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Starting with a brief historical introduction, we review recent results
in the theory of evolutionary dynamics, emphasizing new mathemat-
ical and simulation methods that promise to provide experimental
access to evolutionary phenomena. One impetus for these develop-
ments comes from a fresh look at evolutionary population dynam-
ics from the computer science perspectives of stochastic search and
adaptive computation. These applications of evolutionary processes
are complemented by new theoretical approaches to Wright’s concept
of adaptive landscapes—analyses that borrow heavily from the theo-
ries of phase transitions, critical phenomena, and self-organization in
statistical physics and of bifurcations, pattern formation, and chaos
in dynamical systems theory. We also discuss extensions of basic neo-
Darwinian dynamics that include, for example, morphological and
functional aspects of phenotypes, as well as cooperative interactions
between individuals and between species. We argue that understand-
ing the behavioral and structural richness these extensions engender
requires new levels of mathematical and theoretical inventiveness that
are appropriate for the massive amounts of data soon to be produced
by automated experimental evolutionary systems.
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1 INTRODUCTION

Evolution unfolds over a stunningly wide range of temporal and spatial
scales—from seconds and nanometers at the molecular level to geologic epochs
and continents at the macro-evolutionary level. The mathematical theory of
evolutionary dynamics attempts to articulate a consistent conceptual descrip-
tion of these processes—what is similar and what is different across these
scales. It even asks if such consistency is at all possible. It focuses especially
on how the component mechanisms of selection, genetic variation, population
dynamics, the spontaneous emergence of structure, morphological constraints,
environmental variation, and so on interact to produce the huge diversity of
biological structure, function, and behavior that we observe. Since analysis al-
ways has limitations, in its attempt to understand the interplay of these com-
ponents evolutionary dynamics integrates modern analytical methods from
statistics and nonlinear physics and mathematics with current software engi-
neering techniques and simulation methods.

This book presents an up-to-date, but selected, overview of results in the
theory and practice of evolutionary dynamics. Starting with a brief histori-
cal introduction, here we set the context for the collection by reviewing new
developments that promise to provide experimental access to evolutionary
phenomena. One impetus for these developments comes from a fresh look at
evolutionary population dynamics from the perspective of computer science:
stochastic search and adaptive computation. These applications of evolution-
ary processes are complemented by new theoretical approaches to Wright’s
concept of adaptive landscapes—analyses that borrow heavily from the the-
ories of phase transitions, critical phenomena, and self-organization in sta-
tistical physics and of bifurcations, pattern formation, and chaos in dynam-
ical systems theory. These new investigations depend heavily on simulation;
partly, to test analytical results, but also to push into regimes where analysis
fails or cannot yet be employed. When viewed as a whole, the new develop-
ments promise to provide deeper insights into the mechanisms of Darwinian
optimization through variation and selection and into the roles of stochastic-
ity and nonadaptive evolution—processes beyond the optimization metaphor.
The new methods are particularly important in teasing out how evolutionary
mechanisms interact nonlinearly to produce such a wide range of biological
organization and dynamical behavior.

There are important extensions of basic neo-Darwinian dynamics that
include morphological and functional aspects of phenotypes, as well as co-
operative interactions between individuals and between species. Cooperative
interactions, for example, are now believed to play a predominant role in
the major evolutionary transitions. Understanding the behavior and struc-
tural richness these extensions engender will require, we believe, new levels of
mathematical and theoretical inventiveness that address the coming deluge of
data produced by automated experimental evolutionary systems. The contri-
butions in this volume on evolutionary dynamics are dedicated to stimulating
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a balanced synthesis of creativity, theoretical analysis, and experimental ex-
ploration.

2 A BRIEF HISTORY OF EVOLUTIONARY DYNAMICS

For decades after Darwin laid down its basic principles evolution was the do-
main of biologists and paleontologists. When the synthetic theory brought the
successful union of Darwinian principles with Mendelian genetics [64, 81] at
the turn of the 19th century most biologists were confident that they had a
solid conceptual basis for biology. The mathematical theory of evolution was
dominated by population genetics, which was commonly thought to provide
a sufficiently deep theoretical framework for analyzing the constituent mech-
anisms driving evolutionary processes. The synthetic theory—neo-Darwinian
evolution—came to be viewed as a universal paradigm for biology.

By the mid-20th century, however, the successes of the molecular life sci-
ences [47] introduced new perspectives into evolutionary biology. First, a great
number of empirical facts and time-worn rules—such as, the Mendelian laws of
inheritance, the structure of cellular metabolism, and the mechanisms under-
lying mutation—found straightforward and satisfactory explanations at the
molecular scale. Second, the concepts and methods of chemistry and physics
slowly began to make their way into biological thought. The result today is
that molecular reasoning has become an indispensable part of biology. Chem-
ical kinetics, as one example, was successfully integrated with population ge-
netics [23, 24], resulting in a single framework for analyzing prokaryotic and,
in particular, viral evolution [22]. Finally, and perhaps predictably, the suc-
cesses of molecular biology have revealed that the fundamental concept of the
gene—in many ways is responsible for this progress—is now in need of an
overhaul [52].

As a result, evolution has come to be modeled as an intrinsically stochas-
tic and (nonlinear) dynamical system in which a population of structured
individuals, monitored as a set of genotypes, diffuses through the space of all
possible genotypes. The diffusion is far from random, but instead is driven by
genetic variation and environmental fluctuations and guided by constraints
imposed by developmental processes and selection according to phenotypic
fitness, for example. Genotype space is now formulated as a sequence space
of genes [97], proteins [62] or, most appropriately, polynucleotides [23].

This blueprint is incomplete, however. For example, the discovery of gene
sequence variation having no apparent effect on fitness led to the idea of
nonadaptive, or neutral, evolution [53]. The result of the many-to-one nature of
the mappings from genotype to phenotype and phenotype to fitness, neutrality
radically modifies the effective architecture of genotype space and so, too, the
resulting evolutionary dynamics. At the macroscopic scale, phenotypes appear
unchanged for long periods of time; while at the microscopic scale genotypes
constantly change as they diffuse across large, selectively neutral networks in
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genotype space. In this view, selection acts mainly to eliminate deleterious
mutations. The result is that the majority of mutants reaching fixation in a
population consists of individuals with selectively neutral genotypes. The flip
side is that advantageous mutants are rare and can have little influence on
the genetic sequences recorded in phylogenetic trees [53].

Certainly of equal significance, the theory of evolutionary dynamics must
confront the difficult questions of how developmental processes interact with,
constrain, and drive the evolution of biological complexity [39]. Considering
even the simplest class of model one runs into daunting technical problems.
Populating an evolutionary system with pattern-forming individuals leads to
a process that operates on two basic time scales. The first is evolutionary and
relatively long; the second developmental and markedly faster. In addition
to the complications of analyzing this type of two-scale stochastic dynamical
system, one must first analyze the nonlinear pattern formation that occurs
during development and then identify which of the emergent features become
evolutionarily relevant so that selection can act on them. To top all of this
off, a predictive developmental evolutionary theory will need a quantitative
measure of these features’ structure and function.

These observations only serve to emphasize the magnitude of the task of
building a theory of evolutionary dynamics that naturally integrates selection,
accident, neutrality, structure, and function. Fortunately, biology is not alone
in facing many of the attendant theoretical problems. Over the same period,
starting in the mid- to late-19th century, that witnessed the flourishing of evo-
lutionary science, new concepts and methods were developed in mathematics
and the physical sciences that now promise to remove several of the roadblocks
to an integrative theory of evolutionary dynamics.

3 ORIGINS OF NOVELTY AND STRUCTURE

In parallel with the rise of evolutionary science, phenomena were investigated
in physics, chemistry, and other areas of science outside biology that turned
out to be intimately related to biological evolution. From the mid-19th to
the mid-20th centuries a number of mechanisms underlying the emergence of
randomness and structure in nature were discovered and mathematically an-
alyzed. Today, we now appreciate that phase transitions and critical phenom-
ena, pattern formation, bifurcations, and deterministic chaos occur in both
inanimate and animate nature and are implicated in fundamental ways with
evolutionary population dynamics and self-organization in biological devel-
opment. Perhaps somewhat surprisingly, even optimization through variation
and selection turned out not to be restricted to biological systems. By way
of elucidating several parallels and possible future tools for evolutionary dy-
namics theory, let’s consider these phenomena in turn.

One of the most widely applicable lessons from other disciplines is that
when systems consist of competing elementary forces the tensions that arise
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create structural complexity. Some of the earliest examples of the sponta-
neous formation of order are found in the equilibrium statistical mechanics of
interacting spins on a lattice. At low temperatures the energy of spin inter-
actions dominates and, in a ferromagnet for example, the neighboring spins
align, creating a global order of all “up” spins. At high temperatures, though,
thermal fluctuations overcome the local ordering force of spin alignment and
configurations consist of an array of randomly oriented spins. There must
be an intermediate temperature, it was argued [77], at which the tendencies
to order and to disorder balance, producing a new kind of structured crit-
ical state with long-range correlations and aligned-spin clusters of all sizes.
In other words, at these phase transitions the forces leading to order and
disorder compete, resulting in states more complex than those away from
the transition. Analogous tensions are well known in evolution: the selection-
mutation balance, the balance between replication fidelity and mutation (the
error threshold), and the interaction between gene stability, which is required
for survival, and genetic diversity, which is necessary for species adaptability,
are only three examples. The emergence of complexity, an apparently com-
mon phenomenon, and the parallels between the architecture of physical and
biological phenomena hint at the beginnings of a necessary synthesis. There
is, however, a much broader constellation of ideas that can brought to bear
on the difficult conceptual problems of evolutionary dynamics.

Novel, and rather straightforward, interpretations of common phenomena
initiated the development of more general theories of self-organization as it oc-
curs in nonequilibrium systems. (The latter are, by the way, often more appro-
priate models for biological processes, which are sustained by fluxes of energy
and resources, than equilibrium systems.) One example is the spontaneous for-
mation of spatial patterns in systems far from equilibrium. Interestingly, this
phenomenon had been predicted and developed as a model of embryological
morphogenesis in the 1950s by Alan Turing, one of the founders of theoreti-
cal computer science [87]. Twenty years later these ideas were turned into a
comprehensive model of pattern formation in biological development [65]. It
was only about ten years ago, though, that Turing’s predictions were verified
in an experimental chemical reaction-diffusion system [15]. There have been
even more direct arguments—for example, [41, 69]—that biological evolution
itself is an example of far-from-equilibrium self-organization.

Another, complementary approach to the evolution of biological complex-
ity originates from the observation that rich dynamical behavior and intricate
structures emerge when a few simple rules are applied over and over again.
This is the domain of dynamical systems theory [48,74,86,94] which classifies
temporal behavior into four categories: (i) equilibrium or fixed point behavior,
(ii) oscillations or limit cycle behavior, (iii) deterministic chaos, and (iv) tran-
sients (that relax onto stable behaviors (i), (ii), or (iii)). Bifurcation theory,
a branch of dynamical systems, analyzes and classifies the structural changes
that can occur when one kind of behavior makes a transition to another, as
a system control parameter is varied. A result that typifies the kind of gen-
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eral principle available from dynamical systems theory is that the dominant
signature of a system undergoing a bifurcation is that its transient behavior
is enhanced. That is, the system takes longer and longer to settle down as a
transition nears.

A hybrid approach to complex systems, combining ideas from equilibrium
and nonequilibrium statistical mechanics and dynamical systems, is found in
the study of cellular automata, a class of spatial system consisting of a lattice of
locally coupled finite-state machines. Although invented in the 1940s by John
von Neumann in part to formally investigate the minimal requirements of self-
reproduction [92], the study of their spatio-temporal behavior was rekindled
in the early 1980s with the introduction of a classification scheme that mimics
the four dynamical categories above [96]. For example, in addition to periodic
and “chaotic” behavior, those cellular automata expressing the richest kinds of
self-organization, those in “class IV”, are associated with transient behavior.
It was suggested that their behavior is a product of a dynamical interplay
between regularity and disorder [57, 75].

One of the most popular examples of self-organization in cellular automata
is John Conway’s two-dimensional cellular automaton, the Game of Life. The
Game of Life produces a wide diversity of intricate static and propagating
structures, despite the fact that its behavior is entirely specified by a simple
rule that operates on local neighborhoods of “live” or “dead” cells. One no-
table indication of its behavioral richness is that a universal Turing machine,
the most powerful kind of discrete computational device, can be embedded
in the Game of Life by carefully programming the initial configuration of live
and dead cells [8, 78].

Conway’s Game of Life was introduced and popularized in the early 1970s,
but it was not until the mid-1980s that a more systematic investigation of the
dynamics and structures generated by cellular automata was begun using
the methods of dynamical systems, information and computation theories,
and statistical mechanics. The general goal in this was to develop an thor-
ough appreciation of the possible behaviors and structures that systems with
demonstrably simple architectures could generate. Implicit in this agenda was
the belief that if one could not develop a consistent vocabulary and set of
analytical tools for cellular automata, then systems with more complicated
architectures, such as those found in biological processes, would remain for-
ever inaccessible. Exhaustive surveys of cellular automata in one and two
spatial dimensions were carried out [96]. The surveys suggested that univer-
sal computing could also be performed by even by one-dimensional cellular
automata and constructive proofs of particularly simple examples were then
produced [60].

At the time, it was believed that these results suggested an alternative
and novel view of the evolution of biological complexity [28, 56]: By varying
dynamical properties it appeared possible that qualitatively different levels of
computational structure could emerge in pattern-forming systems and that
these levels could become a substrate for novel forms of biological structure
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and information processing [17,20,49,57]. The emergence of this kind of struc-
tural complexity was investigated in an evolutionary setting to test if evolution
could find cellular automata with increased computational power [18, 68, 75]
or find formal logic systems with increased organization [30, 50, 80].

At about the same time a new mechanism for self-organization was dis-
covered through simulation studies of critical phenomena in nonequilibrium
systems; specifically, simple models of sand-pile avalanching. It turned out
that the size distribution of avalanches exhibits a power-law scaling indicating
that there were no characteristic temporal or spatial scales. In fact, there was
structure at all scales. More notably, for systems expressing this self-organized
criticality it was proposed that they systems naturally tend to these complex
states and that, in turn, these states are stable [6]. An analog of this kind
of self-regulating, stable complexity could be important for the evolutionary
maintenance of biological structure and function.

Note that all of these investigations—some theoretical, many simulation-
based—turn on the idea that between the extremes of pure order and utter dis-
order lie behavioral regimes that produce structural complexity. Moreover, it
appears that processes, evolutionary or not, can naturally move to structured
states. Very recently, similar ideas have reinvigorated the analysis of networks
dynamics. It has been suggested that highly structured networks, such as those
found in a wide range of natural and artificial systems, lie between regular
and purely random topologies [93]. Despite a sometimes checkered history,
the notion that complexity arises at the order-disorder border has highlighted
an important interplay between dynamics, structure, information processing,
and computation in pattern formation and in evolutionary processes.

This brief history of the origins of novelty and structure emphasizes, de-
spite its idiosyncrasies, that one of the overriding problems in all fields con-
cerned with self-organization—whether with its phenomenology, analysis, ap-
plication, or function—is the issue of complexity. How does one detect that a
system has become organized? For that matter, what does one mean by “or-
ganization” in the first place? Where is the “self” in self-organization? These
questions have stimulated a substantial, though disparate, body of research
that addresses how to define and quantify structural complexity [16]. It seems
fair to say, though, that as things stand today the implications for evolution-
ary dynamics have yet to be fully exploited. This observation leads us to think
more broadly about the future.

4 EVOLUTION OF STRUCTURE AND FUNCTION?

Self-organization of the general kinds mentioned here sets the stage for evo-
lution at two levels. First, self-organization guides the processes that produce
the structured entities on which variation and selection operate [39, 50]. Sec-
ond, self-organization emerges spontaneously in evolutionary dynamics itself,
as complex temporal population dynamics or as spatially structured popula-
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tions. Of course, these two levels interact and this interaction greatly compli-
cates mathematical modeling and analysis, and controlled experimentation.

What lessons for evolutionary dynamics should one take away from the
parallel developments outside biology? First and foremost, they force one to
recognize the essential tension between the roles of selection, accident, organi-
zation, and neutrality in evolutionary processes. One also comes to appreciate
the shear complication that can result from this interplay and that will cer-
tainly outstrip that found in simply chaotic dynamical systems and cellular
automata. Second and more concretely, they provide a hopeful new set of
conceptual and analytical tools with which to begin modeling complex evolu-
tionary and developmental processes. An abiding question, however, presents
itself, How do we integrate these results and tools into a comprehensive whole?
We believe many key pieces (such as the few mentioned above) are now in
place. We also believe that their integration has only just begun. What would
be the goal, beyond success in this integration? Perhaps the most important
would be that the resulting synthesis lead to predictive theories that bear di-
rectly on experimental observations. It would appear that there needs to be
a new balance between evolutionary theory and experiment that bridges the
gulf that now exists.

In addition to the constant need to revisit and reformulate the mathemat-
ical foundations of evolutionary dynamics, as we just argued, we believe that
a new conceptual framework is a pragmatic priority. It is clear, even passé to-
day, that the exploration of molecular genetics proceeds at a breathtaking pace
and has led to a rapidly growing number of fully sequenced genomes. Together
with an impressive array of other molecular data and new laboratory-scale bi-
ological evolutionary systems, the available information represents a vast and
untapped wealth that waits to be exploited by theorists with new concepts
and analytical methods.

To put some flesh on these bones, in the following two sections we discuss
recent experimental and theoretical approaches to evolutionary behavior. The
choice of subjects was guided by a desire to highlight a few stepping stones
that may play a role in articulating an integrative and experimentally rele-
vant theory of evolutionary dynamics. The final section briefly introduces the
contributions to this volume within this setting. The chapters are intended
as a collection of recent ideas in evolutionary dynamics. We will consider
the collection a success if it brings some of the current conceptual challenges
to the attention of a wide range of theorists and, in this way, is sufficiently
provocative to stimulate novel synthetic approaches. We also hope that ex-
perimentalists and engineers will find the reviews and the diversity of topics
and results a stimulus to new experimental directions.
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5 EXPERIMENT AND DESIGN

5.1 BIOLOGICAL AND MOLECULAR MODEL SYSTEMS

Research on biological evolution suffers from the fact that until recently no
direct experimental studies have been possible on the dynamics of evolution-
ary adaptation. The time scales of many evolutionary processes are simply
not compatible with experimentalists’ lifetimes. Hence, one has to extract
information from, for example, the fossil record or from comparisons of ge-
netic sequence data of (almost exclusively) contemporary organisms [14, 59].
Moreover, running control experiments in these cases is out of the question;
a situation reminiscent of that found in astrophysics and cosmology.

Fortunately, new biological and molecular model systems have begun to
break down the barriers of time and control. Experiments with rapidly mul-
tiplying bacteria and molecules replicating in vitro have recently led to a
marked reduction in generation times to less than one hour. At this time scale
evolutionary phenomena become observable within days, weeks, and years.
To date, populations of the eubacterium Escherichia coli have been studied
for thousands of generations under precisely controlled conditions [25,58,76].
Two findings from these experiments are of particular interest for evolutionary
dynamics. First, the optimization of bacterial phenotypes, monitored through
recording cell size (a more or less direct correlate of fitness) does not show
a gradual adaptation towards an optimum. Rather, innovations in fitness oc-
cur in jumps interrupted by rather long quasistationary epochs [25]. Second,
genetic evolution recorded in terms of DNA sequences does not stop during
the epochs of phenotypic stasis, but proceeds at least at the same pace, if not
faster than, during the adaptive innovations [76]. Punctuation in bacterial
evolution thus occurs without external triggers, and there is clear evidence
for neutral evolution which manifests itself in genetic changes despite obser-
vationally constant phenotypes. Although occurring at the level of single-cell
organisms, this intermittent dynamics reminds one, of course, of the punc-
tuated equilibria proposed to explain the long periods of morphological con-
stancy found in the fossil record [40].

The first attempts to study the evolution of molecules in the test tube date
back to the 1960s [84]. In RNA evolution, to take one example, the rate of RNA
synthesis is the proxy for the mean fitness of a population of RNA molecules.
In RNA evolution experiments this fitness was optimized in serial transfer
experiments. Later on in vitro evolution of RNA was investigated and analyzed
in great detail [10] and the mechanism of optimization through mutation and
selection is now fully understood at the level of chemical reaction kinetics [9].
One take-home lesson of in vitro molecular evolution concerns the entities
that can be subjected to evolutionary optimization. That is, evolution is not
restricted to cells or higher-level organisms: The operation of a Darwinian
mechanism can be observed with free molecules in solution, provided that
they are capable of replication and that the reaction medium sustains it.
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5.2 EVOLUTIONARY ENGINEERING

The engineering applications of in vitro molecular evolution to the production
of molecules with predefined properties—called applied molecular evolution or
evolutionary biotechnology—generated additional key insights on the mecha-
nisms underlying optimization through variation and selection [95]. In these
applications, the desired molecular properties often do not use high repli-
cation efficiency as a proxy for fitness. One illustration of this is found in
molecule breeding, which plays off the analogy between an evolutionary “pro-
ducer” of molecules and an animal breeder or gardener in a plant nursery. In
contrast to natural selection, in artificial selection the experimentalist inter-
rupts the process of optimizing fitness by picking out suitable candidates from
the molecular progeny, discarding the remaining variants irrespective of their
potential reproductive success. In other words, the molecular breeder defines
a modified fitness through this kind of intervention.

Most molecular breeding experiments to date have been performed with
RNA or DNA molecules, since they are readily amplified through replica-
tion without requiring other molecules as intermediates. (Protein evolution,
in contrast, depends on DNA or RNA genes and so requires translation and
its attendant complex molecular machinery.) Genetic diversity of molecular
populations can be controlled in a more or less straightforward way either
by replication with properly adjusted mutation rates or by random chemical
synthesis of oligonucleotides. Selection, though, requires ingenious chemical
or physical devices. Unfortunately, it would take us too far afield to discuss
these here. Instead, we mention two successes in molecular breeding. In the
first, RNA or DNA molecules—aptamers, which bind specifically to predefined
targets—were produced for almost all classes of known (bio)molecules. Bind-
ing constants were then optimized through mutation and selection [12, 61].
In the second example, catalysts based on RNA or DNA, known as (de-
oxy)ribozymes, were evolved for a wide variety of natural reactions, as well
as for some chemical processes. Interestingly, some of these processes have no
counterpart in biochemistry or molecular biology [13, 45].

Molecular breeding illustrates an important feature of evolution in gen-
eral: The evolutionary process creates or produces “solutions” to “problems”
without (intentionally) designing them, as an engineer would attempt to do.
In order to produce molecules with desired properties or functions by means
of variation and selection one need not know the exact molecular structure
that solves the task or that expresses a function. Biochemical engineers per-
forming rational design, in contrast, start by constructing a structure that
they expect to serve a predefined purpose. Then, they try to find biopolymer
sequences that hopefully form the structure in question. In the production
step the sequence is synthesized and transformed into the structure with the
desired property. Clearly, the rational engineering approach is a different kind
of process from evolution.
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FIGURE 1 Engineering paradigms: Comparing rational and evolutionary design
and production methodologies.

To draw out this difference and so emphasize the role of dynamics in
evolutionary processes, Fig. 1 compares these two strategies for engineering
biomolecules with predefined functions. What the figure illustrates is the dy-
namical nature of the evolutionary approach: The inclusion of the feedback
loop in an evolutionary process is crucial. It introduces an implicit tem-
poral component (dynamics). Most importantly, feedback allows for rapid
convergence—even exponentially fast near an optimum.

With the current state of the art, rational design often encounters great
difficulties because the contemporary knowledge of the relationships between
the sequence, structure, and function of biomolecules is simply not adequate
for the requirements of top-down design. Given this, it is an advantage in
evolutionary production that prior knowledge of structure is not necessary. In
fact, one can even forego a focus on reaching a unique optimum. Often two
or more structures serving a purpose equally well have been found by selec-
tion dynamics. In some ways this multiplicity is not so unexpected. Different
solutions for the same task are frequently observed in macroscopic biology,
since only function and efficiency count in the selection-mediated evaluation
of fitness.

5.3 EVOLUTIONARY COMPUTATION

Over the last two decades the theory of evolution and, in particular, popu-
lation genetics have found application to general combinatorial optimization
problems as various kinds of population-based stochastic search algorithm. In
these, a population consists of candidate solutions that compete via a fitness
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based on how well they solve the problem. Those (partial) solutions with the
best performances are selected as parents of the next generation’s population;
the members of which are formed from the parents by replication with genetic
modification. Variations on this basic theme go by different names: genetic al-
gorithms [38, 66], genetic programming [54], evolutionary strategies [4], and
evolutionary computation [46], among others. These search methods differ in
their preference for one or another type of problem encoding—such as, binary
strings or function trees—or in their emphasis on one or another mechanism
for genetic variation, recombination, and selection. Evolutionary search meth-
ods have found a wide range of application; see, for example, [7, 21, 27, 34].
In fact, the interest in adapting evolutionary ideas to problems in computer
science—such as, artificial intelligence—has a long history [29, 43]. One can
view the design of adaptive and evolutionary algorithms as examples of engi-
neering’s attempt to take advantage of Nature’s strategies for problem solv-
ing [5, 44].

6 CONCEPTS, MODELS, AND METHODS

6.1 �LANDSCAPES�

The concept of adaptive landscapes was introduced by Sewall Wright in the
1930s, initially as a metaphor to visualize evolution as a hill-climbing (local
optimization) process [79,97]. Much later, his geographic analogy was revived
with the development of formal methods to handle optimization problems in
complex physical systems [35]—such as, finding configurations with minimum
free energy in spin glasses. In simple evolutionary dynamics models, one makes
an analogy between a physical system minimizing energy as its state moves
down an energy surface and an evolving population maximizing fitness as it
climbs a “landscape” to an adaptive peak. The fitness landscape (or, more
properly, fitness function is defined by assigning a reproduction rate to every
point in genotype space.

Though specified by simple interaction rules, it turns out that the spin-
configuration energy functions of spin glasses are interesting models for a class
of evolutionary dynamics in which there are many adaptive peaks. Their main
feature is that, as fitness functions, they have a large number of local energy
minima [11]. In slightly modified form spin-glass-like fitness functions are used
in the popular NK model of “rugged” fitness landscapes [51], which have been
used as simple models of gene-to-gene coupling in genetic networks.

The central question to be answered before one uses the geographic
metaphor of landscapes as a starting point for modeling evolutionary dy-
namics is whether or not a direct analog of an energy function exists. As has
been appreciated for some time in mathematical population genetics, this is
typically not the case. Except in fairly restricted settings, there is no energy
function whose gradient determines the dynamics of evolutionary processes.
One generally must employ the theory of dynamical systems [86] or, when



James P. Crutch�eld and Peter Schuster 13

the fluctuations due to finite-population sampling are dominant, stochastic
extensions of this theory.

Concern over how to best model evolutionary behavior and how to analyze
the mechanisms that drive adaptive dynamics has stimulated recent work on
a number of different kinds of fitness function that are not “landscapes”—i.e.,
that do not specify gradient dynamical systems. For example, in the theory
of evolutionary computation the Royal Road fitness functions, which require
specific blocks of “genes” to be correctly set before a unit of fitness is given
to a genotype, were invented to test the “building block” hypothesis [43] that
genetic algorithms using crossover during replication preferentially assemble
functional subsets of genes. The building-block hypothesis turned out not to
hold in general [67], but they study led to a detailed mathematical analysis of
the finite-population dynamics of the Royal Road genetic algorithm [91] and
the discovery of how neutrality leads to epochal evolution [19].

Another interesting example of investigating the behavioral consequences
of structured fitness functions, the holey adaptive landscape, was developed in
population biology [36, 37] to probe the effects of neutrality on evolutionary
dynamics. There, a network of genotypes of (almost equally) high fitness per-
colates sequence space, leaving holes of low fitness. A similar model, with a
neutral genotypic plateau above genotypes of low fitness, was shown to spon-
taneously lead to the emergence of phenotypes with increased resilience to mu-
tational variation—phenotypes that are mutationally robustness or, using an
older terminology, phenotypes that can sustain a higher genetic load [89]. Fi-
nally, there have been attempts to investigate evolutionary dynamics produced
by molecularly realistic fitness functions based on folding RNA sequences into
RNA secondary structures [2, 33]. These studies predicted a high degree of
neutrality for properties of RNA molecules [83], which was confirmed recently
by an elegant experimental study [82].

A wide class of fitness functions can be compared and studied analytically
with respect to the nature of their “ruggedness” using methods based on the
algebra of linear operators [85]. They can be compared also in terms of the
statistics of adaptive walks or of optimization processes taking place on them.

In many of these studies simulations play an important role, initially
giving access to a basic appreciation of the diverse behaviors that can be
generated and finally providing confirmation of theoretical predictions. For
example, simulation studies of evolutionary dynamics have given direct in-
sights into the mechanisms that promote and inhibit optimization on a spin
glass landscape [1], on the Royal Road genetic algorithm [90], and in RNA
evolution [31, 32].

Time and again in these mathematical and simulation studies, one is con-
fronted by the shear complication and richness of evolutionary dynamics. The
result is that it is difficult to make blanket statements about how evolution
“works”. For example, population dynamics depends, critically sometimes, on
parameters—such as, population size and mutation rate. Varying a parame-
ter, even a small amount, can lead to very different population dynamics. In
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addition, subtle variations in fitness are simply not seen by selection and so
do not control, even local, optimization [73,88]. One of the overriding lessons
is that specifying the fitness function is only one, and sometimes not the dom-
inant, contributor to evolutionary behavior. More generally, the interplay of
accident, selection, neutrality, and function is multifaceted. This, of course,
points to the challenges and also the opportunities in evolutionary dynamics
research.

6.2 COEVOLUTIONARY DYNAMICS AND COOPERATION

Stepping back a bit, note that we have been talking here largely about mod-
eling and analysis within the neo-Darwinian framework. One important area
of research on evolutionary dynamics that, strictly speaking, lies outside the
conventional Darwinian paradigm of variation and selection concerns the co-
evolution and cooperation within and between species. In symbiosis, for exam-
ple, competition is suppressed because the long-term benefits of cooperation
outweight short-term competitive advantages. Evolution of cooperation that
combines competitors into a new functional unit has been invoked as an ex-
planation of the occurrence of major evolutionary transitions [24,63]. Periods
of cooperation, in which Darwinian survival is suppressed, are thought to be
implicated in the transition to more complex and hierarchically organized en-
tities. Examples of these include transitions from unicellular to multicellular
organisms and from solitary individuals to societies. Notably, cooperation is
possible even between molecular species in cell-free assays. Experiments study-
ing the emergence of cooperative molecular assemblies are under way [26]. A
mathematical framework to model adaptive dynamics in such non-Darwinian
systems has already been developed [42]. Particular attention has also been di-
rected to the evolution of cooperation in animal and human societies [3,70–72].

7 A SNAPSHOT OF EVOLUTIONARY DYNAMICS

The contributions to this volume were initiated by a conference, Towards a
Comprehensive Dynamics of Evolution—Exploring the Interplay of
Selection, Neutrality, Accident, and Function, held 5-9 October 1998
at the Santa Fe Institute. We have loosely grouped them into a few major
headings: macroevolution; epochal evolution; population genetics, dynamics,
and optimization; and evolution of cooperation. The chapters should be seen
as pointing to an enriched perspective on evolutionary dynamics, one that
appreciates the shear diversity of behavior and that acknowledges that this
diversity emerges from, and is often not directly determined, by evolution’s
elementary operations.

Macroevolution: Niles Eldridge starts with an up-to-date presentation on
external triggers in biological evolution. Next, Gunther Eble describes the in-
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teraction between developmental morphology and evolution using a space of
parametrized organism shapes. Looking at the fossil record reveals different
evolutionary stages of morphological divergence and convergence. Then, Ste-
fan Bornholdt reviews the present state of the art in modeling the dynamics
of macroscopic biological systems. Despite an overwhelming amount of new
data, a comprehensive model of macroevolution is still out of reach, but in-
dividual questions—such as, the origin of punctuated equilibria—can already
be addressed successfully, as several of the other contributors relate.

Epochal Evolution: Aviv Bergman and Marcus Feldman review the classical
analysis of punctuation and stasis in evolution. They show that the occurrence
of epochal or stepwise evolution need not depend on external triggering. It can
be intrinsic to the stochastic sampling dynamics of intermittent fixation that is
induced by finite populations. Moreover, punctuation happens independently
of many details in the governing evolution equations; in particular, it occurs in
asexual as well as in Mendelian populations. James Crutchfield reviews Erik
van Nimwegen and his analysis of the mechanisms leading to epochal evo-
lution via sudden adaptive innovations. They use the methods of maximum
entropy and self-averaging from statistical physics to show how evolutionary
innovations arise via a series of phase transitions: a population dynamical
system can discover (via genetic variation) and then stabilize (through se-
lection) new levels of structural complexity. Sergey Gavrilets introduces his
concept of holey landscapes and analyzes the evolutionary dynamics on them.
An impressive number of applications of the concept ranging from molecular
evolution to organismic evolution and speciation are discussed. Peter Schuster
addresses the evolutionary dynamics of asexual reproduction. He reviews the
theory of molecular quasispecies and presents a comprehensive theory of evo-
lution for molecular phenotypes, which leads to new definitions of continuity
and discontinuities in evolution.

Population Genetics, Dynamics, and Optimization: Tomoko Ohta
presents the most recent developments in the nearly neutral theory of evo-
lution, one of the most important extensions of Motoo Kimura’s neutral the-
ory. It explicitly considers weakly selected and slightly deleterious mutations.
Peter Stadler then presents a formal and mathematically quite demanding
theory of adaptive landscapes. Basic to the idea is the analysis of the spectra
of linear operators on “rugged landscapes”. The Fourier transform provides
a useful tool for a classification of linearly decomposable landscapes accord-
ing to the hardness of optimization dynamics. Next, Nigel Snoad and Martin
Nilsson extend the concept of quasispecies to dynamic fitness functions. They
find two thresholds for the copying fidelity: The lower bound is given by the
well known error-threshold, which itself sets an upper limit on mutation rate.
The upper fidelity limit expresses the fact that a population with exact repli-
cation is doomed to die out on a dynamic landscape since it cannot adapt
to a changing environment. Lionell Barnett studies evolutionary dynamics in
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finite populations with recombination. He models the system as a birth-and-
death process under the assumptions of the Moran model. Interestingly, he
observes bistability: different initial conditions give rise to different stationary
populations.

Evolution of Cooperation: Kristian Lindgren and Johan Johansson present
results on the evolutionary dynamics of a population of finite-state agents
playing the N -person Prisoner’s Dilemma—a well known model for competi-
tive game-theoretic interactions. They analyze a difference equation that mod-
els the resulting population dynamics in the case of nonoverlapping genera-
tions and asexual reproduction. One class of their models exhibits a predom-
inance of cooperation through a dynamics that avoids less cooperative stable
fixed points. Guy Sella and Michael Lachmann also study the evolutionary
dynamics of a population of agents interacting via the Prisoners’ Dilemma.
They investigate spatial cooperation with a population of agents on a lattice.
The common scenario consists in life cycles of populations that are estab-
lished by spreading from single cooperators which then die after invasion by
agents with parasitic “defect” strategies. A dynamical steady state with per-
sistent cooperation is encountered when the global birth rate of populations
founded by dispersed cooperators is balanced by the death rate of popula-
tions caused by invading defectors. In the final chapter, James Crutchfield,
Raja Das, and Melanie Mitchell analyze the evolutionary emergence of global
computation in spatial lattices of finite-state machines (cellular automata).
They focus particularly on the interaction between the series of evolutionary
innovations (ultimately producing high computational performance) and the
structural aspects of spatial cooperation that convey high fitness to the best
cellular automata.
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Resources
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A number of resources for evolutionary dynamics are available at the work-
shop’s website: http://www.santafe.edu/∼jpc/evdyn.html. We also recom-
mend the book Evolution as Computation [55] as a companion to this one.
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