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Predictive equivalence in discrete stochastic processes has been applied with great success to iden-
tify randomness and structure in statistical physics and chaotic dynamical systems and to inferring
hidden Markov models. We examine the conditions under which predictive states can be reliably
reconstructed from time-series data, showing that convergence of predictive states can be achieved
from empirical samples in the weak topology of measures. Moreover, predictive states may be rep-
resented in Hilbert spaces that replicate the weak topology. We mathematically explain how these
representations are particularly beneficial when reconstructing high-memory processes and connect
them to reproducing kernel Hilbert spaces.
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I. INTRODUCTION

With an accurate model in hand, an observer can lever-
age their knowledge of a system’s history to predict its
future behavior. For stochastic processes—distributions
over time-series data—the task of predicting future be-
havior from past observations and the associated resource
constraints this task imposes on an observer have been
studied under the physics of computational mechanics [1].
This subfield of statistical mechanics focuses on the in-
trinsic information-processing embedded in natural sys-
tems.
Its chief insight is the concept of the predictive (or causal)
state. A process’ predictive states play a dual role. On
the one hand, to accurately predict a process’ future be-
havior they are the key objects that an observer must
be capable of reproducing in their model. On the other
hand, the predictive states and their dynamics are cen-
tral to understanding the intrinsic, model-independent
properties of the process itself [1].
The concept of predictive states has found use in numer-
ous settings, such as classical and quantum thermody-
namics [2–4], quantum information and computing [5–8],
condensed matter [9–11], dynamical systems [12], cellular
automata [13], and model inference [14–20]. Addition-
ally, in the setting of processes generated by finite-state,
discrete-output hidden Markov models (HMMs) and gen-
eralized hidden Markov models (GHMMs), a deep mathe-
matical theory of predictive states is now available [1, 21–
25].
Despite their broad utility, a mathematically rigorous
definition of predictive states is needed that is applicable
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and useful for even more general stochastic processes.
Here, we have in mind large-memory processes whose
long-time correlations cannot be finitely represented by
HMMs or GHMMs and processes whose outputs may
span a continuous domain in time and space.
The following takes the next major step towards a rig-
orous and mathematically general definition of predic-
tive states, developing an approach which uses the tools
of functional analysis to better understand the topology
and structure of predictive states, and which applies to
all processes whose observations are temporally discrete
but may otherwise be either discretely- or continuously-
valued.
It has been previously noted [21] that predictive states
are always well-defined and can be convergently approx-
imated from empirical observations for any discretely-
valued stationary and ergodic process. We extend and
deepen this result, relating this convergence to the topol-
ogy of sequences and applying it to continuously-valued
stochastic processes. Next, we expand on recent work on
Hilbert space embeddings of predictive states [20, 26–28],
and demonstrate that such embeddings always exist and
discussing their implications for predictive-state geome-
try and topology. Last, we explore the implications of our
results for empirically reconstructing predictive states via
reproducing kernel Hilbert spaces, particularly through
the addition of new terms in the asymptotic convergence
bounds.

II. ASSUMPTIONS AND PRELIMINARIES

A. Stochastic processes

We begin by laying out a series of definitions and identify-
ing the assumptions made. We draw from the combined
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literature of measures, stochastic processes, and symbolic
dynamics [29, 30].

A stochastic process is typically defined as a function-
valued random variable X : Ω → X T , where (Ω,Σ, µ) is
a measure space, T is a set of temporal indices (perhaps
the real line, perhaps a discrete set), and X is a set of
possible observations (also potentially real or discrete in
nature). We take the sample space Ω to be the set X T
andX to be the identity. In this way, a stochastic process
is identified solely with the measure µ over Ω = X T .

When T is Z, we say the process is discrete-time; when it
is R we say continuous-time. Unless specified otherwise
we assume discrete-time, later treating continuous-time
as an extension of the discrete case. In discrete time, it
is convenient to write X(t) as an indexed sequence (xt),
where each xt is an element of X . When X is a discrete
finite set, we say that the process is discrete-observation;
by continuous-observation we typically mean the case
where X is an interval in R or a Cartesian product of
intervals in Rd. These are the only cases we consider
rigorously. That said, we believe they are sufficient for
many practical purposes or, at least, not too cumbersome
to extend if necessary; in Appendix I we discuss possible
extensions to noncompact X and continuous time.

The temporal shift operator τ : X T → X T simply trans-
lates t 7→ t+ 1: (τX)(t) = X(t+ 1). It also acts on mea-
sures of X T : (τµ)(A) = µ(τ−1A). A stochastic process
paired with the shift operator—(X T ,Σ, µ, τ)—becomes
a dynamical system and is stationary if τµ = µ. It is
further considered ergodic if, for all shift-invariant sets
I ⊆ X T , either µ(I) = 1 or µ(I) = 0. Here, we assume
all processes are both stationary and ergodic.

A consequence of ergodicity, and an equivalent restate-
ment of the property, is given by the following convergent
limit for every measurable function f : X Z → R and µ-
almost every X ∈ X Z:

lim
N→∞

1
N

N−1∑
t=0

f(τ tX) =
∫
f(X)dµ(X)

That is, temporal Monte Carlo averages will converge to
averages over the stationary measure µ. The convergence
rate, and its dependence on X, will vary from process to
process and has no standard form since we are making
no additional assumptions beyond ergodicity.

Examples of stationary and ergodic processes include
Markov chains and hidden Markov chains; however, the
class is much broader than either of these, including also
renewal and hidden semi-Markov processes and processes
generated by probabilistic stack automata.

If X is discrete, then the measurable sets of X Z are gen-

erated by the cylinder sets:

Ut,w := {X : xt+1 . . . xt+` = w } ,

where w ∈ X ` is a word of length `. For a stationary
process, the word probabilities:

Prµ ( x1 . . . x` ) := µ (U0,x1...x`)

are sufficient to uniquely define the measure µ.
In the continuous-observation case, the issue is more sub-
tle. A cylinder set instead takes the form:

Ut,I1...I` := {X : xt+1 ∈ I1, . . . , xt+` ∈ I` } ,

where each It is an interval in X (or product of intervals,
if X ⊆ Rd). This does not lend itself well to express-
ing simple word probabilities; however, we can write the
cylinder probabilities:

Prµ ( I1 . . . I` ) := µ (U0,I1...I`)

Additionally we can define the word measures µ|` by re-
stricting µ to the set X ` describing the first ` values (so
that µ|`(I1×· · ·× I`) = Prµ ( I1 . . . I` )). By choosing in-
tervals of rational dimension centered on rational-valued
points, we can fully characterize any measure using only a
countable number of probabilities Prµ ( I1 . . . I` )—a con-
sequence of Carathéodory extension.

B. Topology, continuity, and convergence on X N

A central feature of our result on predictive states is
that they converge in distribution as more information
from the past is provided. Convergence in distribution
is defined in terms of continuous functions. Namely, a
sequence of measures µk over XN converges to a mea-
sure µ in distribution if, for every continuous function
f : XN → R,

lim
k→∞

∫
XN

f(−→x )dµk(−→x ) =
∫
XN

f(−→x )dµ(−→x )

To relate this definition of convergence to our own in-
tuitions of stochastic processes, we must have a better
understanding of continuity in sequence-space.
The definition of continuity depends on the product
topology, whose neighborhoods are cylinder sets. For the
discrete case, a simple rendering of the definition of con-
tinuity is this: a function f is continuous if, for every
−→x ∈ X and some small number ε > 0, there is a suffi-
ciently large time t such that |f(−→y ) − f(−→x )| < ε when-
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ever y1 . . . yt = x1 . . . xt. In other words, if two sequences
match sufficiently far into the future, then their function
values will be arbitrarily close.
Another feature of continuity on XN comes to us by
virtue of the compactness of the space. Since X is always
assumed to be compact (by virtue of being either a finite
set or a bounded region of Rd), XN is compact as well, by
the Tychonoff theorem. Then the Heine-Cantor theorem
asserts that any continuous function on XN is uniformly
continuous. This means that we can in fact strengthen
our definition of continuity: for any small ε > 0, there
is a single time t > 0 after which it is guaranteed that
|f(−→y )− f(−→x )| < ε for any two −→x and −→y that match on
the first t symbols: y1 . . . yt = x1 . . . xt. In other words,
convergence occurs at (at most) a uniform rate at every
point; there are no “straggler points” that take an arbi-
trarily long time to converge compared to other points.
For the following statement, we call a measure µ full if
it assigns positive measure to every cylinder set.

Proposition 1 (Continuity via word averages). A func-
tion f : XN → R is continuous if and only if the func-
tions:

fµ,`(x1 . . . x`) =

∫
U0,x1...x`

f(−→x )dµ(−→x )
µ(U0,x1...x`)

are continuous on X ` and converge to f(−→x ) uniformly
over −→x and for every full measure µ, as `→∞.

Proof. Suppose f is continuous; then it is uniformly
continuous, and so for every ε > 0 there is a t so that, for
every −→x and µ, |fµ,`(x1 . . . x`)−f(−→x )| < ε. This follows
since f will be close to f(−→x ) on the cylinder set being
averaged over and so the average will be close. Further,
continuity of fµ,` will be inherited from the continuity of
f . Thus, the forward implication is true.
For the converse, consider the fact that fµ,` can be ex-
tended to a function on XN as fµ,`(−→x ) = fµ,`(x1 . . . x`).
Each of these extensions is necessarily continuous on XN.
Since they converge uniformly to f , f must be continu-
ous by virtue of the Uniform Limit Theorem. (The latter
states that a uniform convergence of continuous functions
results in a continuous function.)

Let us keep in mind that if X is discrete, then the re-
quirement that fµ,` is continuous is trivial.
We can now demonstrate that convergence-in-
distribution is equivalent to convergence over word
distributions. We state the full result and then explain
the implications afterward.

Proposition 2 (Equivalence of convergence-over-words
and convergence-in-distribution). Let µk be a sequence of

measures on XN and let µ be a measure over the same.
Then µk → µ in distribution if and only if µk|` → µ|` in
distribution for every `, where ν|` is the projection of the
measure ν to X `.

Proof. By virtue of Prop. 1, on the one hand, for any
continuous function f for all measures ν:

lim
`→∞

∫
fν,`(x1:`)d (ν|`) (x1:`) =

∫
f(−→x )dν(−→x ) .

If we replace ν with µk and µ, respectively, then conver-
gence in distribution has the form:

lim
k→∞

lim
`→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`)

= lim
k→∞

∫
f(−→x )dµk(−→x ) =

∫
f(−→x )dµ(−→x )

for all continuous f .
On the other hand, convergence of µk|` → µ|` for all `
takes the form of the requirement:∫

f(−→x )dµ(−→x ) = lim
`→∞

∫
fµ,`(x1:`)d (µ|`) (x1:`)

= lim
`→∞

lim
k→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`)

for all continuous f .
Equivalence of these two convergences then boils
down to the interchange of limits lim`→∞ limk→∞ ↔
limk→∞ lim`→∞. By the Moore-Osgoode theorem, this
interchange is in fact valid whenever the limit:

lim
`→∞

∫
fµk,`(x1:`)d (µk|`) (x1:`) =

∫
f(−→x )dµk(−→x )

is uniformly convergent over all k. This is guaranteed by
Prop. 1, though, and so the two forms of convergence are
equivalent.

This proposition guarantees that to demonstrate conver-
gence in distribution, it is sufficient that the measures
converge on their marginalizations to finite words. For
discrete X , this means that:

lim
k→∞

Prµk ( w ) = Prµ ( w ) ,

for all w, is equivalent to convergence in distribution.
This is extremely convenient, as word probabilities are
perhaps the most intuitive way to interact with the mea-
sure.
For the case of X ⊂ R, the situation is more subtle.
The Portmanteau theorem [29] states that convergence
in distribution is equivalent to a very weak bounded con-
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vergence over open sets. In our case, this means that:

lim inf
k→∞

Prµk ( I1 . . . I` ) ≥ Prµ ( I1 . . . I` ) ,

for all open neighborhoods I1 × · · · × I` of any length, is
equivalent to convergence in distribution. In fact, what
we prove for predictive states is a somewhat stronger
form of convergence than this. The latter maintains the
equality at each `. This is still not nearly as strong,
though, as other forms of measure convergence and, in
most practical cases, it is equivalent to convergence in
distribution.

III. PREDICTIVE STATES

Each element X ∈ X Z can be decomposed from a bidi-
rectional infinite sequence to a pair of unidirectional
infinite sequences in XN × XN, by the transformation
. . . x−1x0x1 · · · 7→ (x0x−1 . . . , x1x2 . . . ). The first se-
quence in this pair we call the past ←−X and the second
we call the future −→X . From this perspective, a stochastic
process is a bipartite measure over pasts and futures. The
intuitive definition of a predictive state is as a measure
over future sequences that arises from conditioning on
past sequences. Heuristically, Prµ

(−→
X
∣∣∣←−X = x0x−1 . . .

)
represents the “predictive state” associated with past
x0x−1 . . . .
Conditioning of measures is nuanced, especially when the
involved sample spaces are uncountably infinite [31]. Of
the many perspectives that define a conditional measure,
the most practical and intuitive is that a conditional mea-
sure is a ratio of likelihoods—and, in the continuous case,
a limit of such ratios. However, determining the manner
in which this limit must be taken is rarely trivial.
The following considers first the case of discrete obser-
vations, where the matter is relatively straightforward.
Then we examine the case of continuous observations, re-
viewing the previous literature on the nuances of this do-
main and extending its results for our present purposes.
As we will see, in either case, the intuition of predictive
states can be born out in a rigorous and elegant man-
ner for any stochastic process satisfying the assumptions
heretofore mentioned.

A. Discrete observations

Let ←−µ denote the projection of µ to pasts. (We define
this in further detail below.) We begin with the following
result, first noted by Upper [21]:

Theorem 1. For all measures µ on X Z, all ` ∈ N, all
w = x1 . . . x` ∈ X `, and ←−µ -almost all pasts ←−X , where X
is a finite set, the limit:

Prµ
(
w
∣∣∣←−X )

:= lim
k→∞

Prµ ( x−k . . . x0x1 . . . x` )
Prµ ( x−k . . . x0 ) (1)

is convergent.

In the discrete case, there are only a countable number
of words w. Thus, if for each w the set of converging←−
X ’s is measure-one, then the intersection of these sets is
also measure one. That is, Eq. (1) converges for all w
for µ-almost all ←−X . The convergent word probabilities
define a measure ε[←−X ] ∈ M(XN) over future sequences,
uniquely determined by the requirement ε[←−X ](U0,w) =
Prµ

(
w
∣∣∣←−X )

. Combining this observation with Prop. 2
leads to the corollary:

Corollary 1. For all measures µ on X Z and µ-almost
every past ←−X ∈ XN, the measures η`[

←−
X ] defined by:

η`[
←−
X ](U0,w) = Prµ ( w | x−`+1 . . . x0 ) (2)

converge to ε[←−X ] in distribution:

η`[
←−
X ]→ ε[←−X ] , (3)

as `→∞.

This ε[←−X ] is the predictive state of ←−X and the function
ε : XN →M(XN), the prediction mapping. Corollary 1 is
an important extension of Theorem 1, as it provides the
topological context for understanding the convergence of
predictive states. And, this is useful when we examine
the relation to reproducing kernel Hilbert spaces.

We present an alternative proof to that used by Up-
per, though. This sets the stage for our proof in the
continuous-observation case. Our strategy consists in re-
defining the problem.

The Eq. (1) limit can be recast as a likelihood ratio. The
convergence of likelihood ratios is itself closely related to
the theory of Radon-Nikodym derivatives between mea-
sures. Specifically, the Radon-Nikodym derivative can be
computed as a convergence of likelihood ratios if (i) that
convergence is taken over a particular class of neighbor-
hoods, called a differentiation basis, and (ii) that basis
has a property called the Vitali property. We define these
concepts below and use them to prove Theorem 1.

Recall ←−µ denotes the projection of µ to pasts, and let
←−µ x`...x1 be the measure on pasts that precede the word
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w := x1 . . . x`. These are given by the word probabilities:

Pr←−µ ( x0 . . . x−k ) := Prµ ( x−k . . . x0 )
Pr←−µ x`...x1

( x0 . . . x−k ) := Prµ ( x−k . . . x0x1 . . . x` ) ;

or, alternatively, by the measure values:

←−µ (U0,x0...x−k) := µ(U−k+1,x−k...x0)
←−µ x`...x1(U0,x0...x−k) := µ(U−k+1,x−k...x0x1...x`) .

Then Eq. (1) can be recast in the form of a convergence
of likelihood ratios, taken over a sequence of cylinder sets
Uk := U0,x0...x−k converging on ←−x :

Prµ
(
x1 . . . x`

∣∣∣←−X )
= lim
k→∞

←−µ x`...x1 (Uk)
←−µ (Uk) . (4)

This reformulation, though somewhat conceptually cum-
bersome, is useful due to theorems that relate the conver-
gence of likelihood ratios to the Radon-Nikodym deriva-
tive. Indeed, wherever Eq. (4) converges, it will be equal
to the Radon-Nikodym derivative d←−µ x`...x1/d

←−µ (←−X ).

To use these theorems we must define a differentiation
basis. Any collection of neighborhoods D in XN may be
considered a differentiation basis if for every ←−X ∈ XN,
there exists a sequence of neighborhoods (Dk) such that
limk→∞Dk =

{←−
X
}
. See Fig. 1.

The Vitali theorem states that whenever the differenti-
ation basis D possesses the Vitali property with respect
to “background” measure µ, then for µ-almost all←−X and
any “test” measure ν which is absolutely continuous with
respect to µ, the limit of likelihood ratios ν(V )/µ(V ) ex-
ists for any sequence (Vk) ⊂ D converging on ←−X and
is equal to the Radon-Nikodym derivative dν/dµ(←−X ) at
that point [31]. This sort of very flexible limit is denoted
by:

lim
V ∈D
V 3
←−
X

ν(V )
µ(V ) = dν

dµ
(←−X ) .

The Vitali property has strong and weak forms, but we
prove the strong form. Given a differentiation basis D,
a sub-differentiation basis D′ ⊆ D is any differentiation
basis D′ each of whose neighborhoods also belongs to D.
The differentiation basis D has the strong Vitali property
with respect to µ if for every measurable set A and for
every sub-differentiation basis D′ ⊆ D covering A, there
is an at most countable subset {Dj } ⊆ D′ such that

Dj ∩Dj′ is empty for all j 6= j′ and:

µ

A−
⋃

j

Dj

 = 0 .

In other words, we must be able to cover “almost all” of
A with a countable number of nonoverlapping sets from
the differentiation basis [31].
We now demonstrate that the differentiation basis D gen-
erated by cylinder sets on XN has the Vitali property for
any measure µ.

Proposition 3 (Vitali property for stochastic pro-
cesses). For any stochastic process (XN,Σ, µ), let D be
the differentiation basis of allowed cylinder sets. Then D
has the strong Vitali property.

Proof. Let D′ ⊆ D be any subdifferentiation basis cover-
ing XN. (Our proof trivially generalizes to any A ⊆ XN.)
Since D′ is a differentiation basis, for all ←−X ∈ XN there
must be a sequence (Dj(

←−
X )) of cylinder sets converg-

ing on ←−X . Without loss of generality, we suppose that
Dj(
←−
X ) = U0,x0...x−`j+1 with `j monotonically increasing.

(If this is not the case, we take a subsequence of Dj(
←−
X )

for which it is the case.)
Now consider the combination of all such sequences:

D′′ :=
⋃
←−
X∈XN

{
Dj(
←−
X )

∣∣∣ j ∈ N
}
.

We note that D′′, though a union of an uncountable num-
ber of sets, itself cannot be larger than a countable set,
as the elements of the sets from which it is composed are
characterized by finite words, and finite words themselves
only form a countable set. That is, there is significant re-
dundancy in D′′ that keeps it countable. Furthermore, D′′
has a lattice structure given by the set inclusion relation
⊆ with the particular property that for U, V ∈ D′′, U ∩V
is nonempty only if U ⊆ V or vice versa.
We then choose the set C of all maximal elements of this
lattice: that is, those U ∈ D′′ such that there is no V ∈
D′′ containing U . These maximal elements must exist
since for each U ∈ D′′ there is only a finite number of
sets in D′′ that can contain it.
It must be the case that all sets in C are nonoverlapping.
Furthermore, for any V ∈ D′′, not in C, there can only
be a finite number of such sets containing V . One of
them must be maximal and therefore in C. In particular,
for every ←−X ∈ XN, each of its neighborhoods in D′′ is
contained by the union of C.
This implies C is a complete covering of XN. Since it
is also nonoverlapping and countable, the strong Vitali
property is proven.
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D1(x) D1(y)

D2(x)

D3(x)

D2(y)

D3(y)

yx

FIG. 1: Snapshot of a differentiation basis: A differentiation basis is a collection of neighborhoods in XN that have
hierarchical structure. For every point x ∈ XN, there must be a sequence of neighborhoods converging on that point.

Pictured above, a line is shown with a partial representation of its differentiation basis above it in the form of a
hierarchical collection of rounded rectangles. For two points x and y we show the corresponding sequence of sets

(Dj(x)), (Dj(y)) converging on each.

As a consequence, the likelihood ratios in Eq. (4) must
converge for ←−µ -almost every past ←−X and every finite-
length word w—proving Theorem 1.
We note that this result follows as a relatively straightfor-
ward application of the Vitali property, which holds for
any measure µ on X Z and XN. Our good fortune is due
to the particularly well-behaved topology of sequences of
discrete observations. For continuous observations, a less
direct path to predictive states must be taken.

B. Continuous observations: Overview

Shifting from discrete to real-valued observations, where
now X denotes a compact subset of Rd, multiple sub-
tleties come to the fore.
First, it must be noted that even in R, the existence of a
Vitali property is not trivial. For the Lebesgue measure,
only a weak Vitali property holds, though this is still
sufficient for the equivalence between Radon-Nikodym
derivatives and likelihood ratios. The differentiation ba-
sis in this setting can be taken to be comprised of all
intervals (a, b) on the real line.
Second, to go from R to Rd, constraints must be placed on
the differentiation basis. An “interval” here is really the
Cartesian product of intervals, but for a Vitali property
to hold we must only consider products of intervals whose
edges are held in a fixed ratio to one another, so that
the edges converge uniformly to zero. Likelihood ratios

for fixed-aspect boxes of this kind can converge to the
Radon-Nikodym derivative [31].

This requirement poses a challenge for generalizing the
Vitali property to infinite dimensions, as we must to
study sequences of real numbers. A fixed-aspect “box”
around a sequence of real numbers is not a practical con-
struction. In the empirical setting, we can only observe
information about a finite number of past outputs. We
therefore cannot obtain any “uniform” knowledge of the
entire past. That is, a direct generalization of the case
for Rd does not suffice.

However, integration and differentiation on infinite-
dimensional spaces has been considered before, mainly by
Jessen [32, 33] and later Enomoto [34]. Their results fo-
cused on generalizing Lebesgue measure to (S1)N, where
S1 is the circle. This section shows that their results can
be significantly extended. The primary result we prove
is a generalization of Enomoto’s Theorem [34]:

Theorem 2 (Generalized Enomoto’s Theorem). Let X
be an interval of R, and let µ be any probability measure
over XN. Let f : XN → R+ and let F be its indefinite
integral under µ. Let V denote the differentiation basis
consisting of sets of the form:

Vn,δ(
←−
X ) =

{←−
Y
∣∣∣ |yj − xj | < δ, j = 1, . . . , n

}
.
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Then:

lim
V ∈V
V 3
←−
X

F (V )
µ(V ) = f(←−X ) , (5)

for ←−µ -almost all ←−X .

Note that the resulting differentiation basis is a weaker
form of that considered above. Each Vn,δ is evidently a
cylinder set, but of a very particular kind. As we take
δ → 0 and n→∞, we extend the “window” of the cylin-
der set to the entire past while simultaneously narrowing
its width uniformly. This turns out to be sufficient to
replicate the same effect as the fixed-aspect boxes in the
finite-dimensional case.
As a corollary of Theorem 2, we have the following result
for predictive states:

Corollary 2. Let X ⊂ Rd be a compact subset. For all
measures µ on X Z and µ-almost every past ←−X ∈ XN,
define the measures η`[

←−
X ] and η`,δ[

←−
X ] as:

η`,δ[
←−
X ](U) = µ(V`,δ × U)

µ(V`,δ)
and (6)

η`[
←−
X ] = lim

δ→0
η`,δ[
←−
X ] . (7)

Then η`[
←−
X ]→ ε[←−X ] in distribution, as `→∞.

Proof. From Theorem 2 for any neighborhood U :

Prµ
(
U
∣∣∣←−X )

:= lim
`→∞

η`,δ(`)[
←−
X ](U) (8)

converges as long as δ(`) > 0 for all ` and δ(`)→ 0.
First, we must show that it is also perfectly fine to take
the limit δ → 0 before taking ` → ∞. For each ζ > 0,
let ∆(`, ζ) be chosen such that η`,∆(`,ζ)[

←−
X ] is ζ-close to

ε[←−x ], in the sense that:∣∣∣Pr
η`,δ(`,ζ)[←−X ] ( U )− Pr

η`[
←−
X ] ( U )

∣∣∣ < ζ .

Choose δ(`, ζ) := min
{

∆(`, ζ), `−1 } so that δ(`, ζ)→ 0.
Then clearly η`,δ[

←−
X ](U)→ Prµ

(
U
∣∣∣←−X )

, and this holds
for all ζ > 0. We therefore trivially have:

Prµ
(
U
∣∣∣←−X )

= lim
ζ→0

lim
`→∞

Pr
η`,δ(`,ζ)[←−X ] ( U )

η`[
←−
X ](U) = lim

ζ→0
Pr

η`,δ(`,ζ)[←−X ] ( U ) .

And, this limit is in fact uniform by the construction of
δ(`, ζ). Therefore we may interchange the ζ and ` limits

to get:

Prµ
(
U
∣∣∣←−X )

= lim
`→∞

lim
ζ→0

Pr
η`,δ(`,ζ)[←−X ] ( U )

= lim
`→∞

η`[
←−
X ](U)

Last, we noted previously that this need only hold for
a countable number of neighborhoods U in order for
Prµ

(
U
∣∣∣←−X )

to generalize to a measure. We call this

measure ε[←−X ] and, by Prop. 2, we have η`[
←−
X ]→ ε[←−X ] in

distribution for ←−µ -almost all ←−X .

Note here that we allowed X ⊂ Rd. This can be obtained
from Enomoto’s theorem by simply reorganizing a se-
quence of d-dimensional coordinates from (x1,x2, . . . ) to
(x11, . . . , xd1, x12, . . . , xd2, . . . ). Enomoto’s theorem then
requires uniformity of the intervals across past instances
as well as within each copy of Rd.

As before, the quantities Prµ
(
U
∣∣∣←−X )

define a unique

measure ε[←−X ] on XN. It is determined by:

ε[←−X ](U) = Prµ
(
U
∣∣∣←−X )

.

Enomoto’s theorem itself is the capstone result in a se-
quence of theorems initiated by Jessen [32]. To prove
Theorem 2, we must start from the beginning, general-
izing Jessen’s results. Fortunately, the bulk of the effort
comes in generalizing the first of these results—Jessen’s
correspondence principle. After this, the generalization
follows quite trivially from the subsequent theorems.
The next section provides the full proof for a general-
ized correspondence principle and explains how this re-
sult impacts the proofs of the subsequent theorems. For
completeness, we also give the full proof of the general-
ized Enomoto’s theorem, though it does not differ much
from Enomoto’s—published in French—once the preced-
ing theorems are secured.

C. Jessen’s correspondence principle

The Jessen and Enomoto theory rests on a profound cor-
respondence between cylinder sets on XN and intervals
on R. To state it, we must define the concept of a net.
A net is similar to but formally separate from a differ-
entiation basis, but like the latter allows for a notion
of differentiation, called differentiation-by-nets. This is
weaker than the Vitali property on a differentiation ba-
sis, but following on Jessen’s work, Enomoto showed that
differentiation-by-nets can be extended to describe a par-
ticular differentiation basis with the Vitali property.
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D1

D2

D3
⋮

I1(x)
I2(x)

I3(x)

x

FIG. 2: Snapshot of a differentiation net: A
differentiation net defined on a line segment.

D1, D2, D3, . . . represent the dissections that comprise
the net. Each dissection contains the last. New points
are indicated in red and old points in gray. These points
define intervals; a sequence (Ik(x)) of these intervals is

shown converging on the point x.

Let X be a finite interval on R. A dissection D =
(b1, . . . , bN ) of X is simply a sequence of cut points,
that generate a sequence of adjacent intervals (bk, bk+1)
spanning X , covering all but a finite set of points—
the interval edges. See Fig. 2. Denote the intervals
I(D) = { (bk, bk+1) | k = 1, . . . , N − 1 }. The length of
the largest interval in I(D) is denoted |D|. (Not to be
confused with D’s cardinality, that we have no need to
reference.) A net N = (Dn) is a sequence of dissections
so that Dn ⊂ Dn+1 (that is, each new dissection only
adds further cuts) and |Dn| → 0 (the largest interval
length goes to zero). The boundary ∂N =

⋃
nDn de-

notes all the boundary points from the sequence and is
always a countable set.

We can similarly define a dissection D = (d1, . . . , d`)
on XN as a set of ` dissections, one for each of
the first ` copies of X . D intervals I(D) ={
i1 × . . . i` ×XN

∣∣ ik ∈ I(dk)
}
are the cylinder sets gen-

erated by the intervals of each individual dissection. See
Fig. 3. The boundary of a dissection is the set of
all points that do not belong to these intervals: ∂D ={
X ∈ XN

∣∣ ∃k : xk ∈ dk
}
. The size of the dissection is

|D| := maxk |dk|. For a finite measure µ, there are always
dissections with µ(∂D) = 0 of any given |D| = maxk |dk|,
since µ|X ` can only have at most countably many singu-
lar points.

A net N = (Dn = (d1,n, . . . , d`n,n)) of XN is a sequence
of dissections of increasing depth `n so that each sequence
(dk,n) for fixed k is a net for the kth copy of X . ∂N =⋃
n ∂Dn denotes all the accumulated boundary points of

this sequence. Again, for finite measure µ, nets always
exist that have µ(∂N ) = 0 for all n. Nets with this
property are called µ-continuous nets.
Note that for any net, every sequence of intervals (In),
In ∈ I(Dn) and In+1 ⊂ In, uniquely determines a point
X ∈ XN. If X 6∈ ∂D, then X uniquely determines a
sequence of intervals.
The following result can be proven—as a generalization
from Ref. [32]:

Theorem 3 (Generalized correspondence principle). Let
X ⊂ R be an interval and let λ be the Lebesgue measure
on X , normalized so λ(X ) = 1. Let µ be a finite measure
on XN that has no singular points. Let N = (Dn) be
any µ-continuous net of XN. Then there exists a net
M = (dn) of X so that:

1. There exists a function Φn that maps each interval
in I(Dn) of positive measure to one and only one
interval in I(dn) and vice versa for Φ−1

n ;

2. λ(Φn(I)) = µ(I) for all I ∈ I(Dn) with µ(I) > 0;
and

3. The mapping φ : XN−∂N → X−∂M, generated by
X 7→ (In) 7→ (Φn(In)) 7→ x, is measure-preserving.

To summarize this technical statement: For any method
of indefinitely dissecting the set XN into smaller and
smaller intervals, there is in fact an “equivalent” such
method for dissecting the much simpler set X . It is
equivalent in the sense that all the resulting intervals are
in one-to-one correspondence with one another—a cor-
respondence that preserves measure. Since interval se-
quences uniquely determine points (and vice versa for a
set of full measure), this induces a one-to-one correspon-
dence between points that is also measure-preserving.
The proof consists of two parts. The first proves the
first two claims about M. Namely, there is an interval
correspondence and it is measure-preserving. The second
shows this extends to a correspondence between XN and
X that is also measure-preserving.

Proof (Interval correspondence). The proof proceeds by
induction. For a given µ-continuous net N = (Dn), sup-
pose we already constructed dissections d1, . . . , dN of X
so that a function Φn between positive-measure intervals
in Dn and dn exists with the desired properties (1) and
(2) above, for all n = 1, . . . , N .
Now, for Dn+1, a certain set of the intervals in I(Dn)
is divided. Suppose I ∈ In divides into I ′ and I ′′. If
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×

×

×

×

×

×

×

×

× …

…

…
x1 x2 x3

D1

D2

D3

X = x1x2x3…

⋮

I1 = i11 × i12 × i13… i11 i12 i13

i21 i22 i23

i31 i32 i33

I2 = i21 × i22 × i23…

I3 = i31 × i32 × i33…

FIG. 3: Snapshot of a differentiation net on a product space: A differentiation net defined on a product space XN.
This is comprised of an increasingly detailed dissection on each factor space. Also shown is a sequence of product

intervals converging on a point X = x1x2x3 . . . .

either of these, say I ′′, has measure zero then we discard
it and set Φn+1(I ′) = Φn(I). Otherwise, suppose that
Φn(I) = (a, b). Then divide Φn(I) into the intervals:

Φn+1(I ′) :=
(
a,
aµ(I) + (b− a)µ(I ′)

µ(I)

)
and

Φn+1(I ′′) :=
(
aµ(I) + (b− a)µ(I ′)

µ(I) , b

)
,

that clearly have Lebesgue measures λ(Φn+1(I ′)) = µ(I ′)
and λ(Φn+1(I ′′)) = µ(I ′′), respectively. Generalizing this
to more complicated divisions of I is straightforward.

We can always suppose for a given net N that D0 is
simply the trivial dissection that makes no cuts and only
one interval. However, this has a trivial correspondence
with X ; namely, Φ0(XN) = X .

By induction, then, the desired M can always be con-
structed.

With the existence of the interval correspondence es-
tablished, we further demonstrate the existence of a
point correspondence between µ-almost-all of XN and λ-
almost-all of X .

Proof (Point correspondence). For every X ∈ XN−∂N ,
there is a unique sequence (In) of concentric intervals,
In ∈ I(Dn) and In+1 ⊂ In, such that

⋂
n In = {X}. If

X is in the support of µ, then we define:

φ(X) :=
⋂
n

Φn(In)

as the corresponding point in X −∂M. Due to the inter-
val correspondence, this mapping is invertible.

By measure-preserving we mean that for all A ⊆ XN −
∂N , λ(φ(A)) = µ(A) and vice-versa for φ−1. Both the
Lebesgue measure and µ must be outer regular, due to
being finite measures. Outer regular means that the mea-
sure of a set A is the infimum of the measure of all open
sets containing A, a property we use to our advantage.

Consider for each n the minimal covering Cn of A by in-
tervals in I(Dn). The measure of this covering is denoted
mn := µ(

⋃
Cn). Clearly, mn ≥ µ(A) and mn → µ(A).

The corresponding covering Φn(Cn) in I(dn) is a cover-
ing of φ(A) and has the same measure mn. By outer
regularity, then, mn ≥ λ(φ(A)) for all n. And so,
µ(A) ≥ λ(φ(A)).

Now, by the exact reverse argument of the previous para-
graph, going from X to XN via φ−1, we can also deduce
that µ(A) ≤ λ(φ(A)). Therefore µ(A) = λ(φ(A)), and
the function φ is measure-preserving.
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D. Corollaries and Enomoto’s Theorem

Jessen’s correspondence principle is an extremely pow-
erful device. Among its consequences are the following
theorems regarding functions on XN. We state their gen-
eralized forms here and for the proofs refer to Jessen [32],
as each is a direct application of Theorem 3 without mak-
ing any further assumptions on the measure µ.
The first offers a much weaker (and on its own, insuffi-
cient for our purposes) concept of differentiation of mea-
sures that we refer to as differentiation-by-nets.

Corollary 3 (Differentiation-by-nets). Let f : XN → R+

and let F be the measure defined by its indefinite integral:
F (A) :=

∫
A
f(X)dµ(X). Further let N = (Dn) be a net

on XN and denote by f̂n a piecewise function such that
f̂n(X) = F (In)/µ(In) for all X ∈ In and each In ∈ Dn.
Then f̂n(X)→ f(X) as n→∞ for µ-almost all X.

Though the full proof is found in Ref. [32], we summa-
rize its key point: Using the correspondence of intervals,
we write F (In)/µ(In) = F̃ (Φ(In))/λ(Φ(In)), where F̃ is
the indefinite integral of f ◦ φ−1 with respect to λ. The
limit then holds due to the Vitali property of λ on X .
However, we also note that Corollary 3 is not an exten-
sion of the Vitali property to cylinder sets on XN. Jessen
himself offers a counterexample to this effect in a later
publication [33].
Jessen’s second corollary is key to demonstrating that V,
the differentiation basis defined in Theorem 2, will have
the sought-after Vitali property.

Corollary 4 (Functions as limits of integrals). Let f :
XN → R+, and let fn(X) be a sequence of functions given
by:

fn(x1x2 . . . ) :=
∫
Y ∈XN

f(x1 . . . xnY )dµ(Y ) .

That is, we integrated over all observations after the first
n. Thus, fn only depends on the first n observations.
Then fn(X)→ f(X) as n→∞ for µ-almost all X.

This proof we also skip, again referring the reader to
Jessen [32], as no step is directly dependent on the mea-
sure µ itself and only on properties already proven by the
previous theorems.
We now have sufficient knowledge to prove the general-
ized Enomoto’s theorem; generalized from Ref. [34].

Proof (Generalized Enomoto’s Theorem). First, we
must demonstrate, for almost every X, that there exists
a sequence Vj(X) converging on X such that the limit
holds. By Corollary 4, there must be, for µ-almost all X

and any ε > 0, a k(X, ε) such that |fn(X)− f(X)| < ε/2
for all n > k(X, ε). Now, from the Vitali property on µn
and the fact that fn only depends on the first n observa-
tions, it must be true that for any ε > 0 and almost all
X, there is a 0 < ∆(X,n, ε) < 1 so that:∣∣∣∣fn(X)− F (Vn,δ(X))

µ(Vn,δ(X))

∣∣∣∣ < ε/2 ,

whenever δ < ∆(X,n, ε). For a given ε, there is a
countable number of conditions (one for each n). As
such, the set of points X for which all conditions hold
is still measure one. Then, taking for each X the in-
teger K := k(X, ε) and subsequently the number ∆ :=
∆(X, k(X, ε), ε), we can choose VK,∆(X) and by the tri-
angle inequality we must have:∣∣∣∣f(X)− F (VK,∆(X))

µ(VK,∆(X))

∣∣∣∣ < ε . (9)

This completes the proof’s first part.
However, the second part—that all sequences Vnj ,δj (x) of
neighborhoods give converging likelihood ratios—further
follows from the above statements, as:∣∣∣∣f(X)−

F (Vnj ,δj (X))
µ(Vnj ,δj (X))

∣∣∣∣ < ε

must hold for any nj > K(X, ε) and any δj <

∆(X,K(X, ε), ε), which must eventually be true for any
converging sequence to X.

Now, the previous theorem does not directly prove the
Vitali property but rather bypasses it. Demonstrating
that the differentiation basis V may be used to recover
Radon-Nikodym derivatives. This, then, is sufficient for
Corollary 2 to hold, guaranteeing the existence of predic-
tive states ε[←−X ] for µ-almost all ←−X .

E. Convergence of predictive states

An important task regarding predictive states is to learn
a process’s predictive states—that is, the ε-mapping from
observed pasts to distributions over futures—from a suf-
ficiently large sample of observations. These learned pre-
dictive states may then be used to more accurately pre-
dict the process’ future behavior based on behaviors al-
ready observed.
The previous three sections avoided constraining the
measure µ on XN to be anything other than finite. It was
not assumed to be either stationary or ergodic, in par-
ticular. In such cases the ε-mapping is time-dependent,
as it obviously depends on where futures are split from
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pasts. To adequately reconstruct ε[←−X ] from a single, long
observation requires that the process be both stationary
and ergodic. Stationarity makes ε[←−X ] time-independent,
and ergodicity ensures that the probabilities in the lim-
its Eqs. (1) and (8) can be approximated by taking the
time-averaged frequencies of occurrence.

The next natural question is how rapidly convergence
occurs for each past, in a given process. So far, we only
guaranteed that convergence exists, but said nothing on
its rate. This is process-dependent. Section V gives
several examples of processes and process types with
their convergence rate. The most useful way to think of
the rate is in the form of “probably-almost-correct”-type
statements, as exemplified in the following result:

Proposition 4. Let µ be a probability measure on X Z.
Let η`[

←−
X ](U) be defined as in either Cors. 1 or 2. For

every cylinder set U and ∆1,∆2 > 0, we have for suffi-
ciently large `:

Pr←−µ
( ∣∣∣η`[←−X ](U)− ε[←−X ](U)

∣∣∣ > ∆1

)
< ∆2 .

That is, the probability of an error beyond ∆1 is less than
∆2.

This is a consequence of the fact that all ←−X must even-
tually converge. The possible relationships between ∆1,
∆2, and ` in particular is explored in our examples.

IV. PREDICTIVE STATES FORM A HILBERT
SPACE

Thus far, we demonstrated that for discrete and real X ,
measures over X Z possess a well-defined feature called
predictive states that relate how past observations con-
strain future possibilities. These states are defined by
convergent limits that can be approximated from empiri-
cal time series in the case of stationary, ergodic processes.

We turn our attention now to the topological and geomet-
ric structure of these states, the spaces they live in, and
how the structure of these spaces may be leveraged in the
inference process. The results make contact between pre-
dictive states as elements of a Hilbert space and the well-
developed arena of reproducing kernel Hilbert spaces. To
do this we introduce several new concepts.

Denote the set of real-valued continuous functions on X Z

by C(X Z). The set of signed measures on X Z, that we
call M(X Z), may be thought of as dual to C(X Z). This
allows us to define a notion of convergence of measures
on X Z in relation to continuous functions. We say that

a sequence of measures µn converges in distribution if:

lim
n→∞

∫
F (X)dµn(X) =

∫
F (X)dµ(X)

for all F ∈ C(X Z). Convergence in distribution is some-
times referred to as weak convergence but we avoid this
vocabulary to minimize confusion—as another, distinct
kind of weak convergence is needed in the Hilbert space
setting.

A kernel k : X Z×X Z → R generates a reproducing kernel
Hilbert space (RKHS) H if k(·, ·) is positive semi-definite
and symmetric [35]. H is typically defined as a space
of functions (from X Z → R), but the kernel allows em-
bedding measures on X Z into the function space through
fµ(x) =

∫
k(x, y)dµ(y). This elicits an inner product

between any two positive measures µ and ν:

〈fµ|fν〉k :=
∫ ∫

k(x, y)dµ(x)dν(y) .

The inner-product space on measures generated by this
construction is isometric to the RKHS generated by
k(·, ·). The embedding of measures into this space is
unique if the kernel is characteristic. And, convergence
in the norm of the Hilbert space is equivalent to con-
vergence in distribution whenever the kernel is universal
[36].

What exactly is the set H of functions? The equivalence
of convergence in norm and convergence in distribution
tempts identifying H with the space of continuous func-
tions, but this is overly optimistic. If it were true—that
H = C(X Z)—then the convergence 〈F |fµn〉k → 〈F |fµ〉k
for every F ∈ H implies fµn → fµ in the norm topology
of H. That, though, would identify norm convergence
on the Hilbert space with weak convergence, which for
Hilbert spaces is identified as the convergence of every
inner product. For infinite-dimensional Hilbert spaces,
these two types of convergence cannot be identified, as
is seen in the simple case of any orthonormal basis ei,
for which 〈F |ei〉 → 0 is necessary for F to have a fi-
nite norm, even though ‖ei‖ → 1 by definition. So, we
must conclude that while convergence in the norm of H is
equivalent to the convergence in distribution of measures,
H can only be a proper subspace of the continuous func-
tions (a fact also noted in [37]). Weak convergence in H
is then indeed weaker than convergence in distribution.
(Hence, we do not call the latter “weak”.)
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𝕂(μ)

FIG. 4: Predictive states and their closed span. The red
dots are a hypothetical set K(µ) of predictive states
(shaped like the Sierpinski set) that is uncountably
infinite but that has a finite-dimensional closed span

K(µ).

A. Topology of predictive states

Let the (closure of the) set of a process’s predictive states
be denoted by:

K(µ) :=
{
ε[←−X ]

∣∣∣←−X ∈ XN
}
.

The closure is taken under convergence in distribution.
The relation between pasts and predictive states may be
highly redundant. For instance, in the process generated
by the results of a random coin-toss, since the future
observations do not depend on past observations, K(µ)
is trivial. Meanwhile, for a periodic process of period
k, K(µ) has k elements, corresponding to the k distinct
states—the process’ phases. In more complex cases, K(µ)
may have countable and uncountable cardinality.
We may also consider the vector space of signed measures
generated by the closed span ofK(µ), denotedK(µ). This
is the smallest closed vector space that contains the pre-
dictive states. This, too, may demonstrate redundancy
in the form of linear dependence, regardless of the car-
dinality of K(µ). For instance, it is possible to have an
uncountably infinite set of predictive states K(µ) whose
dimension, dimK(µ), is finite. In fact, it is the general
case that any process generated by an HMM or GHMM
will have finite dimensional K(µ), but is not guaranteed
to have finite K(µ) [12]. See Fig. 4.
The topology of convergence in distribution is closely re-

lated to the definition of continuity on XN. It behooves
us at this juncture to discuss XN not only as a topological
space but also as a metric space.
Two useful families of distance metrics, equivalent to the
product topology on XN, are the Euclidean metrics, one
for the discrete and real case each:

DE,γ(X,Y )2 :=
{∑∞

t=1(1− δxtyt)γ2t X discrete∑∞
t=1 ‖xt − yt‖

2
γ2t X ⊂ Rd

,

for some 0 < γ < 1. These distance metrics arise from
embedding XN in a Hilbert space. Given an orthogo-
nal basis (ei), the components of this embedding for the
discrete case are given by:

ci(X) =
{
γbi/|X |c xbi/|X |c = i mod |X |
0 otherwise

and in the continuous case (X ⊂ Rd) by:

ci(X) = γtxk,t, i = k mod d .

Using these distance metrics, the following section intro-
duces an inner product structure on K(µ) whose norm
metrizes the topology of convergence in distribution.
Once K(µ)’s natural embedding into a Hilbert space of
its own is established, we investigate how well this em-
bedding can be approximated by the approach of repro-
ducing kernel Hilbert spaces.
We note that the DE,γ family of metrics is not the only
family that metrizes the product topology on XN. Fur-
ther, though each DE,γ for 0 < γ < 1 metrizes the prod-
uct topology, they are not metrically equivalent in the
strong sense. Thus, while the precise choice of met-
ric is irrelevant for our present scope—to demonstrate
the topological appropriateness of RKHS algorithms—
further investigation into their metric properties is war-
ranted. We discuss these issues in Supplementary Mate-
rial II.

B. Embedding predictions in a Hilbert space

The space K(µ) of predictive states is a subspace P(XN)
of the probability measures over XN. On P(XN), given
any symmetric positive-definite kernel k : XN×XN → R,
we can define an inner product over measures:

〈µ|ν〉k :=
∫ ∫

k(X,Y )dµ(X)dν(Y ) . (10)

Positive-definite means that for any finite set {Xi} of
Xi ∈ XN and any set {ci} of values ci ∈ R, both sets
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have the same cardinality:∑
i,j

k(Xi, Xj)cicj ≥ 0 ,

with equality only when ci = 0 for all i. If this is true,
then the inner product Eq. (10) is positive-definite for all
measures. That is, 〈µ|µ〉k ≥ 0 with equality only when
µ = 0 [36].
Since XN is compact, if the kernel k satisfies the prop-
erty of being universal, then norm convergence under the
inner product defined by k is equivalent to convergence
in distribution of measures [36].
A simple example of a universal kernel is the Gaussian
radial basis function, when paired with an appropriate
distance—namely, one defined from embedding XN in a
Hilbert space, as our DE,γ are [38]. These take the form:

kβ,γ(X,Y ) := exp
(
−DE,γ(X,Y )2

β2

)
.

We denote the associated inner products by 〈·|·〉β,γ .
Hβ,γ :=

(
P(XN), 〈·|·〉β,γ

)
defines a Hilbert space, since

it has the topology of convergence in distribution and
P(XN) is complete in this topology.
When referring to a measure µ as an element of Hβ,γ
we denote it |µ〉β,γ and inner products in the bra-ket are
〈µ|ν〉β,γ . Now, it should be noted that to every ket |µ〉β,γ
there is a bra 〈µ|β,γ that denotes a dual element. How-
ever, the dual elements of P(XN) correspond to contin-
uous functions. The function fµ corresponding to 〈µ|β,γ
is given by:

fµ(Y ) :=
∫
kβ,γ(X,Y )dµ(X) , (11)

so that:

〈µ|ν〉β,γ =
∫
fµ(X)dν(Y ) .

Let Fβ,γ denote the space of all fµ that can be con-
structed from Eq. (11). This function space, when paired
with the inner product 〈fµ|fν〉Fβ,γ := 〈ν|µ〉β,γ , is isomor-
phic to Hβ,γ . Fβ,γ is then a reproducing kernel Hilbert
space with kernel kβ,γ .
As the start of Section IV discussed, Fβ,γ ⊂ C(XN). Fur-
thermore, the Fβ,γ are not identical to one another, obey-
ing the relationship Fβ,γ ⊂ Fβ′,γ when β > β′ [39]. How-
ever, it is also the case that each Fβ,γ is dense in C(XN),
so their representative capacity is still quite strong [36].
We note an important rule regarding the scaling of our in-
ner products, as constructed. The distances DE,γ(X,Y )

have finite diameter on our spaces. Let ∆ denote the di-
ameter of X . For discrete X we simply have ∆ = 1; for
X ⊂ Rd it is determined by the Euclidean distance. Then
XN’s diameter is given by ∆/

√
1− γ2. Let u := µ − ν.

Using a Taylor expansion for the Gaussian, for arbitrarily
large β:

‖µ− ν‖2β,γ

=
∫ ∫

kβ,γ(X,Y )du(X)du(Y )

≤
∫ ∫ (

1− DE,γ(X,Y )2

β2 +O(β−3)
)
du(X)du(Y )

≤ 2‖µ− ν‖TV∆2

(1− γ2)β2 +O(β−3) ,

(12)

where ‖ · ‖β,γ is simply the norm of Hβ,γ and ‖ · ‖TV
is the total variation norm. The first inequality follows
from applying the Taylor expansion and the second from
using the bounded magnitude of the O(β−2) term (due
to the diameter) in conjunction with the total variation
of u⊗u, which satisfies ‖u⊗ u‖TV ≤ 2 ‖u‖TV. (The con-
stant term vanishes under integration over the difference
measure u.)
This tells us that the norm is less discriminating between
measures as β →∞. Naturally, this can be remedied by
rescaling the kernel with a β2 factor. As it happens,
Eq. (12) will be useful later.

C. Finite-length embeddings

Our goal is to study how reproducing kernel Hilbert
spaces may be used to encode information about predic-
tive states gleaned from empirical observations. Given
that such observations are always finite in length, we
must determine whether and in what manner the Hilbert
space representations of measures over finite-length ob-
servations converges to the Hilbert space representation
of a measure over infinite sequences.
Let µ|` denote the measure µ restricted to X `. Define
the restricted distance on X `:

D
(`)
E,γ(X,Y )2 :=

{∑`
t=1(1− δxtyt)γ2t X discrete∑`
t=1 ‖xt − yt‖

2
γ2t X ⊂ Rd

,

for X,Y ∈ X `. This gives an important Pythagorean
theorem for sequences:

DE,γ(X,Y )2 =D(`)
E,γ(x1 . . . x`, y1 . . . y`)2

+ γ2`DE,γ(x`+1 . . . , y`+1 . . . )2
. (13)
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Now, using D(`)
E,γ define kernels k(`)

β,γ in the same style as
for XN. These generate inner products on P(X `). Denote
byH(`)

β,γ the resulting Hilbert spaces. These are related to
the original Hβ,γ by the following factorization theorem:

Proposition 5. The predictive Hilbert space Hβ,γ fac-
tors into H(`)

β,γ ⊗Hβγ−`,γ .

Before stating the proof, we should explain the
above. The factorization Hβ,γ = H(`)

β,γ ⊗ Hβγ−`,γ
denotes separating the infinite-dimensional Hβ,γ into
two pieces—one of which is finite-dimensional, but re-
tains the same kernel parameters, and another piece
that reparametrizes infinite-dimensional Hilbert space.
The reparametrization is β → βγ−`. This consti-
tutes, essentially, a renormalization-group technique, in
which the topology of words starting at depth ` is
equivalent to a reparametrization of the usual topol-
ogy. This reparametrization works precisely due to the
Pythagorean theorem for sequences Eq. (13).

Proof. We are demonstrating an isomorphism—a par-
ticularly natural one. Let δX be the Dirac delta measure
concentrated on X. We note that for any measure µ:

|µ〉β,γ =
∫
|δX〉β,γ dµ(X) .

Now, consider the linear function from Hβ,γ to H(`)
β,γ ⊗

Hβγ−`,γ that maps:

|δX〉β,γ 7→ |δx1...x`〉
(`)
β,γ ⊗ |δx`+1...〉βγ−`,γ , (14)

for every X. Then by Eq. (13) we can see that:

〈δy1...y` |δx1...x`〉
(`)
β,γ 〈δy`+1...|δx`+1...〉βγ−`,γ

= e−β
−2D

(`)
E,γ(x1...x`,y1...y`)2

e−β
−2γ2`DE,γ(x`+1...,y`+1... )2

= e−β
−2DE,γ(X,Y ) = 〈δY |δX〉β,γ ,

so the mapping Eq. (14) preserves the inner product and
thus is an isomorphism.

Note that for any of these Hilbert spaces there exists an
element corresponding to the constant function 1(X) = 1

for all X. This function always exists in Fβ,γ . We
denote its corresponding measure in Hβ,γ as λβ,γ , so
that 〈λβ,γ |µ〉β,γ = 1 for all µ. Then the operator
Π(`)
β,γ : Hβ,γ → H(`)

β,γ is given by:

Π(`)
β,γ := I(`) ⊗ 〈λβ,γ |β,γ ,

where I(`) is the identity on H(`)
β,γ . It provides the canoni-

cal mapping from a measure µ to its projection µ|`: That
is, Π(`)

β,γ |µ〉β,γ = |µ|`〉(`)β,γ .
Consider the “truncation error”—that is, the residual er-
ror remaining when representing a measure by its trun-
cated form µ|` rather than by its full form µ. We quantify
this in terms of an embedding. That is, there exists an
embedding of truncated measures P(X `) into the space
of full measures P(XN) such that the distance between
any full measure and its truncated embedding is small:

Theorem 4. There exist isometric embeddings H(`)
β,γ 7→

H(`′)
β,γ and H(`)

β,γ 7→ Hβ,γ for any ` ≤ `′. Furthermore,
let µ be any measure and µ|` be its projection to the first
` observations, and let |µ̂`〉β,γ be the embedding of µ|`
into Hβ,γ . Then |µ̂`〉β,γ → |µ〉β,γ as ` → ∞, with ‖µ −
µ̂`‖β,γ ∼ O(β−1γ`).

Proof. For a measure µ with projection µ|` let µ̂` denote
the measure on XN with the property:

µ̂`(A×B) = µ|`(A)λβγ−`,γ(B) ,

for A ∈ X ` and B ∈ XN. Then the mapping µ|` 7→ µ̂` is
simply a rescaling, since:

〈µ̂`|ν̂`〉β,γ =
∫ ∫

kβ,γ(X,Y )dµ̂`(X)dν̂`(X)

=
∫ ∫

k
(`)
β,γ(x1 . . . x`, y1 . . . y`)dµ`dν`

×
∫ ∫

kβγ−`,γ(x` . . . , y` . . . )dλβγ−`,γdλβγ−`,γ

= 〈µ|`|ν|`〉(`)β,γ

∫
dλβγ−`,γ

= 〈µ|`|ν|`〉(`)β,γ
∥∥λβγ−`,γ∥∥2

βγ−`,γ
.

Now, as a result of Eq. (13), note that for any two mea-
sures µ and ν:

〈µ|ν〉β,γ =
∫
dµ|`(x1 . . . x`)

∫
dν|`(y1 . . . y`) exp

(
−β2D(`)

γ (x1 . . . x`, y1 . . . y`)
)
〈µ(·|x1 . . . x`), ν(·|y1 . . . y`)〉βγ`,γ
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If we combine this fact with the bound Eq. (12), we have the result:

∥∥µ− µ̂|`∥∥2
β,γ

=
∫
dµ|`(x1 . . . x`)

∫
dµ|`(y1 . . . y`)

exp
(
−β2D(`)

γ (x1 . . . x`, y1 . . . y`)
)
‖µ(·|x1 . . . x`)− µ̂`(·|y1 . . . y`)‖2βγ−`,γ

≤
∫
dµ|`(x1 . . . x`)

∫
dµ|`(y1 . . . y`)

‖µ− µ̂`‖TV∆2γ2`

(1− γ2)β2 = ‖µ− µ̂`‖TV∆2γ2`

(1− γ2)β2 .

Thus, ‖µ− µ̂`‖β,γ ∼ O(β−1γ`).

In summary, representing measures µ over XN by their
truncated forms µ|` leads to a Hilbert space represen-
tation that admits an approximate isomorphism to the
space of full measures. The resulting truncation error is
of order O(β−1γ`).
We close this part with a minor note about a lower bound
on the distance between measures. Given a word w, the
function on X ` that equals 1 when X = w and zero
otherwise has a representation |w〉(`)β,γ in H(`)

β,γ . (This
follows since for finite X , all functions on X ` belong
to F (`)

β,γ .) The extension of this to Hβ,γ is |w〉β,γ :=
|w〉(`)β,γ ⊗ |λβ,γ〉βγ−`,γ . This has the convenient property
that 〈w|µ〉β,γ = Prµ ( w ). Then, by the Cauchy-Schwarz
inequality, for any measures µ and ν and any word w:

‖µ− ν‖β,γ ≥
| 〈w|µ− ν〉 |√
〈w|w〉β,γ

= |Prµ ( w )− Prν ( w )|√
〈w|w〉β,γ

. (15)

So, word probabilities function as lower bounds on the
Hilbert space norm.

D. Predictive states from kernel Bayes’ rule

A prominent use of reproducing kernel Hilbert spaces is
to approximate empirical measures [40]. Given a measure
µ over a space X and N samples Xk drawn from this
space, one constructs an approximate representation of
µ via:

|µ̂〉 := 1
N

N∑
k=1
|δXk〉 .

In other words, µ is approximated as a sum of delta func-
tions centered on the observations. Convergence of this
approximation to |µ〉 is (almost surely) O(N−1/2) [40].
This fact, combined with our Theorem 4, immediately
gives the following result for Hβ,γ :

Proposition 6. Suppose for some µ ∈ P(XN) we take
N samples of length `, denoted {Xk ∈ X `} (k = 1 . . . N),
and construct the state:

|µ̂`,N 〉β,γ = 1
N

N∑
k=1
|δXk〉

(`)
β,γ ⊗ |λβγ−`,γ〉βγ−`,γ .

Then |µ̂`,N 〉β,γ → |µ〉 converges almost surely as N, ` →
∞ with error O(N−1/2 + β−1γ`).

Note the addition of the truncation error O(β−1γ`) to
the typical sample convergence N−1/2. The truncation
error has no dependence on the number of samples. It
is a consequence of using an overly simplified hypothesis
space H(`)

β,γ to estimate µ.
A more nuanced application of RKHS for measures lies in
reconstructing conditional distributions [26–28, 40, 41].
Let µ be a joint measure on some X ×Y, and let µ|X and
µ|Y be its marginalizations. Given N samples (Xk, Yk),
construct the covariance operators:

ĈXX := 1
N

∑
k

|δXk〉 〈δXk | and

ĈY X := 1
N

∑
k

|δYk〉 〈δXk | .

Let µY|X be the conditional measure for X ∈ X .
For some g ∈ HY—the RKHS constructed on Y—let
Fg(X) := 〈g|µY|X〉 be a function on X . If Fg ∈ HX
for all g ∈ HY , then ĈY X

(
ĈXX − ζI

)−1
|δX〉 converges

to |µY|X〉 as N → ∞, ζ → 0, with convergence rate
O
(
(Nζ)−1/2 + ζ1/2).

The requirement essentially tells us that the structure of
the conditional measure is compatible with the structures
represented by the RKHS.
This is the kernel Bayes’ Rule [41]. It applies to ourHβ,γ ,
by combining it with our results on truncated represen-
tations. For this theorem the reader should refer to Cors.
1 and 2. These define truncated predictive state η`[

←−
X ]

and assert that it converges weakly to the predictive state
ε[←−X ] for ←−µ -almost all ←−X as ` → ∞. This implies that
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for any continuous function g;〈
η`[
←−
X ], g

〉
→
〈
ε[←−X ], g

〉
,

albeit at some unspecified rate O(h←−
X

(`)). (Here, we use
〈µ, f〉 =

∫
f(X)dµ(X), not to be confused with the inner

products of Hβ,γ and Fβ,γ).

Theorem 5. Let µ ∈ P(X Z) be a stationary and ergodic
process. Suppose we take a long sample X ∈ XL and from
this sample subwords of length 2`, wt = xt−`+1 . . . wt+`
for t = `, . . . , L − `. (There are L− 2` + 1 such words.)
Split each word into a past ←−w t = xt−`+1 . . . wt and a
future −→w t = xt+1 . . . xt+`, each of length `. Define the
operators:

Ĉ
(←−X←−X)
β,γ = 1

L− 2`+ 1

L−∑̀
t=`
|δ̂←−w t〉β,γ ⊗ |δ̂←−w t〉β,γ and

Ĉ
(←−X−→X)
β,γ = 1

L− 2`+ 1

L−∑̀
t=`
|δ̂←−w t〉β,γ ⊗ |δ̂−→w t〉β,γ .

Now, suppose for every g ∈ Fβ,γ that
〈
ε[←−X ], g

〉
∈ Fβ,γ

and
〈
η`[
←−
X ], g

〉
→
〈
ε[←−X ], g

〉
at a rate of O(h←−

X
(`)); see

Section III E. Then for all ←−X :

Ĉ
(←−X−→X)
β,γ

(
Ĉ

(←−X←−X)
β,γ − ζ · Iβ,γ

)−1
|δ←−
X
〉
β,γ

almost surely converges to |ε[←−X ]〉β,γ as L →
∞, ` → ∞, and ζ → 0, at the rate
O
(
(Lζ)−1/2 + ζ1/2 + γ−` + h←−

X
(`)
)
.

This integrates all our results thus far with the usual
kernel Bayes’ rule. Several observations are in order.

1. First, there will (←−µ -almost) always be an h←−
X

(`) as
required by this theorem due to our own Cors. 1
and 2.

2. Second, since ε[←−X ] is not generally continuous, the
theorem’s strict requirements on ε[←−X ] are not satis-
fied. That said, weaker versions hold. If

〈
ε[←−X ], g

〉
as a function of ←−X does not belong to Fβ,γ as a
function of←−X , then the representational error scal-
ing depends on the precise form of ε[←−X ]. From a
learning theory perspective this error scaling de-
pends upon the complexity of the hypothesis space
relative to the function ε[←−X ] [42]. In the kernel
embedding-of-distributions literature these scalings
are obtained by choosing the ζ-parameter through
cross-validation analysis [40, 41].

3. Third, all of this is contingent on our choice of met-
ric DE,γ for the underlying sample space X Z. The
error whose scaling we have expressed above is for-
mulated in terms of this metric, and so does not
necessarily take into account whether the metric
itself has been well-chosen. Supplementary Mate-
rial II discusses the implications of the choice of
metric.

V. EXAMPLES

Proposition 4 considered the existence of probabilis-
tic expressions for the convergence rate of the trun-
cated predictive states η`[

←−
X ] to the true predictive states

ε[←−X ]. We close with a handful of examples and case
studies that give further insight to the convergence of∥∥η`[←−X ]− ε[←−X ]

∥∥
β,γ

for widely-employed process classes—
Markov, hidden Markov, and renewal processes.

A. Order-R Markov processes

A Markov process is a stochastic process where each ob-
servation xt statistically depends only on the previous ob-
servation xt−1. An order-R Markov process is one where
each observation xt depends only on the previous R ob-
servations xt−R . . . xt−1. As such, the predictive states
are simply given by:

Prµ
(
x
∣∣∣←−X )

= Prµ ( x−R+1 . . . x0x )
Prµ ( x−R+1 . . . x0 ) ,

for each ←−X = x0x−1 . . . . Since the predictive state is
entirely defined after a finite number of observations, and
this number is bounded by R, there is no conditioning
error when R is taken as the observation length.

B. Hidden Markov processes

A hidden Markov model (HMM) (S,X ,
{

T(x) }) is de-
fined here as a finite set S of states, a set X of obser-
vations, and a set T(x) = (T (x)

ss′ ) of transition matrices,
labeled by elements x ∈ X and whose components are
indexed by S [21]. The elements are constrained so that
0 ≤ T

(x)
ss′ ≤ 1 and

∑
x,s′ T

(x)
ss′ = 1 for all s, s′ ∈ S. Let

T =
∑
x T(x) and π be its left-eigenvector such that

πT = π. HMMs generate a stochastic process µ defined
by the word probabilities:

Prµ ( x1 . . . x` ) :=
∑
s′

[
πT(x1) . . .T(x`)

]
s′
.
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An extension of HMMs, called generalized hidden Markov
models (GHMMs) [21] (or elsewhere observable operator
models [22]), is defined as (V,X ,

{
T(x) }) where V is

a finite-dimensional vector space. The only constraint
on the transition matrices T(x) is that T has a simple
eigenvector of eigenvalue 1. The left-eigenvector is still
denoted π, the right-eigenvector denoted φ, and the word
probabilities:

Prµ ( x1 . . . x` ) := πT(x1) . . .T(x`)φ

are positive [21]. GHMMs generate a strictly broader
class of processes than finite hidden Markov models can
[21, 22, 43], though their basic structure is very similar.
First off, consider sofic processes. A sofic process is one
that is not Markov at any finite order, but that is still
expressible in a certain finite way. Namely, a sofic pro-
cess is any that can be generated by a finite-state hidden
Markov model with the unifilar property. An HMM has
the unifilar property if T (x)

s′s > 0 only when s′ = f(x, s)
for some deterministic function f : S × X → S. Unifilar
HMMs are the stochastic generalization of deterministic
finite automata in computation theory [44].
The most useful property of sofic processes is that the
states of their minimal unifilar HMM correspond exactly
to the predictive states, of which there is always a finite
number. Unlike with order-R Markov processes, there is
no upper bound to how many observations it may take
to δ-synchronize the predictive states. However, closed-
form results on the synchronization to predictive states
for unifilar HMMs is already known: at L past observa-
tions, with L → ∞, the conditioning error is exponen-
tially likely (in L) to be exponentially small (in L) [24].
In terms of our Hilbert space norm, there are constants
α and C such that:

Pr←−µ
( ∥∥∥η`[←−X ]− ε[←−X ]

∥∥∥
β,γ

> α`
)
< Cα` . (16)

As such, for ←−µ -almost-all pasts, the corresponding con-
vergence rate for the kernel Bayes’ rule applied to a sofic
process is O

(
(Lζ)−1/2 + ζ1/2 + min(α, γ)−`

)
.

Not all discrete-observation stochastic processes can be
generated with a finite-state unifilar hidden Markov
model. Though still encompassing only a small slice of
processes, generalized hidden Markov models have a con-
siderably larger scope of representation than finite unifi-
lar models, as noted above.
The primary challenge in this setting is to relate the
structure of a given HMM to the predictive states of its
process. This is achieved through the notion of mixed
states. A mixed state ρ is a distribution over the states
of a finite HMM. A given HMM, with the stochastic dy-

namics between its own states, induces a higher-order
dynamic on its mixed states and, critically for analysis,
this is an iterated function system (IFS). Under suitable
conditions the IFS has a unique invariant measure, and
the support of this measure maps surjectively onto the
process’ set of predictive states. See Refs. [12] for details
on this construction.
If ρ = (ρ) is a mixed state, then the updated mixed state
after observing symbol x is:

f (x)
s (ρ) := 1∑

s′

[
T(x)ρ

]
s′

[
T(x)ρ

]
s
.

Let the matrix
[
Df (x)]

s′s
(ρ) be given by the Jacobian

∂f
(x)
s′ /∂ρs at a given value of ρ. There is a statistic, called

the Lyapunov characteristic exponent λ < 0, such that:

λ = lim
`→∞

1
`

log
∥∥Df (x`)(ρ`) · · ·Df (x1)(ρ1)v

∥∥
‖v‖ ,

where ρt := f (xt−1)◦· · ·◦f (x1)(ρ), for any vector v tangent
to the simplex, almost any ρ (in the invariant measure),
and almost any −→X = x1x2 . . . (in the measure of the pre-
diction induced by ρ). The exponent λ then determines
the rate at which conditioning error for predictive states
converges to zero: for all δ and sufficiently large `:

Pr←−µ
( ∥∥∥η`[←−X ]− ε[←−X ]

∥∥∥
β,γ

< Ceλ`
)
> 1− δ .

This is somewhat less strict that Eq. (16)—
depending on how rapidly the Lyapunov exponent con-
verges in probability. In any case, for ←−µ -almost all
pasts, the convergence of the kernel Bayes’ rule is
O
(
(Lδ)−1/2 + δ1/2 + min(λ, γ)−`

)
, very similar to the

sofic process rate.
We anticipate that these rules still broadly apply to gen-
eralized hidden Markov models, though we recommend
more detailed analysis on this question.

C. Renewal processes

A renewal process, usually defined over continuous-time,
can be defined for discrete time as follows. A renewal
process emits 0s for a randomly selected duration before
emitting a single 1 and then randomly selecting a new
duration to fill with 0s [45]. Renewal processes can be as
simple as Poisson processes, where the probability at any
moment of producing another 0 or restarting on 1 is in-
dependent of time. Or, they can be far more memoryful,
with a unique predictive state for any number of past 0s.
While high-memory renewal processes cannot generally
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be represented by a finite hidden Markov model, they
have only a countable number of predictive states, unlike
most hidden Markov models. This follows since every
number of past 0s defines a potential predictive state,
but the process has no further memory beyond the most
recent 1. Said simply, the predictive states are the time
since last 1 [46]—or some coarse-graining of this indicator
in special cases, such as the Poisson process.
A renewal process is specified by the survival probability
Φ(n) that a contiguous block of 0s has length at least
n. The exact probability of a given length is F (n) :=
Φ(n) − Φ(n + 1). It is always assumed that Φ(1) = 1.
Further, stationarity requires that m :=

∑∞
n=1 Φ(n) be

finite, as this gives the mean length of a block of 0s. In
the most general case the predictive states are given by:

ε[←−X ] =
{
εk

←−
X = 0k1 . . .

undefined ←−
X = 0∞

,

where the measures εk are recursively defined by the word
probabilities:

Prεk
(

0`1w
)

= F (k + `)
Φ(k) Prε0 ( w ) .

Now, it can be easily seen that each past ←−X converges
to zero conditioning error at a finite length since (al-
most) all pasts have the structure . . . 10k, and so only
the most recent k + 1 values need be observed to know
the predictive state. Therefore, the kernel Bayes’ rule
has an asymptotic convergence rate for each past ←−X of
O
(
(Lδ)−1/2 + δ1/2 + γ−`

)
. However, this does not tell

the entire story, as obviously not all pasts converge uni-
formly. A probabilistic expression of the conditioning
error gives more information:

Proposition 7. Suppose µ is a renewal process with
Φ(n) ∝ n−α, α > 1. Then there exist constants C and
K such that:

Pr←−µ
( ∥∥∥η`[←−X ]− ε[←−X ]

∥∥∥
β,γ

> C`−1
)
> K`−α .

That is, the probability the conditioning error decays as
1/` is itself at least power-law decaying in `.

Proof. Recall from Eq. (15):∥∥∥η`[←−X ]− ε[←−X ]
∥∥∥
β,γ

>

∣∣∣Prµ ( w | x1 . . . x` )− Prµ
(
w
∣∣∣←−X )∣∣∣√

〈w|w〉β,γ
,

for every word w, so we can choose any w and obtain a

lower bound on the conditioning error. If our past ←−X has
the form 0k1 . . . for k < `, then we are already synchro-
nized to the predictive state and the conditioning error
is zero. Thus, we are specifically interested in the case
k ≥ ` and we will further consider the large-` limit.
Now, under our assumptions, Φ(n) = n−α for some con-
stant Z. For large n, F (n) ∼ αn−α−1. Then for any
j:

Prµ
(

0j1
∣∣∣←−X )

= F (k + j)
Φ(k) ∼ α

k

(
k + j

k

)−α−1
.

Meanwhile, so long as k ≥ `, the truncated prediction has
the form:

Prµ
(

0j1
∣∣ 0`

)
=
∞∑
n=1

Φ(n+ `)∑
p Φ(p+ `)

F (n+ `+ j)
Φ(n+ `)

= Φ(`+ j)∑
p Φ(p+ `) ∼

α− 1
`

(
`+ j

`

)−α
.

Now, choose 0 < C < α− 1 and define:

B =
(

1− C + 1
α

)−1
.

Then it can be checked straightforwardly that whenever
k > B`, we have:

Prµ
(

1
∣∣ 0`

)
− Prµ

(
1
∣∣∣←−X )

∼ 1
`

[
α

(
1− `

k

)
− 1
]

>
C

`
.

The probability that k > B` is given by Φ(B`) =
B−α`−α. Setting K = B−α/

√
〈1|1〉β,γ proves the the-

orem.

Therefore, while every sequence←−X converges to zero con-
ditioning error at finite length, this convergence is not
uniform, to such a degree that the proportion of pasts
that retain conditioning error of 1/` has a fat tail in
`. This is a matter of practical importance that is not
cleanly expressed in the big-O expression of the condi-
tioning error from Thm. 5.
Poisson and renewal processes are merely the first two
steps in a structural hierarchy of increasing sophistica-
tion. The next generalization beyond renewal processes
are the semi-Markov processes and beyond those, the
hidden semi-Markov processes. Roughly speaking, these
are finite-state-controlled renewal process and moving up
the hierarchy requires using more memoryful controllers.
In this way, each process class in the hierarchy is expo-
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nentially larger than it predecessor and so exponentially
more expressive of complex process organization. Refer-
ence [45]’s results on hidden semi-Markov processes allow
one to identify their predictive states. This section made
the route to these generalizations explicit and so we do
not include them here. We now shift to consider another
process class that employs infinite memory in a different,
more syntactic way than renewal process “count up and
reset”.

D. Aperiodic Infinitary Processes

Substitution shifts provide an easy-to-grasp but behav-
iorally nontrivial exploration ground for the possible be-
haviors of highly complex processes that are still ergodic.
The Thue-Morse process, for instance, can be generated
by starting from the string “0” and taking the limit of an
infinite number of substitutions of the form:

0 7→ 01
1 7→ 10 ,

and randomly sampling any contiguous block from the
result. Similarly, using the substitution rule:

0 7→ 01
1 7→ 10 ,

generates the Feigenbaum process. This has a physical
interpretation. If we sample a sequence of values yt from
the logistic map:

yt+1 = ryt(1− yt)

with y0 ∈ [0, 1] at critical parameter r ≈ 3.56995, and
only measure the function:

xt(yt) =
{

0 0 ≤ yt < 1/2
1 1/2 ≤ yt ≤ 1

,

then the resulting sequence X = (xt) has the same statis-
tics as the Feigenbaum process [29, 47].
These processes are considered aperiodic since they never
fully repeat and infinitary since many measures of their
long-time statistical dependencies diverge, such as cor-
relation length and excess entropy [48, 49]. These pro-
cesses are highly non-Markovian and sequential genera-
tion requires a nested stack (infinite memory) automaton
[47, 48].
Nonetheless, our approach to predictive states here ap-
plies directly to these processes. Helpfully, these pro-
cesses provide a useful example of the saturation of our

convergence results. While the preceding focused on
demonstrating that predictive states converge in distribu-
tion, for substitution shifts it can be seen that predictive
states fail to converge under certain stronger criteria.
Thue-Morse and Feigenbaum processes are considered
deterministic since they have an asymptotically vanishing
entropy rate [48] and the nested-stack automaton con-
troller is deterministic in the sense of formal language
theory [44]. This means, in particular, that the probabil-
ity mass in Prµ

(
x1

∣∣∣←−X )
is always concentrated on a 0

or 1. This can be extended to the observation that ε[←−X ],
for←−µ -almost all←−X , is a δ-measure concentrated on some
specific future −→X = F (←−X ).
A somewhat stronger criterion for convergence of mea-
sures is convergence over sets; that is, µn(A) → µ(A)
for any measurable set A. An even stronger criterion is
convergence in total variation: ‖µn − µ‖TV → 0.

However, suppose we choose the set A =
{
F (←−X )

}
,

where F is the deterministic mapping between pasts and
futures from before. Due to aperiodicity, η`[

←−
X ] cannot

be concentrated on F (←−X ). It must be, in fact, diffuse. If
this were not so, then there would be a word of infinite
length—namely, x−`+1 . . . x0F (←−X )—with nonzero mea-
sure under µ. This word must also be aperiodic, since
this is a key property of samples generated by substitu-
tion shifts. Stationarity then implies that every time-
shifted version of the word also carries nonzero probabil-
ity. Aperiodicity then implies an infinite number of these.
Whence we have a contradiction, since µ is a probability
distribution and can only assign a finite total mass.
Consequently, η`[

←−
X ] must be a diffuse measure with

no singular points, so η`[
←−
X ](A) = 0 for all `. Since

ε[←−X ](A) = 1, both convergence over sets and conver-
gence in total variation fail for the predictive states of
aperiodic infinitary processes. The very practical lesson
is that attempts to recover such processes from empirical
data must use tools that rely on convergence in distribu-
tion, such as the RKHS methods Sec. IV outlined.

VI. CONCLUDING REMARKS

Taken altogether, the results fill-in important gaps in
the foundations of predictive states, while strengthen-
ing those foundations for further development, extension,
and application. Previously, the properties of predic-
tive states were only examined in the context of hid-
den Markov models, their generalizations, and hidden
semi-Markov models. We provided a definition applica-
ble to any stationary and ergodic process with discrete
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and real-valued observations, extending previous foun-
dational work [21]. Further, we showed that predictive
states for all such processes are learnable from empirical
data, whether through a direct method of partitioning
pasts or through indirect methods, such as the reproduc-
ing kernel Hilbert space.
One important extension is to continuous-time pro-
cesses. By exploiting the full generality of Jessen’s and
Enomoto’s theorems we believe this extension is quite
feasible. As long as the set of possible pasts and futures
constitutes a separable space, they should be expressible
in the form of a countable basis, to which these theorems
may then be applied. (See our example in Supplemen-
tary Material I.) The challenge lies in constructing an
appropriate and useful basis. We leave this for future
work.
We described key properties of the space in which pre-
dictive states live. However, predictive states are not
merely static objects. They predict the probabilities of
future observations. And, once those observations are
made, the predictive state may be updated to account
for new information. Thus, predictive states provide the
stochastic rules for their own transformation into future
predictive states. This dynamical process has been ex-
plored in great detail in the cases where the process is
generated by a finite hidden Markov model—this is found
in former work on the ε-machine and the mixed states
of HMMs. (See, for instance, Refs. [12, 50, 51].) Un-

derstanding the nature of this dynamic for more general
processes, including how it makes contact with other dy-
namical approaches like stochastic differential equations
in the continuous-time setting, also remains for future
work.
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Supplementary Materials

Topology, Convergence, and Reconstruction of Predictive States

Samuel P. Loomis and James P. Crutchfield

The Supplementary Materials consider extensions and open questions beyond the main body’s scope, but that nonethe-
less may be of interest to the reader.

I. PREDICTIVE STATES FOR MORE GENERAL STOCHASTIC PROCESSES

The main text considered the case where T = Z and where X is compact. Compactness, in particular, is significant in
two places: It underlies Prop. 2 that relates predictive-state convergence to convergence in distribution. Additionally,
Ref. [38]’s theorem assumes it to guarantee that the Gaussian-kernel RKHS metrizes the topology of convergence in
distribution.

The following discusses various ways to relax these assumptions and so how Theorem 2 may still be used to define
and characterize predictive-state convergence in much broader settings, including continuous-time processes.

A. Relaxing (and reimposing) compactness

The most basic relaxation of compactness is to allow X to have infinite range. For instance, one way to characterize
point processes—such as, neural spike trains—is as a sequence of interevent times (t1, t2, . . . ) that, depending on the
setting, may be arbitrarily large. In this case, X = [0,∞).

A straightforward way to topologically address this case is to simply compactify X with the addition of a point at
infinity. However, this impacts the choice of distance metric on X used to construct DE,γ . The distance metric must
metrize the compactified topology. One option for this is:

d(t1, t2) = |tanh(t2)− tanh(t1)|

This is simply the metric obtained by processing the data t 7→ x under the rule x(t) = tanh(t). Any such metric
must de-emphasize differences between large values relative to equal-magnitude differences between small values. This
method works because R is locally compact and, therefore, has a one-point compactification. This method would
similarly extend to any locally compact symbol space.

A less straightforward case is when X takes values in an infinite-dimensional Banach or Hilbert space. This may
occur, for instance, if the stochastic process symbols are quantum-state valued, existing on the unit sphere SH in a
Hilbert space H, as in Refs. [8, 52]. If H is infinite-dimensional, the unit sphere SH is compact in the weak topology of
H but not the norm topology. Measures over SH (or its subsets) may be endowed with the topology of convergence in
distribution with respect to either the weak or norm topology of H. The considerations below suggest that predictive
states can be conditioned on the past in a manner that converges in distribution in either sense. However, it is only
in the compact weak topology of SH that we can assume a Gaussian RKHS metrizes the topology of convergence in
distribution. This affects our choice of measure.

Suppose we take a sequence of quantum states ←−Ψ = (|ψ−t〉)t∈N and break them down according to some orthogonal
basis |ej〉:

|ψ−t〉 =
∞∑
j=1

ct,j |ej〉 .

(This assumesH is separable, but in physical settings this is generally taken for granted.) We enumerate the coefficients
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into a single sequence according to a zig-zag scheme:
c1,1 c1,2 c1,3 · · ·
c2,1 c2,2

c3,1
. . .

...

 7→ (Cj) := (c1,1, c2,1, c1,2, c1,3, c2,2, c3,1, . . . ) .

This scheme allows enumeration to explore both any past time or any coefficient depth in a finite number of steps. It
has the effect of pushing steadily further into the past while doubling back to add further detail to the more recent
quantum states. Given any neighborhood U in SH, in whichever chosen topology, we define the predictive-state
probability as:

Prµ
(
U
∣∣∣←−Ψ )

= lim
j→∞

Prµ ( U | C1, . . . , Cj ) .

This conditioning scheme depends only on a countable, bounded sequence of complex numbers; that may be seen as
isomorphic to R2. It ultimately contains all information about past states. And, to the point, it is convergent as a
consequence of the generalized Enomoto theorem Thm. 2. Since separable Hilbert spaces are second-countable, we
need only collect these probabilities on a countable number of neighborhoods U to uniquely determine the predictive
state on all sets. This guarantees that there exists a measure-one set of pasts on which the predictive state converges
in distribution.
As noted, the results on RKHS representations of predictive states only hold if the underlying observation space is
compact. To construct a Gaussian RKHS over SH we must metrize its weak topology. As it happens, the weak
topology is in general not metrizable on infinite-dimensional H, but it is metrizable on any bounded subset [53],
including SH. The simplest such metric, perhaps unsurprisingly, has the form:

dγ(ψ1, ψ2)2 :=
∞∑
j=1

γ2j |c1,j − c2,j |2

for 0 < γ < 1. And so, we may define:

DE,γ1,γ2(Ψ,Φ) :=
∞∑
t=1

γ2t
2 dγ1(ψt, φt)2

=
∑
t,j

γ2t
2 γ

2j
1 |cψt,j − cφt,j |

2

as the Hilbert-space analogue of DE,γ . This, rather than a norm-based approach, is the most appropriate metric for
constructing a Gaussian RKHS for inference on a sequence of infinite-dimensional states.
To summarize, the simplest useful approach to acquire predictive states over noncompact observation spaces is to
make them compact, either by compactification (for unbounded observations) or adopting the weak topology (for
Banach/Hilbert spaces).

B. Continuous time processes

If T = R we open ourselves up to a much richer world of stochastic processes. The data now becomes functions from
R to R. This forces adopting more care about defining the full measure space. The following sketches out the broad
lines, but leaves formal development for future effort.
For simplicity, we constrain ourselves to consider only right-continuous data with left limits; that is, càdlàg functions.
The first thing to note in this case is that right-continuity means we can fully characterize any càdlàg function X

by knowing its values over only a countably dense subset D ⊆ R. As in the case of the Hilbert space sequences, we
can concoct a well-ordered enumeration (tj) of D that gradually explores more distant pasts while also incorporating
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more frequent recent observations. For instance, suppose we take D ⊂ [0,∞) defined by:

D =
{ n

2j : n ∈ N, j ∈ N
}
.

We may take the enumeration:

(tj) :=
(

0, 1, 1
2 ,

1
4 ,

3
4 ,

3
2 , 2, . . .

)
.

This follows the same zigzag scheme of our Hilbert space example. Using this enumeration of past times, we may
define the limit:

Pr
(
U
∣∣∣←−X )

= lim
j→∞

Pr ( U | X(−t1), . . . , X(−tj) ) ,

where X is a function on R and ←−X represents its projection to (−∞, 0). Again, since this is a countable sequence of
real numbers, we may apply the generalized Enomoto theorem Thm. 2 to conclude convergence for ←−µ -almost all ←−X .

What kind of neighborhood U should we use in the above limit? There are a few different ways of defining a topology
on càdlàg functions. A popular choice is the Skorohod metric—not defined here since it is not used—that essentially
seeks the regularized “supremum distance” between two càdlàg functions optimized over a relative “wiggling” of the
time variable. We propose instead to use the following L2-norm for functions X,Y over [0,∞):

‖X − Y ‖2Γ =
∫ ∞

0
|X(t)− Y (t)|2 dΓ(t) ,

where Γ is any probability measure over [0,∞).

For instance, if we desire an analogy with DE,γ in the discrete case, we may take dΓ(t) = γ2tdt for some 0 < γ < 1.
Compact sets in the L2(Γ) norm are characterized by a form of the Kolmogorov-Riesz theorem: a set X ⊂ X [0,∞) is
compact if and only if:

1. X is bounded,

2. for every δ > 0 there is T > 0 so that for every X ∈ X :∫ ∞
T

|X(t)|2 dΓ(t) < δ

and,

3. for every δ > 0 there is ∆ > 0 so that, for every X ∈ X and τ < ∆,∫ ∞
0
|X(t+ τ)−X(t)|2 dΓ(t) < δ

.

The first criterion ensures that X cannot not have arbitrarily large values at the origin. The second ensures that X
cannot grow “too fast”. The third ensures that X does not vary “too fast”. In other words, if we assume the continuous
signal X to be totally bounded in magnitude and to be somewhat rate-limited in the frequency of its variation, then
the range of possible X values will be compact in L2(µ). Furthermore, the norm ‖·‖Γ is decomposable over time in
a similar way to DE,γ , and if we adopt dΓ(t) = γ2tdt, then it obeys an analogous Pythagorean theorem. This should
make extending Theorems 4 and 5 relatively straightforward.
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II. METRIZING PRODUCT TOPOLOGY

The product topology of XN is metrizable—a fact use in the main development. The metric used depends on a
parameter γ:

DE,γ(X,Y )2 :=
{∑∞

t=1(1− δxtyt)γ2t X discrete∑∞
t=1 ‖xt − yt‖

2
γ2t X ⊂ Rd

.

The main development’s primary concern is only to relate the topology governing convergence of predictive states to
the natural topology of RKHS’s. In particular, a Gaussian kernel RKHS defined over a compact region of a Hilbert
space reproduces the topology of convergence in distribution [38]. The main development showed that DE,γ can be
interpreted as arising from embedding XN in a Hilbert space, and so the Gaussian kernel RKHS constructed from
this metric preserves the convergence of predictive states.

However, convergent predictive-state approximation says little about convergence speed. The asymptotic error rates
in Theorem 5 are extremely open-ended, and their coefficients may depend nontrivially on the choice of how we
metrize XN. Determining this precise dependence is beyond the scope of the present development, but the following
still offers several brief caveats on metric choice.

First, we note that while the DE,γ for 0 < γ < 1 are all topologically equivalent, they are not metrically equivalent.
That is, there are no constants α, β > 0 such that:

αDE,γ2(X,Y ) ≤ DE,γ1(X,Y ) ≤ βDE,γ2(X,Y ) ,

for all X,Y ∈ XN when γ2 6= γ1. Specifically, suppose that γ2 > γ1. Given some α, choose an integer K such that:

K > − log(α)
log(γ2/γ1) .

Choose any X and Y such that xt = yt for all 1 ≤ t < K and xK 6= yK . Then:

DE,γ2(X,Y )2 =
∞∑
t=K

γ2K
2 (1− δxkyk)

=
∞∑
t=K

γ2K
1

(
γ2

γ1

)2K
(1− δxkyk)

>
1
α2DE,γ1(X,Y )2 .

And so, DE,γ2 and DE,γ1 are not metrically equivalent. This means the choice of γ has a meaningful consequence on
the geometry of the processed data and on the reconstructed predictive states.

Additionally, while the development intentionally chose the DE,γ for simplicity, it need not have restricted to expo-
nential decay. Alternative metrizations of the product topology exist. The most straightforward extension would be
of the form:

DE,W (X,Y )2 :=
{∑∞

t=1(1− δxtyt)W (t)2 X discrete∑∞
t=1 ‖xt − yt‖

2
W (t)2 X ⊂ Rd

,

where W (t) > 0 is a weight function with finite squared sum
∑∞
t=1W (t)2 < ∞. One could, for instance, adopt a

power-law weight decay W (t) = 1/tp/2, p > 1, giving a zeta-function distance metric.

We conjecture that the most convenient choice would tie the weight function W (t) to a relevant time-scale of the
stochastic process in question. We propose the following heuristic. Inspired by Ref. [49], define the mutual information
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between the past ←−X and the next ` symbols x1 . . . x` as:

I(`) =
∫
d←−µ (←−X )

∫
dµ|`(x1 . . . x`) log

(
dε[←−X ]|`
dµ|`

(x1 . . . x`)
)
.

This captures, essentially, the redundancy of information in the process. What information (of the most recent
observations) did we already know from the past? If it is low, then future observations do not depend much on the
past, and so temporal correlation is limited. From this, we define the redundancy per symbol at ` as:

r(`) = I(`)− I(`− 1) ,

supposing that I(0) = 0. This captures the extent to which an observation ` steps in the future exhibits new corre-
lations with the past not captured by intermediate observations. We suggest that W (t) ∼ O(r(t)) is an appropriate
weight scheme for the distance measurement, as it weights the observation at each time by the potentially new
dependence which that observation may have on the past.
In the discrete case, these quantities are readily estimated from available data, providing a rough idea of the weights
to use. We provide a few examples, drawn from Ref. [49], that demonstrate how this weight scheme works:

1. For Markov processes of order R (including periodic processes of period R), r(t) = 0 for t > R. The distance
metric DE,W therefore only compares the first R symbols of any sequence—the only symbols that directly
depend upon the past. This saves computation time and reduces the effective complexity of the reproducing
kernel Hilbert space.

2. For hidden Markov models, the redundancy per symbol follows an exponential scaling r(t) ∝ γt for some
0 < γ < 1. In this case, the original choice in the main development—DE,γ—is appropriate, with the parameter
γ determined by r(t).

3. To consider a fully non-Markovian process, we examine the Thue-Morse sequence, generated by the substitution
rules 0 7→ 01, 1 7→ 10. Thue-Morse process cannot be generated by any hidden Markov model. It, in fact,
corresponds to an indexed grammar [47]. It is also infinitary, meaning that I(`) diverges as `→∞. Specifically,
I(`) ∼ log `; then r(`) ∼ O(`−1). Choosing W (`) = `−1 gives us a distance-squared sum that scales as `−2 and
so is still convergent.

To summarize, the weight that the metric over sequences assigns to future observations should depend on the process’
estimated temporal correlations. We believe the most useful correlation estimate is in the redundancy per observation
r(`).


