
Santa Fe Institute Working Paper 2017-08-029
arxiv.org:1707.09553 [quant-ph]

Extreme Quantum Memory Advantage for Rare-Event Sampling

Cina Aghamohammadi,∗ Samuel P. Loomis,† John R. Mahoney,‡ and James P. Crutchfield§
Complexity Sciences Center and Physics Department,

University of California at Davis, One Shields Avenue, Davis, CA 95616
(Dated: October 30, 2017)

We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated
by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum
and classical resources for rare-event sampling. For a fixed stochastic process, the first is the
classical-to-quantum ratio of required memory. We show for two example processes that there exists
an infinite number of rare-event classes for which the memory ratio for sampling is larger than r,
for any large real number r. Then, for a sequence of processes each labeled by an integer size N ,
we compare how the classical-to-quantum required memory ratio scales with N . In this setting,
since both memories can diverge as N →∞, the efficiency metric tracks how fast they diverge. An
extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞,
but the quantum memory has a finite bound. We then show that finite-state Markov processes and
spin chains exhibit extreme memory advantage for sampling of almost all of their rare-event classes.

PACS numbers: 05.45.-a 89.75.Kd 89.70.+c 05.45.Tp
Keywords: quantum algorithm, large deviation theory, biased sampling, quantum memory, quantum advantage,
stochastic process, hidden Markov model

I. INTRODUCTION

From earthquakes to financial market crashes, rare events
are associated with catastrophe—from decimated social
infrastructure and the substantial loss of life to global
economic collapse. Though rare, their impact cannot
be ignored. Prediction and modeling such rare events
is essential to mitigating their effects. However, this is
particularly challenging, often requiring huge datasets
and massive computational resources, precisely because
the events of interest are rare.
Ameliorating much of the challenge, biased or extended
sampling [1, 2] is an effective and now widely-used method
for efficient generation and analysis of rare events. The
underlying idea is simple to state: transform a given
distribution to a new one where previously-rare events
are now typical. This concept was originally proposed
in 1961 by Miller to probe the rare events generated by
discrete-time, discrete-value Markov stochastic processes
[3]. It has since been extended to address non-Markovian
processes [4]. The approach was also eventually adapted
to continuous-time first-order Markov processes [5–7]. To-
day, the statistical analysis of rare events is a highly
developed toolkit with broad applications in sciences and
engineering [8]. Given this, it is perhaps not surprising
that the idea and its related methods appear under dif-
ferent appellations, depending on the research arena. For

∗ caghamohammadi@ucdavis.edu
† sloomis@ucdavis.edu
‡ jrmahoney@ucdavis.edu
§ chaos@ucdavis.edu

example, large deviation theory refers to the s-ensemble
method [9, 10], the exponential tilting algorithm [11, 12],
or as generating twisted distributions.
In 1997, building on biased sampling, Torrie and Valleau
introduced umbrella sampling into Monte Carlo simula-
tion of systems whose energy landscapes have high energy
barriers and so suffer particularly from poor sampling
[13]. Since then, stimulated by computational problems
arising in statistical mechanics, the approach was gener-
alized to Ferrenberg-Swendsen reweighting, later still to
weighted histogram analysis [14], and more recently to
Wang-Landau sampling [15].
When generating samples for a given stochastic process
one can employ alternative types of algorithm. There
are two main types—Monte Carlo or finite-state machine
algorithms. Here, we consider finite-state machine algo-
rithms based on Markov chains (MC) [16, 17] and hidden
Markov models (HMM) [18–20]. For example, if the pro-
cess is Markovian one uses MC generators and, in more
general cases, one uses HMM generators.
When evaluating alternative approaches the key questions
that arise concern algorithm speed and memory efficiency.
For example, it turns out there are HMMs that are always
equally or more memory efficient than MCs. There are
many finite-state HMMs for which the analogous MC is
infinite-state [21]. And so, when comparing all HMMs
that generate the same process, one is often interested
in those that are most memory efficient. For a generic
stochastic process, the most memory efficient classical
HMM known currently is the ε-machine of computational
mechanics [22]. The memory it requires is called the
process’ statistical complexity Cµ [23].

mailto:caghamohammadi@ucdavis.edu
mailto:sloomis@ucdavis.edu
mailto:jrmahoney@ucdavis.edu
mailto:chaos@ucdavis.edu

2

Today, we have come to appreciate that several important
mathematical problems can be solved more efficiently
using a quantum computer. Examples include quantum
algorithms for integer factorization [24], search [25], eigen-
decomposition [26], and solving linear systems [27]. Not
long ago and for the first time, Ref. [28] provided a
quantum algorithm that can perform stochastic process
sample-generation using less memory than the best-known
classical algorithms. Recently, using a stochastic process’
higher-order correlations, a new quantum algorithm—the
q-machine—substantially improved this efficiency and
extended its applicability [29]. More detailed analysis and
a derivation of the closed-form quantum advantage of the
q-machine is given in a sequel [30]. Notably, the quantum
advantage has been verified experimentally for a simple
case [31].
The following brings together techniques from large de-
viation theory, classical algorithms for stochastic pro-
cess generation, computational complexity theory, and
the newly introduced quantum algorithm for stochastic
process generation to propose a new, memory efficient
quantum algorithm for the biased sampling problem. We
show that there can be an extreme advantage in the quan-
tum algorithm’s required memory compared to the best
known classical algorithm where the required memory
for classical algorithm grows unboundedly with problem
size, but is bounded from above for the quantum algo-
rithm. Three examples are analyzed here. The first is
the simple, but now well-studied Perturbed Coin Process.
The second is a more physical example—a stochastic pro-
cess that arises from the Ising next-nearest-neighbor spin
system in contact with thermal reservoir. The third is
a sequence of processes generated by a series of Ising
N -nearest-neighbor Hamiltonians.
Today, we know of several different sampling problems
for which their best quantum algorithm has an advantage
compared to the best classical algorithm. These sampling
problems fall into two categories. First are those in which
the problem is quantum in nature, such as boson sampling
[32]. Second are the ones in which the target problem is
classical. Function sampling [33] and mixing [34] are in
this category.
On the one hand, the advantage for both boson sampling
and mixing appears in shorter run times for the quantum
algorithm. For the problem of rare-event sampling we
study here the run times for both classical and quantum
algorithms are the same. On the other hand, for function
sampling advantage appears in smaller required memory;
this is similar to our problem. In both boson sampling and
function sampling, the advantage appears as an increasing
function of problem size. While for mixing it is function
of the spectral gap—that is, a property of the problem
input—the Markov chain of interest, in that case. The

quantum memory advantage we introduce here is both
a function of problem size and a property of the input
instance.
In the boson sampling problem, a linear system scatters N
individual bosons into M � N output modes. The goal
then is to sample from the output distribution. It is known
that for large N and M , the run time for the quantum
algorithm is much smaller than for the classical algorithm,
while both algorithms need memory on the order of the
required sample size. In mixing, a Markov chain and an
initial state are given and the goal is to sample from the
stationary distribution over Markov chain’s states with
some acceptable error margin. Denoting the spectral gap
for Markov chain’s transition matrix by δ, the run time for
the best known classical algorithm increases faster than
the quantum algorithm when δ → 0 [35]. As a result,
the notion of an advantage is captured by a function of
δ. In function sampling, a function f : X × Y → {0, 1}
and a probability distribution P(X,Y) over X × Y are
given. Alice and Bob start with no inputs. The goal
then is to sample X, Y , and Z from the distribution
(P, f(P)), where Alice end up with X and Bob with Y

and Z. Algorithm efficiency is then defined by how much
information Alice and Bob must communicate during the
algorithm. It turns out that the best known quantum
algorithm has markedly smaller communication costs than
the classical. In the function sampling problem, as in
many other similar problems, communication cost can be
framed as a memory cost, since Alice can always write
the message in a memory that Bob reads.

II. CLASSICAL ALGORITHM

The object for which we wish to generate samples is
a discrete-time, discrete-value stochastic process [18,
36]: a probability space P =

{
A∞,Σ,P(·)

}
, where

P(·) is a probability measure over the bi-infinite chain
. . . X−2X−1X0X1X2 . . ., each random variable Xi takes
values in a finite, discrete alphabet A, and Σ is the
σ-algebra generated by the cylinder sets in A∞. For
simplicity we consider only ergodic stationary pro-
cesses: that is, P(·) is invariant under time translation—
P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n) for all n,
m—and over successive realizations.
Sampling or generating a given stochastic process refers
to producing a finite realization that comes from the
process’ probability distribution. There are two main
generation (sampling) problems: sequential generation
and simultaneous generation [37]. In sequential generation
or one-shot sampling the goal is to generate one long
sample from the given process. However, in simultaneous

3

A B

D C

E F

r|1

1|1

p|1

1 � r|0

s|2

1 � s|0

1|0

1
2 |1

1
2 |0

q|2

1 � p � q|0

FIG. 1. Hidden Markov model generator of a stochastic process
with infinite-range statistical dependencies that requires an
HMM with only six states. To generate the same process via
a Markov chain requires one with an infinite number of states
and so infinite memory.

generation the goal is to generate M � 1 realizations
of a process simultaneously, each of which is statistically
independent of the others.
Generally, generating a memoryful process via its proba-
bility measure P(·) is impossible due to the vast number of
allowed realizations and, as a result, this prosaic approach
requires an unbounded amount of memory. Fortunately,
there are more compact ways than specifying in-full the
probability measure on the sequence sigma algebra. This
recalls the earlier remark that HMMs can be arbitrarily
more compact than alternative algorithms for the task of
generation.
An HMM is specified by a tuple

{S,A, {T (x), x ∈ A}
}
. In

this, S is a finite set of states, A is a finite alphabet, and
{T (x), x ∈ A} is a set of |S| × |S| substochastic symbol-
labeled transition matrices whose sum T =

∑
x∈A T

(x) is
a stochastic matrix.
As an example, consider the HMM state-transition di-
agram shown in Fig. 1, where S = {A,B,C,D,E, F},
A = {0, 1, 2}, and we have three 6 × 6 substochastic
matrices T (0), T (1), and T (2). Each edge is labeled p|x
denoting the transition probability p and a symbol x ∈ A
which is emitted during the transition. In this HMM, of
the two edges exiting state C, one enters state B and the
other enters state A. The edges from C to A and C to B
are labeled by 1

2 |1 and 1
2 |0. This simply means that if the

HMM is in the state C, then with probability 1
2 it goes to

the state A and emits the symbol 1 and with probability
1
2 it goes to state B and emits symbol 0. Following these
transition rules in succession generates realizations in the
HMM’s process.
How does this generation method compare to generating
realizations of the same process via a finite Markov chain?
(Recall that states in a MC not hidden: A = S) It turns
out that this cannot be implemented, since generating
a symbol can depend on the infinite history. That is,

the process has infinite Markov order. As a result, to
generate a realization using a Markov chain one needs
an infinite number of Markovian states. In other words,
implementing the Markov chain algorithm to generate
process samples on a conventional computer requires an
infinite amount of memory.
To appreciate the reason behind the process’ infinite
Markov order, refer to Fig. 1’s HMM. There are two
length-3 state-loops consisting of the edges colored red
(right side of state-transition diagram) and those colored
maroon (left side). Note that if the HMM generates n
1s in a row, we will not know the HMM’s current state,
only that it is either A, D, or E. This state uncertainty
(entropy) is bounded away from 0. The observation holds
for the other loop and its sequences of symbol 0 and
the consequent ambiguity among states B, C, and F .
Thus, there exist process realizations from which we can-
not determine the future statistics, independent of the
number of symbols seen. This means that the process
statistics depend on infinite past sequences—the process
has infinite Markov order. To emphasize, implementing
a MC algorithm for this requires infinite memory. The
contrast with the finite HMM method is an important
lesson: HMMs are strictly more powerful generators, as a
class of algorithms, than Markov chain generators.
For any given process P, there are an infinite number
of HMMs that generate it. Therefore, one is compelled
to ask, which algorithm requires the least memory for
implementation? To appreciate the answer, let’s first
address how much state memory one needs to run an
HMM.
Consider sequential generation in which the goal is to
produce a very long realization of a process. For this, we
use one computer with a code that runs the algorithm
(HMM). At each step, the computer must memorize the
current HMM state. Assuming the HMM has N states,
this requires log2 (N) bits of memory. As a result, if one
wishes to implement one-shot sampling using the mini-
mum required memory then, over all the process’ HMM
generators, one needs to find that with the minimum
number of states.
Here, though, we are interested in simultaneous gener-
ation for which the goal is to simultaneously generate
M � 1 process realizations, each of which is statistically
independent of the others. The effective implementation
uses M computers each with the above code. Similar to
the sequential problem, each computer must memorize
the current state of its HMM. If each computer uses its
own memory, each needs log2 (N) bits of memory as be-
fore. The total memory is thenM log2 (N) bits. However,
we can reduce required memory by using one large mem-
ory shared among the computers. Figure 2 depicts this

4

4

Here we focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally such a process
can be seen as a joint probability distribution P(.) over the bi-infinite chain of random variables . . . X≠1X0X1
Formally the process denoted by P =

)
A,�,P(.)

*
, is a probability space [47, 48]. Each random spin variableXi, i œ Z,

takes values in the set A. Here, the observed symbols come from an alphabet A = {¿, ø} of local spin states but our
results easily can be extend to any finite alphabet. P(·) is the probability measure over the bi-infinite chain of random
variables X≠Œ:Œ = . . . X≠2X≠1X0X1X2 . . . and � is the ‡-algebra generated by the cylinder sets in AŒ. Stationarity
means that P(·) is invariant under index translation. That is, P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n), for all
m œ Z+ and n œ Z. For more information on stochastic processes generated by spin system we refer to [49, 50].
Physical systems, under certain assumptions such as thermal equilibrium, manifest spatial stationary stochastic
processes. Consider a device that can generate stochastic processes. We call a device the simulator of our physical
system if and only if there is no way to distinct the device from the physical system based on the stochastic process
they generate. This means if we put them in black boxes we can not find out which one is which. Often, “simulation”
refers to an approximation. In contrast, we require our simulators to be perfect.
How do these simulators work? Generally we implement the algorithms by writing computer programs. Two common
formalisms used as an algorithm for generation of stochastic processes are Markov Chains (MC) [51, 52] and Hidden
Markov Models (HMM) [47, 53, 54]. The latter can be significantly more compact in their representations (more
e�cient algorithms) and, for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

)S,A, {T (x) : x œ A}
*

where S is a finite
set of states, A is a finite set of alphabets and {T (x) : x œ A} are |S| ◊ |S| substochastic symbol-labeled transition
matrices. The latter’s sum T =

q
xœA T

(x) is a stochastic matrix.
As an example consider the Even Process [55, 56]. The process can be explain by a simple procedure. Consider Alice,
she has a biased coin that with probability p generates heads and with 1 ≠ p generates tales. To generate the Even
process she use this algorithm:

Y
_]
_[

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
‘-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the ‘-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the ‘-machine’s stationary state
distribution: Cµ = H(S) = ≠ q

‡œS Pr(‡) log2 Pr(‡). Key to our analysis of classical simulator resources, it measures
the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the ‘-machine, many in closed-form [66].
Ising ‘-machine How do we construct the ‘-machine that simulates the process P(N,T)? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt≠2, Xt≠1) = P(Xt|Xt≠R, . . . ,Xt≠2, Xt≠1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84) ≠ (91)] shows that P(N,T) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.

4

Here we focus on stationary, discrete-time, discrete-valued stationary stochastic processes. Informally such a process
can be seen as a joint probability distribution P(.) over the bi-infinite chain of random variables . . . X≠1X0X1
Formally the process denoted by P =

)
A,�,P(.)

*
, is a probability space [47, 48]. Each random spin variableXi, i œ Z,

takes values in the set A. Here, the observed symbols come from an alphabet A = {¿, ø} of local spin states but our
results easily can be extend to any finite alphabet. P(·) is the probability measure over the bi-infinite chain of random
variables X≠Œ:Œ = . . . X≠2X≠1X0X1X2 . . . and � is the ‡-algebra generated by the cylinder sets in AŒ. Stationarity
means that P(·) is invariant under index translation. That is, P(Xi1Xi2 · · ·Xim) = P(Xi1+nXi2+n · · ·Xim+n), for all
m œ Z+ and n œ Z. For more information on stochastic processes generated by spin system we refer to [49, 50].
Physical systems, under certain assumptions such as thermal equilibrium, manifest spatial stationary stochastic
processes. Consider a device that can generate stochastic processes. We call a device the simulator of our physical
system if and only if there is no way to distinct the device from the physical system based on the stochastic process
they generate. This means if we put them in black boxes we can not find out which one is which. Often, “simulation”
refers to an approximation. In contrast, we require our simulators to be perfect.
How do these simulators work? Generally we implement the algorithms by writing computer programs. Two common
formalisms used as an algorithm for generation of stochastic processes are Markov Chains (MC) [51, 52] and Hidden
Markov Models (HMM) [47, 53, 54]. The latter can be significantly more compact in their representations (more
e�cient algorithms) and, for this reason, are sometimes the preferred implementation choice.
HMMs represent the generating mechanism for a given process by a tuple

)S,A, {T (x) : x œ A}
*

where S is a finite
set of states, A is a finite set of alphabets and {T (x) : x œ A} are |S| ◊ |S| substochastic symbol-labeled transition
matrices. The latter’s sum T =

q
xœA T

(x) is a stochastic matrix.
As an example consider the Even Process [55, 56]. The process can be explain by a simple procedure. Consider Alice,
she has a biased coin that with probability p generates heads and with 1 ≠ p generates tales. To generate the Even
process she use this algorithm:

Y
_]
_[

Step A: Flip the coin, if the result is heads output 0 and go to the beginning
of step A, else output 1 and go to the next step.

Step B: Output 1 and go to the step A.

Using this algorithm, in a long run she eventually generates the Even process.
Memory
A unifilar HMM is one in which each row of each sub-stochastic matrix has at most one nonzero element. A fledgling
literature on minimal nonunfilar HMMs [29] exists, but constructive methods are largely lacking and, as a consequence,
much less is known [30–32].
‘-Machine A given stochastic process can be correctly generated by any number of alternative unifilar HMMs. The
one requiring the minimum amount of memory for implementation is called the ‘-machine [58] and was first introduced
in Ref. [28]. A process’ statistical complexity Cµ [58] is the the Shannon entropy of the ‘-machine’s stationary state
distribution: Cµ = H(S) = ≠ q

‡œS Pr(‡) log2 Pr(‡). Key to our analysis of classical simulator resources, it measures
the minimal memory for a unifilar simulator of a process. Cµ has been determined for a wide range of physical systems
[59–65]. Helpfully, it and companion measures are directly calculable from the ‘-machine, many in closed-form [66].
Ising ‘-machine How do we construct the ‘-machine that simulates the process P(N,T)? First, we must de-
fine process’ Markov order [52]: the minimum history length R required by any simulator to correctly continue a
configuration.3 Specifically, R is the smallest integer such that:

P(Xt| . . . , Xt≠2, Xt≠1) = P(Xt|Xt≠R, . . . ,Xt≠2, Xt≠1) .

For any finite and nonzero temperature T , Ref. [50, Eqs. (84) ≠ (91)] shows that P(N,T) has Markov order N . One
concludes that su�cient information for generation is contained in the configuration of the N previously generated

3More precisely, we mean that an ensemble of simulators must be able to yield an ensemble of configurations that agree (conditioned
on that past) with the process’ configuration distribution.

A

B

p|0

1 � p|11|1

A A A

0
1
1
0
0
0
1
1…

1
1
1
1
0
1
1
0…

0
0
0
0
1
1
1
1…

0
0
1
1
0
0
0
0…

0
1

1
1

0

0
0
…0

BA …

FIG. 2. (Left) Even Process ε-machine. (Right) Schematic of
simultaneous generation problem. Each black box contains an
Even Process generator. They all share the same memory for
tracking the individual generator states.

schematically. In this way, according to Shannon’s coding
theorem [38], we can encode HMM states to reduce the
amount of memory down to M H(S) ≤ M log2 (N) bits,
where H(S) is the Shannon entropy of the probability dis-
tribution over HMM’s states. The memory per sample is
then just H(S). As a result, if one needs to do simultane-
ous sampling of a given process using minimum required
memory, over all its HMM generators, one needs to find
the HMM with the minimum Shannon state entropy.
For both one shot and simultaneous sampling, the best
known implementation, and provably the optimal predic-
tor, is known as the ε-machine M [22, 39]. It states are
called causal states; we denote this set S. The average
memory required for M(P) to sequentially sample process
P is given by the process’ statistical complexity Cµ(P)
[23]. To calculate it:

1. Compute the stationary distribution π over causal
states. π is the left eigenvector of the state-
transition matrix T with eigenvalue 1: πT = π.

2. Calculate the state’s Shannon entropy H[S] =
−∑σ∈S π(σ) log2 π(σ).

Cµ = H[S] measures the (ensemble average) memory
required simultaneous sampling of the process.
Another important, companion measure is hµ, the process’
metric entropy (or Shannon entropy rate) [40]:

hµ(P) = − lim
n→∞

1
n

∑

w∈An
P(w) log2 P(w) .

Although sometimes confused, it is important to empha-
size that hµ describes randomness in realizations, while
Cµ is the average memory required to generate them.

III. QUANTUM MEMORY ADVANTAGE

Recently, it was shown that a quantum algorithm for
process generation can use less memory than the best
known classical algorithm (ε-machine) [28]. By account-
ing for a process’ higher-order correlations, a new quantum
algorithm—the q-machine—was introduced that substan-
tially improved the original and is, to date, the most
memory-efficient quantum algorithm known for process
generation [29]. We refer to the ratio of required classical
memory Cµ to quantum memory Cq as the quantum mem-
ory advantage. Closed-form expressions for the quantum
memory advantage are given in Ref. [30].
Importantly, the quantum advantage was recently veri-
fied experimentally for the simple perturbed coins process
[31]. It was also discovered that the q-machine can con-
fer an extreme quantum memory advantage. For exam-
ple, when generating ground-state configurations (in a
Dyson-type spin model with N -nearest-neighbor interac-
tions at temperature T), the quantum advantage scales
as NT 2/ log2 T [41, 42]. One consequence of quantum
advantage arises in model selection [43]. Statistical in-
ference of models for stochastic systems often involves
controlling for model size or memory. And so, quantum
statistical inference may see large improvements.
The following determines the quantum advantage in bi-
ased sampling of a process’ rare events. In particular, we
develop tools to determine how the memory requirements
of classical and quantum algorithms vary over rare-event
classes.

IV. QUANTUM ALGORITHM

We define a stochastic process P’s quantum machine
by Q(P) = {H,A, {Kx, x ∈ A}}, where H denotes the
Hilbert space with dimension |S| in which quantum states
reside, A is the same alphabet as the given process’, and
{Kx, x ∈ A} is a set of Kraus operators we use to specify
the measurement protocol for states [44].1 Assume we
have the quantum state (density matrix) ρ0 ∈ B(H) in
hand. We perform a measurement by applying Krauss
operators and, as a result, measure X. The probability
of yielding symbol X = x is:

P(X = x0|ρ0) = tr
(
Kx0ρ0K

†
x0

)
.

1 We adopt a particular form for the Kraus operators. In general,
they are not unique.

5

After measurement with outcome X = x0, the new quan-
tum state is:

ρ1 =
Kx0ρ0K

†
x0

tr(Kx0ρ0K
†
x0)

.

Repeating these measurements generates a stochastic
process. The process potentially could be nonergodic,
depending on the initial state ρ0. However, starting the
q-machine in the stationary state defined by:

ρs =
∑

x∈A
KxρsK

†
x ,

and repeatedly measuring generates a stationary stochas-
tic process over x ∈ A. For any given process, ρs can be
calculated by the method introduced in Ref. [30].

Our immediate goal is to design a quantum generator of
a given classical process. (Section VI will then take the
given process to represent a rare-event class of another
process.) For now, we start with the process’ ε-machine.
The construction consists of three steps, as follows.

First step Map every causal state σi ∈ S to a pure
quantum state |ηi〉. Each signal state |ηi〉 encodes the set
of length-R sequences that may follow σi, as well as each
corresponding conditional probability:

|ηi〉 ≡
∑

w∈AR

√
P(w|σi) |w〉 ,

where w denotes a length-R sequence, P(w|σi) =
P(X0 · · ·XR−1 = w|S0 = σi), and R is the process’ the
Markov order. The resulting Hilbert space is Hw with
size |A|R, the number of length-R sequences, with basis
elements |w〉 = |x0〉 ⊗ · · · ⊗ |xR−1〉. From here on out,
assume all |ηi〉s are linearly independent.2 As a result,
one defines |S| new states |ξi〉 that reside in a Hilbert
space of size |S|. (This is much smaller than the |ηi〉’s
Hilbert space, which has size |A|R.) Moreover, the |ξi〉s
have the same pairwise overlaps as the |ηi〉s. That is, for
all i, j:

〈ξi|ξj〉 = 〈ηi|ηj〉 .

Reference [30] developed a method to calculate all the
overlaps 〈ηi|ηj〉 for a given process in closed form. Since
the |ηi〉s are linearly independent one can use the overlaps
to construct the |ξi〉s.

2 The procedure requires only slight modification for linearly de-
pendent causal states and, in any case, does not affect the results.

Second step Form a matrix Ξ by assembling the signal
states:

Ξ =
[
|ξ0〉 |ξ1〉 · · · |ξ|S|−1〉

]
.

Define |S| new bra states |ξ̃i〉:



〈ξ̃0|
〈ξ̃1|
· · ·

〈ξ̃|S|−1|


 = Ξ−1 .

That is, we design the new bra states such that we obtain
the identity:




〈ξ̃0|
〈ξ̃1|
· · ·

〈ξ̃|S|−1|



[
|ξ0〉 |ξ1〉 · · · |ξ|S|−1〉

]
= I .

Third step Define |A| Kraus operators Kx for all x ∈ A
via:

Kx =
∑

i,j

√
T xij |ξj〉 〈ξ̃i| .

By applying Kraus operators repeatedly one generates
the target stochastic process. For example, consider the
case in which the q-machine is in state |ξi〉 〈ξi| and we
apply the Kraus operators. Then, if we do not make a
measurement, the next state is

∑
j,x

T xij |ξj〉 〈ξj |. Let us say,
though, that we make a measurement and the result is
x. The next state is |ξj〉 〈ξj |, where j is the unique index
where T xij is nonzero.
The Hilbert space in which the algorithm operates has
dimension |S|. Since the operation is not unitary in this
space and measurements are not projective, one may argue
that |S| is not the actual size of the Hilbert space needed
to physically implement the algorithm. However, it was
recently shown that the algorithm presented here can be
implemented by unitary operations and projective mea-
surements in a Hilbert space with dimension |S| ∗ |A| [45].
This new result gives an experimental implementation of
our algorithm.
Using the quantum generator Q(P), the required aver-
age memory for simultaneous generation of process P is
Cq(P) = S(ρs), where S(ρ) = −tr(ρ log ρ) denotes the
von Neumann entropy [44], and the required average mem-
ory for sequential generation of P is the Hilbert space
dimension |S|.
Comparing memory efficiencies of classical and quantum
algorithms requires an efficiency metric. Depending on the

6

setting, there are two one can use. In the single-process
case, P is given and memory efficiency is defined as a
the ratio of required memory for the classical algorithm
to the quantum algorithm. Here, since we only explore
finite-size stochastic processes, both memories are finite
and the ratio is a good quantitative efficiency measure.
In the multi-process case, a series of stochastic processes
is given, with each process labeled by an integer N that
measures process size. Then, memory efficiency is defined
by how the memory scales in N for the classical algo-
rithm compared to the quantum. This metric is closer
to relative-complexity definitions familiar in computation
complexity theory. In the present case, since both memo-
ries are allowed to diverge when N →∞, the quantitative
measure of efficiency tracks how fast they diverge. We
say we have extreme quantum memory advantage when
the classical memory diverges as N →∞, but quantum
memory converges to a finite quantity.

V. TYPICAL REALIZATIONS

At this point, we established classical and quantum repre-
sentations of processes and characterized their respective
memory requirements. Using this, our purpose now shifts
to monitor classical and quantum resources required to
generate rare-event classes of a process’ realizations. Our
first task is to review the theory of typical events and
their complement—rare events.
The concept of a stochastic process is quite general. Any
physical system that exhibits stochastic dynamics in time
or space may be thought of as generating a stochastic
process. In the spatial setting one considers not time
evolution, but rather the spatial “dynamic”. For example,
consider a one-dimensional noninteracting Ising spin-½
chain with classical Hamiltonian H = −∑n

i=1 hσi in
contact with a thermal reservoir at temperature T . After
thermalizing, a spin configuration at one instant of time
may be thought of as having been generated by a process
that scans the lattice left-to-right (or, equivalently, right-
to-left). The probability distribution over these spatial-
translation invariant configurations defines a stationary
stochastic process—a simple Markov random field.
For n� 1, one can ask for the probability of seeing k up
spins. The Strong Law of Large Numbers [46] guarantees
that for large n, the ratio k/n almost surely converges to
p↑ = 1

2 (1 + tanh(h/kBT)). That is:

P
(

lim
n→∞

k

n
= p↑

)
= 1 .

Informally, a typical sequence is one that has close to p↑n
up-spins. However, this does not preclude seeing other

Typical
Set

Forbidden
Set

Atypical
Set

A1

FIG. 3. For a given process, the space A∞ of all sequences is
partitioned into forbidden sequences, sequences in the typical
set, and sequences neither forbidden nor typical—the atypical
or rare sequences.

kinds of long runs, e.g., all up-spins or all down-spins. It
simply means that the latter are rare events, compared
to the typical ones.
Now, let us formally define the concept of typical real-
izations and, consequently, rare ones. Consider a given
process P and let An denote the set of of all possible
length-n realizations. Then, for an arbitrary 0 < ε � 1
the process’ typical set [38, 47, 48] is defined:

Anε ≡{w : 2−n(hµ+ε) ≤ P(w) ≤ 2−n(hµ−ε), w ∈ An}, (1)

where hµ is the process’ Shannon entropy rate, introduced
above.
According to the Shannon-McMillan-Breiman theorem
[49–51], for a given ε � 1, sufficiently large n∗, and
w ∈ An:

P(w /∈ Anε) ≤ ε , (2)

for all n ≥ n∗. There are two important lessons here.
First, from Eq. (1) we see that all sequences in the
typical set have approximately the same probability. More
precisely, the probability of typical sequences decays at
the same exponential rate. The following adapts this to
use decay rates to identify distinct sets of rare events.
Second, coming from Eq. (2), for large n the probability
of sequences falling outside the typical set is close to
zero—these are the sets of rare sequences.
Another important consequence of the theorem is that
sequences generated by a stationary ergodic process fall
into one of three partitions; see Fig. 3. The first contains
sequences that are never generated; they fall in the the
forbidden set. For example, the HMM in Fig. 1 never
generates sequences that have consecutive 2s. The second
partition consists of those in the typical set—the set with
probability close to one, as in Eq. (1). And, the last con-
tains sequences in a family of atypical sets—realizations

7

that are rare to different degrees. We now refine this
classification by dividing the atypical sequences into iden-
tifiable subsets, each with their own characteristic rarity.
Mirroring the familiar Boltzmann weight in statistical
physics [52], in the n → ∞ limit, we define the subsets
ΛPU ⊂ A∞ for a process P as:

ΛPU,n =
{
w : − log2 P(w)

n
= U, w ∈ An

}
and (3)

ΛPU = lim
n→∞

ΛPU,n .

This partitions A∞ into disjoint subsets ΛPU in which all
w ∈ ΛPU have the same probability decay rate U . Physics
vernacular would speak of the sequences having the same
energy density U .3 Figure 4 depicts these subsets as
“bubbles” of equal energy. Equation (1) says the typical set
is that bubble with energy equal to the process’ Shannon
entropy rate: U = hµ. All the other bubbles contain rare
events, some rarer than others. They exhibit faster or
slower probability decay rates.
Employing a process’ HMM to generate realizations pro-
duces sequences in the typical set with probability close
to one and, rarely, atypical sequences. Imagine that one is
interested in a particular class ΛPU of rare sequences, say,
those with energy U . (One might be concerned about the
class of large-magnitude earthquakes or the emergence of
major instabilities in the financial markets, for example.)
How can one efficiently generate these rare sequences? We
now show that there is a new process PU whose typical
set is ΛPU and this returns us directly to the challenge of
biased sampling.

VI. BIASED SAMPLING

Consider a finite set of configurations {ci} with proba-
bilities specified by distribution P(·) and an associated
set {ωi} of weighting factors. Consider the procedure of
reweighting that introduces a new distribution P̃(·) over
configurations where:

P̃(ci) = P(ci) exp(ωi)∑
i

P(ci) exp(ωi)
.

Given a process P and its ε-machine M(P), How do
we construct an ε-machine M(PU) that generates P’s
atypical sequences at some energy density U 6= hµ or, as

3 U , considered as a random variable, is sometimes called a self
process [53].

Typical
Set

Forbidden
Set

A1

+11�1 0
�

Umax Uminhµ

FIG. 4. Space of all sequences A∞ partitioned into ΛU s—
isoenergy density or equal probability-decay-rate bubbles—in
which all sequences in the same ΛU have the same energy
density U . The typical set is one such bubble with energy equal
to Shannon entropy rate: U = hµ. Another important class is
the forbidden set, in which all sequences do not occur. The
forbidden set can also be interpreted as the subset of sequences
with infinite positive energy. By applying the map Bβ to
the process and changing β continuously from −∞ to +∞
(excluding β = 0) one can generate any rare class of interest
ΛPU . β → −∞ corresponds to the most probable sequences
with the largest energy density Umax, β = 1 corresponds to
the typical set and β → +∞ corresponds to the least probable
sequences with the smallest energy density Umin.

we denoted it, the set ΛPU? Here, we answer this question
by constructing a map Bβ : P → Pβ from the original
process P to a new one Pβ . The map is parametrized
by β ∈ R/{0} which indexes the rare set of interest.
(We use β for convenience here, but it is related to U
by a function introduced shortly.) Both processes P ={
A∞,Σ,P(·)

}
and Pβ =

{
A∞,Σ,Pβ(·)

}
are defined on

the same measurable sequence space. The measures differ,
but their supports (allowed sequences) are the same. For
simplicity we refer to Bβ as the β-map.
Assume we are given M(P) =

{S,A, {T (x), x ∈ A}
}
. We

showed that for every probability decay rate or energy
density U , there exists a particular β such thatM(Pβ) typ-
ically generates the words in ΛPU,n for large n [37]. The β-
map which establishes this is calculated by a construction
that relates M(P) to M(Pβ) =

{S,A, {S(x)
β , x ∈ A}

}
—

the HMM that generates Pβ :

1. For each x ∈ A, construct a new matrix T(x)
β for

which
(
T(x)
β

)
ij

=
(
T(x))β

ij
.

8

2. Form the matrix Tβ =
∑
x∈A T

(x)
β .

3. Calculate Tβ ’s maximum eigenvalue λ̂β and corre-
sponding right eigenvector r̂β .

4. For each x ∈ A, construct new matrices S(x)
β for

which:

(
S(x)
β

)
ij

=
(
T(x)
β

)
ij

(r̂β)j
λ̂β(r̂β)i

.

Having constructed the new process Pβ by introducing
its generator, we use the latter to produce some rare set
of interest ΛPU,n.

Theorem 1. In the limit n→∞, within the new process
Pβ the probability of generating realizations from the set
ΛPU,n converges to one:

lim
n→∞

Pβ(ΛPU,n) = 1 ,

where:

U = β−1(hµ(Pβ)− log2 λ̂β
)
. (4)

In addition, in the same limit the process Pβ assigns equal
energy densities over all the members of the set ΛPU,n.

Proof. See Ref. [37].
As a result, for large n the process Pβ typically generates
the set ΛPU,n with the specified energy U . The process
Pβ is sometimes called the auxiliary, driven, or effective
process [54–56]. Examining the form of the energy in
Eq. (4), one sees that there is a one-to-one relationship
between β and U . And so, we can equivalently denote the
process Pβ by PU . More formally, every word in ΛPU with
probability measure one is in the typical set of process
Pβ .
The β-map construction guarantees that the HMMsM(P)
and M(Pβ) have the same states and transition topology:(
T(x)
β

)
ij
6= 0 ⇐⇒

(
S(x)
β

)
ij
6= 0. The only difference is in

their transition probabilities. M(Pβ) is not necessarily an
ε-machine—the most memory-efficient classical algorithm
that generates the process. Typically, though, M(Pβ) is
an ε-machine. Moreover, there are only finitely many βs
for which it is not. (More detailed development along
these lines will appear in a sequel.)

VII. QUANTUM AND CLASSICAL MEMORY
FOR BIASED SAMPLING

Having introduced the necessary background to compare
classical versus quantum models and to appreciate typical
versus rare realizations, we are ready to investigate the

A Bp|0

1 � p|1

q|1

1 � q|0

FIG. 5. ε-Machine generator of the Perturbed Coins Process.
Edges are labeled with conditional transition probabilities and
emitted symbols. For example, for the self-loop on state A, p|0
indicates the transition is taken with probability P(0|A) = p
and the symbol 0 is emitted.

quantum memory advantage when generating a given
process’ rare events.
The last section concluded that the memory required by
the classical algorithm to generate P’s rare sequences
with energy density U is:

Cµ(Pβ) = Cµ(Bβ(P)) ,

where U and β are related via U = β−1(hµ(Pβ)−log2 λ̂β
)
.

Similarly, the memory required by the quantum algorithm
to generate the rare class with energy density U is:

Cq(Bβ(P)) .

For simplicity, we denote these two quantities by Cµ(β) ≡
Cµ(Pβ) and Cq(β) ≡ Cq(Pβ).
The following analyzes the advantage for three example
processes—two in the single-process setting and one in
the multi-process setting. For the first two, we consider
particular given stochastic processes and study the advan-
tage (memory ratio) as the metric of memory efficiency.
In the third example, we consider a series of stochastic
processes labeled by their size N and compare how both
classical and quantum memories scale with N . The ratio
of scaling then is the metric for memory efficiency.

A. Quantum Memory Advantage for a Simple
Markov Process

Let’s start in the single-process setting in which an indi-
vidual stochastic process is given. Consider the case where
we have two biased coins, call them A and B, and each
has a different bias p and 1−q both for Heads (symbol 0),
respectively. When we flip a coin, if the result is Heads,
then on the next flip we choose coin A. If the result
is Tails, we choose coin B. Flipping the coins over and
over again results in a process Ppc called the Perturbed
Coins Process [28]. Figure 5 shows the process’ ε-machine
generator M(Ppc), where S = {A,B} and A = {0, 1}.

9

One can also generate this process with a quantum ma-
chine Q(Ppc). Using the construction introduced in

Sec. IV, it has two Kraus operators corresponding to
symbols 0 and 1:

K0 = 1
d

[√
q(1− q)p− p√1− p p

√
p− (1− q)√p√

q(1− q)(1− p)− (1− p)
√

(p) p
√

1− p− (1− q)√1− p

]

and:

K1 = 1
d

[
q
√

(1− q)− (1− p)√1− q
√
p(1− p)(1− q)− (1− q)√q

q
√

(q)− (1− p)
√

(q)
√
p(1− p)q − q√1− q

]
,

�15 �10 �5 0 5 10
�

0

0.4

0.8

5 10

�

10�3

10�7

ClassicalQuantum

FIG. 6. Classical memory Cµ(β) and quantum memory Cq(β)
versus β for biased sampling of Perturbed Coins Process’ rare
sequence classes: See Fig. 5, with p = 0.6 and q = 0.8. As the
inset shows, for large β both classical and quantum memories
decay exponentially with β, but the quantum memory decays
faster.

where d = √pq+
√

(1− p)(1− q). For its stationary state
distribution we have:

ρs = 1
2− p− q

[
1− p α

α 1− q

]
,

where α = (1− q)
√
p(1− p) + (1− p)

√
q(1− q).

Figure 6 shows the classical and quantum memory costs
to generate rare realizations: Cµ(β) and Cq(β) versus β
for different β-classes. Surprisingly, the two costs exhibit
completely different behaviors. For example, lim

β→0
Cq =

0, while lim
β→0

Cµ = 1. More interestingly, as the inset
demonstrates, even though both Cµ(β) and Cq(β) vanish
exponentially fast, in the limit of β →∞ Cq(β) goes to
zero noticeably faster.
We define the memory efficiency η(β) of biased sampling

in the single-process setting as the ratio of classical to
quantum memory:

η(β) ≡ Cµ(β)
Cq(β) .

Figure 7 graphs η(β), revealing how it divides into three
distinct scaling regimes.
First, for small |β| the memory ratio scales as O(β−2).
Second, for large positive β the memory ratio scales ex-
ponentially O(exp (cβ)) as one increases β, where c is a
function of p and q. Third, for large negative β, there
is no quantum advantage. Since we are analyzing finite-
state processes, this regime appears and is the analog of
population inversion. And so, formally there are β-class
events with negative β.
Such is the quantum advantage for the Perturbed Coins
Process at p = 0.6 and q = 0.8. The features exhibited—
the different scaling regimes—are generic for any p > 1−q,
though. Moreover, for Perturbed Coins Processes with
p < 1 − q, the positive and negative low temperature
behaviors switch.

B. Quantum Memory Advantage for
Next-Nearest-Neighbor Spin Systems

Again, consider the single-process setting in which an
individual stochastic process is given. Let us, however,
analyze the quantum advantage in a more familiar physi-
cal system. Consider a general one-dimensional ferromag-
netic next-nearest-neighbor Ising spin-½ chain [57, 58]
defined by the Hamiltonian:

H = −
∑

i

(
sisi+1 + 1

4sisi+2
)
, (5)

in contact with thermal bath at temperature kBT = 1.
The spin si at site i takes on values {+1,−1}.

10

�101 �10�1 �10�3

1

102

104

106
⌘
(�

)

10�3 10�1 101

1

102

104

106

�

/ ef(p,q)�

/ 1

�2

1

FIG. 7. The classical to quantum memory ratio for generating
rare realizations of the Perturbed Coins Process with p = 0.6
and q = 0.8 when employing its q-machine instead of its
(classical) ε-machine. Three different advantages occur: (i)
near β = 0 the ratio scales as O(β−2), (ii) for large positive β,
it scales exponentially with β, O(exp (f(q, p)β)), and (iii) no
advantage at large negative β.

After thermalizing, a spin configuration at one instant of
time may be thought of as having been generated left-
to-right (or, equivalently, right-to-left) along the lattice.
The probability distribution over these spatial-translation
invariant configurations defines a stationary stochastic
process. Reference [59, Eqs. (84)− (91)] showed that for
any finite and nonzero temperature T , this process has
Markov order R = 2. More to the point, the ε-machine
that generates this process has four causal states and
those states are in one-to-one correspondence with the
set of length-2 spin configurations.
Figure 8 displays the parametrized ε-machine that gen-
erates this family of spin-configuration processes. To
simulate the process, the generator need only remember
the last two spins generated. This means the ε-machine
has four states, ↓↓, ↓↑, ↑↓, and ↑↑. If the last two observed
spins are ↑↑ for example, then the current state is ↑↑. We
denote the probability of generating a ↓ spin given that
the previous two spins were ↑↑ by p↓↓↓↑↑↑↑↑↑. If the generator is
in the ↑↑ state and generates a ↓ spin, then the generator
state changes to ↑↓.
To determine the ε-machine transition probabilities
{T (x)}x∈A, we first compute the transfer matrix V for
the Hamiltonian of Eq. (5) at temperature T and then
extract conditional probabilities, following Ref. [59] and
Ref. [41]’s appendix.
What are the classical and quantum memory costs for
bias sampling of the rare spin-configuration class with
decay rate U , as defined in Eq. (3)? First, note that U is
not a configuration’s actual energy density. If we assume

"" "#

#"

p"""""""""

p###""""""

p""""#"#"#

p###"#"#"#

p"""#"#"#"

p####"#"#"

p"""######

p#########

FIG. 8. ε-Machine that generates the spin configurations
occurring in the one-dimensional ferromagnetic next-nearest-
neighbor Ising spin chain with the Hamiltonian in Eq. (5).

the system is in thermal equilibrium and thus exhibits a
Boltzmann distribution over configurations, then U and
E are related via:

U = log2(e)
kBT

(E −F(T)) ,

where:

F(T) = −kBT lim
n→∞

1
n

ln


 ∑

{w∈An}
e
−nE(w)

kBT


 .

This simply tells us that if a stochastic process describes
thermalized configurations of a physical system with some
given Hamiltonian, then every rare-event bubble in Fig. 4
can be labeled either with β, U , or E. Moreover, there is
a one-to-one mapping between every such variable pair.
Figure 9 plots η(U) versus U—the memory ratio for gener-
ating rare configurations with decay rate U . To calculate
η(U) for a given process P , first we determine the process’
classical generator M(P) using the method introduced in
Ref. [39]. Second, for every β ∈ R/{0}, using the map
introduced in Sec. VI, we find the new classical genera-
tor M(Pβ). Third, using the construction introduced in
Sec. III, we find Q(Pβ). Fourth, using Thm. 1 we find
the corresponding U for the chosen β. Using these results
gives η(U(β)) = Cµ(β)/Cq(β). By varying β in the range
R/{0} we cover all the energy density Us. Practically, to
calculate η(U) in Fig. (9), we chose 2000 β ∈ [−10, 7.5].
As pointed out earlier, β = 1 always corresponds to the
process itself. And, one obtains its typical sequences. As
one sees in Fig. 9, the memory ratio η(1) < 2. This simply
means that, though there is a quantum advantage gener-
ating typical sequences, it is not that notable. However,
the figure highlights four other interesting regimes.
First, there is the β → ∞ limit corresponding to the
rare class with minimum decay rate equal to Umin =
− log2(p↓↓↓↓↓↓↓↓↓) = − log2(p↑↑↑↑↑↑↑↑↑). From Eq. (5) it is easy to

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

U

100

101

102

103

104

⌘
(U

)

� = 1 � = 0

� ! �1� ! 1

FIG. 9. Classical to quantum memory ratio for biased sampling
of Ising spin configurations: η(U) versus decay rate U for bias
sampling of equal-energy density spin configurations. Vertical
lines locate βs corresponding to particular Us. Note the
memory ratio η(U) diverges at U = u0 ≈ 1.878 corresponding
to β = 0. Note that the quantum memory advantage is not
limited to β = 0, but occurs in a large neighborhood around
it. Quantitatively, for any arbitrary large number r there exist
a number ε for which the rare class β0 = ε has the memory
ratio η(β0) > r.

see that this rare bubble only has two configurations as
members: all up-spins or all down-spins. Let us consider
finite but large β � 1 that corresponds to the rare class
with a low energy density close to Umin. Figure 10(top-
left) shows a general ε-machine for this process. Low
color intensity for both edges and states means that the
process rarely visits them during generation. This means,
in turn, that a typical realization consists of large blocks
of all up-spins and all down-spins. These large blocks are
joined by small segments.
Second, there is the β → −∞ limit that corresponds to
the rare class with maximum decay rate equal to Umax =
− 1

2 log2(p↓↓↓↓↑↓↑↓↑p
↑↑↑
↑↓↑↓↑↓). From Eq. (5) it is easy to see that this

rare bubble only has one configuration as a member: a
periodic repetition of spin down and spin up. Consider
finite β � 1 corresponding to a rare class with a high
energy density close to Umax. Figure 10(top-right) shows
the general ε-machine for the associated process. The
typical configuration consists of large blocks tiled with
spin-up and spin-down pairs that are connected by other
short segments.
Third, there is the β → 0+ limit. In this limit we expect to
see completely random spin-up/spin-down configurations.
Figure 10(bottom-right) shows the ε-machine for this class
labeled with nonzero small β. The transition probability
for the edges labeled + is 1/2 + ε and for the edges labeled
− is 1/2− ε, where ε is a small positive number. As one

"" "#

#"

+

�

�
+

+

�

�
+

"" "#

#"

�
+

+

�

�
+

+

�

�
!

�
1

�
!

+
1

�
!

0
+

�
!

0
�

"" "#

#"

"" "#

#"

FIG. 10. Classical generators of four important rare classes:
(Top-left) Negative zero-temperature limit. (Top-right) posi-
tive zero temperature limit. (Bottom-left) Negative infinite
temperature limit. (Bottom-right) positive temperature limit.
Gray edges and states denotes them being rarely visited.

can see, even though each transition probability is close
to one-half, the self-loops are slightly favored.
Fourth and finally, there is the β → 0− limit. The gen-
erator here, Figure 10(bottom-left), is similar to that at
positive infinite temperature, except that the edge-sign
labels are reversed. This means that the self-loops are
slightly less favored.
Remarkably, the memory ratio η(U) diverges at U =
u0 ≈ 1.878, where u0 = lim

β→0
U—that is, at both the

positive and negative high-temperature limit. Moreover,
the memory ratio η(U) diverges as (U − u0)−2 in both
limits.

C. Extreme Quantum Memory Advantage for
N-Nearest-Neighbor Spin Systems

Now, consider themulti-process setting in which we specify
a series of stochastic processes labeled by an integer N
that determines the size of each. In this, efficiency is
defined by how the memory scales in N for the quantum
algorithm compared to the classical.
We explore a general one-dimensional ferromagnetic N -
nearest-neighbors Ising spin-½ chain defined by the Hamil-
tonian:

HN = −
∑

i

N∑

k=1

1
kδ
sisi+k ,

in contact with a thermal bath at temperature kBT = 1
and for which there is monopole-dipole coupling (δ = 2).

12

�4 �2 0 2

�

0

1

2

3

4
C

q
(N

,�
)

C
µ
(N

,�
)

1

2

3

4

N

FIG. 11. Classical memory Cµ(N, β) (solid lines) and quan-
tum memory Cq(N, β) (dashed lines) required for generating
process P(N, β) for interaction ranges N = 1, . . . , 4, a range
of β ∈ [−5, 3], and δ = 2. At both limits β → 0+ and β → 0−,
Cµ(N, β) scales linearly with N while Cq(N, β) vanishes. For
any finite β, for sufficiently large N , Cµ(N, β) is an increasing
function of N , while Cq(N, β) is bounded above by 1.

As in the nearest-neighbor spin system, after thermalizing
the probability over configurations at one instant of time
defines a spatially-stationary stochastic process. We de-
note the process generated by this Hamiltonian by P(N).
P(N) has Markov order R = N and also cryptic order
χ = N . More to the point, the ε-machine that generates
this process has 2N causal states and those states are in
one-to-one correspondence with the set of length-N spin
configurations. To determine the ε-machine transition
probabilities {T (x)}x∈A, one can use Ref. [59] and Ref.
[41]’s appendix.
Let P(N, β) denote the process that typically generates
the rare β-class of process P(N). Now, for an arbitrary
fixed β, one can ask how the required classical memory
Cµ(N, β) and quantum memory Cq(N, β) for generating
P(N, β) scales with N .
Figure 11 shows Cµ(N, β) and Cq(N, β) versus β for dif-
ferent Ns. Cµ(.)s are plotted by solid-line and Cqs by
dashed-line. To make them distinguishable, curves at
different Ns are displayed with different colors. Inter-
estingly, in both β → 0+ and β → 0− limits, Cµ(N, β)

scales linearly with N , while Cq(N, β) goes to zero. More
importantly, one can also check that for any finite nonzero
β and sufficiently large N , Cµ(N, β) is an increasing func-
tion of N . Surprisingly, it can be shown that for any
nonzero β and any N , Cq(N, β) is bounded above by 1.
The result is extreme quantum memory advantage for
rare-event sampling of this series of stochastic processes.

VIII. CONCLUSIONS

We introduced a new quantum algorithm for simultaneous
sampling rare events in classical stochastic processes. We
showed that it confers a significant memory advantage
when compared to the best known classical algorithm.

We explored two settings: single-process and multi-process
sampling. For single processes an individual stochastic
process is given and memory efficiency is defined as the
ratio of memory required by the classical algorithm com-
pared to that by the quantum one. For two example
systems, we showed that for any large real number r there
exist infinite classes of rare events for which the classical-
quantum memory ratio for sampling is larger than r. In
the multi-process setting, a series of stochastic processes
each labeled by an integer size N is given. There, the
memory efficiency is defined by how required memory
scales in N for the classical algorithm compared to the
quantum algorithm. In this setting we demonstrated an
extreme quantum memory advantage in which the classi-
cal memory grows with N unboundedly, but the quantum
memory is bounded.

ACKNOWLEDGMENTS

The authors thank Leonardo Duenas-Osorio for stimulat-
ing discussions on risk estimation in networked infrastruc-
ture and the referees for valuable suggestions. JPC thanks
the Santa Fe Institute for its hospitality during visits as
an External Faculty member. This material is based upon
work supported by, or in part by, the John Templeton
Foundation grant 52095, the Foundational Questions Insti-
tute grant FQXi-RFP-1609, and the U. S. Army Research
Laboratory and the U. S. Army Research Office under
contracts W911NF-13-1-0390 and W911NF-13-1-0340.

[1] A. R. Leach. Molecular modelling: Principles and appli-
cations. Pearson Education, Boston, Massachusetts, 2001.
1

[2] D. Frenkel and B. Smit. Understanding Molecular Simu-
lation: From Algorithms to Applications. Academic Press,
New York, second edition, 2007. 1

13

[3] H. D. Miller. A convexity property in the theory of
random variables defined on a finite Markov chain. An.
Math. Stat., 32(4):1260–1270, 1961. 1

[4] K. Young and J. P. Crutchfield. Fluctuation spectroscopy.
Chaos, Solitons, and Fractals, 4:5 – 39, 1994. 1

[5] V. Lecomte, C. Appert-Rolland, and F. van Wijland.
Chaotic properties of systems with Markov dynamics.
Phys. Rev. Lett., 95(1):010601, 2005. 1

[6] V. Lecomte, C. Appert-Rolland, and F. Van Wijland.
Thermodynamic formalism for systems with markov dy-
namics. J. Stat. Physics, 127(1):51–106, 2007.

[7] R. Chetrite and H. Touchette. Nonequilibrium micro-
canonical and canonical ensembles and their equivalence.
Phys. Rev. Lett., 111(12):120601, 2013. 1

[8] S. R. S. Varadhan. Large deviations and applications.
SIAM, Philadelphia, Pennsylvannia, 1984. 1

[9] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland. First-order dynami-
cal phase transition in models of glasses: an approach
based on ensembles of histories. J. Phys. A: Math. Theo.,
42(7):075007, 2009. 1

[10] L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler.
Dynamic order-disorder in atomistic models of structural
glass formers. Science, 323(5919):1309–1313, 2009. 1

[11] J. Van Campenhout and T. M. Cover. Maximum en-
tropy and conditional probability. IEEE Trans. Info. Th.,
27(4):483–489, 1981. 1

[12] I. Csiszár. Sanov property, generalized I-projection and
a conditional limit theorem. Ann. Prob., 12(3):768–793,
1984. 1

[13] G. M. Torrie and J. P. Valleau. Nonphysical sampling
distributions in monte carlo free-energy estimation: Um-
brella sampling. J. Comp. Physics, 23(2):187–199 1

[14] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen,
and P. A. Kollman. The weighted histogram analysis
method for free energy calculations on biomolecules. I.
The method. J. Comp. Chemistry, 13(8):1011–1021 1

[15] F. Wang and D. P. Landau. Efficient, multiple-range
random walk algorithm to calculate the density of states.
Phys. Rev. Let., 86(10):2050, 2001. 1

[16] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains
and Mixing Times. American Mathematical Society, Prov-
idence, Rhode Island, 2009. 1

[17] J. R. Norris. Markov Chains, volume 2. Cambridge
University Press, Cambridge, United Kingdom, 1998. 1

[18] D. R. Upper. Theory and Algorithms for Hidden Markov
Models and Generalized Hidden Markov Models. PhD
thesis, University of California, Berkeley, 1997. Published
by University Microfilms Intl, Ann Arbor, Michigan. 1, 2

[19] L. R. Rabiner and B. H. Juang. An introduction to hidden
Markov models. IEEE ASSP Magazine, January, 1986.

[20] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE,
77(2):257–286 1

[21] J. P. Crutchfield and D. P. Feldman. Regularities un-
seen, randomness observed: Levels of entropy convergence.
CHAOS, 13(1):25–54, 2003. 1

[22] J. P. Crutchfield. Between order and chaos. Nature
Physics, 8(1):17–24, 2012. 1, 4

[23] J. P. Crutchfield and K. Young. Inferring statistical
complexity. Phys. Rev. Let., 63:105–108, 1989. 1, 4

[24] P. W. Shor. Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer.
SIAM Review, 41(2):303–332 2

[25] L. K. Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, pages
212–219 2

[26] D. S. Abrams and S. Lloyd. Quantum algorithm providing
exponential speed increase for finding eigenvalues and
eigenvectors. Phys. Rev. Let., 83(24):5162, 1999. 2

[27] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum
algorithm for linear systems of equations. Phys. Rev. Let.,
103(15):150502, 2009. 2

[28] M. Gu, K. Wiesner, E. Rieper, and V. Vedral. Quantum
mechanics can reduce the complexity of classical models.
Nature Comm., 3:762, 2012. 2, 4, 8

[29] J. R. Mahoney, C. Aghamohammadi, and J. P. Crutchfield.
Occam’s quantum strop: Synchronizing and compressing
classical cryptic processes via a quantum channel. Sci.
Reports, 6, 2016. 2, 4

[30] P. M. Riechers, J. R. Mahoney, C. Aghamohammadi, and
J. P. Crutchfield. Minimized state complexity of quantum-
encoded cryptic processes. Phys. Rev. A, 93(5):052317,
2016. 2, 4, 5

[31] M. S. Palsson, M. Gu, J. Ho, H. M. Wiseman, and
G. J. Pryde. Experimental quantum processing enhance-
ment in modelling stochastic processes. Science Advances,
3(2):1601302, 2017. 2, 4

[32] S. Aaronson and A. Arkhipov. The computational com-
plexity of linear optics. In Proceedings of the forty-third
annual ACM symposium on Theory of computing, pages
333–342. ACM, 2011. 2

[33] A. Ambainis, L. J. Schulman, A. Ta-Shma, U. Vazirani,
and A. Wigderson. The quantum communication complex-
ity of sampling. SIAM Journal on Computing, 32(6):1570–
15857, 2003. 2

[34] M. Szegedy. Quantum speed-up of Markovchain based
algorithms. In Foundations of Computer Science, 2004.
Proceedings. 45th Annual IEEE Symposium on, pages
32–41. IEEE, 2004. 2

[35] P. Wocjan and A. Abeyesinghe. Speedup via quantum
sampling. Phys. Rev. A, 78(4):042336, 2008. 2

[36] N. F. Travers. Exponential bounds for convergence of
entropy rate approximations in hidden Markov models
satisfying a path-mergeability condition. Stochastic Proc.
Appln., 124(12):4149–4170, 2014. 2

[37] C. Aghamohammadi and J. P. Crutchfield. Minimum
memory for generating rare events. Phys. Rev. E,
95(3):032101, 2017. 2, 7, 8

[38] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience, New York, second edition,
2006. 4, 6

[39] C. R. Shalizi and J. P. Crutchfield. Computational me-
chanics: Pattern and prediction, structure and simplicity.

14

J. Stat. Phys., 104:817–879, 2001. 4, 10
[40] G. Han and B. Marcus. Analyticity of entropy rate of hid-

den Markov chains. IEEE Trans. Info. Th., 52(12):5251–
5266, 2006. 4

[41] C. Aghamohammdi, J. R. Mahoney, and J. P. Crutchfield.
Extreme quantum advantage when simulating strongly
coupled classical systems. Sci. Reports, 7(6735):1–11,
2017. 4, 10, 12

[42] A. J. P. Garner, Q. Liu, J. Thompson, V. Vedral, and
M. Gu. Provably unbounded memory advantage in
stochastic simulation using quantum mechanics. New
J. Physics, 2017. 4

[43] C. Aghamohammadi, J. R. Mahoney, and J. P. Crutchfield.
The ambiguity of simplicity in quantum and classical
simulation. Phys. Lett. A, 381(14):1223–1227, 2017. 4

[44] J. Preskill. Lecture notes for physics 229: Quantum infor-
mation and computation, volume 16. California Institute
of Technology, Pasadena, California, 1998. 4, 5

[45] F. C. Binder, J. Thompson, and M. Gu. A practical,
unitary simulator for non-Markovian complex processes.
arXiv:1709.02375, 2017. 5

[46] R. Durrett. Probability: theory and examples. Cambridge
University Press, Cambridge, United Kingdom, 2010. 6

[47] S. Kullback. Information Theory and Statistics. Dover,
New York, 1968. 6

[48] R. W. Yeung. Information Theory and Network Coding.
Springer, New York, 2008. 6

[49] C. E. Shannon. A mathematical theory of communication.
Bell Sys. Tech. J., 27:379–423, 623–656, 1948. 6

[50] B. McMillan. The basic theorems of information theory.
Ann. Math. Stat., 24:196–219, 1953.

[51] L. Breiman. The individual ergodic theorem of informa-
tion theory. Ann. Math. Statistics, 28(3):809–811, 1957.
6

[52] L. Boltzmann. Lectures on gas theory. University of
California Press, Berkeley, California, 1964. 7

[53] H. Touchette. The large deviation approach to statistical
mechanics. Physics Reports, 478:1–69, 2009. 7

[54] R. L. Jack and P. Sollich. Large deviations and ensembles
of trajectories in stochastic models. Prog. Theo. Physics
Suppl., 184:304–317, 2010. 8

[55] J. P. Garrahan and I. Lesanovsky. Thermodynam-
ics of quantum jump trajectories. Phys. Rev. Lett.,
104(16):160601, 2010.

[56] R. Chetrite and H. Touchette. Nonequilibrium Markov
processes conditioned on large deviations. Annales Henri
Poincaré, 16(9):2005–2057, 2015. 8

[57] R. J. Baxter. Exactly solved models in statistical me-
chanics. Academic Press, New York, New York, 2007.
9

[58] A. Aghamohammadi, C. Aghamohammadi, and M. Khor-
rami. Externally driven one-dimensional Ising model. J.
Stat. Mech., 2012(02):P02004 9

[59] D. P. Feldman and J. P. Crutchfield. Discovering non-
critical organization: Statistical mechanical, information
theoretic, and computational views of patterns in simple
one-dimensional spin systems. Technical Report 98-04-
026, Santa Fe Institute, 1998. 10, 12

	Extreme Quantum Memory Advantage for Rare-Event Sampling
	Abstract
	Introduction
	Classical Algorithm
	Quantum memory advantage
	Quantum algorithm
	Typical Realizations
	Biased Sampling
	Quantum and Classical Memory For Biased Sampling
	Quantum Memory Advantage for a Simple Markov Process
	blueQuantum Memory Advantage for Next-Nearest-Neighbor Spin Systems
	Extreme Quantum Memory Advantage for N-Nearest-Neighbor Spin Systems

	Conclusions
	Acknowledgments
	References

