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When reformulated as a resource theory, thermodynamics can analyze system behaviors in the
single-shot regime. In this, the work required to implement state transitions is bounded by α−Rényi
divergences and so differs in identifying efficient operations compared to stochastic thermodynamics.
Thus, a detailed understanding of the difference between stochastic and resource-theoretic thermo-
dynamics is needed. To this end, we explore reversibility in the single-shot regime, generalizing the
two-level work reservoirs used there to multi-level work reservoirs. This achieves reversibility in any
transition in the single-shot regime. Building on this, we systematically develop multi-level work
reservoirs in the nondissipation regime with and without catalysts. The resource-theoretic results
show that two-level work reservoirs undershoot Landauer’s bound, misleadingly implying energy dis-
sipation during computation. In contrast, we demonstrate that multi-level work reservoirs achieve
Landauer’s bound while producing arbitrarily low entropy.

I. INTRODUCTION

The Second Law of thermodynamics states that the
total entropy of a system and its surrounding environ-
ment increases when undergoing a transformation—the
entropy production of any thermodynamic transforma-
tion is nonnegative [? ]. This places strong resource
bounds on computations performed by a Hamiltonian
system coupled to a single thermal bath at tempera-
ture T . Specifically, the work that can be extracted
in transforming a system between potentially nonequi-
librium states (from ρ to ρ′) is bounded above by the
reduction in nonequilibrium free energy [? ? ? ]:

⟨W ⟩max = F (ρ)− F (ρ′)

= kBT [D1(ρ||τ)−D1(ρ
′||τ)] . (1)

Here, kB is Boltzmann’s constant, F (ρ) = Tr(ρH) −
TS(ρ) is the nonequilibrium free energy with S(ρ) ≡
−Tr [ρ log ρ] the von Neumann entropy, D1(ρ||τ) ≡
Tr [ρ ln ρ− ρ ln τ ] is the relative entropy between ρ and
τ , and τ the Gibbs state with Hamiltonian H. This re-
sult is a general expression of Landauer’s principle, which
relates information processing to the energy requirements
for a computation [? ].
From the perspective of thermodynamic control, we

can achieve Landauer’s bound on work [? ] by evolving
the system under a time-dependent Hamiltonian HS(t),
while maintaining weak coupling to a thermal reservoir
[? ]. However, the resulting unitary operator from this
Hamiltonian control does not necessarily preserve the to-
tal energy of the thermal bath and the system. Rather,
the extracted work is the negative total energy difference
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of the system and bath together [? ]. Stochastic ther-
modynamics addresses work production as the result of
external control, without explicitly describing the bat-
tery that stores the harvested work energy. This begs
the question: What are the thermodynamic limits when
accounting for the dynamics of the battery that drives a
state transition forward? This requires a more detailed
accounting of resources.
Recently, thermodynamics was reformulated as a re-

source theory—alternately called single-shot thermo-
dynamics, resource theory of athermality, or simply
nanoscale thermodynamics [? ? ? ? ? ]. In resource
theory, work must be stored in specific subsystems that
we refer to as work reservoirs and function as batteries
to power state transitions. In parallel to thermal reser-
voirs, a work reservoir is defined by a specific relationship
between its energy and entropy: a change in energy corre-
sponds to zero entropy change. External control cannot
violate energy conservation. That is, the unitary evolu-
tion of bath, system, and work reservoir together must
commute with the joint free Hamiltonian.
Typically, a work reservoir is a two-level quantum sys-

tem and the corresponding work is called deterministic
work [? ]. The work reservoir starts in one pure state at
the beginning and ends in another pure state. The work
is defined as the energy gap between those two levels.
The deterministic work that can be extracted from the
state transition ρ → τ is [? ]:

W ext
one−shot = kBTD0(ρ||τ) , (2)

where Dα(ρ||τ) ≡ 1
α−1 log Tr

[
ρατ1−α

]
is the Rényi

α−divergence between state ρ and τ [? ].
This work extraction result differs from the bound set

by the Second Law of thermodynamics in Eq. (1), which
would yield the result D1(ρ||τ). Recall that α = 0 Rényi
divergence vanishes when both ρ and σ have full rank.
So in the deterministic work setup, if we have a full rank
state ρ, there is no work we can extract from it.
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However, there is a connection between these two work
values. The thermodynamic bound is recovered by con-
sidering many copies of ρ and tolerating error ϵ. If we
loosen the requirement such that the final state can be
ϵ-close to the copies of thermal states, the work can be
described by the smoothed version of α = 0 Rényi diver-
gence [? ? ]:

lim
ϵ→0

lim
n→∞

1

n
D

(ϵ)
0 (ρ⊗n||τ⊗n) = D1(ρ||τ) . (3)

We expect this since the classical thermodynamic result
is supposed to be correct for a large ensemble of identical
systems. Since the Rényi divergence is nondecreasing as
a function of order α [? ], we have:

W ext
one−shot = kBTD0(ρ∥τ)

≤ kBTD1(ρ∥τ) . (4)

That is, the resource-theoretic bound on work ex-
tractable from state ρ is tighter than Landauer’s bound
of stochastic thermodynamics.

The two-level constraint also leads to tighter bounds in
state formation. The deterministic work to form system
state ρ in single-shot thermodynamics is [? ]:

W form
one−shot = −kBTD∞(ρ||τ) . (5)

Here, the minus sign indicates that work must be sup-
plied to form the state ρ. Similar to extraction, one-shot
analysis puts a tighter bound on state formation than
Landauer’s bound:

W form
one-shot = −kBTD∞(ρ||τ)

≤ −kBTD1(ρ||τ) . (6)

In some cases, W form
one−shot and W ext

one−shot equal the aver-
age results from thermodynamics. Landauer’s bound on
erasure [? ] and the energy that can be stored in a work
reservoir by randomizing a pure bit are both kBT log 2
[? ]. However, resource-theoretic results, such as in Eqs.
(2) and (5) with two-level work reservoirs, usually under-
shoot Landauer’s bound [? ]. Energy must be dissipated
during state transitions [? ? ? ? ? ? ].
The following establishes that the disparity arises from

assuming that work is stored in a two-level system. We
show how to approach the thermodynamic limit of Lan-
dauer’s bound in nanoscale thermodynamics by aban-
doning two-level work reservoirs. When using multi-
level work reservoirs as shown in Fig. 1, thermodynam-
ically efficient state transformations are directly imple-
mentable.

Our development is organized as follows. Section II
sets up the basic framework. Section III reviews the def-
inition of entropy production at both the macroscopic
scale and the nanoscale and gives an equivalent condi-
tion of approaching zero dissipation at the nanoscale.
Section IV generalizes the two-level work reservoirs typi-
cally employed in nanoscale thermodynamics. It gives an

System : ρ

Thermal Bath

Work Reservoir

System : ρ′ 

Work Reservoir

Thermal Bath

FIG. 1. State transitions with multi-level work reservoirs
rather than two-level work reservoirs. We show that for any
transition ρ → ρ′, there is a multi-level work reservoir such
that the dissipation can be arbitrarily small.

explicit construction for a multi-level work reservoir that
can be used to approach zero entropy production for any
state transition. Section V goes on to study efficient work
reservoirs in the presence of catalysts and introduces an
alternative way to describe almost-nondissipation scenar-
ios.

II. FRAMEWORK

The total system consists of system S, work reservoir
W , and thermal bath B with Hamiltonians HS , HW , and
HB , respectively. Initially, they are uncorrelated. The
initial state is ρSWB = ρS ⊗ ρW ⊗ τB , where τB is the
Gibbs state of the thermal bath at temperature T . The
three subsystems interact via Hamiltonian Hint. They
evolve by the unitary operator U = Texp

(
− i

ℏ
∫
Hdt

)
,

where T is the time-ordering operator and H is the
total Hamiltonian H = HS + HB + HW + Hint. In
thermodynamics, there is often no need to include a
work reservoir and U does not preserve total energy in
general. In resource theory, though, we specify that
[U,HS+HB+HW ] = 0—strict energy conservation. The
final state is given by ρ′SWB = UρSWBU

†.

Here, we focus on states that are incoherent in energy.
Since incoherent states are diagonal in the energy eigen-
states, we identify a quantum state ρ with the vector p
of its eigenvalues, a Hamiltonian H with its energy levels
E, and the eigenstates of Hamiltonian H with a classical
set S = {1, 2, · · · }. Throughout, greek letter ρ denotes
a state, bold p denotes a probability distribution, and
pi/(p)i the i-th component in the latter. τ denotes the
Gibbs state and τ the corresponding distribution. Sub-
scripted notation (·)S or (·)B refers to the system or the
thermal bath, respectively, while (·)SW denotes the joint
distribution of the system and the work reservoir. Nota-
tion without subscripts refers to a general state. Primed
notation (·)′ refers to a final state.
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III. APPROACH TO ZERO ENTROPY
PRODUCTION AND WORK BOUNDS

This section reviews the bounds mentioned above and
entropy production in single-shot thermodynamics.

Thermodynamic entropy production Σ is defined as [?
? ]:

Σ = ∆SS +
Q

T
, (7)

where ∆SS is the system’s entropy change and Q is the
amount of heat transferred from the system to the ther-
mal bath.

We assume that the system and bath are initially
uncorrelated and the bath is in equilibrium, such that
ρSB = ρS ⊗ τB . The global unitary operator U acts
on the system and bath to extract work. Using Klein’s
inequality—Tr(ρ log ρ) ≥ Tr(ρ log σ)—we can show that
the entropy production Σ is nonnegative [? ]. Define
the missing energy of the total system as work produc-
tion W = −Q−∆US , where ∆US is the system’s energy
change, and rewrite Eq. (7) as:

Σ =
1

T
(T∆SS −∆US −W ) ≥ 0 . (8)

This gives the familiar’s thermodynamic bound W ≤
−∆FS , where ∆FS = ∆US − T∆SS . The equal sign
holds if and only if the entropy production vanishes.

Resource theory limits thermodynamic evolution to
unitary operators U that commute with the total free
Hamiltonian. So, there can be no “missing energy”:
−Q−∆US = 0. Such operations on the system are called
thermal operations (TO).

Without work input, the constraint on state transitions
is thermomajorization [? ? ]. That is, to transition from
ρS to ρ′S , ρS must thermomajorize ρ′S . There is a geo-
metric way to determine this condition: thermomajoriza-
tion curves reveal whether a state ρS thermomajorizes ρ′S
[? ].
For any state ρ, the thermomajorization curve is con-

structed as follows. Suppose the eigenvalues of ρ are
p = {pi}i∈S and the corresponding energy levels are
E = {ei}i∈S . We first rank {pi}ni=1 in descending order
of pie

βei . This is called β−order. The thermomajoriza-
tion curve of state ρ is formed by connecting points:

(0, 0) and
( k∑

i=1

e−βe↓i ,

k∑
i=1

p↓i

)n
k=1

(9)

piecewise linearly where ↓means that pi and ei have been
β−ordered. The thermomajorization curve of state ρ is a
monotonic concave-down curve fp,E(x) that interpolates
between (x, f(x)) = (0, 0) and (x, f(x)) = (ZS , 1), where
ZS =

∑
i∈S exp (−ei/kBT ) is the system’s partition func-

tion. Geometrically, to have a transition ρS → ρ′S under
a thermal operation, ρS thermomajorization curve must
lie above or on the curve of ρ′S . (See Fig. 2.)

ZSe−βe1 e−βe1 + e−βe2

1

ρS

σS

τS

FIG. 2. Thermomajorization curves of states: We show ther-
momajorization curves of three states ρS , σS , and τS . ρS is
a pure state, σS a general state and τS the Gibbs state. Ap-
plying the criterion, we can have transitions ρS → σS/τS and
σS → τS under thermal operations.

Now, we are ready to study work extraction bounds
in the single-shot regime. Consider a two-level work
reservoir with Hamiltonian HW = W0|W0⟩⟨W0| +
W1|W1⟩⟨W1|. For a work extraction transition (ρS ⊗
|W0⟩⟨W0|, HS+HW ) → (τS⊗|W1⟩⟨W1|, HS+HW ) to oc-
cur in single-shot thermodynamics, ρS ⊗ |W0⟩⟨W0| must
thermomajorize τS ⊗ |W1⟩⟨W1| and we have:

W = W1 −W0 ≤ D0(ρS∥τS) . (10)

(See Appendix B for details.)
In this case, the maximum work extractable from a

state (ρS , HS) cannot achieve the upper bound −∆FS ,
because a two-level nanoscale work reservoir cannot
approach zero entropy production for every work ex-
traction. By contrast, stochastic thermodynamics ap-
proaches zero entropy production by employing a qua-
sistatic process connecting the initial and final states [?
].
Next, let us address how to compute the entropy pro-

duction in the single-shot regime. The entropy produc-
tion is still defined as in Eq. (7). Consider an energy pre-
serving unitary operation such that Q = −∆US , where:

∆US = kBT
(
− Tr(ρ′S log τS) + Tr(ρS log τS)

)
. (11)

(Here, we assume there is no work reservoir. But if we
wish to include one, we treat the work reservoir as part of
the system.) Then we can write the entropy production
of Eq. (7) in an information-theoretic form [? ? ]:

Σ = −∆US/T +∆SS (12)

= D(ρS∥τS)−D(ρ′S∥τS) . (13)

This represents the entropy produced when the system
undergoes a Gibbs-preserving thermal operation, whose
steady state τS produces zero entropy. In essence, when
there is no work reservoir to guide the transformation,
any relaxation towards equilibrium corresponds to irre-
versibility.
Let thermal operation E transform ρS to ρ′S : E(ρS) =

ρ′S . This thermal operation preserves the Gibbs state,
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such that E(τS) = τS , and from the data processing in-
equality [? ], we have:

D(ρS∥τS) ≥ D(E(ρS)∥E(τS)) (14)

= D(ρ′S∥τS) . (15)

Entropy production is always nonnegative in single-shot
thermodynamics. Now, we are ready to state a theorem
on approaching zero entropy production at the nanoscale.

Theorem III.1. Consider a d−dimensional system with
Hamiltonian H. Given two states ρ and σ, the following
are equivalent:

(a) The thermomajorization curves of states ρ and σ
coincide.

(b) There exists a thermal operation E such that E(ρ)
can be arbitrarily close to σ and the corresponding
entropy production can be arbitrarily small.

Theorem III.1 is one of our main results. Appendix C
gives the proof. Note that for two different states to have
exactly same thermomajorization curve, there must be
energy degeneracy in H [? ? ]. Theorem III.1 illustrates
geometrically why the familiar thermodynamics bounds
are not same as the bounds at the nanoscale. To ap-
proach the latter bounds, the entropy production needs
to be arbitrarily small. Here, the work reservoir entropy
change must be included:

Σ = ∆SS +∆SW +
Q

T
. (16)

Under deterministic work extraction, ∆SW = 0 and the
work reservoirs’ initial and final states are pure states.
They can only contract the system’s thermomajorization
curves along x-axis by a factor. And so, to approach zero
entropy production, the system’s initial thermomajoriza-
tion curve must coincide with its final thermomajoriza-
tion curve up to a contraction factor. This is not always
possible. Fig. 3 depicts the situation.

IV. BEYOND DETERMINISTIC WORK

This section generalizes two-level work reservoirs in
such a way that initial and final thermomajorization
curves coincide. This achieves arbitrarily small entropy
production for a transition. Before the general case,
though, we first review an elementary example to give
a simple picture.

A. Example

Consider Landauer’s erasure with the initial distribu-
tion pS = ( 13 ,

2
3 ) stored in a two level system with trivial

Hamiltonian H = 0 and a four-level work reservoir with
energy levels {W0,W1,W2,W3}. We set the work reser-
voir’s initial distribution to pW = (r1, r2, 0, 0) and the

2 = ZS1 = e−β0

1
2

2
3

∑
i pi = 1

FIG. 3. Thermodynamics’ bound cannot be achieved at the
nanoscale: Consider a two-level system spanned by {|0⟩, |1⟩}
with HS = 0. The red circle is the thermomajorization
curve of ρS = 1

2
(|0⟩⟨0| + |1⟩⟨1|). The blue square is the

curve for ρ′S = |0⟩⟨0|. The green triangle is that of σS =
( 1
3
|0⟩⟨0| + 2

3
|1⟩⟨1|). The red circle and blue square curves

coincide with a two-level work reservoir. The corresponding
transition (ρS , HS) → (ρ′S , HS) is the well-known Landauer’s
erasure. We can approach this bound arbitrarily closely.
However, this cannot be done for the green triangle and blue
square curves.

final to p′
W = (0, 0, r1, r2). Initially, the nonzero popula-

tions of the work reservoir are with the first half of energy
levels and the final nonzero populations of the work reser-
voir are with the second set of energy levels. The work
reservoir’s entropy does not change overall. The total
initial state is:

ρSW =(
1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1|)⊗ (17)

(r1|W0⟩⟨W0|+ r2|W1⟩⟨W1|) (18)

and the final is:

ρ′SW = |0⟩⟨0| ⊗ (r1|W2⟩⟨W2|+ r2|W3⟩⟨W3|) . (19)

First, consider the final state’s thermomajorization
curve. At most, it has two distinct slopes. For the two
curves to coincide, the initial curve can contain at most
two distinct slopes. One possibility is that the initial
work reservoir’s thermomajorization curve has one dis-
tinct slope. This leads to:

1

3
r1e

βW0 =
1

3
r2e

βW1 = r1e
βW2 (20)

2

3
r1e

βW0 =
2

3
r2e

βW1 = r2e
βW3 (21)

1

3
r1 +

1

3
r2 = r1 (22)

2

3
r1 +

2

3
r2 = r2 . (23)

The first two equations come from requiring the initial
curve to have only two distinct slopes and the same slopes
as the final curve’s. And, the last two equations come
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from requiring the same y-coordinate change. Solving
those equations gives:

r1 =
1

3
and r2 =

2

3
(24)

e−βW0 = a, e−βW1 = 2a, e−βW2 = 3a, and e−βW3 = 3a,
(25)

where a is an arbitrary positive number.
Table I demonstrates that the initial and final curves

coincide. The expected energy change in the work reser-
voir is:

⟨W ⟩ = r1(W2 −W0) + r2(W3 −W1) (26)

= kBT

(
1

3
log

1

3
+

2

3
log

2

3

)
. (27)

This is the system entropy change as ex-
pected. This demonstrates that energy levels
EW = {W0,W1,W2,W3} with probability distribu-
tions pW = ( 13 ,

2
3 , 0, 0) and p′

W = (0, 0, 1
3 ,

2
3 ) form an

efficient work reservoir for Landauer erasure with the
initial distribution pS = ( 13 ,

2
3 ).

One subtlety to highlight is that, although the total
curves coincide, with thermal operations we can only
make the final state arbitrarily close to the desired state
ρ′SW . So, we cannot use exactly ⟨W ⟩ to erase pS . In-
stead, we can use the amount of work arbitrarily close
to ⟨W ⟩ to erase pS and then the corresponding entropy
production will be arbitrarily small.

For simplicity, from now on we treat thermomajoriza-
tion curves coinciding as the same as zero entropy pro-
duction. Corresponding bounds on work can be com-
puted by setting entropy production to be zero. How-
ever, we should keep in mind that the precise statement
is that the entropy production can be arbitrarily small
and the corresponding work can be arbitrarily close to
the bounds.

A key observation from this example is that for the two
total thermomajorization curves to coincide, the nonzero
slope part of final work reservoir’s curve must coincide
with the nonzero slope part of the initial system’s curve
up to a scale constant. In the above example, the scale
constant is 3a. We further require that the nonzero slope
part of initial work reservoir’s curve coincide with the
nonzero slope part of the final system’s curve up to the
same scale constant. Thus, the key step in constructing
an efficient work reservoir for a state transformation is
to find a suitable probability distribution for the work
reservoir. And, then we can fine tune energy levels such
that the work reservoir’s thermomajorization curve can
coincide with both the initial and final state’s curves.

In the first example, the probability distribution we
chose was ( 13 ,

2
3 ). We set the initial energy levels to be

W0 = −kBT log a and W1 = −kBT log 2a and the final’s
to be W2 = −kBT log 3a and W3 = −kBT log 3a. Under
those parameters, the erasure is efficient; i.e., the entropy
production vanishes.

B. General efficient work reservoirs

Now, we turn to develop efficient work reservoirs for
arbitrary state transitions. First, we introduce a nota-
tion using tuples to aid in describing thermomajoriza-
tion curves. Then, we present the definition of effi-
cient work reservoirs and briefly discuss how to con-
struct them. Recall that the thermomajorization curve
fp,E of a distribution p = {pi}i∈S over the energy lev-
els E = {ϵi}i∈S can be derived from the collection of
segments {(e−βϵi , pi)}i∈S . Thermomajorization curve or-
ders the segments from highest slope—the slope of i-th
element is pie

βϵi—to lowest and then concatenates them
end to end.
Consider a coarse-graining function λ : S → S ′ that

defines a new distribution and energy landscape: p′ =
λ(p) = {p′j}j∈S′ and energy landscape E′ = λ(E) =
{ϵ′j}j∈S′ via:

p′j =
∑

i∈λ−1(j)

pi (28)

e−βϵ′j =
∑

i∈λ−1(j)

e−βϵi , (29)

where:

λ−1(j) ≡ {i|i ∈ S, λ(i) = j} . (30)

If λ only coarse-grains elements of (p,E) whose seg-
ments have the same slope—meaning λ(i) = λ(i′) implies
pie

βϵi = pi′e
βϵi′—then the coarse-grained distribution

and energies (λ(p), λ(E)) have the same thermomajoriza-
tion curve fλ(p),λ(E) = fp,E . The segments (e−βϵi , pi)

and (e−βϵi′ , pi′) of elements i and i′ with the same slope
in the thermomajorization curve comprise a long line seg-
ment with (width, height) = (e−βϵi + e−βϵi′ , pi + pi′).
Suppose λ coarse-grains all segments with the same

slopes. After the coarse-graining, the thermomajoriza-
tion curve has n distinct slopes, excluding the segments
with slope zero. Let #fp,E = n denote the number of
distinct slopes in fp,E and n tuples fp,E = {(yi, ki)}ni=1

represent f where ki is the i-th distinct slope and yi is
the corresponding y−coordinate change. In some cases,
we allow repeating slopes in fp,E .

For a composite system, the joint thermomajoriza-
tion curve is constructed as follows. Given one distri-
bution pS = {pi}i∈S over energy levels ES = {ei}i∈S
with thermomajorization curve fpS ,ES

= {(xi, ki)}i∈S
and another distribution pS′ = {qi}i∈S′ over energy
levels ES′ = {hi}i∈S′ with thermomajorization curve
fqS′ ,HS′ = {(yi,mi)}i∈S′ , then the composite configu-
ration is the probability distribution pSS′ over energy
levels ESS′ where:

pSS′ = {piqj}i∈S,j∈S′ (31)

ESS′ = {ei + hj}i∈S,j∈S′ , (32)

and:

fpSS′ ,ESS′ = {(xiyj , kimj)}i∈S,j∈S′ . (33)
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<latexit sha1_base64="zlggyV5JYcZHmnOREbxXWy0mCVA="></latexit>

System Work reservoir Total = System ⌦ Work reservoir

Initial

21

2
3

9a2a

2
3

3a 6a a

2
9

3a

2
3

5a

5
9

6a 9a 12a 15a 18a

Final

21

1

9a3a

2
3

6a 8a 3a

2
3

6a 9a 12a 14a 15a 17a 18a

TABLE I. Efficient work reservoir for Landauer erasure: The first row shows thermomajorization curves of the initial system
state ρS = 1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1|, the initial work state ρW = 1

3
|W0⟩⟨W0|+ 2

3
|W1⟩⟨W1|, and the initial total state ρSW = ρS ⊗ ρW .

The second row shows thermomajorization curves of the final system state ρ′S = |0⟩⟨0|, the final work state ρ′W = 1
3
|W2⟩⟨W2|+

2
3
|W3⟩⟨W3|, and the final total state ρ′SW = ρ′S ⊗ ρ′W .

Slopes may repeat in fpSS′ ,ESS′ .
With this enhanced notation, we now define multi-level

work reservoirs.

Definition IV.1. (Multi-level Work Reservoirs) A
2d−level work reservoir (pW ,p′

W ,EW ) for a state tran-
sition pS → p′

S in a system with energy levels ES =
{es}s∈S has initial distribution pW = {qw}w∈W , final
distribution p′

W = {q′w}w∈W , and energy eigenstates
EW = {ϵw}w∈W . Here, pW and p′

W have the form of
pW = (r,0) and p′

W = (0, r), where r is a d−dimension
probability distribution. The initial configuration of the
system with the reservoir is (pSW ,ESW ), where:

pSW = {psqw}s∈S,w∈W (34)

ESW = {es + ϵw}s∈S,w∈W . (35)

The final configuration is (p′
SW ,ESW ), where:

p′
SW = {p′sq′w}s∈S,w∈W (36)

ESW = {es + ϵw}s∈S,w∈W . (37)

This requires pW and p′
W to have the forms pW =

(r,0) and p′
W = (0, r) so that the overall work reservoir’s

entropy change vanishes. This satisfies the stochastic
thermodynamics’ entropyless assumption for work reser-
voirs [? ]. Furthermore, from our definition the initial
nonzero distribution in the work reservoir occupies the
first half of energy levels and the final occupies the sec-
ond half of the energy levels. This leads immediately to
the following definition.

Definition IV.2. (Efficient Work Reservoirs) A work
reservoir (pW ,p′

W ,EW ) is efficient for a state transition
pS → p′

S in a system with energy levels ES if the ther-
momajorization curves of (pSW ,ESW )and (p′

SW ,ESW )
coincide.

The previous example showed that the key to con-
structing an efficient work reservoir is to find a probabil-

Work Reservoir : (0, r)

System : ρ′ S
fp′ S,ES

fp′ W,EW
∼ fpS,ES

Final

Work Reservoir : (r, 0)

System : ρS
fpS,ES

fpW,EW
∼ fp′ S,ES

Initial

FIG. 4. One way for two total thermomajorization curves
to coincide is to find a probability distribution r and en-
ergy levels EW such that when r occupies the first half en-
ergy levels—i.e., pW = (r, 0)—the thermomajorization curve
fpW ,EW

coincides with the final system state’s curve fp′
S
,ES

up to a contraction factor—denoted fpW ,EW
∼ fp′

S
,ES

.

When the probability distribution occupies the second half
energy levels—i.e., p′

W = (0, r)—the thermomajorization
curve fp′

W
,EW

coincides with the initial system state’s curve

fpS ,ES
up to the same contraction factor. With this, the two

total curves coincide: fpSW ,ESW
= fp′

SW
,ESW

.

ity distribution r and energy levels EW for work reser-
voirs such that its curve coincides with the final state’s
curve with the distribution (r,0) and with the initial
state’s curve with the distribution (0, r) up to the same
constant. Then the efficient work reservoir’s initial and
final thermomajorization curves mimic the system’s final
and initial thermomajorization curves as shown in Fig.
4.
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C. Work extraction and state formation reservoirs

We first study how to construct efficient work reser-
voirs for two kinds of state transitions: work extractions
and state formations. For work extraction (pS ,ES) →
(τS ,ES), suppose there are m distinct slopes in the ther-
momajorization curve fpS ,ES

and fpS ,ES
= {(ri, ai)}mi=1,

where m is the number of distinct slopes in the thermo-
majorization curve of the system. We now show that
a work reservoir must have a dimension greater than
2(m− 1) to achieve efficient work extraction.

To see this, assume that an efficient work reservoir has
dimension 2d ≤ 2(m − 1). Now, let the initial work
reservoir probability distribution be pW = (r,0), the
corresponding thermomajorization curve have a distinct
slopes, the final work reservoir probability distribution
be p′

W = (0, r), and the corresponding thermomajoriza-
tion curve have b distinct slopes. Since the dimension of
r is d. Then, we have a, b ≤ d ≤ (m− 1).

The final total probability distribution is p′
SW =

τS ⊗ p′
W . We have #fp′

S ,ES
= 1 and #fp′

W ,EW
= b.

The number of distinct slopes of the thermomajoriza-
tion curve fp′

SW ,ESW
is b. The initial total probability

distribution is pSW = pS ⊗ pW . Since the number of
distinct slopes in pS ’s thermomajorization is m, we have
#fpSW ,ESW

≥ m. The equality holds if and only if the
number of the segments of pW ’s thermomajorization is 1.
Since we have b ≤ m − 1 < m, it is impossible for curve
fpSW ,ESW

to coincide with curve fp′
SW ,ESW

. Hence, the
dimension of the efficient work reservoir is at least 2m.

With a 2m dimension work reservoir, we choose the
probability distribution to be r = (r1, · · · , rm). We fine
tune the first-half energy levels such that the initial work
reservoir’s curve only contains one slope which coincides
with the final thermal state of the system’s curve up to a
constant. For the second-half energy levels, they are fine
tuned such that the final work reservoir’s curve coincides
with fpS ,ES

up to the same constant. (See TABLE II).

The detailed calculation follows. Suppose
the energy levels of the work reservoir are
EW = {ϵ1, · · · , ϵm, ϵ′1, · · · , ϵ′m}. For the energy
levels {ϵ1, · · · , ϵm}, we require:

eβϵi =
c

ri
, (38)

where c can be an arbitrary positive number. For the
energy levels {ϵ′1, · · · , ϵ′m}, we stipluate:

eβϵ
′
i = cZS

ai
ri

. (39)

With our notation, we can verify that the two final curves
coincide. For the initial setup:

fpS ,ES
= {(ri, ai)}mi=1 , (40)

fpW ,EW
= {(1, c)} . (41)
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System Work Reservoir

Initial

ZS

r1/a1 rm/am· · ·

· · ·

r1

rm

...

1/c

· · ·

exp (��✏1) exp (��✏m)
· · ·

r1

rm

...

Final

ZS

· · ·

r1ZS rmZS· · ·

r1

rm

...

1/c

· · ·

exp(��✏01) exp(��✏0m)
· · ·

r1

rm

...

TABLE II. Initial and final thermomajorization curves for
the efficient work extraction reservoir, ignoring the zero-slope
parts.

And for final setup:

fp′
S ,ES

= {(1, 1/ZS)} , (42)

fp′
W ,EW

= {(ri, cZSai)}mi=1 . (43)

From Eq. (33) we have:

fpSW ,ESW
= fp′

SW ,ESW
(44)

= {(ri, cai)}mi=1 , (45)

which means the two final total curves indeed coincide.
The energy change in this work reservoir is:

W =

m∑
i=1

ri(ϵ
′
i − ϵi) (46)

= kBTD1(pS ||τS) . (47)

It is not hard to prove that this is the unique 2m-
dimensional efficient work reservoir for ρS work extrac-
tion.
Since entropy production vanishes, we can use the

same work reservoir to form the state τS → pS . Hence,
the minimal dimension of the efficient work reservoir for
both work extraction and state formation is equal to
2·#fpS ,ES

. Appendix H goes on to construct thermoma-
jorization curves of all possible efficient work reservoirs
for state formation and work extraction from the minimal
efficient work reservoirs.

D. Efficient reservoirs exist

We will not develop all possible efficient work reser-
voirs for general state transitions here, though. Nonethe-
less, the next theorem establishes the existence of efficient
work reservoirs for them—our second main result.
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Theorem IV.1. For two general n−dimension states
pS and p′

S over energy levels ES, there exists a work
reservoir (pW ,p′

W ,EW ) such that the thermomajoriza-
tion curves of (pSW ,ESW )and (p′

SW ,ESW ) coincide.

Appendix D gives the details on how to construct the
probability distribution and energy levels for efficient
work reservoirs.

Here, we discuss several properties and appli-
cations of efficient work reservoirs. If EW =
{ϵ1, · · · , ϵN , ϵ′1, · · · , ϵ′N} determines the energy levels for
an efficient work reservoir with probability transition
(r,0) → (0, r), then E′

W = {ϵ1 + c, · · · , ϵN + c, ϵ′1 +
c, · · · , ϵ′N + c} gives the energy levels of an efficient work
reservoir with the same probability distribution, where c
is a constant. This shows that efficient work reservoirs
have translational symmetry. That is, only gaps between
energy levels in efficient work reservoirs matter.

Since our efficient work reservoirs have more than two
levels, the work fluctuates. The entropy production with
efficient work reservoirs could be arbitrarily small. The
variance of the work, however, could be greater than non-
efficient work reservoirs. This can be seen by noting that
the work variance is 0 in two-level work reservoirs since
the work is deterministic, while the work variance in ef-
ficient work reservoirs is greater than 0.

Consider an example. Suppose the system is three di-
mensional with trivial Hamiltonian H = 0 and the initial
distribution is (13 ,

2
3 , 0). Using a two-level work reservoir

to harness work from this system, the extractable work
is W2-level = kBT log 3/2 and the work variance is 0. The
zero variance is due to the fact that the work is determin-
istic in a two level work reservoir. If we use an efficient
work reservoir to harness work from this system, though,
the average work is Wefficient = kBT (log 3 − H(1/3)),
whereH(·) is the binary entropy function. The work vari-
ance, however, is nonzero. We have Wefficient > W2-level.
This example shows us that for a protocol with nonzero
entropy production, the work variance might be less com-
pared to a protocol with zero entropy production.

For transitions under time-dependent Hamiltonians,
we introduce a clock system [? ]. Suppose the initial
and final Hamiltonians are HS and H ′

S , respectively. The
total Hamiltonian including the clock system is:

H = HS ⊗ |0⟩⟨0|+H ′
S ⊗ |1⟩⟨1| . (48)

With the clock system, we require that any transition
to be ρS ⊗ |0⟩⟨0| → ρ′S ⊗ |1⟩⟨1|. In this, the Hamil-
tonian changes from HS to H ′

S . Appendix G presents
two examples of efficient work reservoirs for nontrivial
Hamiltonians and for time-dependent Hamiltonian state
transitions.

One of applications of efficient work reservoirs is to
build a quantum engine that approaches Carnot effi-
ciency. Suppose we pick a two-dimension system spanned
by {|0⟩, |1⟩} with Hamiltonian Heng = ϵ|1⟩⟨1|. The en-
gine functions with a hot bath at temperature TH and a
cold bath at temperature TC . Initially, the work reser-
voir is in its Gibbs state at temperature TC . First, it is

Cold bath

Engine
Work

Reservoir
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FIG. 5. Work are stored into the reservoir during the en-
gine and work reservoir interacting with the hot bath and
the cold bath. First, the engine and reservoir interacts with
the hot bath. The engine begins with the cold Gibbs state
and ends with the hot Gibbs state. The amount of work
WH = kBTHD1(τC ||τH) is stored in the work reservoir. Then
the engine and reservoir are brought to the cold bath. Simi-
larly, the amount of work WC = kBTCD1(τH ||τC) is stored in
the work reservoir during the interaction with the cold bath.

brought to the hot bath, interacts with the hot bath to
extract work and ends up in Gibbs state at temperature
TH . Then, it is brought to the cold bath, interacts with
it to extract work and ends up in Gibbs state at tem-
perature TC finishing the cycle. If we use efficient work
reservoirs to extract work, then the entropy production
is arbitrarily close to 0. Then the engine’s efficiency ap-
proaches Carnot efficiency 1− TC/TH . Appendix I gives
the details for constructing the work reservoir’s probabil-
ity distribution and energy levels.

V. CATALYZED WORK RESERVOIRS

The development to this point was limited to noncat-
alytic scenarios. The following explores efficient work
extraction with the aid of catalysts. Here, the intention
is not to surpass the bound set by free energy differences.
Rather, we ask whether we can extract work without dis-
sipation by using a smaller work reservoir with catalysts.

The main result in catalytic thermal operations is that
the transition from state ρS to ρ′S is possible through a

catalytic thermal operation—denoted ρS
CTO−→ ρ′S—if and

only if Dα(ρS∥τS) ≥ Dα(ρ
′
S∥τS), for all α ∈ R [? ]. The

next theorem shows that catalysts do not help reach zero
entropy production.

Theorem V.1. Consider a system with Hamiltonian H
and a catalyst state c with Hamiltonian Hc. If state ρ can
be converted into a state that is arbitrarily close to state
σ through a thermal operation with the catalyst c under
arbitrarily small entropy production, then the transition
can be achieved through a noncatalytic thermal operation.

Appendix C gives the proof. This shows that close to
the zero dissipation regime, thermal operations and cat-
alytic thermal operations are equivalent. Theorem V.1
provides yet another criterion for checking if two ther-
momajorization curves coincide.
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Theorem V.2. Given a system with Hamiltonian H and
states ρ and σ, the following are equivalent:

(a) Thermomajorization curves of ρ and σ coincide.

(b) Dα(ρ∥τ) = Dα(σ∥τ), for all α ∈ R.

Again, we place the proof in Appendix C. It seems the
catalysts are useless if we require the entropy production
to be arbitrarily small. However, we find that if cata-
lysts are allowed to correlate states in a trivial Hamilto-
nian, every state transition’s entropy production can be
reduced to 0; see Appendix K.

VI. DISCUSSION

In stochastic thermodynamics, it is well-known that
the maximal extractable work from a state transition
ρS → ρ′S is the (negative) nonequilibrium free energy
difference. The maximum is approached when the dissi-
pation is arbitrarily small. However, as we showed, zero
dissipation with two-level work reservoirs cannot always
be approached in single-shot thermodynamics. This is
due to the fact that, with two-level work reservoirs, we
can only contract a thermomajorization curve by a fac-
tor. Two-level work reservoirs are not powerful enough
to approach zero dissipation for every state transition.

To remove this restriction, we generalized two-level
work reservoirs to multi-level work reservoirs. The ex-
tractable work is then defined as the difference in the
expectation values of work reservoir energies: W =∑

i ri(ϵ
′
i − ϵi). Naturally, a two-level work reservoir can

be treated as a special case where W = ϵ′ − ϵ. Our work
value definition is similar to that in stochastic thermody-
namics: dw =

∑
i pidϵi, where the work is defined as the

system energy change while keeping the system probabil-
ity distribution unchanged [? ].
Here, though, the probability distribution components

of the work reservoirs do not change overall. For each
nonzero component, there is a corresponding energy level
change in the work reservoir. Our results show that we
can achieve reversibility in single-shot thermodynamics
with multi-level work reservoirs. The price paid, however,
is that the size of the thermal baths must be infinite. The
dissipation can be written as:

Σ = I(ρ′S ; ρ
′
B) +D1(ρ

′
B ||τB) , (49)

where I(·; ·) is the mutual information [? ? ]. Since the
heat Q transferred to the bath is nonzero, if we only have
thermal baths of finite size, the dissipation is strictly pos-
itive. Appendix J gives an example where we construct
the joint unitary operator explicitly. We show that to
approach zero dissipation, the bath size must be infinite.

References [? ? ? ] develop the general framework of
work extraction in single-shot thermodynamics. Rather
than considering strict energy conservation, work extrac-
tion can be monitored via average energy conservation

[? ]. There, work extraction uses a series of transfor-
mations, arriving at the same bound when the number
of transformations diverges. Reference [? ] considers
a weighted Hamiltonian HW =

∫
dxx|x⟩⟨x| as a work

reservoir. With translational invariance, it derives sev-
eral compact fluctuation theorems. This allows changes
in work reservoir probability distribution, but assumes
the work reservoir energy levels are unbounded. Refer-
ences [? ? ] consider the work extraction of systems that
exchange both energy and particles with the environment
with multi-level batteries.

In contrast, our development here keeps the work
reservoir probability distribution unchanged. This fol-
lows from the entropyless assumption of work reservoirs.
Reference [? ] considers a work reservoir with lower-
bounded energy levels. Reference [? ] systematically ex-
plores quantum fluctuation theorems. Recently, in single-
shot thermodynamics, there are other setups that extract
work equal to the (negative) free energy difference [? ?
? ]. In this, correlations build up between catalysts and
so stochastic independence of catalysts allows extracting
more work from given states.

Generalizing to multi-level work reservoirs offers sev-
eral new directions in nanoscale thermodynamics. Since
work is no longer deterministic, it is natural to ask how to
compute higher moments ⟨Wn⟩ (n > 1) and to construct
a fluctuation theorem for the work probability distribu-
tion. With two-level work reservoirs, the characteristic
functions of work extraction and state formation are the
Rényi α = 0 and α = ∞ divergences, respectively. What
are the characteristic functions of work extraction and
state formation with multi-level work reservoirs? Our de-
velopment focused on single-copy state transitions. The
structure of the efficient work reservoirs for more compli-
cated state transitions—for example, mapping an input
information tape to output tape [? ]—must wait for the
future.

Our development focused only on the net input-output
mapping, without considering details of the stochastic
map in between. The stochastic map connecting an in-
put to an output here is not unique. If we only consider
the work expectation value ⟨W ⟩, the change in expecta-
tion value of energy in work reservoirs coincides with the
expectation value of work in the two point measurement
(TPM) scheme commonly used in stochastic quantum
thermodynamics [? ]. For higher moments ⟨Wn⟩ (n > 1)
in TPM, however, the values depend on the stochastic
maps. Moreover, one cannot determine higher moments
uniquely with only initial and final work reservoir states.
We can also study the minimal cost of a stochastic map
not only a specific state transition. References [? ? ] ex-
plored the minimal cost of quantum channels with two-
level work reservoirs. We leave the minimal work cost
with multi-level work reservoirs also to the future.

Along these lines, what if we allow coherence in both
the system and the work reservoir? For example, what
if ρW =

∑
ij ρij |Wi⟩⟨Wj | and ρW =

∑
ij ρij |W ′

i ⟩⟨W ′
j |?

To address state transitions with coherence, α−Rényi di-
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vergences are insufficient [? ? ]. Can we achieve the
bounds set by free energy difference when the states are
not block-diagonal in energy eigenstates with those work
reservoirs? Again, we leave this open for the future ef-
forts.

VII. CONCLUSION

We generalized two-level work reservoirs commonly
used in single-shot thermodynamics to multi-level work
reservoirs and systematically analyzed arbitrarily-small-
dissipation state transitions with the latter. We derived
equivalent conditions for arbitrarily-small-dissipation
transitions in single-shot thermodynamics: thermoma-
jorization curve coincidence and α−Rényi divergence
equality. We showed that for any state transition, we
can always construct a work reservoir to approach zero
dissipation.

We also considered cases where the initial system
Hamiltonian differs from the final Hamiltonian. The effi-
cient work reservoir, though, for a specific state transition
is not unique. For work extraction and state formation
in this setting, we constructed the efficient work reser-
voir with minimal dimension. We showed that all ther-
momajorization curves at inverse temperature β form
a monoid and characterized all possible efficient reser-
voirs for work extraction and state formation. These al-
lowed us to analyze nanoscale engines that employ effi-
cient work reservoirs, demonstrating that they approach
Carnot efficiency.
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Appendix A: Free energy work bound

Reference [? ] establishes the Second Law of thermo-
dynamics for the entropy production of a system S in

contact with a heat bath B at temperature T :

Σ ≡ Q/T +∆S(ρ) ≥ 0. (A1)

Here, Q is the average heat that was dissipated in the
bath, Σ is the total entropy production, and S(ρ) ≡
−kBTr [ρ ln ρ] is the von Neumann entropy of the system
S. The resulting bound on heat is:

Q/T ≥ −∆S(ρ), (A2)

which is a quantum version of Landauer’s principle [?
? ? ]. We can bound the work by noting the First
Law of thermodynamics: the change in average energy
of the system is equal the minus the heat flow and work
produced from the system:

∆⟨E⟩ = −Q−W, (A3)

where ⟨E⟩ = Tr [ρH]. Applying the entropy bound on
heat to the work production, we find the work production
in transforming ρ → ρ′ has the upper bound:

W ≤ T∆S(ρ)−∆⟨E⟩ (A4)

= T (S(ρ′)− S(ρ))− (Tr [ρ′H]− Tr [ρH]). (A5)

With the free energy defined:

F (ρ) ≡ Tr(ρH)− TS(ρ), (A6)

we have an upper bound on work via the change in free
energy:

W ≤ F (ρ)− F (ρ′). (A7)

Furthermore, we have a simplification when the Hamil-
tonian H is the same for the initial and final state of the
system. The Gibbs state τ of Hamiltonian H obeys the
relationship:

τ =
e−H/kBT

Tr
[
e−H/kBT

] , (A8)

which gives an inverse expression:

H = −kBT ln τ − kBT lnTr
[
e−H/kBT

]
. (A9)

Plugging this into the average energy in the bound on
work production, we obtain a change in relative entropies:

W ≤ [D1(ρ||τ)−D1(ρ
′||τ)] . (A10)

where D1(ρ||σ) ≡ Tr [ρ ln ρ− ρ lnσ] is the quantum rela-
tive entropy.

Appendix B: Thermal operations

Our results are based on the resource theory approach
to quantum thermodynamics, several results from which
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we briefly note here. See Refs. [? ? ? ] for more
comprehensive reviews.

The central idea is to define a set of operations—the
free operations—and systematically analyze all possible
state transitions under free operations. Suppose our state
is ρS with Hamiltonian HS . The set of allowed transi-
tions then contains all joint energy-preserving unitary U
operations between the system and a thermal bath with
the Hamiltonian HB at inverse temperature β:

[U,HS +HB ] = 0 , (B1)

followed by the partial trace over the thermal bath:

ρ′S = E(ρS) (B2)

= TrB
(
U(ρS ⊗ τB)U

†) , (B3)

where τB = e−βHB/ZB is the Gibbs state of the thermal
bath. The maps E are called thermal operations.
Suppose the eigenvalues of ρS and ρ′S are {pi}ni=1 and

{p′i}ni=1 and the associated energy levels are {ei}ni=1.
Such a transition is equivalent to there being a stochastic
matrix G such that Gp = p′ and Gτ = τ [? ].
We can also use a geometric method to determine

whether such a transition exists. A key concept is the
thermomajorization curve [? ]. We first rank {pi}ni=1

in descending order of pie
βei . This is called β−order.

The thermomajorization curve of a state ρS is formed by
connecting points:

{ k∑
i=1

e−βe↓i ,

k∑
i=1

p↓i

}n

k=1
(B4)

piecewise linearly where ↓ means that pi and ei have
been β−ordered. If the thermomajorization curve of a
state ρS lies above or on the thermomajorization curve
of another state ρ′S , we say ρS thermomajorizes ρ′S . The
central result is that ρS can be converted to ρ′S through a
thermal operation if and only if ρS thermomajorizes ρ′S .
Next, we briefly review work extraction and the work

of state formation. Consider a work reservoir that is a
two-level system with Hamiltonian HW = W0|W0⟩⟨W0|+
W1|W1⟩⟨W1|. The task is to determine if the maximal
work can be extracted from a state ρS . This is the max-
imal work change W1 −W0 such that ρS ⊗ |W0⟩⟨W0| →
τS ⊗ |W1⟩⟨W1| is allowed by thermal operations. This is
elegantly determined from the thermomajorization curve.

For the initial curve to thermomajorize the final
curve, we must have ae−βW0 ≤ ZSe

−βW1 . See
Fig. 6. Here, a is related to Rényi divergence via:
D0(ρS∥τS) = − log(a/ZS). We have the bound W1 −
W0 ≤ kBTD0(ρS∥τS). The equal sign holds when two
curves reach the height 1 at the same point.

Similarly, we can consider the reverse question: What
is the minimal work needed to form state ρS? Or, in
other words, what is the minimal W1 − W0 such that
(τS⊗|W1⟩⟨W1|, HS+HW ) → (ρS⊗|W0⟩⟨W0|, HS+HW )
is allowed by thermal operations?

ZSZWae−βW0 e−βW1ZS

1

FIG. 6. Deterministic work extraction: The blue curve is the
thermomajorization curve of ρ ⊗ |0⟩⟨0|. a ≤ ZS is the x-
coordinate of the point where the thermomajorization curve
of ρS reaches 1. The red curve is the thermomajorization
curve of τS ⊗|1⟩⟨1|. ZS and ZW are partition functions of the
system and the work reservoir, respectively.

ZSZWZSe
−βW1

1

FIG. 7. Deterministic work of state formation: The blue curve
is the thermomajorization curve of ρS ⊗ |W0⟩⟨W0|. The red
curve is the thermomajorization curve of τS ⊗ |W1⟩⟨W1|.

For the initial curve to thermomajorize the final curve,
the slope of the on-ramp part of the initial curve must
not be less than the largest slope in the final curve:

1

ZS
eβW1 ≥ eβW0 max

i

pi
e−βϵi

. (B5)

And:

max
i

{ pi
e−βϵi

}
= D∞(ρS∥τS) . (B6)

Giving:

W1 −W0 ≥ kBTD∞(ρS∥τS) . (B7)

If there exists an auxiliary system—a catalyst—with
Hamiltonian HC and state ρC such that the transition
(ρS⊗ρC , HS+HC) → (ρ′S⊗ρC , HS+HC) is possible, we
say the transition (ρS , HS) → (ρ′S , HS) can be achieved
by a catalytic thermal operation.
The criterion of the catalytic thermomajorization is

given in terms of Rényi α-divergences. There exists a
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transition (ρS , HS)
CTO−→ (ρ′S , HS) if and only if [? ]:

Dα(ρS ||τS) ≥ Dα(ρ
′
S ||τS) , (B8)

for all α ∈ R. If we are allowed to invest an infinitesimal
amount of work, only α ≥ 0 is needed.

We can also study work extraction and state formation
in two-level work reservoirs with the help of catalysts.
For work extraction:

(ρS ⊗ |W0⟩⟨W0|, HS +HW )

→ (τS ⊗ |W1⟩⟨W1|, HS +HW ), (B9)

we must have:

Dα(ρS ||τS) +Dα(|W0⟩⟨W0|||τW )

≥ Dα(τS ||τS) +Dα(|W1⟩⟨W1|||τW ) . (B10)

Giving:

W1 −W0 ≤ kBTDα(ρS ||τS) , (B11)

for all α ≥ 0. So, we have:

W1 −W0 ≤ inf
α≥0

kBTDα(ρS ||τS)

= kBTD0(ρS ||τS) . (B12)

For state formation:

(τS ⊗ |W1⟩⟨W1|, HS +HW )

→ (ρS ⊗ |W0⟩⟨W0|, HS +HW ) , (B13)

we must have:

Dα(τS ||τS) +Dα(|W1⟩⟨W1|||τW )

≥ Dα(ρS ||τS) +Dα(|W0⟩⟨W0|||τW ) . (B14)

Giving:

W1 −W0 ≥ kBTDα(ρS ||τS) , (B15)

for all α ≥ 0. So, we have:

W1 −W0 ≥ sup
α≥0

kBTDα(ρS ||τS)

= kBTD∞(ρS ||τS) . (B16)

Appendix C: Proofs

1. Proof of Theorem III.1

We first list the precise statement on the connection
between the thermomajorization curves and existence of
the thermal operations and Gibbs preserving stochastic
matrices and then list a theorem regarding to thermoma-
jorization curve coincide. After that, we prove Theorem
III.1.

The distance we use is norm-1 distance:

∥ρ− σ∥1 = Tr

(√
(ρ− σ)†(ρ− σ)

)
. (C1)

Since we only consider diagonal states, the norm-1 dis-
tance is simply:

∥ρ− σ∥1 =
∑
i

|(pρ)i − (pσ)i| . (C2)

Theorem C.1 (Thermal Nielsen’s theorem). Consider
two block diagonal states ρ and σ with Hamiltonian H
and their corresponding population vectors are pρ and
pσ.

1. For any ϵ > 0, there exists a thermal operation E
such that E(ρ) is arbitrarily close to σ, i.e., ||E(ρ)−
σ||1 < ϵ if and only if the thermomajorization curve
of ρ lies above or on the thermomajorization curve
of σ.

2. There exists a Gibbs preserving stochastic map G
such that G · pρ = pσ if and only if the thermoma-
jorization curve of ρ lies above or on the thermo-
majorization curve of σ.

Proof. For the proof, see Theorems 6 and 7 and Remark
10 in [? ].

Theorem C.1 shows whether the existence of quantum
thermal operations or Gibbs preserving stochastic matri-
ces is related to thermomajorization curves. Next, we list
a theorem related to thermomajorization coincidence.

Theorem C.2. Consider two states ρ and σ with Hamil-
tonian H. If the thermomajorization curve of ρ lies
above or on the thermomajorization curve of σ, then
D(ρ||τ) ≥ D(σ||τ). The equality signs hold if and only if
two curves coincide.

Proof. Suppose the population vectors of state ρ and σ
are pρ and pσ. The thermomajorization curve of ρ lies
above and on the thermomajorization curve of σ. From
Theorem C.1 there exists a Gibbs preserving stochastic
matrix G such that G ·pρ = pσ. Since ρ and σ are block-
diagonal, the relative entropy is the same as its classical
version:

D(ρ||τ) = D(pρ||pτ ) (C3)

D(σ||τ) = D(pσ||pτ ) . (C4)

From data processing inequality, we have:

D(pρ||pτ ) ≥ D(G · pρ||G · pτ ) (C5)

= D(pσ||pτ ) . (C6)

This completes the first part of proof.
The data processing inequality saturates if and only

if there exists a recovery map R defined by Rij =
Gji(pτ )i/(pτ )j such that R · pσ = pρ, where (·)ij is
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the ij component of the matrix [? ]. It is straightfor-
ward to show that R preserves the Gibbs distribution:
R · pτ = pτ . So, pσ thermomajorizes pρ. σ’s thermoma-
jorization curve lies above or on ρ’s thermomajorization.
Hence, their thermomajorization curves coincide.

Now, we write down the precise version of Theorem
III.1:

Theorem C.3. Consider two d−dimension diagonal
states ρ and σ. The following two are equivalent:

1. The thermomajorization curves of states ρ and σ
coincide.

2. For all ϵ1, ϵ2 > 0, there exists a thermal operation
E such that ||E(ρ)−σ||1 < ϵ1 and the corresponding
entropy production Σρ→E(ρ) < ϵ2 .

Proof. 1 → 2: Since the thermomajorization curves of
state ρ and σ coincide, for any ϵ there exists a thermal
operation E such that ||E(ρ)−σ||1 < ϵ. The upper bound
of entropy production is given as follows. The thermoma-
jorization curves of ρ and σ coincide. From Theorem C.2,
we have D1(ρ||τ) = D1(σ||τ). By definition of the rela-
tive entropy, D1(E(ρ)||τ) = S(E(ρ))− βTr(E(ρ)H). E(ρ)
and σ are ϵ close. From Zhang–Audenaert inequality [?
], we have:

|S(σ)− S(E(ρ))| ≤ 1

2
ϵ(log d− 1) +H(ϵ) , (C7)

where H(·) is the binary entropy function. This gives the
entropy difference upper bound. Second term in relative
entropy is bounded by:

|Tr((σ − E(ρ))H)| ≤ ϵEmax , (C8)

where Emax is the maximal eigenvalues in the Hamilto-
nian H. The relative entropy is bounded by:

|D1(σ||τ)−D1(E(ρ)||τ)|

≤ 1

2
ϵ(log d− 1) + ϵβEmax +H(ϵ) . (C9)

Since we have D1(ρ||τ) = D1(σ||τ):

|D1(ρ||τ)−D1(E(ρ)||τ)|

≤ 1

2
ϵ(log d− 1) + ϵβEmax +H(ϵ) . (C10)

Let f(ϵ) = 1
2ϵ(log d − 1) + ϵβEmax + H(ϵ) is an in-

creasing function about ϵ in [0, 1
2 ] and f(0) = 0,

f(1/2) = 1
4 (log d − 1) + 1

2βEmax + log 2. We de-
note the corresponding inverse function in [0, f(1/2)]
as f−1(x). For any ϵ1, ϵ2 > 0, if ϵ2 < f(1/2), we
can take ϵ = 1

2 min{ϵ1, f−1(ϵ2)}. Then ||E(ρ) − σ||1 <

ϵ ≤ 1
2ϵ1 < ϵ1 and |D1(ρ||τ) − D1(E(ρ)||τ)| ≤ f(ϵ) ≤

f( 12f
−1(ϵ2)) < f(f−1(ϵ2)) = ϵ2. If ϵ2 ≥ f(1/2), we

take ϵ = min{ϵ1, 1
4}. Then ||T (ρ) − σ||1 < ϵ ≤ ϵ1 and

|D1(ρ||τ)−D1(T (ρ)||τ)| ≤ f(ϵ) ≤ f(1/4) < f(1/2) ≤ ϵ2.

2 → 1 by contradiction: Since for all ϵ1 > 0, there
exists a thermal operation E such that ||E(ρ)−σ||1 < ϵ1,
the thermomajorization curve ρ lies above or on the the
thermomajorization curve σ (Theorem C.1). Assume the
thermomajorization curves of ρ and σ do not coincide,
then |D1(ρ||τ) −D1(σ||τ)| ̸= 0 (Theorem C.2). We give
a bound on |D1(ρ||τ)−D1(σ||τ)|:

|D1(ρ||τ)−D1(σ||τ)|
≤ |D1(ρ||τ)−D1(E(ρ)||τ)|+ |D1(E(ρ)||τ)−D1(σ||τ)|

< ϵ2 +
1

2
ϵ1(log d− 1) + ϵ1βEmax +H(ϵ1) . (C11)

Since ϵ1, ϵ2 are arbitrary and:

lim
ϵ1,ϵ2→0

ϵ2 + 2ϵ1(log d− 1) + ϵ1βEmax +H(ϵ1) = 0 .

(C12)

We know |D1(ρ||τ) −D1(σ||τ)| ≠ 0 and is a finite fixed
positive number. This contradicts with Eq. (C12). So
the two curves must coincide.

2. Proof to Theorem V.1

We first write down the precise version of Theorem
V.1.

Theorem C.4. Consider two states ρ and σ with Hamil-
tonian H and a catalyst state c with Hamiltonian Hc.
For any ϵ1, ϵ2 > 0, if there exists a thermal operation E
such that ||E(ρ ⊗ c) − σ ⊗ c||1 < ϵ1 and the correspond-
ing entropy production Σρ⊗c→σ⊗c < ϵ2, then there exists
another thermal operation T such that ||T (ρ)−σ||1 < ϵ1
and the corresponding entropy production Σρ→σ < ϵ2.

Proof. From Theorem C.3, the thermomajorization
curves of ρ ⊗ c and σ ⊗ c coincide. Next, we show
that the thermomajorization curves of ρ and σ coincide.

Suppose fρ,H = {(y(ρ)i , k
(ρ)
i )}i, fσ,H = {(y(σ)i , k

(σ)
i )}i,

and f c,Hc
= {(y(c)i , k

(c)
i )}i, respectively. Here, we coarse

grain all segments with the same slopes and there are no
repetitive slopes in fρ,H , fσ,H , and f c,Hc

. The largest

slope of the ρ ⊗ c curve is k
(ρ)
1 · k(c)1 with y−coordinate

change y
(ρ)
1 ·y(c)1 . And, the largest slope of the σ⊗c curve

is k
(σ)
1 · k(c)1 with y coordinate change y

(σ)
1 · y(c)1 . Since

the curves of ρ⊗ c and σ ⊗ c coincide, we must have:

k
(ρ)
1 · k(c)1 = k

(σ)
1 · k(c)1 (C13)

y
(ρ)
1 · y(c)1 = y

(σ)
1 · y(c)1 . (C14)

This leads to k
(ρ)
1 = k

(σ)
1 and y

(ρ)
1 = y

(σ)
1 .

We can remove the contribution of (k
(ρ)
1 , y

(ρ)
1 ) and

(k
(σ)
1 , y

(σ)
1 ) from the curves ρ ⊗ c and σ ⊗ c, respec-

tively. The two new curves also coincide since we remove
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identical segments from two identical thermomajoriza-
tion curves. With the two new curves and the similar
argument, we have:

k
(ρ)
2 · k(c)1 = k

(σ)
2 · k(c)1 (C15)

y
(ρ)
2 · y(c)1 = y

(σ)
2 · y(c)1 , (C16)

which lead to k
(ρ)
2 = k

(σ)
2 and y

(ρ)
2 = y

(σ)
2 . If we continue

this procedure, we can show that k
(ρ)
i = k

(σ)
i and y

(ρ)
i =

y
(σ)
i for any i. Then the ρ and σ curves coincide. So for
any ϵ1, ϵ2, there exists another thermal operation T such
that ||T (ρ) − σ||1 < ϵ1 and the corresponding entropy
production Σρ→σ < ϵ2.

3. Proof to Theorem V.2

We first show a theorem regarding to equal of α- Rényi
entropy.

Theorem C.5. Consider p, q two m−dimension prob-
ability distributions. If Dα(p||η) = Dα(q||η) for any
α ∈ R where η is the m−dimension uniform distribu-
tion. Then p, q are same up to a reorder.

Proof. The α−Rényi divergence of p from the uniform
distribution η is:

Dα(p||η) =
1

α− 1
log(||p||α)α + logm , (C17)

where ||·||α is the α−norm. And the ∞-Rényi divergence
picks the maximal component in the distribution:

D∞(p||η) = max
pi

log pi + logm . (C18)

The equal α−Rényi means p and q have the same
α−norm. Taking α → ∞ gives:

max
pi

pi = max
qi

qi . (C19)

p and q have the same maximal component. We can
remove the corresponding maximal component from both
distributions and they still have the same α−norm:

||p \ {max
pi

pi}||α = ||q \ {max
qi

qi}||α . (C20)

Again, we take α → ∞ which gives the second maximal
components in p and q are same. Continuing this proce-
dure leads that p and q are same up to a reorder.

Now, we are ready to prove Theorem V.2.

Theorem C.6 (Theorem V.2 ). Given a system with
Hamiltonian H and states ρ and σ, the following are
equivalent:

1. Thermomajorization curves of ρ and σ coincide.

2. Dα(ρ∥τ) = Dα(σ∥τ), for all α ∈ R.

Proof. 1 → 2: Since the thermomajorization curves of
ρ and σ coincide. There exists two Gibbs-preserving
stochastic map E and G such that E · pρ = pσ and
G · pσ = pρ. With the data processing inequality of
Rényi α−divergence, for all α ∈ R, we have [? ? ]:

Dα(pρ∥pτ ) ≥ Dα(Epρ∥Epτ ) = Dα(pσ∥pτ ) (C21)

Dα(pσ∥pτ ) ≥ Dα(Gpσ∥Gpτ ) = Dα(pρ∥pτ ) . (C22)

Then Dα(ρ∥τ) = Dα(σ∥τ), for all α ∈ R.
2 → 1: We use a basic tool in single-shot

thermodynamics—the embedding map [? ]. Here, the
embedding map Γ sends one distribution to a larger di-
mension distribution. And, Γ maps the Gibbs distribu-
tion of the system to a larger uniform distribution (To
avoid some technicalities, we assume the Gibbs distribu-
tion is rational). Γ has the following properties [? ]:

1. Dα(pσ∥pτ ) = Dα(Γ(pσ)∥Γ(pτ )) .

2. p thermomajorizes q with respect to the Gibbs dis-
tribution if and only if Γ(p) majorizes Γ(q).

From Dα(ρ∥τ) = Dα(σ∥τ), we have

Dα(Γ(pρ)∥Γ(pτ )) = Dα(Γ(pσ)∥Γ(pτ )) (C23)

for all α and Γ(pτ ) is a uniform distribution. From The-
orem. C.5,

Γ(pρ) = Γ(pσ) (C24)

up to a permutation. Then Γ(pρ) and Γ(pσ) majorize
each other. We have pρ and pσ thermomajorize each
other. Hence the thermomajorization curves of ρ and σ
coincide.

Appendix D: Details on the constructions for any
state transitions

Proving this requires constructing the efficient work
reservoir for (pS ,ES) → (p′

S ,ES). We denote initial
and final cumulative probability distributions of the sys-
tem as P = {Pi}i∈{0}∪S and P ′ = {P ′

i}i∈{0}∪S , where
P0 = P ′

0 = 0. And, they satisfy Pi − Pi−1 = pi and
P ′
i − P ′

i−1 = p′i for all i ∈ S. Let R = {Ri}i∈{0}∪W =

P ∪ P ′—a cumulative probability distribution where
W = {1, 2, · · · , N} and N is the dimension of corre-
sponding probability distribution, denoted r = {ri}i∈W .
Then there exist mappings λ, λ′ : W → S from W =
{1, 2, · · · , N} to system eigenstates S = {1, 2, · · ·n} such
that:

p′i =
∑

j∈λ−1(i)

rj (D1)

pi =
∑

j∈λ′−1(i)

rj . (D2)

Appendix E constructs the mappings λ and λ′.
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The work reservoir probabilities are pW and p′
W , where

pW = (r,0) and p′
W = (0, r). And the energy levels are

EW = {ϵ1, · · · , ϵN , ϵ′1, · · · , ϵ′N}. To make this efficient for
a n−dimensional transition pS → p′

S in a system with
energy levels ES = {e1, · · · , en}, we require that:

(a) There exist sets of positive numbers {ki}ni=1 and
{k′i}ni=1 such that:

rje
βϵj = ki, for all j ∈ λ−1(i) , (D3)

and:

rje
βϵ′j = k′i, for all j ∈ λ′−1(i) . (D4)

(b) And:

pie
βei · kj = p′je

βej · k′i, for any pair (i, j) . (D5)

According to Theorem III.1, zero entropy is pro-
duced if and only if the thermomajorization curves
of pSW = {pirj}i,j over the energy levels ESW =
{ei + ϵj}i,j , and p′

SW = {p′irj}i,j over the energy
levels E′

SW = {ei + ϵ′j}i,j are the same. (We ne-
glect contributions from zero components in probabil-
ity distribution.) From Eqs. (D1) and (D3), the ther-
momajorization curve fpW ,EW

has at most n distinct
slopes {ki}ni=1 with corresponding y−coordinate change
{p′i}ni=1; i.e., fpW ,EW

= {(p′i, ki)}ni=1. For the system,

we have fpS ,ES
= {(pi, pieβei)}ni=1. And, so, from

Eq. (33) we have fpSW ,ESW
= {pip′j , pieβeikj}ni,j=1.

Similarly, we have fp′
SW ,ESW

= {p′ipj , p′ieβeik′j}ni,j=1 =

{pip′j , p′jeβejk′i}ni,j=1. From Condition (b), fpSW ,ESW
=

fp′
SW ,ESW

. That is, the two thermomajorization curves

coincide.
Next, we determine the energy levels {ϵ1, · · · , ϵN} and

{ϵ′1, · · · , ϵ′N} explicitly. We fix one energy level, for ex-
ample ϵ1, and express all other energy levels in terms of
it. To determine ki, from Condition (b) we have:

pje
βejki = p′ie

βeik′j (D6)

pje
βejk1 = p′1e

βe1k′j . (D7)

Dividing gives:

ki = k1
p′ie

βei

p′1e
βe1

, (D8)

from which we have:

ϵx = ϵ1 + kBT log

(
r1
rx

p′ie
βei

p′1e
βe1

)
, (D9)

for all x ∈ λ−1(i). k′i can be determined through Condi-
tion (b) by setting j = 1:

k′i = k1
pie

βei

p′1e
βe1

. (D10)

From which we have:

ϵ′x = ϵ1 + kBT log

(
r1
rx

pie
βei

p′1e
βe1

)
, (D11)

for all x ∈ λ′−1(i). The average extractable work from
the state transition is:

⟨W ⟩ =
N∑

x=1

rx(ϵ
′
x − ϵx) (D12)

and we have:

N∑
x=1

rxϵx =

N∑
x=1

rx

[
ϵ1 + kBT log

(
r1
rx

p′ie
βei

p′1e
βe1

)]
(D13)

= kBTD1(p
′
S ||τS) + C (D14)

N∑
x=1

rxϵ
′
x =

N∑
x=1

rx

[
ϵ1 + kBT log

(
r1
rx

pie
βei

p′1e
βe1

)]
(D15)

= kBTD1(pS ||τS) + C , (D16)

where:

C = ϵ1 − e1 + kBT
(∑

x

rx log
r1

rxp′1
− ZS

)
(D17)

is a constant. This recovers the stochastic thermodynam-
ics result:

⟨W ⟩ = kBT [D1(pS ||τS)−D1(p
′
S ||τS)] . (D18)

This gives the distribution {ri}i∈W and energy levels
(Eqs. (D9) and (D11)) for the efficient work reservoir
explicitly, completing the construction.

Appendix E: Constructing λ and λ′

This section constructs the mappings λ and λ′ in Eqs.
(D1) and (D2). We have p′i = P ′

i − P ′
i−1 and P ′

i , P ′
i−1 ∈

R. We define sets σ′
i ⊆ {1, 2, · · ·N} such that:∑

i∈σ′
i

ri = P ′
i . (E1)

We have σ′
0 = {}, σ′

n = {1, 2, · · ·N}, and σ′
0 ⊂ σ′

1 ⊂
· · · ⊂ σ′

n. λ : {1, 2, · · · , N} → {1, 2, · · · , n} is defined by
λ(σ′

i \ σ′
i−1) = i for i = {1, 2, · · · , n}. We have:∑

j∈λ−1(i)

rj =
∑

j∈σ′
i\σ′

i−1

rj

=
∑
j∈σ′

i

rj −
∑

j∈σ′
i−1

rj

= P ′
i − P ′

i−1 = pi . (E2)

We define λ′ similarly.
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Appendix F: A different way to construct efficient
work reservoirs

This section presents an alternative construction of a
work reservoir for trivial Hamiltonian ES = 0. More
directly, the efficient work reservoir for a transition is
not unique.

Consider a 2n2-dimension work reservoir of which en-
ergy levels are EW = {ϵ11, · · · , ϵnn, ϵ′11, · · · ϵ′nn}. The ini-
tial work reservoir probability distribution is (p ⊗ p′,0)
and the final is (0,p⊗ p′). The energy levels satisfy:

p1p
′
je

βϵ1j = · · · = pnp
′
je

βϵnj = kj for j = 1, · · · , n (F1)

pip
′
1e

βϵ′i1 = · · · = pip
′
ne

βϵ′in = k′i for i = 1, · · · , n (F2)

k′ip
′
j = pikj for any pair (i, j) . (F3)

These conditions ensure that the initial total curve coin-
cides with the final curve. We have:

ϵij = kBT log
kj
pip′j

(F4)

ϵ′ij = kBT log
k′i
pip′j

. (F5)

The amount of work that can be extracted is:

⟨W ⟩ =
∑
ij

pip
′
j(ϵ

′
ij − ϵij) (F6)

= kBT
∑
ij

pip
′
j log

k′i
kj

(F7)

= kBT
∑
ij

pip
′
j log

pi
p′j

(F8)

= kBT (H(p′)−H(p)). (F9)

Appendix G: Efficient work reservoir examples

The following analyzes several efficient work reservoirs
for nontrivial Hamiltonians and time-dependent Hamil-
tonians.

We first study a nontrivial Hamiltonian. Consider
a two-level system with the Gibbs distribution τS =
(e−βe1/ZS , e

−βe2/ZS) = ( 23 ,
1
3 ). We begin with the dis-

tribution pS = ( 12 ,
1
2 ) and end with p′

S = ( 13 ,
2
3 ). For

the efficient work reservoir, we set pW = (r,0) and
p′W = (0, r), where r = ( 12 ,

1
3 ,

1
6 ). The work reser-

voir energy levels satisfy exp(−βϵi) =
{

1
4a,

2
3a,

1
12a
}
for

i = 1, 2, 3 and exp(−βϵ′i) =
{

1
3a,

4
9a,

2
9a
}
, for i = 1, 2, 3

and where a is a positive number. The work reservoir’s

energy change is:

⟨W ⟩ =
3∑

i=1

ri(ϵ
′
i − ϵi) (G1)

=
1

2
kBT log

3

4
+

1

3
kBT log

3

2
+

1

6
kBT log

3

8
(G2)

= kBTD1(pS ||τS)− kBTD1(p
′
S ||τS) (G3)

= −0.17216 kBT . (G4)

The amount of the work is the negative nonequilibrium
free energy difference. Table III plots the thermoma-
jorization curves.
The second example concerns a state transition un-

der a time-dependent Hamiltonian. The initial distri-
bution is pS = ( 12 ,

1
2 ) and the initial Gibbs distribution

is τS = (e−βe1/ZS , e
−βe2/ZS) = ( 13 ,

2
3 ). The final dis-

tribution is p′
S = (23 ,

1
3 ) and final Gibbs distribution is

τ ′
S = (e−βe′1/Z ′

S , e
−βe′2/Z ′

S) = ( 12 ,
1
2 ). For the efficient

work reservoir, we set pW = (r,0) and p′
W = (0, r)

where r = ( 12 ,
1
3 ,

1
6 ). The work reservoir energy levels

satisfy exp(−βϵi) =
{

3
8a,

1
2a,

1
8a
}
, for i = 1, 2, 3 and

exp(−βϵ′i) =
{

1
3
ZS

Z′
S
a, 4

9
ZS

Z′
S
a, 2

9
ZS

Z′
S
a
}

for i = 1, 2, 3. The

work reservoir’s energy change is:

⟨W ⟩ =
3∑

i=1

ri(ϵ
′
i − ϵi) (G5)

=
1

2
kBT log

9

8

Z ′
S

ZS
+

1

3
kBT log

9

8

Z ′
S

ZS
(G6)

+
1

6
kBT log

9

16

Z ′
S

ZS
(G7)

= kBT (D1(pS ||τS)− logZS) (G8)

− kBT (D1(p
′
S ||τS)− logZ ′

S) (G9)

= (0.0022585 + log
Z ′
S

ZS
)kBT . (G10)

The amount of work is the nonequilibrium free energy dif-
ference. Table IV plots the thermomajorization curves.

Appendix H: Thermomajorization curves form a
monoid

Abstract algebra defines amonoid M as a set equipped
with an associative binary operation and an identity el-
ement. This appendix establishes that all possible ther-
momajorization curves at inverse temperature β with the
regular direct product form a monoid Mβ .
For a thermomajorization curve l with n distinct

slopes, we use a set with n tuples to represent it:

l = {(y1, k1), · · · , (yn, kn)} , (H1)

where yi and ki are the y−coordinate change and the
slope of the i−th segment that satisfy k1 > · · · > kn > 0
and y1 + · · · + yn = 1. (We neglect subscripting with
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System Work reservoir Total = System ⌦ Work reservoir

Initial

ZS
1
3ZS

1
2

2a1
3a

2
3

a
1
9ZSa

1/3

2/3

1
3ZSa 5

9ZSa

5/6

ZSa 2ZSa

Final

ZS
1
3ZS

2
3

2a1
3a

1
2

a
1
9ZSa

1/3

2/3

1
3ZSa 5

9ZSa

5/6

ZSa 2ZSa

TABLE III. Thermomajorization curves with elbow point coordinates of ρS , ρW , ρSW , ρ′S , ρ
′
W , and ρ′SW for a state transition

with a nontrivial Hamiltonian. For initial work reservoir, the red points x−axis coordinates are 1
12
a, 1

3
a, a, 11

9
a, 14

9
a and 2a,

respectively. For initial total curves, the x−axis coordinates are 1
36
ZSa,

1
9
ZSa,

5
36
ZSa,

1
3
ZSa,

5
9
ZSa, ZSa,

29
27
ZSa,

32
27
ZSa,

36
27
ZSa,

40
27
ZSa,

46
27
ZSa, 2ZSa, respectively. For final work reservoir, the red points x−axis coordinates are 1

3
a, 5

9
a, a, 13

12
a, 4

3
a

and 2a, respectively. For final total curve, the red points x−axis coordinates are 1
9
ZSa,

5
27
ZSa,

1
3
ZSa,

5
9
ZSa,

19
27
ZSa, ZSa,

37
36
ZSa,

39
36
ZSa,

42
27
ZSa,

48
27
ZSa,

56
27
ZSa, 2ZSa, respectively.
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System Work reservoir Total = System ⌦ Work reservoir

Initial

ZS
1
3ZS

1
2

a(1 + ZS

Z0
S
)1

2a

2
3

a
1
6ZSa

1/3

5/6

2
3ZSa ZSa ZSa(1 + ZS

Z0
S
)

Final

Z 0
S

1
2Z 0

S

2
3

a(1 + ZS

ZS0 )
1
3

ZS

ZS0 a

1
2

ZS

ZS0 a
1
6ZSa

1/3

5/6

2
3ZSa ZSa Z 0

Sa(1 + ZS

Z0
S
)

TABLE IV. Thermomajorization curves with elbow point coordinates of ρS , ρW , ρSW , ρ′S , ρ
′
W , and ρ′SW for a state transition

under a time-dependent Hamiltonian. For initial work reservoir, the red points x−axis coordinates are 1
8
a, 1

2
a, a, (1 + 2

9
ZS
ZS′ )a,

(1+ 5
9

ZS
ZS′ )a and (1+ ZS

ZS′ )a, respectively. For initial total curves, the x−axis coordinates are 1
24
ZSa,

1
6
ZSa,

1
3
ZSa,

5
12
ZSa,

2
3
ZSa,

ZSa, ZSa(1+
2
27

ZS
Z′

S
), ZSa(1+

5
27

ZS
Z′

S
), ZSa(1+

9
27

ZS
Z′

S
), ZSa(1+

13
27

ZS
Z′

S
), ZSa(1+

19
27

ZS
Z′

S
), ZSa(1+

ZS
Z′

S
), respectively. For final work

reservoir, the red points x−axis coordinates are 1
3

ZS
Z′

S
a, 5

9
ZS
Z′

S
a, ZS

Z′
S
a, ( 1

8
+ ZS

Z′
S
)a, ( 1

2
+ ZS

Z′
S
)a and (1+ ZS

Z′
S
)a, respectively. For final

total curve, the red points x−axis coordinates are 1
6
ZSa,

7
18
ZSa,

1
2
ZSa,

2
3
ZSa,

7
9
ZSa, ZSa, ZSa(1 + 1

16

Z′
S

ZS
), ZSa(1 + 2

16

Z′
S

ZS
),

ZSa(1 +
5
16

Z′
S

ZS
), ZSa(1 +

8
16

Z′
S

ZS
), ZSa(1 +

12
16

Z′
S

ZS
), ZSa(1 +

Z′
S

ZS
), respectively.

ρ and H.) Note that this definition is not one to one:
For a thermomajorization curve l, there may be many
states corresponding to curve l. This appendix uses the
thermomajorization curve l and its representation l in-
terchangeably.

The binary operation is defined as:

l⊗m :=
{
(yliy

m
j , klik

m
j )
}
i,j

/ ∼ , (H2)

where l = {(yli, kli)}i, m = {(ymi , kmi )}i, and ∼ means
the segments with the same slopes are combined. The
identity element is I = {(1, 1)}.
Verifying that the set of all thermomajorization curves

forms a monoid Mβ is straightforward. In addition, Mβ

is commutative; i.e., l ⊗m = m ⊗ l, for all l,m ∈ Mβ .
Not all elements in Mβ have corresponding inverses.

Only the elements with the form {(a, 1)} have an inverse
{(a−1, 1)}. Thus, Mβ is a monoid and not a group. Al-
though the inverse may not exist, we have the following
theorem.

Theorem H.1 (Cancellative). If x,y,a ∈ Mβ and a⊗
x = a⊗ y, then x = y.

Proof. The first element in a⊗x is (ya1y
x
1 , k

a
1k

x
1 ) and the

first element in a⊗y is (ya1y
y
1 , k

a
1k

y
1). So, we have y

x
1 = yy1

and kx1 = ky1 . Since we have:

a⊗ x = a⊗ y and (H3)

a⊗ (x \ (yx1 , kx1 )) = a⊗ (y \ (yy1 , ky1)) , (H4)

we remove the same element on both sides. If we check
the first element on both sides of the new equality, we
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have yx2 = yy2 and kx2 = ky2 . Continuing this procedure,
yxi = yyi and kxi = kyi for any i. Then we have x = y.

These elementary facts allow exploring all possible
work reservoirs for nondissipative state formation and
work extraction. For state formation (τ,H) → (ρ,H)
with zero dissipation, we know the minimum segments of
work reservoir’s thermomajorization curve equal to the
segments of ρ’s thermomajorization curve.

Suppose the corresponding initial work reservoir’s ther-
momajorization curve is x1. The final work reser-
voir’s thermomajorization curve y1 has only one segment.
Thus, y1 has inverse y−1

1 . Since there is no dissipation:

x1 ⊗ fτ,H = y1 ⊗ fρ,H . (H5)

Suppose there is another work reservoir suited for state
formation whose initial and final thermomajorization
curves are fρW ,HW

and fρ′
W ,HW

. Then:

fρW ,HW
⊗ fτ,H = fρ′

W ,HW
⊗ fρ,H . (H6)

Multiply x1 on both sides of Eq. (H6) and use Theorem
H.1 to remove fρ,H . Then:

x1 ⊗ fρ′
W ,HW

= y1 ⊗ fρW ,HW
. (H7)

Since y1 has an inverse:

fρW ,HW
= x1 ⊗ fρ′

W ,HW
⊗ y−1

1 (H8)

= b⊗ x1 , (H9)

where b = fρ′
W ,HW

⊗ y−1
1 or fρ′

W ,HW
= b⊗ y1.

So, we write any general work reservoirs fρW ,HW
and

fρ′
W ,HW

in terms of x1 and y1:

fρW ,HW
= b⊗ x1

fρ′
W ,HW

= b⊗ y1 . (H10)

This means the initial thermomajorization curve must
be equal to the product of x1 and an arbitrary curve b
and the final thermomajorization curve must equal the
product of y1 and curve b. These are the most general
thermomajorization curves of the work reservoir for state
formation with zero dissipation.

Next, we express this relation in terms of α−Rényi
divergences. Recall the definition of the α−free energy
of state ρ:

Fα(ρ) = Feq + kBTDα(ρ∥τ) (H11)

= Feq + kBT
1

α− 1
log

(
n∑

i=1

pαi
qα−1
i

)
, (H12)

where {pi}ni=1 and {qi}ni=1 are population vectors of
state ρ and Gibbs distribution and Feq = −kBT logZ
is the equilibrium free energy. The α−free energy
only depends on the thermomajorization curve’s elbow

points. Suppose ρ’s thermomajorization curve is fρ,H =
{(yi, ki)}ni=1, then:

Dα(ρ∥τ) =
1

α− 1
log

(
n∑

i=1

pαi
(e−βϵi)α−1

Zα−1

)
(H13)

=
1

α− 1
log

(
n∑

i=1

pip
α−1
i

(e−βϵi)α−1
Zα−1

)
(H14)

=
1

α− 1
log

(
n∑

i=1

yik
α−1
i Zα−1

)
. (H15)

For any state ρ and its thermomajorization curve a, we
use Fα(a) = Fα(ρ) to denote the α−free energy. For
the general work curves fρW ,HW

and fρ′
W ,HW

, from Eqs.

(H5) and (H10), we have:

Fα(x1) + Fα(τ) = Fα(y1) + Fα(ρ) (H16)

Fα(ρW ) = Fα(x1) + Fα(b) (H17)

Fα(ρ
′
W ) = Fα(y1) + Fα(b) . (H18)

To remove Fα(b), we have:

eFα(ρ′
W )

eFα(ρW )
=

eFα(y1)

eFα(x1)
=

eFα(τ)

eFα(ρ)
, (H19)

where:

eFα(τ) = eFeq (H20)

eFα(ρ) = eFeq · ZS

(∑
i

pim
α−1
i

) 1
α−1

(H21)

and fρ,H = {(pi,mi)}i. Then:

eFα(ρ′
W )

eFα(ρW )
=

(∑
i pim

α−1
i

) 1
1−α

ZS
. (H22)

This relation bridges between the work reservoir and
the system and, thus, is a Jarzynski-like equality in the
nondissipative scenario. Thus, from information about
work we learn system transitions [? ]. For a general
nondissipative state transition, we cannot write the gen-
eral work reservoir thermomajorization curves as in Eq.
(H10).

Appendix I: Carnot engines with efficient reservoirs

The following introduces a qubit engine implemented
with efficient work reservoirs that executes a Carnot cy-
cle. Note that when implemented with only two-level
work reservoirs, the engine’s efficiency is strictly vanish-
ing [? ].
In our setup, there are two thermal baths at tempera-

tures TC and TH (TC < TH), two work reservoirsWC and
WH—that can be combined into one—and a system used
as an engine. Since our engine and work reservoir run
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ρW1 ρW2 ρW3

pCpH − 1
βH

log(c1pC)− 1
βC

log(c2pH) − 1
βH

log(c1pH)− 1
βC

log(c2pH) − 1
βH

log(c1pH)− 1
βC

log(c2pC)

pC(1− pH) − 1
βH

log(c1pC)− 1
βC

log(c2(1− pH)) − 1
βH

log(c1pH)− 1
βC

log(c2(1− pH)) − 1
βH

log(c1pH)− 1
βC

log(c2(1− pC))

(1− pC)pH − 1
βH

log(c1(1− pC))− 1
βC

log(c2pH) − 1
βH

log(c1(1− pH))− 1
βC

log(c2pH) − 1
βH

log(c1(1− pH))− 1
βC

log(c2pC)

(1− pC)(1− pH) − 1
βH

log(c1(1− pC))− 1
βC

log(c2(1− pH)) − 1
βH

log(c1(1− pH))− 1
βC

log(c2(1− pH)) − 1
βH

log(c1(1− pH))− 1
βC

log(c2(1− pC))

TABLE V. Qubit engine efficient work reservoir energy levels: Here, we combine WC and WH into a single work reservoir.
The work reservoir begins with ρW1. In step 2, the work reservoir changes from ρW1 to ρW2. And, in step 4, the work
reservoir changes from ρW2 to ρW3. The nonzero components of probability distributions are pCpH , pC(1− pH), (1− pC)pH ,
and (1− pC)(1− pH). We list the corresponding energy levels in each work reservoir state, where c1 and c2 are two arbitrary
positive constants.

<latexit sha1_base64="ijcmJLgYgePOpJ9dYgQPhJv1rNo="></latexit>

ZC1

1 � pC

Step 1

ZH1

1 � pC

Step 2

ZH1

1 � pH

Step 3

ZC
exp (��c✏)

pH

Step 4

FIG. 8. Thermomajorization curves for each stage of the qubit
engine, where pC = e−βCϵ/ZC and pH = e−βHϵ/ZH . ZC and
ZH are partition functions of the engine at temperature TC

and TH , respectively.

without dissipation, engine efficiency is η = 1 − TC/TH .
The qubit engine’s Hamiltonian is HS = ϵ|1⟩⟨1|.

Initially, the engine is in thermal state τC at temper-
ature TC , being in contact with the cold bath. Next, τC
is brought to the hot bath (Step 1) to extract work with
work reservoir WH and ends in thermal state τH at tem-
perature TH (Step 2). The work extracted from the hot
thermal bath is WH = kBTHD(τC ||τH). Then, the sys-
tem returns to the cold bath (Step 3) and extracts work
with reservoir WC and ends in thermal state τC at tem-
perature TC (Step 4). The work that can be extracted
from the cold thermal bath is WC = kBTCD(τH ||τC).
The cycle completes when the engine returns to the ther-
mal state at TC .

Now, let’s construct the corresponding work reservoir
for this Carnot cycle. The work reservoir’s state only
changes during steps 2 and step 4. Step 2 is a work
extraction process. We use the minimal work reservoir

<latexit sha1_base64="VUcFFjPTW+2+1kilxdlEkwe9Q0A="></latexit>

WH WC

Initial

c1

1 � pC

c1

c2

1 � pH

c1

Final

c1

(1 � pH)c1

1 � pC

c2

pCc2

1 � pH

TABLE VI. Qubit engine thermomajorization curves of ini-
tial and final WH and WC . c1 and c2 are arbitrary positive
numbers. Here, we ignore flat portions in thermomajorization
curves.

W1 to extract work without dissipation. In step 4, we
also use the minimal work reservoir W2 to extract work
without dissipation. Figure 8 shows the system’s thermo-
majorization curves for each step. And, Table VI shows
the work reservoirs WC and WH used in the Carnot cy-
cle. We can combine WC and WH into a single work
reservoir. (See Table V for details.) Since there is no
dissipation in steps 2 and step 4, the heat transferred to
the hot bath QH during step 2 and to the cold bath QC

during step 4 satisfy:

βHQH + S(τH)− S(τC) = 0 (I1)

βCQC + S(τC)− S(τH) = 0 . (I2)

Then we have βCQC + βHQH = 0.

From energy conservation, the work done in one cycle
is given by W = −QH −QC . And, the efficiency of this
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cycle is given by:

η =
W

−QH
(I3)

=
−QH −QC

−QH
(I4)

= 1− TC

TH
. (I5)

For any engine operating with efficient work reservoirs,
we always have:

βCQC + βHQH = 0 . (I6)

As a result, the efficiency of an engine with efficient work
reservoirs is always the Carnot efficiency 1−TC/TH . Sim-
ilar results are considered in Ref. [? ].

Appendix J: Realization of efficient state transitions

In this work, we study the possibility of realizing the
state transitions by using multi-level work reservoirs. We
may ask whether it is possible to construct a explicit joint
unitary operator U on the system, work reservoir plus
the thermal bath to implement the transition. In this
appendix, we give one example.

We consider the famous Landauer’s erasure beginning
with the probability distribution ( 12 ,

1
2 ) storing in a triv-

ial two-level system spanned by {|0⟩, |1⟩} with Hamilto-
nian HS = 0. The work reservoir’s is a two level system
spanned by {|g⟩, |e⟩} with Hamiltonian HW = ϵ|e⟩⟨e|.
Let us consider a special thermal bath with energy levels
{0, 1ϵ, · · · , Nϵ} of which corresponding degeneracy are
{20, 21, · · · , 2N}, respectively. The Hamiltonian of the
bath is

HB =

N∑
n=0

2n∑
i=1

nϵ|n, i⟩⟨n, i| (J1)

where |n, i⟩ is the i−th degenerated eigenstate with the
eigenvalue nϵ. The partition function of the bath is

ZB =
1− e−(N+1)δ

1− e−δ
(J2)

where δ = βϵ − log 2. We construct the joint energy
preserving unitary U such that

U |0e⟩ ⊗ |n, i⟩ = |0g⟩ ⊗ |n+ 1, i⟩ (J3)

U |1e⟩ ⊗ |n, i⟩ = |0g⟩ ⊗ |n+ 1, 2n + i⟩ (J4)

for n = 0, 1, · · · , N − 1 and for n = N

U |0e⟩ ⊗ |N, i⟩ = |0e⟩ ⊗ |N, i⟩ (J5)

U |1e⟩ ⊗ |N, i⟩ = |1e⟩ ⊗ |N, i⟩ . (J6)

There are undetermined degrees of freedom in this uni-
tary operator U . But the conditions above are suffi-
cient to determine our final state if the initial state is

ρSWB = ( 12 |0⟩⟨0|+ 1
2 |1⟩⟨1|)⊗ |e⟩⟨e| ⊗ τB . The final state

of the system and work reservoir is given by tracing out
the thermal bath degrees of freedom

ρ′SW = TrB
(
UρSWBU

†) . (J7)

This leads to the final state of system plus work reservoir

ρ′SW = p|0g⟩⟨0g|+ 1

2
(1− p)|0e⟩⟨0e|+ 1

2
(1− p)|1e⟩⟨1e|

(J8)

where

p =
1− e−N(βϵ−log 2)

1− e−(N+1)(βϵ−log 2)
=

1− e−Nδ

1− e−(N+1)δ
. (J9)

The norm-1 distance between ρ′SW and desired final
state |0g⟩⟨0g| is

||ρ′SW − |0g⟩⟨0g|||1 = 2(1− p) . (J10)

The energy change in the work reservoir is

W = −kBT (δ + log 2)
1− e−Nδ

1− e−(N+1)δ
. (J11)

As long as δ = βϵ − log 2 > 0, the partition function of
the bath is finite for any N . And the norm-1 distance
can be arbitrarily small as N → ∞. The corresponding
energy change in the work reservoir can be arbitrarily
close to kBT log 2.

Appendix K: Correlated catalysts for trivial
Hamiltonian

In this section, we show an interesting result on corre-
lated catalysts. The catalysts can be used to decrease the
entropy productions in state transitions in trivial Hamil-
tonian.

Theorem K.1. Consider a m-dimensional system with
Hamiltonian H = 0. Given a state ρS, a thermal oper-
ation E and E(ρS) = σS, then there exists a catalyst ωC

such that

1. T (ρS ⊗ ωC) = σSC

2. TrCσSC = σS and TrSσSC = ωC

3. The entropy production of ρS ⊗ ωC → T (ρS ⊗ ωC)
is 0.

We use probability distribution to replace the density
matrix and prove a theorem first.

Theorem K.2. Let pX , qX be distributions on a finite
set X and σY be probability distribution on a finite set Y
and T be a doubly stochastic matrix such that T ·pX = qX .
Then there exists a distribution qXY on X ×Y such that

pX ⊗ σY = qXY (K1)
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and qXY ’s marginal distribution of X is qX and the
marginal distribution of Y is σY . Here, two probabil-
ity distribution being equal to each other means that they
are same up to a reorder.

Proof. We prove this by directly constructing qXY . From
the Birkhoff–von Neumann theorem, any doubly stochas-
tic matrix T can be written as a convex combination of
permutation matrices

T =

α∑
i=1

θiPπi
(K2)

where
∑

i θi = 1 and Pπi
is the permutation matrix corre-

sponding to permutation πi. Without loss of generality,
we can assume θi are rational, i.e., θi = mi/N where
mi, N ∈ Z. Here, we take

σY =
1

N
(1, · · · , 1)︸ ︷︷ ︸
# of 1s=N

. (K3)

And we introduce a m×N matrix C to express pX ⊗σY

pX ⊗ σY = C =


pX1

N · · · pX1

N
...

...
...

pXm

N · · · pXm

N

 . (K4)

In this matrix, if we add all components in each column
together, we have probability distribution σY and if we
add all components in each row together, we have prob-
ability distribution pX . We know

qX = T · pX =
∑
i

θiPπi
· pX =

∑
i

mi

N
Pπi

· pX

=
∑
i

mi

N
πi(pX) (K5)

where πi(pX) is the probability distribution after the per-
mutation πi taking effect on pX . Now we permute com-
ponents in each column of C to get C ′

C ′ =
(
π1(pX)/N · · · πα(pX)/N

)
(K6)

where for each πi(pX) there are mi copies in C ′. We let
qXY be C ′. Since we only permute components in each
column, so we have same σY after we trace out X and
we have qX after we trace out Y . We only reorder the
components in the matrix so we have

pX ⊗ σY = qXY . (K7)

From the theorem proved above, we see that for any
state ρ, σ and let E be a thermal operation, such that
E(ρ) = σ. We can find a catalyst ω such that the en-
tropy production of the transition ρ⊗ ω → σ′ through a
thermal operation is 0 and ω = tr1[σ

′], σ = tr2[σ
′] if the

Hamiltonian of the system is trivial. From Thm. K.2,

we can achieve this by only reordering the eigenvalues
of ρ ⊗ ω. So we can even only use a unitary operator
U to achieve this, i.e., Uρ ⊗ ωU† = σ′. For nontrivial
Hamiltonian in general, this is not correct. We cannot
do arbitrary permutations since it violates energy con-
servation.
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