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The predictive information required for proper trajectory sampling of a stochastic process can be
more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows
quantum information processing to drastically reduce the memory necessary to simulate complex
classical stochastic processes. It also points to a new perspective on the intrinsic complexity that
nature must employ in generating the processes we observe. The quantum advantage increases with
codeword length—the length of process sequences used in constructing the quantum communication
scheme. In analogy with the classical complexity measure, statistical complexity, we use this
reduced communication cost as a measure of state-complexity in the quantum representation.
Previously difficult to compute, the quantum advantage is expressed here in closed form using
spectral decomposition. This allows for efficient numerical computation of the quantum-reduced
state-complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-
codeword reduction in state-complexity is controlled by the classical process’ cryptic order. And, it
allows asymptotic analysis of infinite-cryptic order processes.
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I. INTRODUCTION

To efficiently synchronize predictions of a given process
over a classical communication channel two observers,
call them Alice and Bob, must know the process’ internal
structure. In particular, what is the minimal amount
of information that Alice must communicate to Bob so
that he can make the same probabilistic prediction as
Alice? The answer is given by the process’ internal state
information or statistical complexity Cµ [1].
A closely related question immediately suggests itself: is
it more efficient to synchronize via a quantum commu-
nication channel that transmits qubits instead of bits?
Extending early answers [2, 3], a sequence of construc-
tions (q-machines) was recently introduced that offers
substantial message-size reduction below Cµ [4]. In these
constructions, each codeword length L yields a quantum
communication cost Cq(L) ≤ Cµ that decreases with
increasing L. Moreover, the maximum compression com-
plexity, Cq(∞) = Cq(k), is achieved at a codeword length
called the cryptic order k [5, 6]—a recently discovered
classical, topological property that is a cousin to the
Markov order familiar from stochastic process theory.
Reference [4] pointed out that the new efficiency in syn-
chronization comes with a tradeoff. Bob can only make
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predictions that are more specialized than Alice’s: those
consistent with Alice’s but also consistent with a proba-
bilistically generated extension of the codewords Alice uses
to construct the qubits she sends. These constraints lead
to a seemingly odd way for Alice and Bob to synchronize,
but there is no way around this. To generate a process
the future possibilities must be synchronized with the
past in just such a way that information shared between
past and future is channeled through the present without
violating the process’ time order. One consequence is that
the communication cost Cq(L) demands a more refined
interpretation: it is the average state information that
must be remembered to generate the process. Another
is that Cq(L) decreases with L since codewords merge,
yielding increasingly coincident predictions. The conclu-
sion is that a process’ correlational structure controls the
degree of quantum compression.
There are both theoretical and practical implications. On
the one hand, the theory of minimized quantum-state
complexity greatly broadens our notions of the structural
complexity inherent in processes; for example, allowing us
to quantitatively compare classical- and quantum-state
memories [7]. In an applied setting, on the other, it
identifies significantly reduced memory requirements for
simulating complex classical stochastic processes via quan-
tum processing.
Reduced memory requirements for stochastic simulation
were recognized previously for Markov order-1 processes,
whose quantum advantage saturates at Cq(1) [2]. For
example, it was shown that the classical nearest-neighbor
one-dimensional Ising model has a less complex quantum
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representation [8]. Recently, the quantum advantage of re-
duced state-complexity was experimentally demonstrated
for a simple Markovian dynamic [9].
The increasing quantum advantage discovered in Ref. [4],
as encapsulated by Cq(L), was challenging to calculate,
analytically and numerically. This was unfortunate since
for most complex processes, the optimal state-complexity
reduction is only achieved asymptotically as codeword
length L→∞. Moreover, without a comprehensive the-
ory, few conclusions could be rigorously drawn about
Cq(L)’s convergence and limits. The following removes
the roadblocks. It delivers closed-form expressions, yield-
ing both numerical efficiency and analytic insight.
Our first contribution is the introduction of the quantum
pairwise-merger machine (QPMM). The QPMM contains,
in a compact form, all of the information required for
efficient calculation of the signal-state overlaps used in
the q-machine encoding. In particular, we derive closed-
form expressions for overlaps in terms of the QPMM’s
spectrum and projection operators.
This leads to our second contribution: a decomposition
of the quantum state-complexity Cq(L) into two qualita-
tively distinct parts. The first part is present for codeword
lengths only up to a finite-horizon equal to the process’
cryptic order. This provides a nearly complete under-
standing of Cq(L) for finite-cryptic-order processes. The
second part asymptotically decays with an infinite-horizon
and is present only in infinite-cryptic order processes.
Moreover, we show that Cq(L) oscillates under an ex-
ponentially decaying envelop and explain the relevant
rates and frequencies in terms of the QPMM’s spectral
decomposition.
Our third contribution comes in analyzing how comput-
ing Cq(L) requires efficiently manipulating quantum-state
overlaps. The technique for this presented in Ref. [4] re-
quired constructing a new density matrix that respects
overlaps. However, it is known that overlaps may be
monitored much more directly via a Gram matrix. Here,
we adapt this to improve calculational efficiency and the-
oretical simplicity. And, we improve matters further by
introducing a new form of the Gram matrix.
Our final contribution follows from casting Cq(L)’s calcu-
lation in its spectral form. This has the distinct advantage
that the limit of the overlaps, and thus Cq(∞), can be
calculated analytically. Illustrative examples are placed
throughout to ground the development.

II. TWO REPRESENTATIONS OF A PROCESS

The objects of interest are discrete-valued, stationary,
stochastic processes generated by finite hidden Markov

models (HMMs). In particular, we consider edge-output
HMMs (i.e., Mealy HMMs) where the observed symbol
is generated on transitions between states. Rather than
focus on generating models, more prosaically we can also
think of a process consisting of a bi-infinite sequence
X−∞:∞ = . . . X−2X−1X0X1X2 . . . of random variables
Xt that take on one or another value in a discrete alpha-
bet: xt ∈ A. A process’ language is that set of words
w = x0 . . . xL−1 of any length L generated with positive
probability. We consider two representations of a given
process, first a canonical classical representation and then
a newer quantum representation.

A. ε-Machine: Optimal, Minimal Predictor

While a given process generally has many alternative
HMM representations, there exists a unique, canonical
form—the process’ ε-machine [1], which is a process’ mini-
mal optimal predictor. An equivalence relation applied to
X−∞:∞ defines the process’ causal states, which encapsu-
late all that is needed from individual pasts to predict the
future. Said another way, causal states are the minimal
sufficient statistic of the past X−∞:0 for predicting the
future X0:∞. (We use indexing Xa:b that is left inclusive,
but right exclusive.)

Definition 1. A process’ ε-machine M is the tuple{
S, A, {T (x)}x∈A, π

}
, where S is the set {σ0, σ1, . . .}

of the process’ causal states, A is the set of output sym-
bols x, the set of matrices

{
T (x) : T (x)

i,j = Pr(σj , x|σi)
}
x∈A

are the labeled transition matrices, and π is the stationary
distribution over states.

The probability that a word w = x0, x1, . . . , xL−1 is gen-
erated by an ε-machine is given in terms of the labeled
transition matrices and the initial state distribution:

Pr(w) = π

L−1∏
i=0

T (xi)1 ,

where 1 = [1, . . . , 1]>. When these probabilities are con-
structed to agree with those of the words in a given process
language, the ε-machine is said to be presentation of the
process.

The temporal evolution of internal state probability µ =(
µ0, . . . , µ|S|−1

)
, with µi = Pr(σi), is given by:

µ(t+ 1) = µ(t)T ,

where the transition matrix T is the sum over all output
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symbols:

T ≡
∑
x∈A

T (x) .

Transition probabilities are normalized. That is, the
transition matrix T is row-stochastic:

|S|∑
j=1

Ti,j =
|S|∑
j=1

∑
x∈A

Pr(σj , x|σi) = 1 .

Its component matrices T (x)
ij are said to be substochas-

tic. Under suitable conditions on the transition matrix,
limt→∞ µ(t) = π.
Unifilarity, a property derived from the ε-machine equiv-
alence relation [1], means that for each state σi, each
symbol x may lead to at most one successor state σj
[10]. In terms of the labeled transition matrices, for each
row i and each symbol x the row T

(x)
ij has at most one

nonzero entry. We also will have occasion to speak of a
counifilar HMM, which is the analogous requirement of
unique labeling on transitions coming into each state.
One of the most important informational properties of
a process is its statistical complexity Cµ [1]. Used in
a variety of contexts, it quantifies the size of a process’
minimal description.

Definition 2. A process’ statistical complexity Cµ is the
Shannon entropy of the stationary distribution over its
ε-machine’s causal states:

Cµ = H [π]

= −
|S|∑
i=1

πi log πi .

The statistical complexity has several operational mean-
ings. For example, it is the average amount of information
one gains upon learning a process’ current causal state. It
is also the minimal amount of information about the past
that must be stored to predict the future as well as could
be predicted if the entire past were stored. Most pertinent
to our purposes, though, it also quantifies the communica-
tion cost of synchronizing two predicting agents through
a classical channel [4].

B. q-Machine

The q-machine is a quantum representation of a classical
stochastic process. Introduced in Ref. [4], it offers the
largest reduction in state-complexity known so far among
quantum models capable of generating classical processes.

A process’ q-machine is constructed by first selecting a
codeword length L. The q-machine (at L) consists of a
set {|ηi(L)〉}|S|i=1 of pure quantum signal states that are
in one-to-one correspondence with the classical causal
states σi ∈ S. Each signal state |ηi(L)〉 encodes the set
of length-L words {w : Pr(w|σi) > 0} that may follow
causal state σi, as well as the corresponding conditional
probability:

|ηi(L)〉 ≡
∑
w∈AL

∑
σj∈S

√
Pr(w, σj |σi) |w〉 |σj〉 , (1)

where
{
|w〉
}
w∈AL denotes an orthonormal basis in the

“word” Hilbert space with one dimension for each possible
word w of length L. Similarly,

{
|σj〉

}|S|
j=1 denotes an

orthonormal basis in the “state” Hilbert space with one
dimension for each classical causal state. The ensemble
of length-L quantum signal states is then described by
the density matrix:

ρ(L) =
|S|∑
i=1

πi |ηi(L)〉 〈ηi(L)| . (2)

The ensemble’s von Neumann entropy is defined in terms
of its density matrix: S(ρ) = −tr[ρ log(ρ)], where tr[·]
is the trace of its argument. Paralleling the classical
statistical complexity, the quantity:

Cq(L) ≡ S(ρ(L))
= −tr

[
ρ(L) log(ρ(L))

]
, (3)

has the analogous operational meaning of the communi-
cation cost to send signal states over a quantum channel.
Von Neumann entropy decreases with increasing signal-
state overlap. It is generically smaller that the classical
cost [4]: Cq(L) ≤ Cµ. In fact, Cµ = Cq if and only if
the process’ ε-machine is counifilar—there are no states
with (at least) two similarly labeled incoming edges [2].
Notably, as we increase state number, processes with
counifilar ε-machines represent a vanishing proportion of
all possible processes [11]. The consequence is that almost
all classical processes can be more compactly represented
using quantum mechanics. This presents an opportunity
to use quantum encoding to more efficiently represent
processes.

Quantifying a process’ quantum-reduced state-complexity
via the von Neumann entropy of Eq. (3) is rooted in the
existence of optimal quantum compression algorithms,
such as Schumacher compression [12]. The advantage of
smaller state-complexity with larger L, though, is not
a consequence of the well developed theory of quantum
compression. Rather it derives from carefully harness-
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ing a model’s coincident predictions by constructing a
process’ nonorthogonal quantum signal states. This is a
new kind of quantum information processing. Notably, it
was recently experimentally verified [9], though only for
L = 1. Upon both technological and theoretical advance-
ments, the significant reduction in memory requirements
quantified by Cq(L) should enable efficient simulation of
important complex systems whose dynamics were previ-
ously prohibitively memory intensive.
Calculating a process’ quantum cost function Cq(L) is
challenging, however. The following shows how to cir-
cumvent the difficulties. Beyond practical calculational
concerns, the theory leads to a deeper appreciation of
quantum structural complexity.

III. QUANTUM OVERLAPS

Reference [4] showed that the reduction Cµ − Cq(L) in
state-complexity is determined by quantum overlaps be-
tween signal states in the q-machine. Accordingly, cal-
culation of these overlaps is a primary task. Intuitively,
nonorthogonal signal states correspond to causal states
that yield “similar” predictions, in a sense to be explained.
More rigorously, the overlap between nonorthogonal signal
states is determined by words whose causal-state paths
merge.
To illustrate, we compute several overlaps for the (R–k)-
Golden Mean Process, showing how they depend on L.
(See Fig. 1 for its ε-machine state-transition diagram.)
This process was designed to have a tuneable Markov
order R and cryptic order k; here, we choose R = 4 and
k = 3. (Refer to Ref. [11] for more on this process and a
detailed discussion of Markov and cryptic orders.)
At length L = 0, each signal state is simply the basis state
corresponding to its causal state: |ηi(0)〉 = |σi〉. Since
the ε-machine is minimal, there are no overlaps in the
state vectors.
At length L = 1 codewords, we find the first nontrivial
overlap. This corresponds to paths A 1−→ A and G 1−→ A

merging at state A and we have:

|ηA(1)〉 = √p |1A〉+
√

1− p |0B〉 and
|ηG(1)〉 = |1A〉 .

This yields the overlap:

〈ηA(1)|ηG(1)〉 = √p .

Going on to length L = 2 codewords, more overlaps arise
from mergings of more state paths. The three quantum

A

G

F

E D

C

B

1:p

1:1 0:1− p

1:1

1:1

0:1

0:1

0:1

R = 4

k = 3

FIG. 1. ε-Machine for the (4–3)-Golden Mean Process: The
cycle’s red segment indicates the “Markov” portion and the
green, the “cryptic” portion. The time scales R and k are
tuned by changing the lengths of these two parts. Edges
labeled x|p denote taking the state-to-state transition with
probability p while emitting symbol x ∈ A.

signal states:

|ηA(2)〉 = p |11A〉+
√
p(1− p) |10B〉+

√
(1− p) |00C〉 ,

|ηF (2)〉 = |11A〉 , and
|ηG(2)〉 = √p |11A〉+

√
1− p |10B〉 ,

interact to yield the overlaps:

〈ηA(2)|ηF (2)〉 = p ,

〈ηF (2)|ηG(2)〉 = √p , and
〈ηA(2)|ηG(2)〉 = p

√
p+ (1− p)√p = √p .

The overlaps between (A,F ) and (F,G) are new. The
(A,G) overlap has the same value as that for (F,G), how-
ever its calculation at L = 2 involved two terms instead
of one. This is because no new merger has occurred; the
L = 1 merger, affected by symbol 1, was simply prop-
agated forward along two different state paths having
prefix 1. There are two redundant paths: A 10−→ B over-
laps G 10−→ B and A

11−→ A overlaps G 11−→ A. A naive
calculation of overlaps must contend with this type of
redundancy.
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IV. QUANTUM PAIRWISE-MERGER
MACHINE

To calculate signal-state overlaps, we introduce the quan-
tum pairwise-merger machine, a transient graph struc-
ture that efficiently encapsulates the organization of state
paths. As we saw in the example, calculation of overlaps
amounts to tracking state-path mergers. It is important
that we do this in a systematic manner to avoid redun-
dancies. The new machine does just this.
We begin by first constructing the pairwise-merger ma-
chine (PMM), previously introduced to compute overlaps
[4]. There, probabilities were computed for each word
found by scanning through the PMM. This method sig-
nificantly reduced the number of words from the typically
exponentially large number in a process’ language and also
gave a stopping criterion for PMMs with cycles. This was
a vast improvement over naive constructions of the signal-
state ensemble (just illustrated) and over von Neumann
entropy calculation via diagonalization of an ever-growing
Hilbert space.
Appropriately weighting PMM transitions yields the quan-
tum PMM (QPMM), which then not only captures which
states merge given which words, but also the contribution
each merger makes to a quantum overlap. The QPMM
has one obvious advantage over the PMM. The particular
word that produces an overlap is ultimately unimpor-
tant; only the amount of overlap generated is important.
Therefore, summing over symbols in the QPMM to obtain
its internal state transitions removes this combinatorial
factor. There are additional significant advantages to this
matrix-based approach. Appreciating this requires more
development.
To build the QPMM from a given process’ ε-machine:

1. Construct the set of (unordered) pairs of (distinct)
ε-machine states: (σi, σj). We call these “pair-
states”. To this set, add a special state called SINK
(short for “sink of synchronization”) which is the
terminal state.

2. For each pair-state (σi, σj) and each symbol x ∈ A,
there are three cases to address:

(a) If at least one of the two ε-machine states σi
or σj has no outgoing transition on symbol x,
then do nothing.

(b) If both ε-machine states σi and σj have a tran-
sition on symbol x to the same state σm, then
connect pair-state (σi, σj) to SINK with an
edge labeled x. This represents a merger.

(c) If both ε-machine states σi and σj have a tran-
sition on symbol x to two distinct ε-machine

AE EFEG

FGAF

AG

SINK

1:
√
p 1:1 1:1

1:11:
√
p

1:
√
p

k = 3

FIG. 2. QPMM for the (4–3)-Golden Mean Process. Its depth
is related to the cryptic order k.

states σm and σn where m 6= n, then connect
pair-state (σi, σj) to pair-state (σm, σn) with
an edge labeled x. (There are no further re-
strictions on m and n.)

3. Remove all edges that are not part of a path that
leads to SINK.

4. Remove all pair-states that do not have a path to
SINK.

This is the PMM. Now, add information about transition
probabilities to this topological structure to obtain the
QPMM:

5. For each pair-state (σi, σj) in the PMM, add to
each outgoing edge the weight

√
Pr(x|σi) Pr(x|σj),

where x is the symbol associated with that edge.
Note that two states in QPMM may be connected
with multiple edges (for different symbols).

Returning to our example, Fig. 2 gives the QPMM for
the (4–3)-Golden Mean Process. Using it, we can easily
determine the length at which a contribution is made to a
given overlap. We consider codeword lengths L = 1, 2, . . .
by walking up the QPMM from SINK. For example, pair
(A,G) receives a contribution of √p at L = 1. Further-
more, (A,G) receives no additional contributions at larger
L. Pairs (A,F ) and (F,G), though, receive contributions
p = √p×√p and √p = √p× 1 at L = 2, respectively.
The QPMM is not a HMM, since the edge weights do not
yield a stochastic matrix. However, like a HMM, we can
consider its labeled “transition” matrices {ζ(x)}, x ∈ A.
Just as for their classical ε-machine counterparts, we index
these matrices such that ζ(x)

u,v indicates the edge going from
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pair-state u to pair-state v. Since the overlap contribution,
and not the inducing word, is of interest, the important
object is simply the resulting state-to-state substochastic
matrix ζ =

∑
x∈A ζ

(x). The matrix ζ is the heart of our
closed-form expressions for quantum coding costs, which
follow shortly. As we noted above, it is this step that
greatly reduces the combinatorial growth of paths that
would otherwise make the calculations unwieldy.
To be explicit, our (4–3)-Golden Mean Process has:

ζ =



AE EG EF AF FG AG SINK
AE 0 0 0 √

p 0 0 0
EG 0 0 0 1 0 0 0
EF 0 0 0 0 1 0 0
AF 0 0 0 0 0 √

p 0
FG 0 0 0 0 0 1 0
AG 0 0 0 0 0 0 √

p

SINK 0 0 0 0 0 0 0


.

V. OVERLAPS FROM THE QPMM

As we saw in the example, overlaps accumulate contri-
butions as “probability amplitude” is pushed through
the QPMM down to the SINK. Each successive overlap
augmentation can thus be expressed in terms of the next
iterate of ζ:

〈ηi(L)|ηj(L)〉 − 〈ηi(L− 1)|ηj(L− 1)〉
= 〈(σi, σj)|ζL|SINK〉 .

The general expression for quantum overlaps follows im-
mediately:

〈ηi(L)|ηj(L)〉 = 〈(σi, σj)|
L∑
n=0

ζn|SINK〉 , (4)

which is true for all processes by design of the QPMM.
This form makes clear the cumulative nature of quantum
overlaps and the fact that overlap contributions are not
labeled.
Note that there are two trivial overlap types. Self-overlaps
are always 1; this follows from Eq. (4) since 〈(σi, σi)| =
〈SINK|. Overlaps with no corresponding pair-state in the
QPMM are defined to be zero for all L.
Now, we show that there are two behaviors that con-
tribute to overlaps: a finite-horizon component and an
infinite-horizon component. Some processes have only
one type or the other, while many have both. We start
with the familiar (R–k)-GM, which has only finite-horizon
contributions.

A. Finite Horizon: (R–k)-Golden Mean Process

Overlap matrices are Hermitian, positive-semidefinite ma-
trices and can therefore be represented as the product
ALA

†
L. Let’s use the general expression Eq. (4) to com-

pute the matrix elements (ALA†L)i,j = 〈ηi(L)|ηj(L)〉 for
lengths L = 1, 2, 3, 4 for the (R–k)-Golden Mean Process.
We highlight in blue and bold the matrix elements that
have changed from the previous length. All overlaps begin
with the identity matrix, here I7 as we have seven states
in the ε-machine (Fig. 1). Then, at L = 1 we have one
overlap. The overlap matrix, with elements 〈ηi(1)|ηj(1)〉,
is:

A1A
†
1 =



A B C D E F G

A 1 0 0 0 0 0 √p
B 0 1 0 0 0 0 0
C 0 0 1 0 0 0 0
D 0 0 0 1 0 0 0
E 0 0 0 0 1 0 0
F 0 0 0 0 0 1 0
G

√p 0 0 0 0 0 1


.

Next, for L = 2 we find two new overlaps. The overlap
matrix, with elements 〈ηi(2)|ηj(2)〉, is:

A2A
†
2 =



A B C D E F G

A 1 0 0 0 0 p √
p

B 0 1 0 0 0 0 0
C 0 0 1 0 0 0 0
D 0 0 0 1 0 0 0
E 0 0 0 0 1 0 0
F p 0 0 0 0 1 √p
G

√
p 0 0 0 0 √p 1


.

For L = 3, there are three new overlaps. The overlap
matrix, with elements 〈ηi(3)|ηj(3)〉, is:

A3A
†
3 =



A B C D E F G

A 1 0 0 0 √p3 p
√
p

B 0 1 0 0 0 0 0
C 0 0 1 0 0 0 0
D 0 0 0 1 0 0 0
E

√p3 0 0 0 1 √p p
F p 0 0 0 √p 1 √

p

G
√
p 0 0 0 p √

p 1


.
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Finally, for L = 4, we find the same matrix as L = 3:
〈ηi(4)|ηj(4)〉 = 〈ηi(3)|ηj(3)〉 for all i and j. And, in
fact, this is true for all L ≥ 3. Therefore, all overlap
information has been uncovered at codeword length L = 3.
Looking at the QPMM in Fig. 2, we recognize that the
saturation of the overlap matrix corresponds to the fi-
nite depth d of the directed graph—the longest state-path
through the QPMM that ends in the SINK state. Equiv-
alently, the depth corresponds to the nilpotency of ζ:

d = min
{
n ∈ N : ζn = 0

}
. (5)

Note that the (4− 3)-Golden Mean Process QPMM is a
tree of depth 4.
Whenever the QPMM is a tree or, more generally, a
directed-acyclic graph (DAG), the overlaps will similarly
have a finite-length horizon equal to the depth d. The
nilpotency of ζ for finite-depth DAGs allows for a trun-
cated form of the general overlap expression Eq. (4):

〈ηi(L)|ηj(L)〉 = 〈(σi, σj)|
min(L,d−1)∑

n=0
ζn |SINK〉 . (6)

This form is clearly advantageous for any process whose
QPMM is a finite DAG. Naturally then, we are led to
ask: What property of a process leads to a finite DAG?
To answer this question, we reconsider how overlap is
accumulated via the merging of state-paths.
Paths through the QPMM represent causal-state-path
mergers. To make this more precise, we introduce the
concept of an L-merge, which is most intuitively under-
stood through Fig. 3:
Definition 3. An L-merge consists of a length-L word
w and two state paths each of length L+ 1 that each allow
the word w ending in the same state F . We denote the
word w = (x0, . . . , xL−1) and state paths (a0, . . . , aL−1, F )
and (b0, . . . , bL−1, F ) where states ai 6= bi, for all i ∈
{0, . . . , L − 1} and, trivially, F = F , the final state in
which the paths end.

Immediately, we see that every labeled path of length-L
through the QPMM that ends in SINK is precisely an
L-merge.
Such causal-state-path merging not only contributes to
quantum overlap, but also contributes to a process’ cryp-
ticity. Let SL denote the random variable for the partic-
ular causal state σ ∈ S at time L. Then the crypticity
of a process—the average uncertainty about the present
causal state S0 given perfect observation of the entire
infinite future x0:∞, but not knowing the history of ob-
servations prior to the present moment—can be written
as H [S0|X0:∞], which is accumulated at all lengths up to
the cryptic order [13].

a0 a1 a2 aL−2 aL−1

b0 b1 b2 bL−2 bL−1

x0 x1 xL−2

x0 x1 xL−2

F

xL−1

xL−1

FIG. 3. L-merge: Two causal-state paths—(a0, . . . , aL−1, F )
and (b0, . . . , bL−1, F ) where states ai 6= bi, for all i ∈
{0, . . . , L − 1}—generate the same word w = x0x1 . . . xL−1
and merge only on the last output symbol xL−1 into a com-
mon final state F .

Definition 4. A process’ cryptic order k is the minimum
length L for which H [SL|X0:∞] = 0.

That is, given knowledge of the entire infinite future of
observations, the cryptic order quantifies how far back
into the past one must remember to always know the
present causal state.
By way of comparison, a process’ Markov order is:

R = min{L : H [SL|X0:L] = 0} .

That is, given knowledge (e.g., the ε-machine) of which
process is being observed but without knowing future
observations, the Markov order quantifies how far back
into the past one must remember to always know the
present causal state. A more familiar length-scale charac-
terizing historical dependence, R depends on both path
merging and path termination due to disallowed transi-
tions. The cryptic order, in contrast, effectively ignores
the termination events and is therefore upper-bounded
by the Markov order: k ≤ R. This bound is also easy
to see given the extra conditional variable XL:∞ in the
definition of crypticity (X0:∞ = X0:LXL:∞) [5, 6].
The following lemma states a helpful relation between
cryptic order and L-merges.

Lemma 1. Given an ε-machine with cryptic order k: for
L ≤ k, there exists an L-merge; for L > k, there exists
no L-merge.

Proof. See App. A.

Each L-merge corresponds with a real, positive contri-
bution to some quantum overlap. By Lemma 1, for a
cryptic-order k process there is at least one L-merge at
each length L ∈ {1, . . . , k} and none beyond k. Therefore,
at least one overlap receives a real, positive contribution at
each length up until k, where there are no further contri-
butions. This leads to our result for overlap accumulation
and saturation in terms of the cryptic order.

Theorem 1. Given a process with cryptic order k, for
each L ∈ {0, . . . , k}, each quantum overlap is a nonde-
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creasing function of L:

〈ηi(L+ 1)|ηj(L+ 1)〉 ≥ 〈ηi(L)|ηj(L)〉 .

Furthermore, for each L ∈ {1, . . . , k}, there exists at least
one overlap that is increased as a result of a corresponding
L-merge. For all remaining L ≥ k, each overlap takes the
constant value 〈ηi(k)|ηj(k)〉.

Proof. See App. A.
Evidently, the cryptic order is an important length scale
not only for classical processes, but also when building
efficient quantum encoders.
As an important corollary, this theorem also establishes
the relation between a process’ cryptic order and the
depth of its QPMM:

d = k + 1 . (7)

Thus, we have discovered that the process property corre-
sponding to a finite DAG QPMM is finite cryptic order.
Moreover, the cryptic order corresponds to a topologi-
cal feature of the QPMM, the depth d, responsible for
saturation of the overlaps.
This leads to rephrasing the truncated form of the overlaps
sum in Eq. (4):

〈ηi(L)|ηj(L)〉 = 〈(σi, σj)|
min(L,k)∑
n=0

ζn |SINK〉 . (8)

This form is advantageous for any process that is finite
cryptic order. This, of course, includes all finite Markov-
order processes—processes used quite commonly in a
variety of disciplines.
Since the quantum-reduced state-complexity Cq(L) is a
function of only π and quantum overlaps, the preceding
development also gives a direct lesson about the Cq(L)
saturation.

Corollary 1. Cq(L) has constant value Cq(k) for L ≥ k.

Proof. The entropy of an ensemble of pure signal states
{pi, |ψi〉} is a function of only probabilities pi and overlaps
{〈ψi|ψj〉}. The result then follows directly from Thm. 1.
Having established connections among depth, cryptic
order, and saturation, we seem to be done analyzing
quantum overlap—at least for the finite-cryptic case. To
prepare for going beyond finite horizons, however, we
should reflect on the spectral origin of ζ’s nilpotency.
A nilpotent matrix, such as ζ in the finite-cryptic case,
has only the eigenvalue zero. This can perhaps be most
easily seen if the pair-states are ordered according to their
distance from SINK, so that ζ is triangular with only
zeros along the diagonal.

Notably, for finite DAGs with depth d > 1, the standard
eigenvalue–eigenvector decomposition is insufficient to
form a complete basis—the corresponding ζ is necessarily
nondiagonalizable due to the geometric multiplicity of
the zero eigenvalue being less than its algebraic multiplic-
ity. Generalized eigenvectors must be invoked to form a
complete basis [14]. Intuitively, this type of nondiagonaliz-
ability can be understood as the intrinsic interdependence
among pair-states in propagating probability amplitude
through a branch of the DAG. When ζ is rendered into
Jordan block form via a similarity transformation, the
size of the largest Jordan block associated with the zero
eigenvalue is called the index ν0 of the zero eigenvalue. It
turns out to be equal to the depth for finite DAGs.
Summarizing, the finite-horizon case is characterized by
several related features: (i) the QPMM is a DAG (of
finite depth), (ii) the depth of the QPMM is one greater
than the cryptic order, (iii) the matrix ζ has only the
eigenvalue zero, and (iv) the depth is equal to the index
of this zero-eigenvalue, meaning that ζ has at least k gen-
eralized eigenvectors. More generally, ζ can have nonzero
eigenvalues and this corresponds to richer structure that
we explore next.

B. Infinite Horizon: Lollipop Process

Now we ask, what happens when the QPMM is not a
directed acyclic graph? That is, what happens when it
contains cycles?
It is clear that the depth d diverges, implying that the
cryptic order is infinite. Therefore, the sum in Eq. (4)
may no longer be truncated. We also know that infinite-
cryptic processes become ubiquitous as ε-machine state
size increases [11]. Have we lost our calculational efficien-
cies? No, in fact, there are greater advantages yet to be
gained.
We first observe that a QPMM’s ζ breaks into two pieces.
One has a finite horizon reminiscent of the finite cryptic
order just analyzed, and the other has an infinite horizon,
but is, as we now show, analytically quite tractable.
In general, a linear operator A may be decomposed using
the Dunford decomposition [15] (also known as the Jordan–
Chevalley decomposition) into:

A = D +N , (9)

where D is diagonalizable, N is nilpotent, and D and N
commute. In the current setting, N makes the familiar
finite-horizon contribution, whereas the new D term has
an infinite horizon: Dn 6= 0, for all n <∞. In the context
of infinite cryptic processes, the finite horizon associated
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with N is no longer simply related to QPMM depth nor,
therefore, the cryptic order which is infinite.

The systematic way to address the new diagonalizable part
is via a spectral decomposition [16], where the persistent
leaky features of the QPMM state probability evolution
are understood as independently acting modes. It is clear
that ζ always has a nilpotent component associated with
a zero eigenvalue, due to the SINK state. Assuming that
the remaining eigenspaces are diagonalizable, the form of
the overlaps becomes:

〈ηi(L)|ηj(L)〉 =
∑

ξ∈Λζ\{0}

1− ξL+1

1− ξ 〈(σi, σj)| ζξ |SINK〉

+
min{L, ν0−1}∑

m=0
〈(σi, σj)| ζmζ0 |SINK〉 ,

(10)

where Λζ is the set of ζ’s eigenvalues, ζξ are the projection
operators corresponding to each eigenvalue, and ν0 is
the index of the zero eigenvalue, which is the size of its
largest Jordan block. We refer to this as the almost-
diagonalizable case since all eigenspaces—besides possibly
the zero-eigenvalue space—are diagonalizable. This case
covers all processes with generic parameters. Here, ν0
is still responsible for the length of the finite-horizon
component, but is no longer directly related to QPMM
depth or process cryptic order.

Note that in the finite-cryptic order case, the only pro-
jector ζ0 is necessarily the identity. Therefore, Eq. (10)
reduces to the previous form in Eq. (8).

The spectral decomposition yields a new level of tractabil-
ity for the infinite-cryptic case. The infinite-horizon piece
makes contributions at all lengths, but in a regular way.
This allows for direct calculation of its total contribution
at any particular L, including L→∞.

To highlight this behavior, consider the (7–4)-Lollipop
Process, whose ε-machine is shown in Fig. 4. It is named
for the shape of its QPMM; see Fig. 5. This process is a
simple example of one where the cryptic order is infinite
and the finite-horizon length of the nilpotent contribution
is tunable. Roughly speaking, the diagonalizable compo-
nent comes from the “head” of the lollipop (the cycle),
and the nilpotent part comes from the “stick”.

It is straightforward to construct the general QPMM
and thereby derive ζ for the (N–M)-Lollipop Process.
Its QPMM has N pair-states in a cyclic head. The M
remaining pair-states constitute a finite-horizon ‘stick’.
We find:

det(ξ − λI) = (−λ)M
[
(−λ)N − (1− p)(1− q)

]
,

4

3
2

1

0

6
5

0:1

0:1
0:1

0:1− p

0:1− q
0:1

0:1

7

10

8

11

9

12

13
1:p

1:q

1:1

1:1

1:1

1:1

1:1

0:r
1:1− r

2:1

FIG. 4. ε-Machine for the (7–4)-Lollipop Process. The cycle
of 0s on the right leads to infinite Markov and cryptic orders.

3,4

2,3
1,2

0,1

6,0
5,6

4,5

0:1

0:1

0:1

0:
√
1− p

0:
√

(1− p)(1− q)

0 :
√
1− q

0:1

7,108,119,12SINK
1:
√
pq1:11:1

1:
√
1− r

FIG. 5. QPMM for the (7–4)-Lollipop Process.

yielding:

Λζ =
{

0,
[
(1− p)(1− q)

]1/N
ein2π/N

}N−1

n=0
, (11)

with ν0 = M .
For concreteness, consider the (7–4)-Lollipop Process with
transition parameters p = q = 1/2 and r ∈ (0, 1). It
has eigenvalues Λζ = {0, aeinθ} and ν0 = 4, where a =
(1/4)1/7, θ = 2π/7, and n ∈ {0, 1, 2, 3, 4, 5, 6}.
Each ξ = aeinθ eigenvalue has algebraic multiplicity 1
and associated left eigenvector:

〈ξ| = [2
√

2ξ6,
√

2ξ5, ξ4, ξ3, ξ2, ξ1, ξ0,
√

2ξ5,
√

2ξ4,
√

2ξ3,
√

2(1− r)ξ2] ,

and right eigenvector:

|ξ〉 = [ 1
2ξ , 1,

√
2ξ,
√

2ξ2,
√

2ξ3,
√

2ξ4,
√

2ξ5, 0, 0, 0, 0]> .

The general relationship among left and right eigenvectors,
left and right generalized eigenvectors, and projection op-
erators, and their reduction in special cases is discussed
in Ref. [17]. In the present case, notice that, since ζ
is not a normal operator, the right eigenvectors are not
simply the conjugate transpose of their left counterparts.
(Normal operators by definition commute with their con-
jugate transpose; e.g., Hermitian operators.) The left
and right eigenvectors are fundamentally different, with
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the differences expressing the QPMM’s directed causal
architecture.
Since each of these eigenvalues has algebraic multiplicity
1, the corresponding projection operators are defined in
terms of right and left eigenvectors:

ζξ = |ξ〉 〈ξ|
〈ξ|ξ〉

.

The zero eigenvalue has algebraic multiplicity ν0 = 4 and
geometric multiplicity 1, meaning that while there is only
one eigenvector there are three generalized eigenvectors.
The left and right eigenvectors are:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] and
[0, 1, 0, 0, 0, 0, 0,−1, 0, 0, 0]> .

The three generalized left eigenvectors are:

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0] ,
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , and
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ;

and the three generalized right eigenvectors are:

[0, 0,
√

2, 0, 0, 0, 0, 0,−1, 0, 0]> ,
[0, 0, 0,

√
2, 0, 0, 0, 0, 0,−1, 0]> , and

[0, 0, 0, 0,
√

2(1− r), 0, 0, 0, 0, 0,−1]> .

Since the index of the zero eigenvalue is larger than 1
(ν0 = 4), the projection operator ζ0 for the zero eigenvalue
includes the contributions from both its standard and
generalized eigenvectors:

ζ0 =
3∑

n=0

|0n〉 〈0n|
〈0n|0n〉

, (12)

where |00〉 is the standard eigenvector and |0n〉 is the nth

generalized eigenvector for n ≥ 1. More generally, when
the geometric multiplicity is greater than one, this sum
goes over all standard and all generalized eigenvectors of
the zero eigenvalue.
Since all projection operators must sum to the identity,
the projection operator for the zero eigenvalue can be
obtained alternatively from:

ζ0 = I −
∑

ξ∈Λζ\0

ζξ , (13)

which is often useful during calculations.
This very efficient procedure allows us to easily probe the
form of quantum advantage for any process described by

a finite ε-machine.
Finally, we jump directly to the asymptotic overlap using
the following expression:

〈ηi(∞)|ηj(∞)〉 = 〈(σi, σj)|
( ∞∑
n=0

ζn

)
|SINK〉

= 〈(σi, σj)| (I − ζ)−1 |SINK〉 . (14)

Note that I − ζ is invertible, since ζ is substochastic.
Hence, its spectral radius is less than unity, 1 /∈ Λζ , and
so det(1I − ζ) 6= 0. Moreover, (I − ζ)−1 is equal to the
convergent Neumann series

∑∞
n=0 ζ

n by Thm. 3 of Ref.
[18, Ch. VIII § 2].
Yielding an important calculational efficiency, the form
of Eq. (14) does not require spectral decomposition of ζ
and so immediately provides the asymptotic quantum-
reduction of state complexity. Finally, this form does not
depend on the previous assumption of ζ being almost-
diagonalizable.

VI. QUANTUM-REDUCED
STATE-COMPLEXITY

The preceding development focused on computing over-
laps between quantum signal states for q-machine repre-
sentations of a given process. Let’s not forget that the
original goal was to compute the von Neumann entropy
of this ensemble—the quantum-reduced state-complexity
Cq(L), which is the memory that must be transferred
about the state of the process to synchronize compatible
predictions.
The naive approach to calculating Cq(L) constructs the
signal states directly and so does not make use of overlap
computation. This involves working with a Hilbert space
of increasing dimension, exponential in codeword length L.
This quickly becomes intractable, for all but the simplest
processes.
The second approach, introduced in Ref. [4], made use
of the PMM to compute overlaps. These overlaps were
then used to construct a density operator with those same
overlaps, but in a Hilbert space of fixed size |S|, essentially
obviating the high-dimensional embedding of the naive
approach. And, we just showed how to calculate overlaps
in closed form. The elements of the resulting density
matrix, however, are nonlinear functions of the overlaps.
Besides the computational burden this entails, it makes
it difficult to use the overlap matrix to theoretically infer
much about the general behavior of Cq(L).
Here, we present two markedly improved approaches that
circumvent these barriers. We are ultimately interested
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in the von Neumann entropy which depends only on the
spectrum of the density operator. It has been pointed out
that the Gram matrix of an ensemble shares the same
spectrum [19]. The Gram matrix for our ensemble of pure
quantum signal states is:

G =


√
π1π1 〈η1|η1〉 · · · √π1π|S| 〈η1|η|S|〉

... . . . ...
√
π|S|π1 〈η|S||η1〉 · · ·

√
π1π|S| 〈η|S||η|S|〉

 .

(15)

If we define Dπ ≡ diag(π), then G = D
1/2
π AA†D

1/2
π .

Given that it is only a small step from the overlap matrix
AA† to the Gram matrix G, we see the usefulness of
the thoroughgoing overlap analysis above. The spectrum
of G is then computed using standard methods, either
symbolically or numerically.
There is another surrogate matrix that shares the spec-
trum but is simpler, yet again, for some calculations. We
call this matrix G̃ the left-consolidated Gram matrix:

G̃ =

 π1 〈η1|η1〉 · · · π1 〈η1|η|S|〉
... . . . ...

π|S| 〈η|S||η1〉 · · · π|S| 〈η|S||η|S|〉

 . (16)

Note that G̃ = DπAA
†—i.e., Dπ has been consolidated

on the left. A right-consolidated Gram matrix would work
just as well for the calculation of Cq(L).
Since the spectra are identical, we can calculate Cq(L)
directly from the density matrix ρ(L), Gram matrix G(L),
or consolidated Gram matrix G̃(L):

Cq(L) = −
∑

λ∈Λρ(L)

λ log λ

= −
∑

λ∈Λ
G(L)

λ log λ

= −
∑

λ∈Λ
G̃(L)

λ log λ .

For further discussion, see App. B.
Using the Gram matrix as described, we illustrate the
behavior of Cq(L) for the (R–k)-Golden Mean (Fig. 6)
and (N–M)-Lollipop (Fig. 7). For each of the two process
classes, we compute several instances by varying R and
k and by varying N and M while holding fixed their
transition parameters. Comparing the two figures, we
qualitatively confirm the difference between a process
with only a finite-horizon contribution and one with an
infinite-horizon contribution. The (R–k)-Golden Mean
reaches its encoding saturation at L = k the cryptic
order. The (N–M)-Lollipop only approaches this limit
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FIG. 6. Quantum costs Cq(L) for the (R–k)-Golden Mean
Process with R ∈ {1, . . . , 6} and k ∈ {1, . . . , R}. R and k
are indicated with line width and color, respectively. The
probability of the self-loop is p = 0.7. Cq(L) roughly linearly
decreases until L = k where it is then constant. Note that
(R–k)-GM agrees exactly with ((R+1)–(k−1))-GM for L ≤ k,
as explained in App. C.
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FIG. 7. Quantum costs Cq(L) for the Lollipop process for N ∈
{3, 4, 5, 6},M ∈ {2, 3, 4, 5, 6}, p = q = 0.5, and r = 0.1. N and
M are indicated with line width and color, respectively. After
a fast initial decrease, these curves approach their asymptotic
values more slowly.

asymptotically.

In contrast to the customary approach in quantum com-
pression [12], in which an entire message is to be com-
pressed with perfect fidelity, the compression advantage
here is obtained by throwing away information that is
not relevant for simulating a process—with the goal of
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correctly sampling from a conditional future distribution.
Recall that the quantum-reduced state-complexity Cq(L)
quantifies a communication cost. Specifically, it is the
amount of memory about a process’ state that must be
queried to move the system forward in time. However,
to avoid misinterpretation, we note that this cost does
not have a simple relationship to the “quantum commu-
nication cost” as the phrase is sometimes used in the
distributed computing setting of communication complex-
ity theory [20].
To supplement the details already given, annotated ana-
lytic derivations of several example processes are given in
App. C. These examples serve as a pedagogical resource,
with comparison and discussion of various analytical tech-
niques.

VII. COSTS USING LONG CODEWORDS

The preceding discussed quantum-state overlaps exten-
sively. We found that the behavior of the overlaps with L
is completely described through ζ’s spectral decomposi-
tion. And, we showed that, for any L, the von Neumann
entropy Cq(L) can be found from the eigenvalues of the
Gram matrix—a direct transformation of the overlap ma-
trix. This is all well and good, and key progress. But, can
we use this machinery to directly analyze the behavior of
Cq(L) as a function of L? For infinite-cryptic processes,
the answer is an especially pleasing affirmative.
This section derives Cq(L)’s asymptotic behavior for large
L; viz., ν0 < L ≤ k = ∞. We show that a periodic
pattern, exponentially decaying at the rate of the largest ζ-
eigenvalue magnitude, dominates Cq(L)’s deviation from
Cq(∞) for large L. In particular, we show two things:
First, the asymptotic behavior of Cq(L) − Cq(∞) is, to
first order, exponentially decreasing as rL1 , where r1 is
ζ’s spectral radius. Second, this exponential defines an
envelope for a Ψ-periodic asymptotic structure, where Ψ
is the least common multiple of slowest-decaying QPMM
cycle lengths.
Recall that the minimal known upper bound on state
complexity is given by the asymptotic von Neumann
entropy:

Cq(∞) = −
∑

λ(∞)∈Λ
G(∞)

λ(∞) log
(
λ(∞)) .

We will show that when L is large, (δG)(L) ≡ G(L) −
G(∞) can be treated as a perturbation to G(∞). From
the corresponding small variations

{
(δλ)(L)}

λ∈ΛG
, direct

calculation of the first differential yields the approximate

change in the von Neumann entropy:

(δS)(L) = −
∑
λ∈ΛG

[
log (λ(∞)) + 1

]
(δλ)(L) , (17)

so long as no zero eigenvalues of G(∞) prematurely vanish
at finite L. Our task, therefore, is to find (δλ)(L) from
(δG)(L) in terms of ζ’s spectral properties.
For easy reference, we first highlight our notation:

• G(L) is a Gram matrix at length L corresponding
to ρ(L).

• λ(L) ∈ ΛG(L) is any one of its eigenvalues.
• |λ(L)〉 and 〈λ(L)| are the right and left eigenvectors

of G(L) corresponding to λ(L), respectively.
• (δG)(L) ≡ G(L) −G(∞) is the perturbation to G(∞)

investigated here.
• ξ ∈ Λζ is an eigenvalue of the QPMM transition

dynamic ζ.

If using G’s symmetric version, the right and left eigen-
vectors are simply transposes of each other: 〈λ(L)| =(
|λ(L)〉

)>. For simplicity of the proofs, we assume non-
degeneracy of G(L)’s eigenvalues, so that the projection
operator associated with λ(L) is |λ(L)〉 〈λ(L)| / 〈λ(L)|λ(L)〉,
where the denominator assures normalization. Neverthe-
less, the eigenbasis of G(L) is always complete and the
final result, Thm. 3, retains general validity.
Here, we show that the matrix elements of (δG)(L) are
arbitrarily small for large enough L, such that first-order
perturbation is appropriate for large L, and give the exact
form of (δG)(L) for use in the calculation of (δλ)(L).

Proposition 1. For L ≥ ν0, the exact change in Gram
matrix is:

(δG)(L) = −
∑

ξ∈Λζ\0

ξL+1

1− ξ Cξ ,

where Cξ is independent of L and has matrix elements:

(Cξ)i,j = √πiπj 〈(σi, σj)|ζξ|SINK〉 .

Proof. We calculate:

(δG)(L)
i,j = G

(L)
i,j −G

(∞)
i,j

= √πiπj
(
〈η(L)
i |η

(L)
j 〉 − 〈η

(∞)
i |η(∞)

j 〉
)

= −√πiπj 〈(σi, σj)|ζL+1(1− ζ)−1|SINK〉 .

If we assume that all nonzero eigenvalues of ζ correspond
to diagonalizable subspaces, then for L ≥ ν0, the elements
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of (δG)(L) have the spectral decomposition:

(δG)(L)
i,j = −

∑
ξ∈Λζ\0

ξL+1

1− ξ
√
πiπj 〈(σi, σj)|ζξ|SINK〉 .

Since this decomposition is common to all matrix elements,
we can factor out the

{
ξL+1

1−ξ

}
ξ
, leaving the L-independent

set of matrices:{
Cξ : (Cξ)i,j = √πiπj 〈(σi, σj)|ζξ|SINK〉

}
ξ∈Λζ

,

such that:

(δG)(L) = −
∑

ξ∈Λζ\0

ξL+1

1− ξ Cξ .

Proposition 2. At large L, the first-order correction to
λ(∞) is:

(δλ)(L) = −
∑

ξ∈Λζ\0

ξL+1

1− ξ
〈λ(∞)|Cξ |λ(∞)〉
〈λ(∞)|λ(∞)〉

. (18)

Proof. Perturbing G(∞) to G(∞)+(δG)(L), the first-order
change in its eigenvalues is given by:

(δλ)(L) = 〈λ
(∞)| (δG)(L) |λ(∞)〉
〈λ(∞)|λ(∞)〉

, (19)

which is standard first-order nondegenerate perturbation
theory familiar in quantum mechanics, with the allowance
for unnormalized bras and kets. Proposition 2 then follows
directly from Eq. (19) and Prop. 1.

Theorem 2. At large L, such that ν0 < L ≤ k =∞, the
first-order correction to Cq(∞) is:

Cq(L)− Cq(∞) ≈ (δS)(L)

=
∑

ξ∈Λζ\0

ξL+1

1− ξ
∑

λ(∞)∈Λ
G(∞)

〈Cξ〉
[
log(λ(∞)) + 1

]
, (20)

where:

〈Cξ〉 ≡
〈λ(∞)|Cξ |λ(∞)〉
〈λ(∞)|λ(∞)〉

.

Proof. This follows directly from Eq. (17) and Prop. 2.
The large-L behavior of Cq(L)−Cq(∞) is a sum of decay-
ing complex exponentials. And, to first order, we can even
calculate the coefficient of each of these contributions.
Notice that the only L-dependence in Prop. 2 and Thm. 2
comes in the form of exponentiating eigenvalues of the

QPMM transition dynamic ζ. For very large L, the
dominant structure implied by Prop. 2 and Thm. 2 can
be teased out by looking at the relative contributions from
ζ’s first- and second-largest magnitude sets of eigenvalues.

Let r1 be the spectral radius of ζ, shared by the largest
eigenvalues Λ(r1): r1 ≡ max

{
|ξ| : ξ ∈ Λζ

}
. And, let

Λ(r1) ≡ arg max
{
|ξ| : ξ ∈ Λζ

}
. Then, let r2 be the

second-largest magnitude of all of ζ’s eigenvalues that
differs from r1: r2 ≡ max

{
|ξ| : ξ ∈ Λζ \ Λ(r1)

}
. And, let

Λ(r2) ≡ arg max
{
|ξ| : ξ ∈ Λζ \ Λ(r1)

}
. Multiple eigenval-

ues can belong to Λ(r1). Similarly, multiple eigenvalues
can belong to Λ(r2)

Then, 0 ≤ (r2/r1) < 1, if ζ has at least one nonzero
eigenvalue. This is the case of interest here since we
are addressing those infinite-horizon processes with k =
∞ > ν0. Hence, as L becomes large, (r2/r1)L vanishes
exponentially if it is not already zero. This leads to a
corollary of Prop. 2.

Corollary 2. For L ≥ ν0, the leading deviation from
λ(∞) is:

(δλ)(L) = −rL+1
1

∑
ξ∈Λ(r1)

(ξ/|ξ|)L+1

1− ξ 〈Cξ〉
[
1 +O

((
r2
r1

)L)]
.

Notice that ξ/|ξ| lies on the unit circle in the complex
plane. Due to their origin in cyclic graph structure, we
expect each ξ ∈ Λ(r1) to have a phase in the complex
plane that is a rational fraction of 2π. Hence, there is
some n for which (ξ/|ξ|)n = 1, for all ξ ∈ Λ(r1). The
minimal such n, call it Ψ, will be of special importance:

Ψ ≡ min
{
n ∈ N : (ξ/|ξ|)n = 1 for all ξ ∈ Λ(r1)

}
. (21)

Since all ξ ∈ Λ(r1) originate from cycles in ζ’s graph,
we have the result that Ψ is equal to the least common
multiple of the cycle lengths implicated in Λ(r1).

For example, if all ξ ∈ Λ(r1) come from the same cycle in
the graph of ζ, then Ψ = |Λ(r1)| and:

Λ(r1) =
{
ξm = r1e

im2π/|Λ(r1)|}|Λ(r1)|
m=1 .

That is,
{
ξm/|ξm|

}|Λ(r1)|
m=1 are the |Λ(r1)|th roots of unity,

uniformly distributed along the unit circle. If, however,
Λ(r1) comes from multiple cycles in ζ’s graph, then the
least common multiple of the cycle lengths should be used
in place of |Λ(r1)|.

Recognizing the Ψ-periodic structure of (ξ/|ξ|)n yields a
more informative corollary of Prop. 2:

Corollary 3. For L ≥ ν0, the leading deviation from
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FIG. 8. (8,8)-Lollipop with transition parameters p ∈
[0.05, 0.95], q = 0.5, and r = 0.1. Cq(L)− Cq(∞) on semilog
plot illustrates asymptotically exponential behavior. Red
dashed lines, rL1 where r1 (no relation to r) is the spectral
radius of ζ, quantify the exponential rate of decay. The height
of each red line is set equal to Cq(49); we can see that the
decay is very close to exponential even as early as L ' 15.

λ(∞) is:

(δλ)(L) = −rL+1
1

∑
ξ∈Λ(r1)

(ξ/|ξ|) mod (L+1,Ψ)

1− ξ 〈Cξ〉

×
[
1 +O

((
r2/r1

)L)]
.

Hence:

(δλ)(L+Ψ) ≈ rΨ
1 (δλ)(L) . (22)

We conclude that asymptotically a pattern—of changes in
the density-matrix eigenvalues (with period Ψ)—decays
exponentially with decay rate of rΨ

1 per period. There
are immediate implications for the pattern of asymptotic
changes in Cq(L) at large L.

Corollary 4. For L ≥ ν0, the leading deviation from
Cq(∞) is:

Cq(L)− Cq(∞) ≈ (δS)(L)

= rL+1
1

∑
ξ∈Λ(r1)

(ξ/|ξ|) mod (L+1,Ψ)

1− ξ

×
∑

λ(∞)∈Λ
G(∞)

〈Cξ〉 log(λ(∞))
[
1 +O

((
r2/r1

)L)]
.

The most profound implication of this detailed analysis
can be summarized succinctly.
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FIG. 9. Lollipop with N ∈ {3, 4, 5, 6, 7, 8} and M = 8,
and transition parameters p = q = 0.5 and r = 0.1.(
Cq(L)− Cq(∞)

)
/rL1 demonstrates the periodicity of asymp-

totic behavior. Removing the exponential envelope makes
periodicity of the remaining deviation more apparent. For
Lollipop, the periodicity Ψ = |Λ(r1)| = N .
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FIG. 10. Cq(L)− Cq(∞) on a semilog plot for Lollipop with
N = 6 and M ∈ {2, . . . , 20} and transition parameters p =
q = 0.5 and r = 0.1. M determines the finite-horizon length,
where the nilpotent part of ζ vanishes. Vertical (dashed) lines
indicate L = 2 and L = 20, the shortest and longest such
length in this group.

Theorem 3. For sufficiently large L:

Cq(L+ Ψ)− Cq(∞)
Cq(L)− Cq(∞) ≈ rΨ

1 . (23)

That is, asymptotically a pattern—of changes in Cq(L)−
Cq(∞) (with period Ψ)—decays exponentially with decay
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rate of rΨ
1 per period [21].

While the first-order perturbation allowed us to identify
both the roles and values of r1 and Ψ for any process and
Coro. 4 would imply Thm. 3, Thm. 3 actually transcends
the limitations of the first-order approximation.
Proof. Expanding logG(L) in powers of (G(L) − I),
then multiplying by −G(L), shows that Cq(L) =
−tr

[
G(L) logG(L)] can be written as:

Cq(L) = −
∞∑
n=0

an tr
[
(G(L))n

]
, (24)

for proper an ∈ R. Using:

G(L) =
∑

ξ∈Λζ\0

1− ξL+1

1− ξ Cξ +
min{L, ν0−1}∑

m=0
C0,m , (25)

with appropriate constant matrices C0,m, together with
Eqs. (21) and (24), yields Thm. 3 with general validity.
In the simplest case, when ζ has only one largest eigen-
value, then Ψ = |Λ(r1)| = 1 and so Cq(L) − Cq(∞) is
dominated by a simple exponential decay at large L.
For the case of multiple largest eigenvalues originating
from the same cycle in ζ’s graph, then Ψ = |Λ(r1)| > 1.
And so, the asymptotic behavior of Cq(L) − Cq(∞) is
dominated by a decaying pattern of length |Λ(r1)|.
For example, the Lollipop processes have an exponentially
decaying pattern of length-N that dominates Cq(L) −
Cq(∞) for L > ν0 = M :

Ψ = |Λ(r1)| = N . (26)

This periodic behavior is apparent in the semi-log plots
of Figs. 8 and 10 and is especially emphasized in Fig. 9
which shows that Ψ = N for various N . The figures
demonstrate excellent agreement with our qualitative
expectations from the above approximations.
Showing the effect of different ν0, Fig. 10 emphasizes that
the initial rolloff of Cq(L)−Cq(∞) is due to L ≤ ν0 = M .
The dominant asymptotic behavior is reached soon after
L = ν0 in this case since the remaining (i.e., nonzero)
eigenvalues of the QPMM transition dynamic ζ are all in
the largest-magnitude set Λ(r1). In other words, Thm. 2’s
Eq. (20) is not only approximated by but, in this case,
also equal to the simpler expression in Coro. 4, since
r2 = 0.
The slope r1 indicated in Figs. 8 and 10 corresponds to the
asymptotic decay rate of the envelope for Cq(L)−Cq(∞).
This asymptotic decay rate is a function of both N and
p, since for Lollipop:

r1 =
[
(1− p)(1− q)

]1/N
. (27)

Figure 8 shows that we have indeed identified the correct
slope for different p.
The central asymptotic features of the quantum advan-
tage Cq(L)− Cq(∞) of reduced state-complexity are all
captured succinctly by Thm. 3: First, the asymptotic
behavior of Cq(L) − Cq(∞) is exponentially decreasing
at rate r1, which is the spectral radius of ζ. Second, this
exponential envelope is modulated by an asymptotic Ψ-
periodic structure, where Ψ is the least common multiple
of slowest-decaying QPMM cycle-lengths.
These results summarize the expected behavior of the
L-dependent quantum reduction of state-complexity for
all classical processes that can be described by a finite-
state ε-machine. Using codeword-length of at least the
finite-horizon length ν0 of the process’ QPMM seems
advisable for significant reduction of memory costs in
simulations that utilize the advantage of quantum sig-
nal states discussed here. The cost-benefit analysis of
further increasing encoding length for infinite-cryptic pro-
cesses will be application-specific, but now has theoretical
grounding in the above results.

VIII. CONCLUSION

We developed a detailed analytical theory of how to maxi-
mally reduce the state-complexity of a classical, stationary
finite-memory stochastic process using a quantum chan-
nel. This required using the new quantum state-machine
representation (q-machines) [4], carefully constructing its
codewords and quantitatively monitoring their overlaps
(via the quantum pairwise-merger machine), and utilizing
a new matrix formulation of the overlap density matrix
(consolidated Gram matrix). Applying spectral decompo-
sition then lead directly to closed-form expressions for the
quantum coding costs at any codeword length, including
infinite length.
The theoretical advances give an extremely efficient way
to probe the behavior of quantum-reduced state complex-
ity with increasing codeword length, both analytically
and, when symbolic calculation become arduous, numer-
ically. Analyzing selected example processes illustrated
the required calculations and also the range of phenomena
that occur when compressing memoryful processes. We
expect the results to be relevant for the understanding
and design of efficient simulations for complex classical
stochastic systems of biological and technological impor-
tance newly enabled by the quantum reduction in memory
requirements.
Particular phenomena we reported for the first time here
included (i) details of how a process’ cryptic order de-
termines its quantum reduction in state complexity, (ii)
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transient and persistent contributions to reduced state-
complexity, (iii) exponential convergence to optimum com-
pression, and (iv) oscillations in the convergence that re-
veal how a process gives up its crypticity with increasing
codeword length. Our results apply to both finite and
infinite Markov- and cryptic-order processes.
The overall result appears as a rather complete quantita-
tive toolkit for analyzing quantum state-compressibility of
classical processes, including finite and infinite codeword
closed-form expressions. That said, many issues remain,
both technical and philosophical. We believe, however,
that the approach’s mathematical grounding and ana-
lytical and numerical efficiency will go some distance to
solving them in the near future.
For example, one of the abiding questions is the meaning
of process crypticity χ = Cµ −E—the difference between
a process’ predictable information or excess entropy E
and its stored state information or statistical complexity
Cµ [22, 23]. Most directly, χ measures how much state
information (Cµ) is hidden from observation (E). Cryptic
processes and even those with infinite cryptic order domi-
nate the space of classical processes [11]. This means that
generically we can compress Cµ down to Cq(L). How-
ever, this begs the question of what crypticity is in the
quantum domain. Now that we can work analytically
in the infinite-length limit, we can explore the quantum
crypticity χq = Cq(∞)−E. From our studies, some not
reported here, it appears that one cannot compress the
state information all the way down to the excess entropy.
Why? Why do not quantum models exist of “size” E
bits? Does this point to a future, even more parsimonious
physical theory? Or, to a fundamental limitation of com-
munication that even nature must endure, as it channels
the past through the present to the future?
For another, are we really justified in comparing Shannon
bits (Cµ) to qubits (Cq)? This is certainly not a new
or recent puzzle. However, the results on compression
bring it to the fore anew. And, whatever the outcome,
the answer will change our view of what physical pattern
and structure are. Likely, the answer will have a profound
effect. Assuming the comparison is valid, why is there a
perceived level of classical reality that is more structurally
complex when, as we demonstrated and now can calculate,
processes might be more compactly represented quantum
mechanically?
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Appendix A: Quantum Overlaps and Cryptic Order

Lemma 1. Given an ε-machine with cryptic order k: for
L ≤ k, there exists an L-merge; for L > k, there exists
no L-merge.

Proof. By definition of cryptic order k:

H [Sk|X0:∞] = 0 .

This means that for any given x0: there exists a unique
σk. Since k is the minimum such length, for L = k − 1
there exists some word x0:∞ that leaves uncertainty in
causal state Sk−1. Call two of these uncertain Sk−1 states
A and B (A 6= B). Tracing x0:∞ backwards from A and
B, we produce two state paths. These state paths must be
distinct at each step due to ε-machine unifilarity. If they
were not distinct at some step, they would remain so for
all states going forward, particularly at Sk−1. The next
symbol xk must take A and B to the same next state F
or violate the assumption of cryptic order k. These two
state paths and the word x0:k and the final state F make
up a k-merger, meaning that cryptic order k implies the
existence of a k-merger.
By removing states from the left side of this k-merger, it
is easy to see that a k-merger implies the existence of all
shorter L-mergers.
By unifilarity again, H [Sk|X0:∞] = 0→ H [SL|X0:∞] = 0,
for all L ≥ k. Assume there exists an L-merger for L > k

with word w. By definition of L-merger, there is then
uncertainty in the state SL−1. This uncertainty exists for
any word with w as the prefix—a set with nonzero proba-
bility. This contradicts the definition of cryptic order.
Theorem 1. Given a process with cryptic order k, for
each L ∈ {0, . . . , k}, each quantum overlap 〈ηi(L)|ηj(L)〉
is a nondecreasing function of L. Furthermore, for each
L ∈ {1, . . . , k}, there exists at least one overlap that is
increased (as a result of a corresponding L-merge). For
all remaining L ≥ k, each overlap takes a constant value
〈ηi(k)|ηj(k)〉.

Proof. We directly calculate:

〈ηa(L)|ηb(L)〉 =
∑

w,w′∈AL

jL,lL∈{i}Mi=1

√
T

(w)
alL

√
T

(w′)
bjL
〈w|w′〉 〈σlL |σjL〉

=
∑
w,jL

√
T

(w)
ajL

√
T

(w)
bjL

.
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So, we have:

〈ηa(L+ 1)|ηb(L+ 1)〉

=
∑

w′∈AL+1

jL+1

√
T

(w′)
ajL+1

√
T

(w′)
bjL+1

=
∑

w∈AL,s∈A
jL,lL,jL+1

√
T

(w)
ajn

√
T

(s)
jnjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

=
∑

w∈AL,s∈A
jL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
bjL

√
T

(s)
jLjL+1

+
∑

w∈AL,s∈A
jL 6=lL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

,

The first sum represents the overlaps obtained already at
length L. To see this, we split the sum to two parts, where
the first contains:∑
w∈AL,s∈A
jL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
bjL

√
T

(s)
jLjL+1

=
∑
w∈AL
jL

√
T

(w)
ajL

√
T

(w)
bjL

(∑
s∈A
jL+1

√
T

(s)
jLjL+1

√
T

(s)
jLjL+1

)

=
∑
w∈AL
jL

√
T

(w)
ajL

√
T

(w)
bjL

= 〈ηa(L)|ηb(L)〉 .

We use Lemma 1 to analyze the second sum, which repre-
sents the change in the overlaps, finding that:∑

w∈AL,s∈A
jL 6=lL,jL+1

√
T

(w)
ajL

√
T

(s)
jLjL+1

√
T

(w)
blL

√
T

(s)
lLjL+1

≥ 0 ,

with equality when L ≥ k. Summarizing:

〈ηa(L+ 1)|ηb(L+ 1)〉 ≥ 〈ηa(L)|ηb(L)〉 ,

with equality for L ≥ k.
Note that while the set of overlaps continues to be aug-
mented at each length up until the cryptic order, we do
not currently have a corresponding statement about the
nontrivial change in Cq(L) or its monotonicity. Although
a proof has been elusive, it would be an important exten-
sion of our work. Nevertheless, the asymptotic analysis of
Sec. VII shows an overall decay of Cq(L) for infinite cryp-
tic processes. Moreover, extensive numerical exploration
suggests that Cq(L) is indeed monotonic at all scales for
all orders of crypticity.

Appendix B: Matrices and Their Entropy

1. Density Matrix

The density matrix can now be expressed using a fixed |S|-
by-|S| matrix, valid for all L. Using the Gram-Schmidt
procedure one can choose a new orthonormal basis. Let:

|η1(L)〉 = |e(L)
1 〉

|η2(L)〉 = a
(L)
21 |e

(L)
1 〉+ a

(L)
22 |e

(L)
2 〉

|η3(L)〉 = a
(L)
31 |e

(L)
1 〉+ a

(L)
32 |e

(L)
2 〉+ a

(L)
33 |e

(L)
3 〉

...

and so on. Then:

a
(L)
21 = 〈η1(L)|η2(L)〉

= 〈(σ1, σ2)|
( L∑
n=0

ζn
)
|SINK〉 ,

a
(L)
22 =

(
1− | 〈η1(L)|η2(L)〉 |2

)1/2
,

a
(L)
31 = 〈η1(L)|η3(L)〉

= 〈(σ1, σ3)|
( L∑
n=0

ζn
)
|SINK〉 ,

and so on. Now, it is useful to rewrite what we can in
matrix form:
〈η1(L)|
〈η2(L)|
〈η3(L)|

...
〈η|S|(L)|

 =



1 0
a

(L)
21 a

(L)
22

a
(L)
31 a

(L)
32 a

(L)
33

... . . .
a

(L)
|S|1 · · · a

(L)
|S||S|


︸ ︷︷ ︸

≡AL



〈e(L)
1 |
〈e(L)

2 |
〈e(L)

3 |
...

〈e(L)
|S| |


,

which defines the lower-triangular matrix AL. Note that
the rightmost matrix of orthonormal basis vectors is sim-
ply the identity matrix, since we are working in that
basis.

In this new basis, we construct the |S|-by-|S| density
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matrix as:

ρ(L) =
|S|∑
i=1

πi |ηi(L)〉 〈ηi(L)|

=
[
|η1(L)〉 · · · |η|S|(L)〉

] π1 0
. . .

0 π|S|


︸ ︷︷ ︸

≡Dπ


〈η1(L)|
〈η2(L)|
〈η3(L)|

...
〈η|S|(L)|


= A†LDπAL .

Since all entries are real, the conjugate transpose is the
transpose. This more general framework may be useful,
however, if we want to consider the effect of adding phase
to the quantum states.

2. Von Neumann Entropy

The quantum coding cost is:

Cq(L) = −tr [ρ(L) log ρ(L)]

= −tr
[
A†LDπAL log(A†LDπAL)

]
= −

∑
λ∈Λ

A
†
L
DπAL

λ log λ .

This is relatively easy to evaluate since the density matrix
ρ(L) is only a |S|-by-|S| function of L. Thus, we calculate
Cq(L) analytically from ρ’s spectrum. This, in a curious
way, was already folded into ζ’s spectrum.

3. Gram Matrix

The AL matrix is burdensome due to nonlinear depen-
dence on the overlap of the quantum states. We show
how to avoid this nonlinearity and instead obtain the von
Neumann entropy from a transformation that yields a
linear relationship with overlaps.
The Gram matrix, with elements G

(L)
mn =√

πmπn 〈ηm(L)|ηn(L)〉, can be used instead of ρ(L)
to evaluate the von Neumann entropy [19]. In particular,
G(L) has the same spectrum as ρ(L), even with the same
multiplicities: ΛG(L) = Λρ(L), while aλ, gλ, and νλ remain
unchanged for all λ in the spectrum. (This is a slightly
stronger statement than in Ref. [19], but is justified since
ρ(L) and G(L) are both |S|-by-|S| dimensional.)
Here, we briefly explore the relationship between ρ(L)
and G(L) and, then, focus on the closed-form expression

for G(L). The result is more elegant than ρ(L), allowing
us to calculate and understand Cq(L) more directly.

Earlier, we found that the density matrix can be written
as:

ρ(L) = A†LDπAL ,

which can be rewritten as:

ρ(L) = A†LD
1/2
π D1/2

π AL

=
(
D1/2
π AL

)†
D1/2
π AL .

It is easy to show that:

tr
[(
D1/2
π AL

)†
D1/2
π AL

]
= tr

[
D1/2
π AL

(
D1/2
π AL

)†]
= tr

[
D1/2
π ALA

†
LD

1/2
π

]
.

This means that the sum of the eigenvalues is conserved
in transforming from A†LDπAL to D

1/2
π ALA

†
LD

1/2
π . It

is less obvious that the spectrum is also conserved, but
this is also true and even easy to prove. (Observe that
AB~v = λ~v =⇒ BAB~v = λB~v =⇒ BA(B~v) = λ(B~v).)
Interestingly, the new object turns out to be exactly the
Gram matrix, which was previously introduced, although
without this explicit relationship to the density matrix.
We now see that:

D1/2
π ALA

†
LD

1/2
π

= D1/2
π

 〈η1(L)|
...

〈η|S|(L)|

 [|η1(L)〉 · · · |η|S|(L)〉
]
D1/2
π

=


√
π1 〈η1(L)|

...
√
π|S| 〈η|S|(L)|

 [√π1 |η1(L)〉 · · · √π|S| |η|S|(L)〉
]

=


√
π1π1 〈η1(L)|η1(L)〉 · · · √π1π|S| 〈η1(L)|η|S|(L)〉

... . . . ...
√
π|S|π1 〈η|S|(L)|η1(L)〉 · · · √π1π|S| 〈η|S|(L)|η|S|(L)〉


= G(L) .

Since the spectrum is preserved, we can use the Gram
matrix directly to compute the von Neumann entropy:

Cq(L) = −
∑

λ∈Λ
G(L)

λ log λ

= −tr
[
G(L) logG(L)

]
.
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4. Consolidated Gram Matrix

Transforming to the Gram matrix suggests a similar and
even more helpful simplification that can be made while
preserving the spectrum. Define the left-consolidated
Gram matrix to be:

G̃(L) ≡ DπALA
†
L

= Dπ

 〈η1(L)|
...

〈η|S|(L)|

 [|η1(L)〉 · · · |η|S|(L)〉
]

=

 π1 〈η1(L)|η1(L)〉 · · · π1 〈η1(L)|η|S|(L)〉
... . . . ...

π|S| 〈η|S|(L)|η1(L)〉 · · · π|S| 〈η|S|(L)|η|S|(L)〉

 .

Clearly, this preserves the same trace as the density matrix
and previous Gram matrix. It also preserves the spectrum.
And, it has the advantage of not using square-roots of two
different state probabilities in each element. Rather it has
a single probability attached to each element. The same
is true for the right-consolidated Gram matrix ALA†LDπ.

Since the spectrum is preserved, we can use the con-
solidated Gram matrix to compute the von Neumann
entropy:

Cq(L) = −
∑

λ∈Λ
G̃(L)

λ log λ (B1)

= −tr
[
G̃(L) log G̃(L)

]
. (B2)

Appendix C: Examples

Exploring several more examples will help to illustrate
the methods and lead to additional observations.

1. Biased Coins Process

The Biased Coins Process provides a first, simple case that
realizes a nontrivial quantum state entropy [2]. There are
two biased coins, named A and B. The first generates
1 with probability q; the second, 0 with probability p.
A coin is picked and flipped, generating outputs 0 or 1.
With probability q the other coin is used next similarly
with different probability. Its two causal-state ε-machine
is shown in Fig. 11.

After constructing the QPMM for the Biased Coins Pro-

A B0:p

1:1− p

1:q

0:1− q

FIG. 11. ε-Machine for the Biased Coins Process.

AB

sync sink

0:
√

p(1− q) 1 :
√

q(1− p)

FIG. 12. QPMM for the Biased Coins Process.

cess, as outlined in Figs. 11 and 12, we observe:

ζ(0) =
[
0
√
p(1− q)

0 0

]
,

ζ(1) =
[
0
√
q(1− p)

0 0

]
,

and so:

ζ =
[
0 β

0 0

]
,

where we defined β ≡
√
p(1− q) +

√
q(1− p). Let’s also

define the suggestive quantity γ ≡ (1− β2)−1/2.
The only overlap to consider is 〈ηA(L)|ηB(L)〉. For this,
we note that 〈(A,B)| =

[
1 0

]
. Also, |SINK〉 =

[
0 1

]>.
Spectrally, ζ here is a nilpotent matrix with only a zero
eigenvalue with index two: Λζ = {0} and ν0 = 2. Since
the projection operators must sum to the identity, we
have ζ0 = I.
ζL is the null matrix for L > 1, so either by Eq. (6) or by
Eq. (8), we have:

〈ηA(L)|ηB(L)〉 =
min{L, 1}∑
m=1

〈(A,B)| ζm |SINK〉 .

That is:

〈ηA(L)|ηB(L)〉 =
{

0 if L = 0 ,
β if L ≥ 1 .
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a. Entropy from the Density Matrix

For the density matrix, we turn to the L-dependent or-
thonormal basis {|e(L)

1 〉 , |e
(L)
2 〉} and use the stationary

distribution over S: π =
[
p/(p+ q) q/(p+ q)

]
.

Apparently, for L = 0 we have: |ηA(0)〉 = |e(0)
1 〉 and

|ηB(0)〉 = |e(0)
2 〉. Hence, ρ(0) = Dπ and Cq(0) =

H2(p/(p+ q)) = Cµ qubits.

For L ≥ 1 we have: |ηA(L)〉 = |e(L)
1 〉 and |ηA(L)〉 =

a
(L)
21 |e

(L)
1 〉+ a

(L)
22 |e

(L)
2 〉, where a

(L)
21 = 〈ηA(L)|ηB(L)〉 = β

and a(L)
22 = (1− β2)1/2 = γ−1 for L ≥ 1. We find that:

AL =
[

1 0
β γ−1

]
, for L ≥ 1 .

Hence, for L ≥ 1 the density matrix is:

ρ(L) = A†LDπAL

=
[
1 β

0 γ−1

] [ p
p+q 0
0 q

p+q

] [
1 0
β γ−1

]
= 1

p+q

[
p qβ

0 qγ−1

] [
1 0
β γ−1

]
= q

p+q

[p
q + β2 β/γ

β/γ 1− β2

]
.

Since:

det(ρ(L)− λI) = λ2 − λ+ pq
(p+q)2 (1− β2) ,

we find ρ(L)’s eigenvalues to be:

Λρ(L) =
{ 1

2 ±
1

2(p+q)

√
4pqβ2 + (p− q)2

}
,

which yields the von Neumann entropy for L ≥ 1:

Cq(L) = −
∑

λ∈Λρ(L)

λ log λ .

b. Entropy from the Consolidated Gram Matrix

The left-consolidated Gram matrix for the Biased Coins
Process is:

G̃(L) = Dπ

[
〈ηA(L)|ηA(L)〉 〈ηA(L)|ηB(L)〉
〈ηB(L)|ηA(L)〉 〈ηB(L)|ηB(L)〉

]
.

Specifically, we have for L = 0:

G̃(0) = 1
p+q

[
p 0
0 q

] [
1 0
0 1

]
= 1

p+q

[
p 0
0 q

]
,

and L ≥ 1:

G̃(L) = 1
p+q

[
p 0
0 q

] [
1 β

β 1

]
= 1

p+q

[
p pβ

qβ q

]
.

G̃(0)’s eigenvalues are simply its diagonal entries. So,
Cq(0) = H2(p/(p+ q)) qubits. For L ≥ 1:

det(G̃(L) − λI) = λ2 − λ+ pq
(p+q)2 (1− β2) ,

which gives the same values for eigenvalues and entropy
as we found earlier using the density matrix approach.
As the new method illustrates, there is no need to con-
struct the density matrix. Instead, one uses the consoli-
dated Gram matrix, which can be easily calculated from
quantum overlaps. Clearly, the consolidated-Gram ma-
trix method is more elegant for our purposes. This is
evident even at |S| = 2. This is even more critical for
more complex processes since AL grows as |S| grows.

2. (R–k)-Golden Mean Process

The (R–k)-Golden Mean Process is constructed to have
Markov-order R and cryptic-order k. Its ε-machine is
shown in Fig. 13. The 0th state σ0 has probability π0 =
1/(R + k − p(R + k − 1)) while all other states σi have
probability πi = (1− p)π0.
Its QPMM is strictly tree-like with depth d = k + 1 and
maximal width k. All edges have a unit weight except
for those edges leaving A-paired states. The latter edges,
numbering k in total, have an associated weight of √p.
The eigenvalues of the consolidated Gram matrix can be
obtained from:

det(G̃(L) − λI) = (π1 − λ)R+k−min(L,k)−1

×

∣∣∣∣∣∣∣∣∣∣
π0 − λ π0

√
p · · · π0

√
pmin(L,k)

π1
√
p π1 − λ π1

√
pmin(L,k)−1

... . . .
π1
√
pmin(L,k) π1 − λ

∣∣∣∣∣∣∣∣∣∣
= 0 ,
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0

1
R + k − 1

k

. . .
...

1 :p

1:1 0:1− p

1:1

1:1

0:1

0:1

FIG. 13. ε-Machine for the (R–k)-Golden Mean Process.

which directly yields the von Neumann entropy. Note
that although the Cq(L) is not actually linear in L, it
appears approximately linear.
We observe that π is invariant under the simultaneous
change of:

R′ = R+m , while k′ = k −m , (C1)

for any m ∈ Z. Although we insist on maintaining
R′ ≥ k′ ≥ 0 for preservation of their functional roles.
Furthermore, this transformation preserves det(G̃(L)−λI)
for L ≤ k and L ≤ k′. Hence, Cq(L) is invariant to the
simultaneous transformation of Eq. (C1) for L ≤ k and
L ≤ k′. This explains the agreement noted in Fig. 6’s
caption—that Cq(L) for (R–k)-GM is the same as Cq(L)
for ((R+ 1)–(k − 1))-GM for L ≤ k.
To give an explicit example, let’s consider the (4–3)-GM

Process of Fig. 1. State A has probability πA = 1/(7−6p)
while all other states have probability πi = (1−p)/(7−6p).
Let’s calculate:

• For L = 0:

det(G̃(0) − λI) = (πB − λ)6(πA − λ) ,

yielding Λ
G̃(0) = {πB , πA} (with aπB = 6) and

Cq(0) = −6πB log πB − πA log πA .

• For L = 1:

det(G̃(1) − λI)
= (πB − λ)5 [λ2 − (πA + πB)λ+ πAπB(1− p)

]
,

yielding Λ
G̃(1) = {πB , c+, c−} with c± = 1

2 (πA +
πB)± 1

2
[
(πA + πB)2 − 4πAπB(1− p)

]1/2 (and with
aπB = 5), and:

Cq(1) = −5πB log πB − c+ log c+ − c− log c− .

• For L = 2:

det(G̃(2) − λI)

= (πB − λ)4

∣∣∣∣∣∣
πA − λ πAp

1/2 πAp

πBp
1/2 πB − λ πBp

1/2

πBp πBp
1/2 πB − λ

∣∣∣∣∣∣ .
• For L ≥ 3:

det(G̃(L) − λI)
= det(G̃(3) − λI)

= (πB − λ)3

∣∣∣∣∣∣∣∣
πA − λ πAp

1/2 πAp πAp
3/2

πBp
1/2 πB − λ πBp

1/2 πBp

πBp πBp
1/2 πB − λ πBp

1/2

πBp
3/2 πBp πBp

1/2 πB − λ

∣∣∣∣∣∣∣∣ .
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