium. It therefore implicitly relies on a
dynamical mechanism driving the system towards the
geometric canonical ensemble. This section shows that
this occurs in at least one model for the out-of-equilibrium
dynamics of a single qubit.
A quantum system interacting with its surroundings
evolves in a nonunitary fashion due to the fact that it
exchanges energy (or other extensive quantities) and so
becomes correlated with its environment. This can be
modeled using the theory of open quantum systems and
its dissipative dynamics [39–42]. While most approaches
focus on establishing an equation governing the dynam-
ical evolution of the system’s density matrix, here we
are interested in the thermodynamics of the geometric
quantum state as the ensemble behind the density matrix.
A principled description and modeling of the dynamics of
an open quantum system within the geometric approach
is beyond the present scope. Though, its development is
currently ongoing.
Instead, the following shows how to represent dissipation
within the geometric formalism for a stochastic model.

This serves a twofold purpose. First, it provides simple
examples of how geometric quantum mechanics evolves
open quantum systems in a variety of cases. Second,
it supports the theory developed above with a numeric
analysis of an experimentally relevant scenario.
While the emphasis is still on the geometric formalism,
and its natural phase-space geometry, this approach is
not far from “Stochastic Schrodinger Equations”. See, for
example, Refs. [39, 43–46]) that import techniques from
the classical theory of stochastic processes. The following
exploits this idea, applying it to the geometric language
and drawing from a variety of known approaches. It does
so by examining a phenomenological model for dissipa-
tive dynamics that, as we show, exhibits thermalization
towards the geometric canonical ensemble.
It considers the stochastic dynamics of a two-level system
with state space P(H) ∼ CP 1. Generally, this results
from a two-state approximation of a more complex system
interacting with an environment. It gives a standard ap-
proximation that provides sensible results in a variety of
physical regimes. These include systems that inherently
consist of two states, such as spin-1/2, chiral molecules [47–
53], and atoms at low temperature, considering only the
two lowest states. They also include, though, continuous-
variable systems in a double-well potential, Josephson
junctions [54], and effective descriptions of macroscopic
condensates. As a related technical aside beyond quantum
mechanics, we note that the proper analysis and simula-
tion of stochastic dynamics on Riemannian manifolds is
a topic of its own interest [55, 56].
Accounting for the nonisolated nature of the system in-
volves modeling the environment and the latter’s effect
on the effective qubit. This, therefore, depends on the
specific case under study and leads to different effective
equations governing the qubit’s nonequilibrium behavior.
From the system’s perspective, however, a general setup
is available in a regime in which coupling with the envi-
ronment is weak and the environment is effectively large
and disordered. These approximations are expected to
hold for large environments, where one can argue for the
emergence of stochastic dynamics for the evolution of the
open system.
The prototypical case, in which a specific form of these
equations can be derived by integrating out the envi-
ronmental degrees of freedom, is given by the Caldeira-
Leggett model [57–59] with an environment modeled by
an infinite number of noninteracting harmonic oscilla-
tors. Respecting these approximations’ validity, a generic
model of Langevin-like dynamics on CP 1 is:

ṗ = −∂φE + Vp +Wp , (14)
φ̇ = ∂pE + Vφ +Wφ ,

in (p, φ) coordinates. In this, E = E(p, φ) is an effec-
tive Hamiltonian generating the deterministic part of the
dynamics; see Eq. (4). This is a renormalized version
of the system’s Hamiltonian. Vp and Vφ depend linearly
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on (p, φ) and (ṗ, φ̇). They describe (i) dissipative mecha-
nisms such as friction, modeled with a dependence on ṗ
or φ̇, as in standard Langevin equations, and (ii) unstable
states, modeled with a dependence Vp = −kp to allow for
exponential decay pdecay(t) ∼ p0e

−kt, as in a two-level
atom decaying into its ground state.
Finally, Wp and Wφ are stochastic variables with no drift
that account for the environment’s mixing effect on the
system. When the environment is sufficiently large and
unstructured, they can be modeled as Gaussian processes,
E[Wa(s + t)Wb(s)] = E[Wa(t)Wb(0)] ≈ δabγaδ(t), with
a, b ∈ {p, φ} and γa ∝ kBT , with T the temperature of
the environment. This is true in the Caldeira-Leggett
model for Ohmic baths.
As anticipated above, specific forms of these equations
have successfully modeled the evolution of a variety of
two-level systems. We also note how, in several cases,
and also in Refs. [60–64], this approach to open quantum
systems is quite similar to GQM as it relies on canonical
representations of the quantum state space. For chiral
molecules, for example, one has E(p, φ) = δ 〈σx〉+ε 〈σz〉 =
δ2
√
p(1− p) cosφ+ ε(1− 2p), Vp = −kṗ, with k ∼ 10−1,

Wφ = Vφ = 0 and Wp(t) white noise with strength
γp ∝ kBT . The thermodynamics arising from this set
of dynamical equations has been studied in detail [47–53].
The goal here is rather to showcase the experimental rele-
vance of the geometric canonical ensemble. The following
does so showing, numerically, that the evolution provided
by the stochastic equations above leads to the dynamical
emergence of the geometric canonical ensemble. This
is directly relevant to the out-of-equilibrium dynamics
of an ensemble of chiral molecules or of an ensemble of
experiments with Josephson junctions.
The specific stochastic equations under study are:

ṗ = δ2
√
p(1− p) sinφ− kdp− kf φ̇+√γξ(t) (15)

φ̇ = −δ 1− 2p√
p(1− p)

cosφ+ 2ε ,

where kd and kf are coefficients accounting for dissipation
mechanisms, such as instability of a state and friction. Up
to simple re-definition of variables, that does not change
the physics, the model with kd = 0 is the same as in Ref.
[49, 50].
Exploiting the Markovian character of Gaussian noise,
the statistics of many independent realizations of this
stochastic process on CP 1 can be extracted by examin-
ing the time-aggregated statistics of a single, very long,
trajectory. We thus simulate the long-time dynamics of a
qubit initiated in a fully out-of-equilibrium configuration
q0(p, φ) = δ(p−p0)δ(φ−φ0), corresponding to a pure state
|p0, φ0〉 =

√
1− p0 |0〉+

√
p0e

iφ0 |1〉, where |0〉 , |1〉 are the
standard computational basis. For chiral molecules, these
are the (left and right) chiral eigenstates. Here, we show
the results for p0 = 0.9 and φ = 4π/3 and checked that
they do not depend on this choice. Results are shown for
parameter values δ = ε = 1, γ = 0.2, and kd = 0. While

these match the model in Ref. [49, 50], the results are
largely independent of this specific choice and hold for
broad regimes in (δ, ε, kd, γ) parameter space.
The analysis was performed as follows. After generating a
single long-time trajectory using the Milstein method, we
collected statistics P̃nk. We then generated a histogram
to approximate the probability that, at any given time,
the system is found in a small region of the state space
P̃nk ≈ Pr [Z ∈ Ink] = limT→∞

∫ T
0
∫
Ink qt(Z)dVFS . In

this, {Ink}Nn,k=1 is a coarse graining of CP 1 in which
each region Ink = [pn, pn+1] × [φk, φk+1] has the same
Fubini-Study volume µFS(Ink) = N−2, pk = n/N , and
φk = 2πk/N . Reference [33] gives a detailed analysis of
why this is an appropriate coarse-graining, its information-
theoretic relevance, and how to generalize it to arbitrary
CPn.
Concretely, the numerical analysis used N = 50. The
dynamics was generated setting T = 102 in units in which
~ = δ = 1. This was chosen by numerically checking that
the reconstructed histogram does not change significantly
when increasing T . The time window [0, T ] was discretized
to use the Milstein algorithm to generate Gaussian noise
with dt = 10−4. These, again, are consistent with the
choices in Refs. [49, 50]. In short, the number of time
steps NT = 106, with NT dt = T .
To extract the inverse temperature β the collected statis-
tics were used to perform a 2D least-square fit to the
geometric canonical ensemble. The latter’s appropri-
ateness was established by using the following figure
of merit: f =

∑
n,k |P̃nk − qfit

nk|2 ∈ [0, 1], where qfit
nk =

Q−1β∗
∫
Ink dVFSe

−β∗E(Z) and β∗ is the optimal value
extracted from the least-square fit. This is the total
variation distance between the coarse-grained geometric
quantum states obtained from the data

{
P̃nk

}
n,k

and the
one obtained from the best fit to the geometric canonical
ensemble

{
qfit
nk

}
n,k

. It ranges from zero to one and is
the classical analog of the well-known trace-distance for
density matrices. At selected parameters, f ≈ 5.6× 10−4.
This quantifies the visually excellent agreement seen in
Fig. 2.
Before drawing broad conclusions, a few comments are
in order regarding specific results. First, thermalization
is observed even when changing parameter values. This
is true for any of the Hamiltonian parameters, δ and
ε. Moreover, there are good numerical indications that
this holds for any kd > 0. However, kd and γ do affect
the effective (inverse) temperature β∗ the system reaches.
Analyzing how this happens and the underlying mech-
anisms is beyond the present scope, which aimed only
at establishing the predictive relevance of the geometric
canonical ensemble in an experimentally realistic settings.
Second, we ignored issues related to the time-scale at
which the aggregated geometric quantum state reaches
the canonical form. These were bypassed by using a time
window [0, T ] that guaranteed the aggregated data does
not change when increasing T .
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Figure 2. Comparing time-aggregated data of a single trajec-
tory generated by Eq. (15)’s stochastic model (left) to the
fit to a geometric canonical ensemble with functional form as
in Eq. (9) (right). Here, h(Z) = E(p, φ) = δ 〈σx〉+ ε 〈σz〉 =
δ2
√
p(1− p) cosφ+ ε(1− 2p), with δ = ε = 1. The excellent

agreement is visually clear and quantified by a total variation
distance between the two distributions of f ≈ 5.6× 10−4.

Third, Eq. (15)’s model arises from a bath that is a
set of noninteracting harmonic oscillators with Ohmic
correlation functions and interactions linear in the phase
difference φ, leading to a friction ∝ φ̇. A different kind
of interaction is possible, linear in the population p, that
leads to a friction term ṗ. While not reported here, there
are numerical indications that this alternative exhibits
thermalization to the geometric canonical ensemble as
well. This supports the intuition that thermalization is
mostly driven by the lack of memory of the stochastic
term, ultimately due to the Ohmic nature of the bath’s
correlation functions.
Fourth, the effective nature of the description makes the
model widely applicable. And so, a number of straightfor-
ward generalizations would be quite interesting to explore.
These include, for example, changing the noise structure
to accommodate limited memory and allowing for com-
petition between the different ways in which the system
interacts with the harmonic bath and the decay in both
p and φ. Of particular interest, both conceptually and
practically, is determining which terms lead to dynamical
localization and what kinds of system-bath interactions
are necessary for these terms to emerge by integrating
out the bath degrees of freedom.

VIII. SUMMARY AND CONCLUSION

While historically quantum mechanics is firmly rooted
in an algebraic formalism, an alternative based on the
differential geometry of quantum state space P(H) ∼
CPD−1 is readily available.
As previous works repeatedly emphasized [1, 4, 10], the
geometric approach brings quantum and classical mechan-
ics much closer, aiming to leverage the best of both. The
space P(H) of quantum states is a Kähler space, with
two intertwined notions of geometry—Riemannian and
symplectic. It also sports a preferred notion of measure,
selected by invariance under unitary transformations—the

Fubini-Study measure. One can exploit this rich geomet-
ric structure to define generic probability measures on
P(H). The result is a new kind of quantum state—the
geometric quantum state [27]—that generalizes the famil-
iar density matrix but provides more information about
a quantum system’s physical configuration. Essentially, it
expresses the multitude of ensembles, induced by different
environments, behind a density matrix.
Leveraging parallels between the geometric formalism and
classical mechanics, the statistical treatment of geometric
quantum mechanics provides a continuous counterpart of
Gibbs ensembles. Section VI laid out how to establish
quantum thermodynamics on the basis of the geometric
formalism. Building on Section V’s statistical treatment
of geometric quantum mechanics, it derived the First and
Second Laws of Geometric Quantum Thermodynamics.
Despite the two results appearing identical to the existing
laws, derived within standard quantum statistical mechan-
ics, they involve quantities that are genuinely different.
Understanding how Eqs. (11), (12), and (13) connect to
their standard counterparts [26] is a challenge that we
must leave for the future. We note Ref. [65] obtained a
similar result that, lacking the geometric perspective, con-
sidered microcanonical and canonical ensembles of pure
states, as first advocated by Khinchin [29] and Schrödinger
[30].
Remarkably, predictions from standard quantum statisti-
cal mechanics and its geometric counterpart differ. This
poses a challenge: Which theory should one use? Ul-
timately, this problem does not have a generic solution.
Answering the question requires understanding the details
of the long-time dynamic of an open quantum system and,
in general, this will be be model-specific. Here, to show-
case the relevance of the geometric approach, we showed
that there is a class of known stochastic models, aimed
at describing chiral molecules and Josephson’s junctions,
that indeed does exhibit dynamical evolution towards
the geometric canonical ensemble. One thus expects the
predictions from geometric quantum thermodynamics to
hold in the cases where the dynamical model in Eq. (15)
is justified.
The geometric approach to quantum thermodynamics
opens the door to new and interesting questions and
novel research avenues. Let’s mention two. First, the
ensemble interpretation of geometric quantum mechanics
suggests employing the geometric formalism to describe
the thermodynamics of ensembles, rather than relying
on that of density matrices. The main advantage is that
this delineates the environmental resources required to
support a given density matrix. Indeed, while two different
experimental setups can give rise to the same density
matrix, their difference implicitly lies in the distinct ways
the density matrix is created. This is directly relevant
to the energetics of information processing technologies
built from quantum computers and quantum sensors.
Second, from a conceptual perspective, geometric quan-
tum thermodynamics and statistical mechanics are as at
least as powerful as their standard counterpart. Yet, they
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can make different predictions. Self-consistency of thermo-
dynamic predictions suggests that this difference should
be negligible in a truly macroscopic regime in which both
system and environment are macroscopically large. This
is, however, a highly nontrivial statement whose proof
requires a much better understanding of the emergence of
thermodynamic predictions from fully dynamical consid-
erations. We believe the new research avenues, together
with the larger perspective provided by geometric quan-
tum mechanics, will greatly enrich our understanding of
the phenomenology of many-body quantum systems.
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Appendix A: Independent result

For completeness, the following summarizes Ref. [31]’s
result called on in calculating the density of states. Given
the n-simplex ∆n :

{
~x ∈ Rn+ : ~e · ~x ≤ 1

}
, where ~e is the

vector of ones in Rn, a section of the simplex is defined by a
vector ~a ∈ Sn and we want to compute the n-dimensional
and (n− 1)-dimensional volume of the following sets:

Θ(~a, t) := ∆n ∩
{
~x ∈ Rn : ~aT · ~x ≤ t

}
and

S(~a, t) := ∆n ∩
{
~x ∈ Rn : ~aT · ~x = t

}
,

where ~aT is the transpose of ~a. The result assumes flat
geometry, which is obtained from the volume element
dp1dp2 . . . dpn. Letting (x)+ := max(0, x) and a0 = 0,

then:

Vol (Θ(~a, t)) = 1
n!

n∑
k=0

(t− ak)n+∏n
j 6=k , j=0(aj − ak)

= 1
n!

tn∏n
k=1 ak

+ 1
n!

n∑
k=1

(t− aj)n+∏n
j 6=k , j=0(aj − ak)

and:

Vol (S(~a, t)) = 1
(n− 1)!

n∑
k=0

(t− ak)n−1
+∏n

j 6=k , j=0(aj − ak)

= 1
(n− 1)!

tn−1∏n
k=1 ak

+ 1
(n− 1)!

n∑
k=1

(t− aj)n−1
+∏n

j 6=k , j=0(aj − ak)
.

Appendix B: Geometric Quantum Density of States
and Canonical Ensemble

Again for completeness, we first recall the basic definitions,
given in the main text, used in the two sections that follow
to calculate the density of states and statistical physics
of quantum states in the geometric formalism.

1. Setup and notation

Consider a Hilbert space H of finite-dimension D. The
manifold P(H) of states is the complex projective space
CPD−1. A point Z on the manifold is a set of D homo-
geneous and complex coordinates {Zα}. A point corre-
sponds to a pure state with the identification Z ↔ |ψ〉 =∑D−1
α=0 Z

α |eα〉, where {|eα〉}α is an arbitrary but fixed
basis of H. This parametrization underlies the choice of
a reference basis that, however, is ultimately irrelevant.
While concrete calculations of experimentally measurable
quantities can be made easier or harder by an appropriate
coordinate system, the overall result is independent on
such choices. The quantum mechanical expectation value
is a quadratic and real function on the manifold of the
quantum states:

a(Z) := 〈ψ(Z)|A |ψ(Z)〉

=
D−1∑
α,β=0

Aα,βZ
αZ

β
.

When A = H is the system’s Hamiltonian, the function
a(Z) = h(Z) generates the vector field VH on CPD−1.
The associated Hamiltonian equations of motion become
the Schrödinger equation (and its complex conjugate)
when using the standard formalism with Hilbert spaces.
In the geometric formalism, states are functionals from
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the algebra of observables to the real numbers. Effec-
tively, they are probability distributions, both discrete
and continuous, on the quantum-state manifold CPD−1.

2. Microcanonical density of states: Proof of Eq.
(8)

We start with the a priori equal probability postulate and
build the microcanonical shell as follows:

pmc(Z) =
{

1/W (E) if h(Z) ∈ [E , E + δE ]
0 otherwise

.

Due to normalization we have:

W (E) =
∫
h(z)∈Imc

dVFS ,

where dVFS is the volume element of the Fubini-Study
metric:

dVFS = 1
2n dp1dp2 . . . dpndν1 . . . dνn .

This gives the manifold volume:

Vol(CPn) = πn

n! .

For concrete calculations, normalize the measure so that
CPD−1’s total volume is unity, using:

dµn = dVFS
Vol(CPn)

= n!
(2π)n

n∏
k=1

dpk

n∏
k=1

dνk .

This does not alter results in the main text. On the one
hand, calculations of measurable quantities are indepen-
dent of this value. On the other, here, at the calculation’s
end, we reintroduce the appropriate normalization.

We can now computeW (E) for a generic quantum system.
Assuming that δE � |Emax − Emin|, we have W (E) =
Ω(E)δE and Ω(E) is the area of the surface Σ defined by
h(Z) = E :

Ω(E) =
∫

Σ
dσ ,

where dσ is the area element resulting from projecting
both the symplectic two-form and the metric tensor onto
the surface Σ. To compute this we choose an appropriate
coordinate system:

Zα = 〈Eα|ψ(Z)〉
= nαe

iνα

adapted to the surface Σ:

h(Z) = 〈ψ(Z)|H |ψ(Z)〉

=
n∑
k=0

Ek| 〈ψ|Ek〉 |2

=
n∑
k=0

Ekn
2
k

= E .

On both sides we subtract the ground state energy E0
and divide by Emax −E0 to obtain the following defining
equation for Σ ⊂ CPn:

F (n0, n1, . . . , nn, ν1, . . . , νn) =
n∑
k=0

εkn
2
k − ε

= 0 ,

with:

εk = Ek − E0

Emax − E0
∈ [0, 1] and

ε = E − E0

Emax − E0
∈ [0, 1] .

We use octant coordinates for CPn:

(Z0, Z1, . . . , Zn) =
(
n0, n1e

iν1 , n2e
iν2 . . . , nne

iνn
)
,

where nk ∈ [0, 1] and νk ∈ [0, 2π[. With the transforma-
tion pk = n2

k the equation for Σ becomes:

n∑
k=0

pkεk − ε = 0 .

a. Qubit Case

The state space of a single qubit is CP 1. The latter’s
parametrization:

pε0 + (1− p)ε1 = 1− p

means that h(Z) ≤ E is equivalent to 1 − p ≤ ε. The
volume is therefore given by:

Voln=1(E) = 1
π

∫
h(φ)≤E

dVFS

= 1
2π

∫ 1

1−ε
dp

∫ 2π

0
dν

= ε

= E − E0

E1 − E0
.
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In turn, this gives;

Wn=1(E) = Voln=1(E + δE)−Voln=1(E)

= 1
E1 − E0

δE .

In other words:

Ωn=1(E) = 1
E1 − E0

,

which is a constant density of states.

b. Qutrit Case

The state space of qutrits is CP 2, with parametrization
Z = (Z0, Z1, Z2) = (1 − p − q, peiν1 , qeiν2). With these
coordinates, the equations defining the constant-energy
hypersurface is:

(1− p− q)ε0 + pε1 + qε2 = pε1 + q ≤ ε .

And, it has volume:

Voln=2(E) = 2
(2π)2

∫∫
dqdq

∫∫
dν1dν2

= 2
∫∫

S

dpdq .

In this, we have the surface S :={
(p, q) ∈ R2 : p, q ≥ 0, p+ q ≤ 1, q ≤ ε− pε1

}
. Ex-

amining the geometry we directly see that the region’s
area is:

A(S) =
{

1
2 −

1
2

(1−ε)2

1−ε1
when ε ≥ ε1

ε2

2ε1
when ε < ε1

.

Or:

A(S) =
{

1
2 −

1
2

(E2−E)2

(E2−E1)(E2−E0) when E ≥ E1
1
2

(E−E0)2

(E1−E0)(E2−E0) when E < E1
.

One can check that the function A(S)[E ] and its first
derivative are continuous. Eventually, we have:

Wn=2(E) = Voln=2(E + δE)−Voln=2(E)

=
{ 2(E2−E)

(E2−E1)(E2−E0)δE when E ≥ E1
2(E−E0)

(E2−E0)(E1−E0)δE when E < E1
.

c. Generic Qudit Case: CPn

To use Ref. [31]’s result, summarized in App. A, we must
change coordinates. Again, using “probability + phase”

coordinates:
n∑
k=0

pkEk = E

means that:
n∑
k=1

pkak = t(E)

ak = a(Ek)

= Ek − E0

R
,

R =

√√√√ n∑
k=1

(Ek − E0)2
, and

t(E) = E − E0

R
.

In this way, we can apply the result, finding:

Voln (E) =
n∑
k=0

(t− ak)n+∏n
j 6=k , j=0(aj − ak)

=
n∑
k=0

(E − Ek)n+∏n
j 6=k,j=0(Ej − Ek)

.

Since E ∈ [E0, Emax], there exists an n such that E ∈
]En, En+1[. This means that the sum in the second term
stops at k = n because after that (E − Ek)+ = 0. Hence,
there exists n(E) such that for all k > n we have (E −
Ek)+ = 0. This, in turns, shows that:

Voln (E) =
n(E)∑
k=0

(E − Ek)n∏n
j 6=k,j=0(Ej − Ek)

.

This leads to the desired fraction of CPn microstates in
a microcanonical energy shell [E , E + dE ]:

Wn(E) = Ωn(E)dE

=

n(E)∑
k=0

n(E − Ek)n−1∏n
j 6=k,j=0(Ej − Ek)

 dE .

This allows defining the statistical entropy S(E) of a quan-
tum system with finite-dimensional Hilbert space of di-
mension D = n+ 1 as:

S(E) = logWD−1(E) .
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3. Statistical physics of quantum states: Canonical
ensemble

The continuous canonical ensemble is defined as:

ρβ(ψ) = e−βh(ψ)

Qβ [h] ,

where:

Qβ [h] =
∫
CPD−1

e−βh(ψ)dVFS .

The following analyzes the simple qubit case and then
moves to the general treatment of a finite-dimensional
Hilbert space H.

a. Single Qubit

The Hilbert space here is H while the pure-state manifold
is CP 1. And so, we have:

Qβ [h] = 1
4

∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βh(θ,φ) ,

with h(θ, φ) = ~γ · 〈~σ〉 = ~γ ·~b(θ, φ).

Since we consider a single qubit, whose state space is S2

embedded in R3, we can write ~γ ·~b(ψ) = ||~γ|| cos θ, where
θ is the angle between ~γ and ~b(ψ). Thus, we can use an
appropriate coordinate h(φ, θ) = ||~γ|| cos θ aligned with ~γ
to find:

Qβ [h] = π
sinh β||~γ||
β||~γ||

.

Or, using “probability + phase” coordinates (p, ν) we can
also write:

1
2

∫ 1

0
dp

∫ 2π

0
dν e−β[(1−p)E0+pE1] = π

e−βE0 − e−βE1

β(E1 − E0) .

The change in coordinates is given by the result of diag-
onalization: E0 = −||~γ|| and E1 = ||~γ||. This yields the
expected result:

Qβ [h] = π
e−βE0 − e−βE1

β(E1 − E0)

= π
sinh β||~γ||
β||~γ||

.

b. Generic Treatment of CPn

We are now ready to address the general case of qudits:

Qβ [h] =
∫
CPn

e−βh(Z)dVFS

= 1
2n

∫ n∏
k=0

e−βpkEk
n∏
k=1

dpkdνk

= πn
∫

∆n

n∏
k=0

e−βpkEkδ

(
n∑
k=0

pk − 1
)
dp1 . . . dpn .

To evaluate the integral we first take the Laplace trans-
form:

In(r) :=
∫

∆n

n∏
k=0

e−βpkEkδ

(
n∑
k=0

pk − r

)
dp1 . . . dpn

to get:

Ĩn(z) :=
∫ ∞

0
e−zrI(r)dr .

Calculating, we find:

Ĩn(z) =
n∏
k=0

(−1)k

(βEk + z)

= (−1)
n(n+1)

2

n∏
k=0

1
z − zk

.

with zk = −βEk ∈ R.
The function Ĩn(z) has n + 1 real and distinct poles:
z = zk = −βEk. Hence, we can exploit the partial
fraction decomposition of Ĩn(z), which is:

(−1)
n(n+1)

2

n∏
k=0

1
z − zk

= (−1)
n(n+1)

2

n∑
k=0

Rk
z − zk

,

where:

Rk =
[
(z − zk)Ĩn(z)

]
z=zk

=
n∏

j=0, j 6=k

(−1)
n(n+1)

2

zk − zj
.

The inverse Laplace transform’s linearity, coupled with
the basic result:

L−1
[

1
s+ a

]
(t) = e−atΘ(t) ,

where:

Θ(t) =
{

1 t ≥ 0
0 t < 0

,
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gives:

In(r) = L−1[Ĩn(z)](r)

= Θ(r)
n∑
k=0

Rke
zkr .

And so, we finally see that:

Qβ [h] = In(1)

=
n∑
k=0

e−βEk∏n
j=0, j 6=k(βEk − βEj)

.
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