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When reformulated as a resource theory, thermodynamics can analyze system behaviors in the
single-shot regime. In this, the work required to implement state transitions is bounded by α−Rényi
divergences and so differs in identifying efficient operations compared to stochastic thermodynamics.
Thus, a detailed understanding of the difference between stochastic thermodynamics and resource-
theoretic thermodynamics is needed. To this end, we study reversibility in the single-shot regime,
generalizing the two-level work reservoirs used there to multi-level work reservoirs. This achieves
reversibility in any transition in the single-shot regime. Building on this, we systematically explore
multi-level work reservoirs in the nondissipation regime with and without catalysts. The resource-
theoretic results show that two-level work reservoirs undershoot Landauer’s bound, misleadingly
implying energy dissipation during computation. In contrast, we demonstrate that multi-level work
reservoirs achieve Landauer’s bound and produce zero entropy.

I. INTRODUCTION

The Second Law of thermodynamics states that en-
tropy increases—the entropy production of any transfor-
mation is nonnegative. From it, the maximum work that
can be extracted in transforming a state from ρ to ρ′ with
Hamiltonian H in contact with a thermal bath at tem-
perature T is the reduction in nonequilibrium free energy
[1, 2]:

⟨W ⟩max = F (ρ)− F (ρ′)

= kBT [D1(ρ||τ)−D1(ρ
′||τ)] . (1)

Here, kB is Boltzmann’s constant, F (ρ) = Tr(ρH) −
TS(ρ) is the nonequilibrium free energy with S(ρ) ≡
−Tr [ρ log ρ] the von Neumann entropy, D1(ρ||τ) ≡
Tr [ρ ln ρ− ρ ln τ ] the relative entropy between ρ and τ ,
and τ the Gibbs state with Hamiltonian H. This result
is the general form of Landauer’s principle, which relates
information processing to energy dissipation in stochastic
thermodynamics [3].

From the perspective of thermodynamic control, we
can achieve Landauer’s bound on work [4] by evolving
the system under a time-dependent Hamiltonian HS(t),
while maintaining weak coupling to a thermal reservoir
[5]. However, the resulting unitary operator from this
Hamiltonian control does not necessarily preserve the to-
tal energy of the thermal bath and the system. Rather,
the extracted work is the negative total energy difference
of the system and bath together [6]. Stochastic ther-
modynamics addresses work production as the result of
external control, without explicitly describing the bat-
tery that stores the harvested work energy. This begs
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the question: what are the thermodynamic limits when
accounting for the dynamics of the battery that drives a
state transition forward? This requires a more detailed
accounting of resources.
Recently, thermodynamics was reformulated as a re-

source theory—alternately called single-shot thermo-
dynamics, resource theory of athermality, or simply
nanoscale thermodynamics [7–11]. In resource theory,
work must be stored in specific subsystems—work reser-
voirs—that function as batteries to power state transi-
tions. External control cannot violate energy conserva-
tion. That is, the unitary evolution of bath, system, and
work reservoir together must commute with the joint free
Hamiltonian.
Typically, a work reservoir is a two-level quantum sys-

tem and the corresponding work is called deterministic
work [10]. The work reservoir starts in one pure state
at the beginning and ends in another pure state. The
work is defined as the energy gap between those two lev-
els. The deterministic work that can be extracted from
a state ρ is [10]:

W ext
one−shot = kBTD0(ρ||τ) , (2)

where Dα(ρ||τ) ≡ 1
α−1 log Tr

[
ρατ1−α

]
is the Rényi

α−divergence between state ρ and τ [12].
We can recover thermodynamics’ average result by

considering many copies of ρ and tolerating error ϵ [13]:

lim
n→∞

1

n
D

(ϵ)
0 (ρ⊗n||τ⊗n) = D1(ρ||τ) ,

where D
(ϵ)
0 (·||·) is the smoothed version of α = 0 Rényi

divergence. Since the Rényi divergence is nondecreasing
as a function of order α [14], we have:

W ext
one−shot = kBTD0(ρ∥τ)

≤ kBTD1(ρ∥τ) .
That is, the resource-theoretic bound on work ex-
tractable from state ρ is tighter than Landauer’s bound
of stochastic thermodynamics.
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FIG. 1. State transitions with multi-level work reservoirs
rather than two-level work reservoirs. We show that for any
transition ρ → ρ′, there is a multi-level work reservoir such
that the dissipation vanishes.

The two-level constraint also leads to tighter bounds in
state formation. The deterministic work to form system
state ρ in single-shot thermodynamics is [10]:

W form
one−shot = −kBTD∞(ρ||τ) . (3)

Similar to extraction, one-shot analysis puts a tighter
bound on state formation than Landauer’s bound:

W form
one-shot = −kBTD∞(ρ||τ)

≤ −kBTD1(ρ||τ) .

In some cases, W form
one−shot and W ext

one−shot equal the aver-
age results from thermodynamics. Landauer’s bound on
erasure [3] and the energy that can be stored in a work
reservoir by randomizing a pure bit are both kBT log 2
[15]. However, resource-theoretic results, such as in Eqs.
(2) and (3) with two-level work reservoirs, usually un-
dershoot Landauer’s bound. Energy must be dissipated
during state transitions. Previous work has studied the
unification of those two results [16–18]. The following
shows that the disparity arises from assuming that work
is stored in a two-level system. The following shows how
to achieve the thermodynamic limit of Landauer’s bound
in nanoscale thermodynamics by abandoning two-level
work reservoirs. When using multi-level work reservoirs
as shown in Fig. 1, thermodynamically efficient state
transformations are directly implementable.

Our development is organized as follows. Section II
sets up the basic framework. Section III reviews the def-
inition of entropy production at both the macroscopic
scale and the nanoscale and gives an equivalent condi-
tion of zero dissipation at the nanoscale. Section IV gen-
eralizes the two-level work reservoirs typically employed
in nanoscale thermodynamics. It gives an explicit con-
struction for a multi-level work reservoir that achieves
zero entropy production for any state transition. Section
V goes on to study efficient work reservoirs in the pres-
ence of catalysts and introduces an alternative way to
describe nondissipation scenarios.

II. FRAMEWORK

The total system consists of system S, work reservoir
W , and thermal bath B with Hamiltonians HS , HW , and
HB , respectively. Initially, they are uncorrelated. The
initial state is ρSWB = ρS ⊗ ρW ⊗ τB , where τB is the
Gibbs state of the thermal bath at temperature T . The
three subsystems interact via Hamiltonian Hint. They
evolve by the unitary operator U = Texp

(
− i

ℏ
∫
Hdt

)
,

where T is the time-ordering operator and H is the
total Hamiltonian H = HS + HB + HW + Hint. In
thermodynamics, there is often no need to include a
work reservoir and U does not preserve total energy in
general. In resource theory, though, we specify that
[U,HS+HB+HW ] = 0—strict energy conservation. The
final state is given by ρ′SWB = UρSWBU

†.

Here, we focus on states that are incoherent in energy.
Since incoherent states are diagonal in the energy eigen-
states, we identify a quantum state ρ with the vector
p of its eigenvalues, a Hamiltonian H with its energy
levels E, and the eigenstates of Hamiltonian H with a
classical set S = {1, 2, · · · }. Throughout, greek letter ρ
denotes a state, bold p denotes a probability distribu-
tion, and pi the i-th component in the latter. τ denotes
the Gibbs state and τ the corresponding distribution.
Notation with the subscript (·)S or (·)B refers to the sys-
tem or the thermal bath, respectively, while (·)SW de-
notes the joint distribution of the system and the work
reservoir. Notation without subscripts refers to a gen-
eral state. Similarly, primed notation (·)′ refers to a final
state.

III. ZERO ENTROPY PRODUCTION AND
WORK BOUNDS

The following reviews the bounds mentioned above and
then turns to study zero entropy production in single-
shot thermodynamics.

Thermodynamic entropy production Σ is defined as
[19, 20]:

Σ = ∆SS +
Q

T
, (4)

where ∆SS is the system’s entropy change and Q is the
amount of heat transferred from the system to the ther-
mal bath. We assume the system and the bath are ini-
tially uncorrelated and that the bath is in equilibrium,
such that ρSB = ρS ⊗ τB . The global unitary operator
U acts on the system and bath to extract work. Take
σ = ρ′S ⊗ τB , where ρ′S = TrB(UρU†) is the system’s
final state.

Using Klein’s inequality—Tr(ρ log ρ) ≥ Tr(ρ log σ)—
we can show that the entropy production Σ is nonnega-
tive [21]. Define the missing energy of the total system
as work production W = −Q −∆US , where ∆US is the



3

system’s energy change, and rewrite Eq. (4) as:

Σ =
1

T
(T∆SS −∆US −W ) ≥ 0 .

This gives the familar thermodynamic bound W ≤
−∆FS , where ∆FS = ∆US − T∆SS . The equal sign
holds if and only if the entropy production vanishes.

Resource theory limits thermodynamic evolution to
unitary operators U that commute with the total free
Hamiltonian. So, there can be no “missing energy”:
−Q − ∆US = 0. Such operations on the system are
called thermal operations (TO). Without work input,
the constraint on state transitions is thermomajoriza-
tion [10, 22]. To have a transition from ρS to ρ′S—

denoted as ρS
TO−→ ρ′S—ρS must thermomajorize ρ′S . Ge-

ometrically, the ρS ’s thermomajorization curve lies above
or on ρ′S ’s thermomajorization curve [10]. Suppose the
eigenvalues of ρ are p = {pi}i∈S and the corresponding
energy levels are E = {ei}i∈S . The thermomajoriza-
tion curve of state ρ is a monotonic concave-down curve
fp,E(x) that interpolates between (x, f(x)) = (0, 0) and
(x, f(x)) = (ZS , 1), where ZS =

∑
i∈S exp (−ei/kBT ) is

the system’s partition function. (Appendix A shows how
to construct thermomajorization curves.)

Consider a two-level work reservoir with Hamiltonian
HW = W0|W0⟩⟨W0| + W1|W1⟩⟨W1|. For a work ex-
traction transition (ρS ⊗ |W0⟩⟨W0|, HS +HW ) → (τS ⊗
|W1⟩⟨W1|, HS + HW ) to occur in single-shot thermo-
dynamics, ρS ⊗ |W0⟩⟨W0| must thermomajorize τS ⊗
|W1⟩⟨W1| and we have:

W = W1 −W0 ≤ D0(ρS∥τS) .

(See Appendix A for details.)
In this case, the maximum work extractable from a

state (ρS , HS) cannot achieve the upper bound −∆FS ,
because a two-level nanoscale work reservoir cannot
achieve zero entropy production for every work extrac-
tion. By contrast, stochastic thermodynamics achieves
zero entropy production by employing a quasistatic pro-
cess connecting the initial and final states [23]. How-
ever, this requires precisely designed work reservoirs at
the nanoscale.

Next, let us address how to compute the entropy pro-
duction in the single-shot regime. The entropy produc-
tion is still defined as in Eq. (4). Consider an energy pre-
serving unitary operation such that Q = −∆US , where:

∆US = kBT
(
− Tr(ρ′S log τS) + Tr(ρS log τS)

)
.

(Here, we assume there is no work reservoir. But if we
wish to include one, we treat the work reservoir as part of
the system.) Then we can write the entropy production
of Eq. (4) in an information-theoretic form [24]:

Σ = D(ρS∥τS)−D(ρ′S∥τS) . (5)

We denote a thermal operation that sends ρS to ρ′S as E :
E(ρS) = ρ′S . This thermal operation preserves the Gibbs

state, such E(τS) = τS , and from the data processing
inequality [25], we have:

D(ρS∥τS) ≥ D(E(ρS)∥E(τS))
= D(ρ′S∥τS) .

Entropy production is always nonnegative in single-shot
thermodynamics. Now, we are ready to state the theorem
on zero entropy production at the nanoscale [10].

Theorem III.1. Consider a system with Hamiltonian
H. Given two states ρ and σ, the following are equiva-
lent:

(a) The thermomajorization curves of states ρ and σ
coincide.

(b) The entropy production of the state transition ρ →
σ through a thermal operation vanishes.

Proof. (a) → (b): Since the two thermomajorization
curves coincide, there exist transitions (ρ,H) → (σ,H)
and (σ,H) → (ρ,H) with entropy productions Σρ→σ and
Σσ→ρ, respectively. From (5):

Σρ→σ = D1(ρ||τ)−D1(σ||τ)
Σσ→ρ = D1(σ||τ)−D1(ρ||τ) .

Adding the entropy productions gives:

Σρ→σ +Σσ→ρ = 0 .

And, since the entropy production is always nonnegative:

Σρ→σ = Σσ→ρ = 0 .

(b) → (a): Denote the population vectors of ρ, σ, and τ
with pρ, pσ, and pτ , respectively. We have a Gibbs-
preserving stochastic matrix G such that Gpρ = pσ

and Gpτ = pτ . Vanishing entropy production means
that the data processing inequality holds: D1(pρ∥pτ ) =
D1(Gpρ∥Gpτ ) = D1(pσ∥pτ ). It holds if and only if there
exists a recovery map R defined by Rij = Gji(pτ )i/(pτ )j
such that Rpσ = pρ, where (·)ij is the ij component of
the matrix [25]. It is straightforward to show that R
preserves the Gibbs distribution: Rpτ = pτ . So, pσ

thermomajorizes pρ. σ’s thermomajorization curve lies
above or on ρ’s thermomajorization. Hence, their ther-
momajorization curves coincide.

Theorem III.1 is one of the main results. It illustrates
geometrically why the familiar thermodynamics bound
cannot be achieved at the nanoscale. To achieve that
bound, the entropy production must vanish. The work
reservoir entropy change must be included:

Σ = ∆SS +∆SW +
Q

T
.

Under deterministic work extraction, the work reservoirs’
initial and final states are pure states. They can only
contract the system’s thermomajorization curves along
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21

FIG. 2. Thermodynamics’ bound cannot be achieved at the
nanoscale: Consider a two-level system spanned by {|0⟩, |1⟩}
with HS = 0. The red line is the thermomajorization curve
of ρS = 1

2
(|0⟩⟨0| + |1⟩⟨1|). The blue is the curve for ρ′S =

|0⟩⟨0|. The green is that of σS = ( 1
3
|0⟩⟨0| + 2

3
|1⟩⟨1|). The

red and blue curves coincide with a two-level work reservoir.
The corresponding transition (ρS , HS) → (ρ′S , HS) is the well-
known Landauer’s erasure. However, this cannot be done for
the green and blue curves.

x-axis by a factor. And so, to achieve zero entropy pro-
duction, the system’s initial thermomajorization curve
must coincide with its final thermomajorization curve up
to a contraction factor. This is not always possible. Fig.
2 depicts the situation.

IV. BEYOND DETERMINISTIC WORK

This section generalizes two-level work reservoirs in
such a way that initial and final thermomajorization
curves coincide. This achieves zero entropy production
for a transition. Before the general case, though, we first
review an elementary example to give a simple picture.

A. Example

Consider Landauer’s erasure with the initial distribu-
tion pS = ( 13 ,

2
3 ) and a four-level work reservoir with

energy levels {W0,W1,W2,W3}. We set the work reser-
voir’s initial distribution to pW = (r1, r2, 0, 0) and the
final to p′

W = (0, 0, r1, r2). The work reservoir’s entropy
does not change overall. The total initial state is:

ρSW =(
1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1|)⊗

(r1|W0⟩⟨W0|+ r2|W1⟩⟨W1|)

and the final is:

ρ′SW = |0⟩⟨0| ⊗ (r1|W2⟩⟨W2|+ r2|W3⟩⟨W3|) .

First, consider the final state’s thermomajorization
curve. At most, it has two distinct slopes. For the two

curves to coincide, the initial curve can contain at most
two distinct slopes. One possibility is that the initial
work reservoir’s thermomajorization curve has one dis-
tinct slope. This leads to:

1

3
r1e

βW0 =
1

3
r2e

βW1 = r1e
βW2

2

3
r1e

βW0 =
2

3
r2e

βW1 = r2e
βW3

1

3
r1 +

1

3
r2 = r1

2

3
r1 +

2

3
r2 = r2 .

The first two equations come from requiring the initial
curve to have only two distinct slopes and the same slopes
as the final curve’s. And, the last two equations come
from requiring the same y-coordinate change. Solving
those equations gives:

r1 =
1

3
and r2 =

2

3

e−βW0 = a, e−βW1 = 2a, e−βW2 = 3a, and e−βW3 = 3a,

where a is an arbitrary positive number.
Table I demonstrates that the initial and final curves

coincide. The expected energy change in the work reser-
voir is:

⟨W ⟩ = r1(W2 −W0) + r2(W3 −W1)

= kBT

(
1

3
log

1

3
+

2

3
log

2

3

)
.

This is the system entropy change as ex-
pected. This demonstrates that energy levels
EW = {W0,W1,W2,W3} with probability distribu-
tions pW = ( 13 ,

2
3 , 0, 0) and p′

W = (0, 0, 1
3 ,

2
3 ) form an

efficient work reservoir for Landauer erasure with the
initial distribution pS = ( 13 ,

2
3 ).

B. General efficient work reservoirs

Now, we turn to develop efficient work reservoirs for ar-
bitrary state transitions. The thermomajorization curve
fp,E of a distribution p = {pi}i∈S over the energy lev-
els E = {ϵi}i∈S can be derived from the collection of
segments {(e−βϵi , pi)}i∈S . Thermomajorization curve or-
ders the segments from highest slope—the slope of i-th
element is pie

βϵi—to lowest and then concatenates them
end to end.
Consider a coarse-graining function λ : S → S ′ that

defines a new distribution and energy landscape: p′ =
λ(p) = {p′j}j∈S′ and energy landscape E′ = λ(E) =
{ϵ′j}j∈S′ via:

p′j =
∑

i∈λ−1(j)

pi

e−βϵ′j =
∑

i∈λ−1(j)

e−βϵi ,



5

System Work reservoir Total = System ⊗ Work reservoir

Initial

21

2
3

9a2a

2
3

3a 6a a

2
9

3a

2
3

5a

5
9

6a 9a 12a 15a 18a

Final

21

1

9a3a

2
3

6a 8a 3a

2
3

6a 9a 12a 14a 15a 17a 18a

TABLE I. Efficient work reservoir for Landauer erasure: The first row shows thermomajorization curves of the initial system
state ρS = 1

3
|0⟩⟨0|+ 2

3
|1⟩⟨1|, the initial work state ρW = 1

3
|W0⟩⟨W0|+ 2

3
|W1⟩⟨W1|, and the initial total state ρSW = ρS ⊗ ρW .

The second row shows thermomajorization curves of the final system state ρ′S = |0⟩⟨0|, the final work state ρ′W = 1
3
|W2⟩⟨W2|+

2
3
|W3⟩⟨W3|, and the final total state ρ′SW = ρ′S ⊗ ρ′W .

where:

λ−1(j) ≡ {i|i ∈ S, λ(i) = j} .

If λ only coarse-grains elements of (p,E) whose seg-
ments have the same slope—meaning λ(i) = λ(i′) implies
pie

βϵi = pi′e
βϵi′—then the coarse-grained distribution

and energies (λ(p), λ(E)) have the same thermomajoriza-
tion curve fλ(p),λ(E) = fp,E . The segments (e−βϵi , pi)

and (e−βϵi′ , pi′) of elements i and i′ with the same slope
in the thermomajorization curve comprise a long line seg-
ment with (width, height)=(e−βϵi + e−βϵi′ , pi + pi′).

We introduce a useful notation to represent a thermo-
majorization curve f . Suppose λ coarse-grains all seg-
ments with the same slopes. After the coarse-graining,
the thermomajorization curve has n distinct slopes, ex-
cluding the segments with slope zero. Let #fp,E = n
denote the number of distinct slopes in fp,E and n tu-
ples fp,E = {(yi, ki)}ni=1 represent f where ki is the i-th
distinct slope and yi is the corresponding y−coordinate
change. In some cases we allow repeating slopes in fp,E .
Given one distribution pS = {pi}i∈S over energy levels

ES = {ei}i∈S with thermomajorization curve fpS ,ES
=

{(xi, ki)}i∈S and another distribution pS′ = {qi}i∈S′

over energy levels ES′ = {hi}i∈S′ with thermomajoriza-
tion curve fqS′ ,HS′ = {(yi,mi)}i∈S′ , the composite con-
figuration is the probability distribution pSS′ over energy
levels ESS′ where:

pSS′ = {piqj}i∈S,j∈S′

ESS′ = {ei + hj}i∈S,j∈S′ ,

and:

fpSS′ ,ESS′ = {xiyj , kimj}i∈S,j∈S′ . (6)

Here, we may have repeating slopes in fpSS′ ,ESS′ .
With this enhanced notation, we are ready to define

multi-level work reservoirs.

Definition IV.1. (Multi-level Work Reservoirs) A
2d−level work reservoir (pW ,p′

W ,EW ) for a state tran-
sition pS → p′

S in a system with energy levels ES =
{es}s∈S has initial distribution pW = {qw}w∈W , final
distribution p′

W = {q′w}w∈W , and energy eigenstates
EW = {ϵw}w∈W . Here, pW and p′

W have the form of
pW = (r,0) and p′

W = (0, r), where r is a d−dimension
probability distribution. The initial configuration of the
system with the reservoir is (pSW ,ESW ), where:

pSW = {psqw}s∈S,w∈W

ESW = {es + ϵw}s∈S,w∈W .

The final configuration is (p′
SW ,ESW ), where:

p′
SW = {p′sq′w}s∈S,w∈W

ESW = {es + ϵw}s∈S,w∈W .

This requires pW and p′
W to have the forms pW =

(r,0) and p′
W = (0, r) so that the overall work reservoir’s

entropy change vanishes. This satisfies the stochastic
thermodynamics’ entropyless assumption for work reser-
voirs [26]. This leads immediately to the following defi-
nition.

Definition IV.2. (Efficient work reservoir) A work
reservoir (pW ,p′

W ,EW ) is efficient for a state transition
pS → p′

S in a system with energy levels ES if the en-
tropy production of (pSW ,ESW ) → (p′

SW ,ESW ) through
a thermal operation vanishes.

C. Work extraction and state formation reservoirs

For work extraction (pS ,ES) → (τS ,ES), suppose
there are m distinct slopes in the thermomajorization
curve fpS ,ES

and fpS ,ES
= {(ri, ai)}mi=1. It turns out

that a work reservoir must have a dimension greater than
2(m− 1) to achieve efficient work extraction.
To see this, assume that an efficient work reservoir

has dimension 2d ≤ 2(m − 1). Now, let the initial
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work reservoir probability distribution be pW = (r,0),
the corresponding thermomajorization curve have a dis-
tinct slopes, the final work reservoir probability distribu-
tion be p′

W = (0, r), and the corresponding thermoma-
jorization curve have b distinct slopes. Then, we have
a, b ≤ d ≤ (m− 1).
The final total probability distribution is p′

SW =
τS ⊗ p′

W . We have #fp′
S ,E′

S
= 1 and #fp′

W ,E′
W

= b.
The number of distinct slopes of the thermomajoriza-
tion curve fp′

SW ,ESW
is b. The initial total probability

distribution is pSW = pS ⊗ pW . Since the number of
distinct slopes in pS ’s thermomajorization is m, we have
#fpSW ,ESW

≥ m. The equality holds if and only if the
number of the segments of pW ’s thermomajorization is
1. Since we have b ≤ m − 1 < m, it is impossible for
curve fpSW ,ESW

to coincide with curve fp′
SW ,ESW

. The
dimension of the efficient work reservoir is at least 2m.

Next, we construct the 2m−dimension efficient work
reservoir. The energy levels of the work reservoir are
EW = {ϵ1, · · · , ϵm, ϵ′1, · · · , ϵ′m}. The distribution we
choose is r = (r1, · · · , rm). For the energy levels
{ϵ1, · · · , ϵm}, we require:

eβϵi =
c

ri
,

where c can be an arbitrary positive number. For the
energy levels {ϵ′1, · · · , ϵ′m}, we stipluate:

eβϵ
′
i = cZS

ai
ri

.

Table II shows that the two curves coincide. The energy
change in this work reservoir is:

W =

m∑
i=1

ri(ϵ
′
i − ϵi)

= kBTD1(pS ||τS) .

It is not hard to prove that this is the unique 2m-
dimensional efficient work reservoir for ρS work extrac-
tion.

Since entropy production vanishes, we can use the
same work reservoir to form the state τS → pS . Hence,
the minimal dimension of the efficient work reservoir for
both work extraction and state formation is equal to
2 ·#fpS ,ES

. Appendix E goes on to construct thermoma-
jorization curves of all possible efficient work reservoirs
for state formation and work extraction from the minimal
efficient work reservoirs.

D. Efficient reservoirs exist

We will not develop all possible efficient work reser-
voirs for general state transitions here. Nonetheless, the
next theorem establishes the existence of efficient work
reservoirs for them—our second main result.

System Work Reservoir

Initial

ZS

r1
a1

rm
am· · ·

· · ·

r1

rm

...

1/c

· · ·

e−βϵ1 e−βϵm

· · ·

r1

rm

...

Final

ZS

· · ·

r1ZS rmZS· · ·

r1

rm

...

1/c

· · ·

e−βϵ′1 e−βϵ′m
· · ·

r1

rm

...

TABLE II. Initial and final thermomajorization curves for the
efficient work extraction reservoir.

Theorem IV.1. For two general n−dimension states
pS and p′

S over energy levels ES, there exists a work
reservoir (pW ,p′

W ,EW ) such that the entropy production
of (pSW ,ESW ) → (p′

SW ,ESW ) vanishes.

Proving this requires constructing the efficient work
reservoir for (pS ,ES) → (p′

S ,ES). We denote initial
and final cumulative probability distributions of the sys-
tem as P = {Pi}i∈{0}∪S and P ′ = {P ′

i}i∈{0}∪S , where
P0 = P ′

0 = 0. And, they satisfy Pi − Pi−1 = pi and
P ′
i − P ′

i−1 = p′i for all i ∈ S. Let R = {Ri}i∈{0}∪W =

P ∪ P ′—a cumulative probability distribution where
W = {1, 2, · · · , N} and N is the dimension of corre-
sponding probability distribution, denoted r = {ri}i∈W .
Then there exist mappings λ, λ′ : W → S from W =
{1, 2, · · · , N} to system eigenstates S = {1, 2, · · ·n} such
that:

p′i =
∑

j∈λ−1(i)

rj (7)

pi =
∑

j∈λ′−1(i)

rj . (8)

Appendix B constructs the mappings λ and λ′.
The work reservoir probabilities are pW and p′

W , where
pW = (r,0) and p′

W = (0, r). And the energy levels are
EW = {ϵ1, · · · , ϵN , ϵ′1, · · · , ϵ′N}. To make this efficient for
a n−dimensional transition pS → p′

S in a system with
energy levels ES = {e1, · · · , en}, we require that:

(a) There exist sets of positive numbers {ki}ni=1 and
{k′i}ni=1 such that:

rje
βϵj = ki, for all j ∈ λ−1(i) , (9)

and:

rje
βϵ′j = k′i, for all j ∈ λ′−1(i) . (10)
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(b) And:

pie
βei · kj = p′je

βej · k′i, for any pair (i, j) .

According to Theorem III.1, zero entropy is produced
if and only if the thermomajorization curves of pSW =
{pirj}i,j over the energy levels ESW = {ei + ϵj}i,j , and
p′
SW = {p′irj}i,j over the energy levelsE′

SW = {ei+ϵ′j}i,j
are the same. (We neglect contributions from zero com-
ponents in probability distribution.) From Eqs. (7) and
(9), the thermomajorization curve fpW ,EW

has at most n
distinct slopes {ki}ni=1 with corresponding y−coordinate
change {p′i}ni=1; i.e., fpW ,EW

= {(p′i, ki)}ni=1. For the

system, we have fpS ,ES
= {(pi, pieβei)}ni=1. And, so,

from Eq. (6) we have fpSW ,ESW
= {pip′j , pieβeikj}ni,j=1.

Similarly, we have fp′
SW ,ESW

= {p′ipj , p′ieβeik′j}ni,j=1 =

{pip′j , p′jeβejk′i}ni,j=1. From Condition (b), fpSW ,ESW
=

fp′
SW ,ESW

. That is, the two thermomajorization curves

coincide.

Next, we determine the energy levels {ϵ1, · · · , ϵN} and
{ϵ′1, · · · , ϵ′N} explicitly. We fix one energy level, for ex-
ample ϵ1, and express all other energy levels in terms of
it. To determine ki, from Condition (b) we have:

pje
βejki = p′ie

βeik′j

pje
βejk1 = p′1e

βe1k′j .

Dividing gives:

ki = k1
p′ie

βei

p′1e
βe1

,

from which we have:

ϵx = ϵ1 + kBT log

(
r1
rx

p′ie
βei

p′1e
βe1

)
, (11)

for all x ∈ λ−1(i). k′i can be determined through Condi-
tion (b) by setting j = 1:

k′i = k1
pie

βei

p′1e
βe1

.

From which we have:

ϵ′x = ϵ1 + kBT log

(
r1
rx

pie
βei

p′1e
βe1

)
, (12)

for all x ∈ λ′−1(i). The average extractable work from
the state transition is:

⟨W ⟩ =
N∑

x=1

rx(ϵ
′
x − ϵx)

and we have:

N∑
x=1

rxϵx =

N∑
x=1

rx

[
ϵ1 + kBT log

(
r1
rx

p′ie
βei

p′1e
βe1

)]
= kBTD1(p

′
S ||τS) + C

N∑
x=1

rxϵ
′
x =

N∑
x=1

rx

[
ϵ1 + kBT log

(
r1
rx

pie
βei

p′1e
βe1

)]
= kBTD1(pS ||τS) + C ,

where:

C = ϵ1 − e1 + kBT
(∑

x

rx log
r1

rxp′1
− ZS

)
is a constant. This recovers the stochastic thermodynam-
ics result:

⟨W ⟩ = kBT [D1(pS ||τS)−D1(p
′
S ||τS)] .

This gives the distribution {ri}i∈W and energy levels
(Eqs. (11) and (12)) for the efficient work reservoir ex-
plicitly, completing the construction.
We close with several observations. If EW =

{ϵ1, · · · , ϵN , ϵ′1, · · · , ϵ′N} determine the energy levels for
an efficient work reservoir with probability transition
(r,0) → (0, r), then E′

W = {ϵ1 + c, · · · , ϵN + c, ϵ′1 +
c, · · · , ϵ′N + c} are also energy levels of an efficient work
reservoir with the same probability distribution transi-
tion, where c is a constant. This shows that efficient
work reservoirs have translational symmetry. Only gaps
between energy levels in efficient work reservoirs matter.
For transitions under time-dependent Hamiltonians,

we introduce a clock system [10]. Suppose the initial and
final Hamiltonians are HS and H ′

S , respectively. The
total Hamiltonian including the clock system is:

H = HS ⊗ |0⟩⟨0|+H ′
S ⊗ |1⟩⟨1| .

With the clock system, we require that any transition to
be ρS ⊗ |0⟩⟨0| → ρ′S ⊗ |1⟩⟨1|. In this, the Hamiltonian
changes from HS to H ′

S .
Appendix D presents two examples of efficient work

reservoirs for nontrivial Hamiltonians and for time-
dependent Hamiltonian state transitions. We can also
use efficient work reservoirs to implement an engine.
Specifically, Appendix F presents the details of an ef-
ficient work reservoir for a qubit engine that achieves
Carnot efficiency.

V. CATALYZED WORK RESERVOIRS

The development to this point was limited to noncat-
alytic scenarios. The following explores efficient work
extraction with the aid of catalysts. Here, the intention
is not to surpass the bound set by free energy differences.
Rather, we ask whether we can extract work without dis-
sipation by using a smaller work reservoir with catalysts.
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The main result in catalytic thermal operations is that
the transition from state ρS to ρ′S is possible through a

catalytic thermal operation—denoted ρS
CTO−→ ρ′S—if and

only if Dα(ρS∥τS) ≥ Dα(ρ
′
S∥τS), for all α ∈ R [11]. The

next theorem shows that catalysts do not help under zero
entropy production.

Theorem V.1. Consider a system with Hamiltonian H.
If state ρ can be converted into state σ through a catalytic
thermal operation with zero entropy production, then the
transition can be achieved through a noncatalytic thermal
operation. Specifically:

ρ
CTO−→ σ and Σρ→σ = 0 =⇒ ρ

TO−→ σ .

Proof. Suppose the catalyst and the Hamiltonian used in

the transition ρ
CTO−→ σ are (c,Hc). Under zero entropy

production, we have:

D1(ρ⊗ c∥τ ⊗ τc) = D1(σ ⊗ c∥τ ⊗ τc) .

From Theorem III.1, the thermomajorization curves of
ρ⊗ c and σ ⊗ c coincide.

Next, we show that the thermomajorization curves of ρ

and σ coincide. Suppose fρ,H = {(y(ρ)i , k
(ρ)
i )}i, fσ,H =

{(y(σ)i , k
(σ)
i )}i, and f c,Hc

= {(y(c)i , k
(c)
i )}i, respectively.

The largest slope of the ρ ⊗ c curve is k
(ρ)
1 · k(c)1 with

y−coordinate change y
(ρ)
1 · y(c)1 . And, the largest slope

of the σ ⊗ c curve is k
(σ)
1 · k(c)1 with y coordinate change

y
(σ)
1 · y(c)1 . Since the curves of ρ ⊗ c and σ ⊗ c coincide,
we must have:

k
(ρ)
1 · k(c)1 = k

(σ)
1 · k(c)1

y
(ρ)
1 · y(c)1 = y

(σ)
1 · y(c)1 .

This leads to k
(ρ)
1 = k

(σ)
1 and y

(ρ)
1 = y

(σ)
1 .

We can remove the contribution of (k
(ρ)
1 , y

(ρ)
1 ) and

(k
(σ)
1 , y

(σ)
1 ) from the curves ρ ⊗ c and σ ⊗ c, respec-

tively. The two new curves also coincide since we remove
identical segments from two identical thermomajoriza-
tion curves. With the two new curves and the similar
argument, we have:

k
(ρ)
2 · k(c)1 = k

(σ)
2 · k(c)1

y
(ρ)
2 · y(c)1 = y

(σ)
2 · y(c)1 ,

which lead to k
(ρ)
2 = k

(σ)
2 and y

(ρ)
2 = y

(σ)
2 . If we continue

this procedure, we can show that k
(ρ)
i = k

(σ)
i and y

(ρ)
i =

y
(σ)
i for any i. Then the ρ and σ curves coincide.

This provides yet another criterion for checking if two
thermomajorization curves coincide.

Theorem V.2. Given a system with Hamiltonian H and
states ρ and σ, the following are equivalent:

(a) Thermomajorization curves of ρ and σ coincide.

(b) Dα(ρ∥τ) = Dα(σ∥τ), for all α ∈ R.

Proof. (a) → (b): Since the thermomajorization curves
of ρ and σ coincide. There exists a thermal opera-
tion E—corresponding Gibbs-preserving stochastic map
is denoted as E—such that E(ρ) = σ and D1(ρ||τ) =
D1(E(ρ)||E(τ)). The data processing inequality holds if
and only if there exists a Gibbs-preserving stochastic map
G such that Gpσ = pρ. With the data processing in-
equality of Rényi α−divergence, for all α ∈ R, we have
[14]:

Dα(pρ∥pτ ) ≥ Dα(Epρ∥Epτ ) = Dα(pσ∥pτ )

Dα(pσ∥pτ ) ≥ Dα(Gpσ∥Gpτ ) = Dα(pρ∥pτ ) .

Then Dα(ρ∥τ) = Dα(σ∥τ), for all α ∈ R.
(b) → (a): Since Dα(ρ∥τ) = Dα(σ∥τ) for all α ∈ R,

we have a catalytic thermal operation that sends ρ to σ.
For α = 1, the entropy production of this transition is
zero. From Theorem V.1, the thermomajorization curves
of ρ and σ coincide.

This shows that in the zero dissipation regime, thermal
operations and catalytic thermal operations are equiva-
lent.

VI. DISCUSSION

In stochastic thermodynamics, it is well-known that
the maximal extractable work from a state transition
ρS → ρ′S is the (negative) nonequilibrium free energy
difference. The maximum is achieved when there is no
dissipation. However, as we showed, zero dissipation with
two-level work reservoirs cannot always be achieved in
single-shot thermodynamics. With two-level work reser-
voirs, we can only contract a thermomajorization curve
by a factor. Two-level work reservoirs are not powerful
enough to achieve zero dissipation for every state transi-
tion.
To remove this restriction, we generalized two-level

work reservoirs to multi-level work reservoirs. The ex-
tractable work is then defined as the difference in the
expectation values of work reservoir energies: W =∑

i ri(ϵ
′
i − ϵi). Naturally, a two-level work reservoir can

be treated as a special case where W = ϵ′ − ϵ. Our work
value definition is similar to that in stochastic thermody-
namics: dw =

∑
i pidϵi, where the work is defined as the

system energy change while keeping the system probabil-
ity distribution unchanged [27].
Here, the probability distribution components of the

work reservoirs do not change overall. For each nonzero
component, there is a corresponding energy level change
in the work reservoir. Our results show that we can
achieve reversibility in single-shot thermodynamics with
multi-level work reservoirs. The price paid, however, is
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that the size of the thermal baths must be infinite. The
dissipation can be written as:

Σ = I(ρ′S ; ρ
′
B) +D1(ρ

′
B ||τB) , (13)

where I(·; ·) is the mutual information [28, 29]. Since
the heat Q transferred to the bath is nonzero, if we only
have thermal baths of finite size, the dissipation is strictly
positive.

References [30–32] develop the general framework of
work extraction in single-shot thermodynamics. Rather
than considering strict energy conservation, work extrac-
tion can be monitored via average energy conservation
[33]. There, work extraction uses a series of transfor-
mations, arriving at the same bound when the number
of transformations diverges. Reference [34] considers a
weighted HamiltonianHW =

∫
dxx|x⟩⟨x| as a work reser-

voir. With translational invariance, it derives several
compact fluctuation theorems. This allows changes in
work reservoir probability distribution, but assumes the
work reservoir energy levels are unbounded. References
[35, 36] consider the work extraction of systems that ex-
change both energy and particles with the environment
with multi-level batteries.

Our development here keeps the work reservoir proba-
bility distribution unchanged. This follows from the en-
tropyless assumption of work reservoirs. Reference [37]
considers a work reservoir with lower-bounded energy
levels. Reference [38] systematically explores quantum
fluctuation theorems. Recently, in single-shot thermody-
namics, there are other setups that extract work equal
to the (negative) free energy difference [39–41]. In this,
correlations build up between catalysts and so stochastic
independence of catalysts allows extracting more work
from given states.

Generalizing to multi-level work reservoirs offers sev-
eral new directions in nanoscale thermodynamics. Since
work is no longer deterministic, it is natural to ask how to
compute higher moments ⟨Wn⟩ (n > 1) and to construct
a fluctuation theorem for the work probability distribu-
tion. With two-level work reservoirs, the characteristic
functions of work extraction and state formation are the
Rényi α = 0 and α = ∞ divergences, respectively. What
are characteristic functions of work extractions and state
formations with multi-level work reservoirs? Our devel-
opment focused on single-copy state transitions. The
structure of the efficient work reservoirs for more compli-
cated state transitions—for example, mapping an input
information tape to output tape [42]—must wait for the
future.

Our development focused only on the net input-output
mapping, without considering details of the stochastic
map in between. The stochastic map connecting an in-
put to an output here is not unique. If we only consider
the work expectation value ⟨W ⟩, the change in expec-
tation value of energy in work reservoirs coincides with
the expectation value of work in the Two Point Measure-
ment (TPM) scheme commonly used in stochastic quan-
tum thermodynamics [43]. For higher moments ⟨Wn⟩

(n > 1) in TPM, however, the values depend on the
stochastic maps. Moreover, one cannot determine higher
moments uniquely with only initial and final work reser-
voir states. We can also study the minimal cost of a
stochastic map not only a specific state transition. Ref-
erences [44, 45] explored the minimal cost of quantum
channels with two-level work reservoirs. We leave the
minimal work cost with multi-level work reservoirs also
to the future.
Along these lines, what if we allow coherence in both

the system and the work reservoir? For example, what
if ρW =

∑
ij ρij |Wi⟩⟨Wj | and ρW =

∑
ij ρij |W ′

i ⟩⟨W ′
j |?

To address state transitions with coherence, α−Rényi di-
vergences are insufficient [46, 47]. Can we achieve the
bounds set by free energy difference when the states are
not block-diagonal in energy eigenstates with those work
reservoirs? Again, we leave this open for the future ef-
forts.

VII. CONCLUSION

We generalized two-level work reservoirs commonly
used in single-shot thermodynamics to multi-level work
reservoirs and systematically analyzed nondissipated
state transitions with the latter. We derived equivalent
conditions for zero-dissipation transitions in single-shot
thermodynamics: thermomajorization curve coincidence
and α−free energies equality. We showed that for any
state transition, we can always construct a work reser-
voir to achieve zero dissipation.
We also considered cases where the initial system

Hamiltonian differs from the final Hamiltonian. The ef-
ficient work reservoir, though, for a specific state tran-
sition is not unique. For work extraction and state for-
mation in this setting, though, we constructed the effi-
cient work reservoir with minimal dimension. We showed
that all thermomajorization curves at inverse tempera-
ture β form a monoid and characterized all possible effi-
cient reservoirs for work extraction and state formation.
These allowed us to analyze nanoscale engines that em-
ploy efficient work reservoirs, demonstrating that they
achieve Carnot efficiency.
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Appendix A: Thermal operations

This work is based on the resource theory approach to
quantum thermodynamics, several results from which we
briefly note here. See Refs. [48–50] for more comprehen-
sive reviews.

The central idea is to define a set of operations—the
free operations—and systematically analyze all possible
state transitions under free operations. Suppose our state
is ρS with Hamiltonian HS . The set of allowed transi-
tions then contains all joint energy-preserving unitary U
operations between the system and a thermal bath with
the Hamiltonian HB at inverse temperature β:

[U,HS +HB ] = 0 ,

followed by the partial trace over the thermal bath:

ρ′S = E(ρS)
= TrB

(
U(ρS ⊗ τB)U

†) ,
where τB = e−βHB/ZB is the Gibbs state of the thermal
bath. The maps E are called thermal operations.
Suppose the eigenvalues of ρS and ρ′S are {pi}ni=1 and

{p′i}ni=1 and the associated energy levels are {ei}ni=1.
Such a transition is equivalent to there being a stochastic
matrix G such that Gp = p′ and Gτ = τ [10].
We can also use a geometric method to determine

whether such a transition exists. A key concept is the
thermomajorization curve [10]. We first rank {pi}ni=1 in
descending order of pie

βei . This is called β−order. The
thermomajorization curve of a state ρS is formed by con-
necting points:

{ k∑
i=1

e−βe↓i ,

k∑
i=1

p↓i

}n

k=1

piecewise linearly where ↓ means that pi and ei have
been β−ordered. If the thermomajorization curve of a
state ρS lies above or on the thermomajorization curve
of another state ρ′S , we say ρS thermomajorizes ρ′S . The
central result is that ρS can be converted to ρ′S through a
thermal operation if and only if ρS thermomajorizes ρ′S .
Next, we briefly review work extraction and the work

of state formation. Consider a work reservoir that is a
two-level system with Hamiltonian HW = W0|W0⟩⟨W0|+
W1|W1⟩⟨W1|. The task is to determine if the maximal
work can be extracted from a state ρS . This is the max-
imal work change W1 −W0 such that ρS ⊗ |W0⟩⟨W0| →
τS ⊗ |W1⟩⟨W1| is allowed by thermal operations. This is
elegantly determined from the thermomajorization curve.

ZSZWae−βW0 e−βW1ZS

1

FIG. 3. Deterministic work extraction: The blue curve is the
thermomajorization curve of ρ ⊗ |0⟩⟨0|. a ≤ ZS is the x-
coordinate of the point where the thermomajorization curve
of ρS reaches 1. The red curve is the thermomajorization
curve of τS ⊗ |1⟩⟨1|. ZS and ZW are partition function of the
system and the work reservoir.

ZSZWZSe
−βW1

1

FIG. 4. Deterministic work of state formation: The blue curve
is the thermomajorization curve of ρS ⊗ |W0⟩⟨W0|. The red
curve is the thermomajorization curve of τS ⊗ |W1⟩⟨W1|.

For the initial curve to thermomajorize the final
curve, we must have ae−βW0 ≤ ZSe

−βW1 . See
Fig. 3. Here, a is related to Rényi divergence via:
D0(ρS∥τS) = − log(a/ZS). We have the bound W1 −
W0 ≤ kBTD0(ρS∥τS). The equal sign holds when two
curves reach the height 1 at the same point.
Similarly, we can consider the reverse question: What

is the minimal work needed to form state ρS? Or, in
other words, what is the minimal W1 − W0 such that
(τS⊗|W1⟩⟨W1|, HS+HW ) → (ρS⊗|W0⟩⟨W0|, HS+HW )
is allowed by thermal operations?

For the initial curve to thermomajorize the final curve,
the slope of the on-ramp part of the initial curve must
not be less than the largest slope in the final curve:

1

ZS
eβW1 ≥ eβW0 max

i

pi
e−βϵi

.

And:

max
i

{ pi
e−βϵi

}
= D∞(ρS∥τS) .
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Giving:

W1 −W0 ≥ kBTD∞(ρS∥τS) .

If there exists an auxiliary system—a catalyst—with
Hamiltonian HC and state ρC such that the transition
(ρS⊗ρC , HS+HC) → (ρ′S⊗ρC , HS+HC) is possible, we
say the transition (ρS , HS) → (ρ′S , HS) can be achieved
by a catalytic thermal operation.

The criterion of the catalytic thermomajorization is
given in terms of Rényi α-divergences. There exists a

transition (ρS , HS)
CTO−→ (ρ′S , HS) if and only if [11]:

Dα(ρS ||τS) ≥ Dα(ρ
′
S ||τS) ,

for all α ∈ R. If we are allowed to invest an infinitesimal
amount of work, only α ≥ 0 is needed.

We can also study work extraction and state formation
in two-level work reservoirs with the help of catalysts.
For work extraction:

(ρS ⊗ |W0⟩⟨W0|, HS +HW ) → (τS ⊗ |W1⟩⟨W1|, HS +HW ),

we must have:

Dα(ρS ||τS) +Dα(|W0⟩⟨W0|||τW )

≥ Dα(τS ||τS) +Dα(|W1⟩⟨W1|||τW ) .

Giving:

W1 −W0 ≤ kBTDα(ρS ||τS) ,

for all α ≥ 0. So, we have:

W1 −W0 ≤ inf
α≥0

kBTDα(ρS ||τS)

= kBTD0(ρS ||τS) .

For state formation:

(τS ⊗ |W1⟩⟨W1|, HS +HW )

→ (ρS ⊗ |W0⟩⟨W0|, HS +HW ) ,

we must have:

Dα(τS ||τS) +Dα(|W1⟩⟨W1|||τW )

≥ Dα(ρS ||τS) +Dα(|W0⟩⟨W0|||τW ) .

Giving:

W1 −W0 ≥ kBTDα(ρS ||τS) ,

for all α ≥ 0. So, we have:

W1 −W0 ≥ sup
α≥0

kBTDα(ρS ||τS)

= kBTD∞(ρS ||τS) .

Appendix B: Constructing λ and λ′

This section constructs the mappings λ and λ′ in Eqs.
(7) and (8). We have p′i = P ′

i − P ′
i−1 and P ′

i , P ′
i−1 ∈ R.

We define sets σ′
i ⊆ {1, 2, · · ·N} such that:∑

i∈σ′
i

ri = P ′
i . (B1)

We have σ′
0 = {}, σ′

n = {1, 2, · · ·N}, and σ′
0 ⊂ σ′

1 ⊂
· · · ⊂ σ′

n. λ : {1, 2, · · · , N} → {1, 2, · · · , n} is defined by
λ(σ′

i \ σ′
i−1) = i for i = {1, 2, · · · , n}. We have:∑

j∈λ−1(i)

rj =
∑

j∈σ′
i\σ′

i−1

rj

=
∑
j∈σ′

i

rj −
∑

j∈σ′
i−1

rj

= P ′
i − P ′

i−1 = pi . (B2)

We define λ′ similarly.

Appendix C: A different way to construct efficient
work reservoirs

This section presents an alternative construction of a
work reservoir for trivial Hamiltonian ES = 0. More
directly, the efficient work reservoir for a transition is
not unique.

Consider a 2n2-dimension work reservoir of which en-
ergy levels are EW = {ϵ11, · · · , ϵnn, ϵ′11, · · · ϵ′nn}. The ini-
tial work reservoir probability distribution is (p ⊗ p′,0)
and the final is (0,p⊗ p′). The energy levels satisfy:

p1p
′
je

βϵ1j = · · · = pnp
′
je

βϵnj = kj for j = 1, · · · , n

pip
′
1e

βϵ′i1 = · · · = pip
′
ne

βϵ′in = k′i for i = 1, · · · , n
k′ip

′
j = pikj for any pair (i, j) .

These conditions ensure that the initial total curve coin-
cides with the final curve. We have:

ϵij = kBT log
kj
pip′j

ϵ′ij = kBT log
k′i
pip′j

.

The amount of work that can be extracted is:

⟨W ⟩ =
∑
ij

pip
′
j(ϵ

′
ij − ϵij)

= kBT
∑
ij

pip
′
j log

k′i
kj

= kBT
∑
ij

pip
′
j log

pi
p′j

= kBT (H(p′)−H(p)).



12

Appendix D: Efficient work reservoir examples

The following analyzes several efficient work reservoirs
for nontrivial Hamiltonians and time-dependent Hamil-
tonians.

We first study a nontrivial Hamiltonian. Consider
a two-level system with the Gibbs distribution τS =
(e−βe1/ZS , e

−βe2/ZS) = ( 23 ,
1
3 ). We begin with the dis-

tribution pS = ( 12 ,
1
2 ) and end with p′

S = ( 13 ,
2
3 ). For

the efficient work reservoir, we set pW = (r,0) and
p′W = (0, r), where r = ( 12 ,

1
3 ,

1
6 ). The work reser-

voir energy levels satisfy exp(−βϵi) =
{

1
4a,

2
3a,

1
12a
}
for

i = 1, 2, 3 and exp(−βϵ′i) =
{

1
3a,

4
9a,

2
9a
}
, for i = 1, 2, 3

and where a is a positive number. The work reservoir’s
energy change is:

⟨W ⟩ =
3∑

i=1

ri(ϵ
′
i − ϵi)

=
1

2
kBT log

3

4
+

1

3
kBT log

3

2
+

1

6
kBT log

3

8
= kBTD1(pS ||τS)− kBTD1(p

′
S ||τS)

= −0.17216 kBT .

The amount of the work is the negative nonequilibrium
free energy difference. Table III plots the thermoma-
jorization curves.

The second example concerns a state transition un-
der a time-dependent Hamiltonian. The initial distri-
bution is pS = ( 12 ,

1
2 ) and the initial Gibbs distribution

is τS = (e−βe1/ZS , e
−βe2/ZS) = ( 13 ,

2
3 ). The final dis-

tribution is p′
S = ( 23 ,

1
3 ) and final Gibbs distribution is

τ ′
S = (e−βe′1/Z ′

S , e
−βe′2/Z ′

S) = ( 12 ,
1
2 ). For the efficient

work reservoir, we set pW = (r,0) and p′
W = (0, r)

where r = ( 12 ,
1
3 ,

1
6 ). The work reservoir energy levels

satisfy exp(−βϵi) =
{

3
8a,

1
2a,

1
8a
}
, for i = 1, 2, 3 and

exp(−βϵ′i) =
{

1
3
ZS

Z′
S
a, 4

9
ZS

Z′
S
a, 2

9
ZS

Z′
S
a
}

for i = 1, 2, 3. The

work reservoir’s energy change is:

⟨W ⟩ =
3∑

i=1

ri(ϵ
′
i − ϵi)

=
1

2
kBT log

9

8

Z ′
S

ZS
+

1

3
kBT log

9

8

Z ′
S

ZS

+
1

6
kBT log

9

16

Z ′
S

ZS

= kBT (D1(pS ||τS)− logZS)

− kBT (D1(p
′
S ||τS)− logZ ′

S)

= (0.0022585 + log
Z ′
S

ZS
)kBT .

The amount of work is the nonequilibrium free energy dif-
ference. Table IV plots the thermomajorization curves.

Appendix E: Thermomajorization curves form a
monoid

Abstract algebra defines amonoid M as a set equipped
with an associative binary operation and an identity el-
ement. This appendix establishes that all possible ther-
momajorization curves at inverse temperature β with the
regular direct product form a monoid Mβ .
For a thermomajorization curve l with n distinct

slopes, we use a set with n tuples to represent it:

l = {(y1, k1), · · · , (yn, kn)} ,

where yi and ki are the y−coordinate change and the
slope of the i−th segment that satisfy k1 > · · · > kn > 0
and y1 + · · · + yn = 1. (We neglect subscripting with
ρ and H.) Note that this definition is not one to one:
For a thermomajorization curve l, there may be many
states corresponding to curve l. This appendix uses the
thermomajorization curve l and its representation l in-
terchangeably.
The binary operation is defined as:

l⊗m :=
{
(yliy

m
j , klik

m
j )
}
i,j

/ ∼ ,

where l = {(yli, kli)}i, m = {(ymi , kmi )}i, and ∼ means
the segments with the same slopes are combined. The
identity element is I = {(1, 1)}.
Verifying that the set of all thermomajorization curves

forms a monoid Mβ is straightforward. In addition, Mβ

is commutative; i.e., l ⊗m = m ⊗ l, for all l,m ∈ Mβ .
Not all elements in Mβ have corresponding inverses.
Only the elements with the form {(a, 1)} have an inverse
{(a−1, 1)}. Thus, Mβ is a monoid and not a group. Al-
though the inverse may not exist, we have the following
theorem.

Theorem E.1 (Cancellative). If x,y,a ∈ Mβ and a ⊗
x = a⊗ y, then x = y.

Proof. The first element in a⊗x is (ya1y
x
1 , k

a
1k

x
1 ) and the

first element in a⊗y is (ya1y
y
1 , k

a
1k

y
1). So, we have y

x
1 = yy1

and kx1 = ky1 . Since we have:

a⊗ x = a⊗ y and

a⊗ (x \ (yx1 , kx1 )) = a⊗ (y \ (yy1 , k
y
1)) ,

we remove the same element on both sides. If we check
the first element on both sides of the new equality, we
have yx2 = yy2 and kx2 = ky2 . Continuing this procedure,
yxi = yyi and kxi = kyi for any i. Then we have x = y.

These elementary facts allow exploring all possible
work reservoirs for nondissipative state formation and
work extraction. For state formation (τ,H) → (ρ,H)
with zero dissipation, we know the minimum segments of
work reservoir’s thermomajorization curve equal to the
segments of ρ’s thermomajorization curve.
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System Work reservoir Total = System ⊗ Work reservoir

Initial

ZS
1
3
ZS

1
2

2a1
3
a

2
3

a
1
9
ZSa

1/3

2/3

1
3
ZSa

5
9
ZSa

5/6

ZSa 2ZSa

Final

ZS
1
3
ZS

2
3

2a1
3
a

1
2

a
1
9
ZSa

1/3

2/3

1
3
ZSa

5
9
ZSa

5/6

ZSa 2ZSa

TABLE III. Thermomajorization curves with elbow point coordinates of ρS , ρW , ρSW , ρ′S , ρ
′
W , and ρ′SW for a state transition

with a nontrivial Hamiltonian.

System Work reservoir Total = System ⊗ Work reservoir

Initial

ZS
1
3
ZS

1
2

a(1 + ZS
Z′

S
)1

2
a

2
3

a
1
6
ZSa

1/3

5/6

2
3
ZSa ZSa

ZSa(1 +
ZS
Z′

S
)

Final

Z′
S

1
2
Z′

S

2
3

a(1 + ZS
ZS′

)
1
3

ZS
ZS′

a

1
2

ZS
ZS′

a 1
6
ZSa

1/3

5/6

2
3
ZSa ZSa

ZSa(1 +
ZS
Z′

S
)

TABLE IV. Thermomajorization curves with elbow point coordinates of ρS , ρW , ρSW , ρ′S , ρ
′
W , and ρ′SW for a state transition

under a time-dependent Hamiltonian.

Suppose the corresponding initial work reservoir’s ther-
momajorization curve is x1. The final work reser-
voir’s thermomajorization curve y1 has only one segment.
Thus, y1 has inverse y−1

1 . Since there is no dissipation:

x1 ⊗ fτ,H = y1 ⊗ fρ,H . (E1)

Suppose there is another work reservoir suited for state
formation whose initial and final thermomajorization
curves are fρW ,HW

and fρ′
W ,HW

. Then:

fρW ,HW
⊗ fτ,H = fρ′

W ,HW
⊗ fρ,H . (E2)

Multiply x1 on both sides of Eq. (E2) and use Theorem
E.1 to remove fρ,H . Then:

x1 ⊗ fρ′
W ,HW

= y1 ⊗ fρW ,HW
.

Since y1 has an inverse:

fρW ,HW
= x1 ⊗ fρ′

W ,HW
⊗ y−1

1

= b⊗ x1 ,

where b = fρ′
W ,HW

⊗ y−1
1 or fρ′

W ,HW
= b⊗ y1.

So, we write any general work reservoirs fρW ,HW
and

fρ′
W ,HW

in terms of x1 and y1:

fρW ,HW
= b⊗ x1

fρ′
W ,HW

= b⊗ y1 . (E3)

This means the initial thermomajorization curve must
be equal to the product of x1 and an arbitrary curve b
and the final thermomajorization curve must equal the
product of y1 and curve b. These are the most general
thermomajorization curves of the work reservoir for state
formation with zero dissipation.

Next, we express this relation in terms of α−Rényi
divergences. Recall the definition of the α−free energy
of state ρ:

Fα(ρ) = Feq + kBTDα(ρ∥τ)

= Feq + kBT
1

α− 1
log

(
n∑

i=1

pαi
qα−1
i

)
,

where {pi}ni=1 and {qi}ni=1 are population vectors of
state ρ and Gibbs distribution and Feq = −kBT logZ
is the equilibrium free energy. The α−free energy
only depends on the thermomajorization curve’s elbow
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points. Suppose ρ’s thermomajorization curve is fρ,H =
{(yi, ki)}ni=1, then:

Dα(ρ∥τ) =
1

α− 1
log

(
n∑

i=1

pαi
(e−βϵi)α−1

Zα−1

)

=
1

α− 1
log

(
n∑

i=1

pip
α−1
i

(e−βϵi)α−1
Zα−1

)

=
1

α− 1
log

(
n∑

i=1

yik
α−1
i Zα−1

)
.

For any state ρ and its thermomajorization curve a, we
use Fα(a) = Fα(ρ) to denote the α−free energy. For
the general work curves fρW ,HW

and fρ′
W ,HW

, from Eqs.

(E1) and (E3), we have:

Fα(x1) + Fα(τ) = Fα(y1) + Fα(ρ)

Fα(ρW ) = Fα(x1) + Fα(b)

Fα(ρ
′
W ) = Fα(y1) + Fα(b) .

To remove Fα(b), we have:

eFα(ρ′
W )

eFα(ρW )
=

eFα(y1)

eFα(x1)
=

eFα(τ)

eFα(ρ)
,

where:

eFα(τ) = eFeq

eFα(ρ) = eFeq · ZS

(∑
i

pim
α−1
i

) 1
α−1

and fρ,H = {(pi,mi)}i. Then:

eFα(ρ′
W )

eFα(ρW )
=

(∑
i pim

α−1
i

) 1
1−α

ZS
.

This relation bridges between the work reservoir and
the system and, thus, is a Jarzynski-like equality in the
nondissipative scenario. Thus, from information about
work we learn system transitions [51]. For a general
nondissipative state transition, we cannot write the gen-
eral work reservoir thermomajorization curves as in Eq.
(E3).

Appendix F: Carnot engines with efficient reservoirs

The following introduces a qubit engine implemented
with efficient work reservoirs that executes a Carnot cy-
cle. Note that when implemented with only two-level
work reservoirs, the engine’s efficiency is strictly vanish-
ing [52].

In our setup, there are two thermal baths at tempera-
tures TC and TH (TC < TH), two work reservoirsWC and
WH—that can be combined into one—and a system used
as an engine. Since our engine and work reservoir run

ZC1

1− pC

Step 1

ZH1

1− pC

Step 2

ZH1

1− pH

Step 3

ZCe−βcϵ

pH

Step 4

FIG. 5. Thermomajorization curves for each stage of the qubit
engine, where pC = e−βCϵ/ZC and pH = e−βHϵ/ZH . ZC and
ZH are partition functions of the engine at temperature TC

and TH , respectively.

without dissipation, engine efficiency is η = 1 − TC/TH .
The qubit engine’s Hamiltonian is HS = ϵ|1⟩⟨1|.

Initially, the engine is in thermal state τC at temper-
ature TC , being in contact with the cold bath. Next, τC
is brought to the hot bath (Step 1) to extract work with
work reservoir WH and ends in thermal state τH at tem-
perature TH (Step 2). The work extracted from the hot
thermal bath is WH = kBTHD(τC ||τH). Then, the sys-
tem returns to the cold bath (Step 3) and extracts work
with reservoir WC and ends in thermal state τC at tem-
perature TC (Step 4). The work that can be extracted
from the cold thermal bath is WC = kBTCD(τH ||τC).
The cycle completes when the engine returns to the ther-
mal state at TC .

Now, let’s construct the corresponding work reservoir
for this Carnot cycle. The work reservoir’s state only
changes during steps 2 and step 4. Step 2 is a work
extraction process. We use the minimal work reservoir
W1 to extract work without dissipation. In step 4, we
also use the minimal work reservoir W2 to extract work
without dissipation. Figure 5 shows the system’s thermo-
majorization curves for each step. And, Table VI shows
the work reservoirs WC and WH used in the Carnot cy-
cle. We can combine WC and WH into a single work
reservoir. (See Table V for details.) Since there is no
dissipation in steps 2 and step 4, the heat transferred to
the hot bath QH during step 2 and to the cold bath QC

during step 4 satisfy:

βHQH + S(τH)− S(τC) = 0

βCQC + S(τC)− S(τH) = 0 .

Then we have βCQC + βHQH = 0.

From energy conservation, the work done in one cycle
is given by W = −QH −QC . And, the efficiency of this
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ρW1 ρW2 ρW3

pCpH − 1
βH

log(c1pC)− 1
βC

log(c2pH) − 1
βH

log(c1pH)− 1
βC

log(c2pH) − 1
βH

log(c1pH)− 1
βC

log(c2pC)

pC(1− pH) − 1
βH

log(c1pC)− 1
βC

log(c2(1− pH)) − 1
βH

log(c1pH)− 1
βC

log(c2(1− pH)) − 1
βH

log(c1pH)− 1
βC

log(c2(1− pC))

(1− pC)pH − 1
βH

log(c1(1− pC))− 1
βC

log(c2pH) − 1
βH

log(c1(1− pH))− 1
βC

log(c2pH) − 1
βH

log(c1(1− pH))− 1
βC

log(c2pC)

(1− pC)(1− pH) − 1
βH

log(c1(1− pC))− 1
βC

log(c2(1− pH)) − 1
βH

log(c1(1− pH))− 1
βC

log(c2(1− pH)) − 1
βH

log(c1(1− pH))− 1
βC

log(c2(1− pC))

TABLE V. Qubit engine efficient work reservoir energy levels: Here, we combine WC and WH into a single work reservoir.
The work reservoir begins with ρW1. In step 2, the work reservoir changes from ρW1 to ρW2. And, in step 4, the work
reservoir changes from ρW2 to ρW3. The nonzero components of probability distributions are pCpH , pC(1− pH), (1− pC)pH ,
and (1− pC)(1− pH). We list the corresponding energy levels in each work reservoir state, where c1 and c2 are two arbitrary
positive constants.

WH WC

Initial

c1

1− pC

c1

c2

1− pH

c1

Final

c1

(1− pH)c1

1− pC

c2

pCc2

1− pH

TABLE VI. Qubit engine thermomajorization curves of ini-
tial and final WH and WC . c1 and c2 are arbitrary positive
numbers. Here, we ignore flat portions in thermomajorization
curves.

cycle is given by:

η =
W

−QH

=
−QH −QC

−QH

= 1− TC

TH
.

For any engine operating with efficient work reservoirs,
we always have:

βCQC + βHQH = 0 .

As a result, the efficiency of an engine with efficient work
reservoirs is always the Carnot efficiency 1−TC/TH . Sim-
ilar results are considered in Ref. [53].
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[32] Á. M. Alhambra, S. Wehner, M. M. Wilde, and M. P.
Woods. Work and reversibility in quantum thermody-
namics. Phys. Rev. A, 97(6):062114, 2018.

[33] P. Skrzypczyk, A. J. Short, and S. Popescu. Work extrac-
tion and thermodynamics for individual quantum sys-
tems. Nat. Commun., 5(1):4185, 2014.
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