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We introduce a deterministic chaotic system—the Szilard Map—that encapsulates the measure-
ment, control, and erasure protocol by which Maxwellian Demons extract work from a heat reservoir.
Implementing the Demon’s control function in a dynamical embodiment, our construction sym-
metrizes Demon and thermodynamic system, allowing one to explore their functionality and recover
the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and
due to erasure. The map’s degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate
of energy extraction from the heat bath. Moreover, an engine’s statistical complexity quantifies the
minimum necessary system memory for it to function. In this way, dynamical instability in the
control protocol plays an essential and constructive role in intelligent thermodynamic systems.
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Synthetic nanoscale machines [1–4], like their macro-

molecular biological counterparts [5–7], perform tasks

that involve the simultaneous manipulation of energy,

information, and matter. In this they are informa-

tion engines—systems with two inextricably intertwined

characters. The first aspect, call it “physical”, is the

one in which the system—seen embedded in a material

substrate—is driven by, manipulates, stores, and dissi-

pates energy. The second aspect, call it “informational”,

is the one in which the system—seen in terms of its spa-

tial and temporal organization—generates, stores, loses,

and transforms information. Information engines oper-

ate by synergistically balancing both aspects to support

a given functionality, such as extracting work from a heat

reservoir.

This is remarkable behavior. Though we can some-

times identify it—in a motor protein hauling nutrients

across a cell’s microtubule highways [5], in how a quan-

tum dot transistor modulates current under the influence

of an evanescent wave function [8, 9]—it is not well un-

derstood. Understanding calls on a thermodynamics of

nanoscale systems that operate far out of equilibrium and

on a physics of information that quantitatively identifies

organization and function, neither of which has been fully

articulated. However, recent theoretical and experimen-

tal breakthroughs [6, 7, 10–12] hint that we may be close

to a synthesis which not only provides understanding but
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predicts quantitative, measurable functionalities.

We define an information engine as a system that per-

forms information processing as it undergoes controlled

thermodynamic transformations. We show that infor-

mation engines are chaotic dynamical systems. Building

this bridge to dynamical systems theory allows us to em-

ploy its powerful tools to analyze an engine’s complex,

nonlinear behavior. This includes a thorough informa-

tional and structural analysis that leads to a measure of

thermodynamic system intelligence.

By way of concretely illustrating the theory, we intro-

duce an explicit implementation of Szilard’s Engine [13]

as an iterated composite map of the unit square that is

a deterministic, but chaotic dynamical system. The re-

sult is a particularly simple and constructive view of the

energetics and computation embedded in controlled non-

linear thermodynamical systems. That simplicity, how-

ever, gives a solid base for designing and analyzing real

information engines. We end giving a concise statement

of the general theory and applications.

Background The Szilard Engine is an ideal

Maxwellian Demon for examining the role of infor-

mation processing in the Second Law [13]. The engine

consists of three components: a controller (the Demon),

a thermodynamic system (a particle in a box), and a

heat bath that keeps both thermalized to a temperature

T . It operates by a simple mechanism of a repeating

three-step cycle of measurement, control, and erasure.

During measurement, a barrier is inserted midway in the

box, constraining the particle either to box’s left or right

half, and the Demon memory changes to reflect on which
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side the particle is. In the thermodynamic control step,

the Demon uses that knowledge to allow the particle

to push the barrier, extracting
∫
P dV = kBT ln 2

work from the thermal bath. (Supplementary Materials

review this and related thermodynamic calculations.) In

the erasure step, the Demon resets its finite memory to a

default state, so that it can perform measurement again.

The periodic protocol cycle of measurement, control,

and erasure repeats endlessly and deterministically. The

net result being the extraction of work from the bath

balanced by entropy created by changes in the Demon’s

memory.

Rather than seeing the Demon and box as separate,

though, we view it—an information engine—as the direct

product of thermodynamic system and Demon memory

[14]. Though we follow Szilard closely, he did not specify

the Demon’s physical embodiment. Critically, we choose

the Demon’s memory to be another spatial dimension

of a particle in a box. Thus, we see the joint system

as a single particle in a two-dimensional box, where one

axis represents the thermodynamic System Under Study

(SUS)—the original particle in a box—and the other axis

represents the Demon memory. We now describe a de-

terministic protocol that implements the Szilard Engine,

evolving a particle ensemble over the joint state space.

A Dynamical Engine The Szilard Engine’s

measurement-control-erasure barrier-sliding protocol is

equivalent to a discrete-time two-dimensional map from

unit square I2 = [0, 1] × [0, 1] to itself. The engine has

two kinds of mesoscopic states—states of the particle’s

location
{
L ∼ x ∈ (0, δ], R ∼ x ∈ (δ, 1)

}
and states of the

Demon’s knowledge
{
A ∼ y ∈ (0, γ], B ∼ y ∈ (γ, 1)

}
of

the location—that partition the joint states (x, y) ∈ I2.

The protocol cycle translates into a composite map

TSzilard = TE ◦ TC ◦ TM of I2; one map for each engine

step; see Fig. 1(a). As they operate, they take the joint

state space from one stage to another around the cycle:

Measurement: To correlate Demon memory with par-

ticle location TM takes the A⊗L and the B⊗L mesostates

to themselves, the A⊗R mesostate to B⊗R, and B⊗R
to A⊗R:

TM(x, y) =


(x, y) x < δ, y < γ or x < δ, y ≥ γ ,(
x, γ + y 1−γ

γ

)
x ≥ δ, y ≤ γ ,(

x, γ y−γ1−γ

)
x ≥ δ, y > γ .

Thermodynamic control: To extract energy from the

bath TC expands both the A and B Demon memory

mesostates over the SUS’s whole interval:

TC(x, y) =

{
(xδ , y) x < δ ,(
x−δ
1−δ , y

)
x ≥ δ .

Erasure: TE maps both the A and B Demon mem-

ory mesostates back to a selected Demon memory reset

mesostate. If that reset state is A, then the mapping is:

T AE (x, y) =

{
(x, yδ) y < γ ,(
x, δγ + y−γ

1−γ γ(1− δ)
)

y ≥ γ .

This explicit construction establishes that Szilard’s En-

gine is a deterministic dynamical system whose compo-

nent maps are thermodynamic transformations—a piece-

wise thermodynamical system. The mapping TSzilard
means we can avail ourselves of the analytical tools of

dynamical systems theory [15, 16] to analyze the Szi-

lard Engine mechanisms. This perforce suggests a num-

ber of more refined and quantitative questions about the

dynamics ranging from the structural role of the stable

and unstable submanifolds in supporting information and

thermodynamic processing and the existence of asymp-

totic invariant measures to measures of information gen-

eration, storage, and intelligence.

As typically done to establish a known initial state

for any engineered computing device, we initialize the

system first using TE. The result is that TSzilard becomes

the well known asymmetric Baker’s Map T ABaker(x, y) =

TC ◦ TM ◦ T AE :

T ABaker(x, y) =

{
(xδ , δy) x < δ ,(
x−δ
1−δ , δ + y(1− δ)

)
x ≥ δ .

The familiar stretching and folding action of TBaker is

shown in Fig. S1(b) of the Supplementary Materials. Be-

ing a Baker’s map, it is immediately clear that the Szilard

Engine dynamics are chaotic [15, 16].

While the overall composite map TSzilard is impor-

tant, considering its complete-cycle behavior alone misses

much. What is key are the component maps that nom-

inally control a thermodynamic system, with each step

corresponding to a different thermodynamic transforma-

tion. We now analyze the dynamics to see how the com-

ponent maps contribute to information processing and

thermodynamics. (Supplementary Materials give calcu-

lational details.)

Dynamical Systems Analysis What does chaos in

the Szilard Engine mean? The joint system gener-

ates information—the information about particle posi-

tion that the Demon must keep repeatedly measuring

to stay synchronized to the SUS and so extract energy

from the bath. On the one hand, it is generated by the

heat bath through state-space expansion during TC. And,

on the other, it is stored by the Demon (temporarily)

and must be erased during TE. The latter’s construction

makes clear that it, dynamically, contracts state-space

and so is locally dissipative.

With explicit equations of motion in hand, one can
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FIG. 1. Szilard Engine as a deterministic dynamical system: the Szilard Map TSzilard = T A
Erase ◦ TControl ◦ TMeasure. Regions left

and right of δ colored to aid tracking particle location. Rightmost: action of T 3
Szilard resulting in self-similar (fractal) structure

in density ρ̂; uniform ρ̂ requires η = γδ. These assume the Demon’s reset memory state is A. (Supplementary Materials include
an animation.)

directly check, by calculating the Jacobian ∂xyTBaker,

that the map is globally area preserving. Moreover,

the invariant distribution ρ̂ can be determined from the

Frobenious-Perron operator [15, 16]:

ρ̂(x′, y′) =

∫
I2
dxdy δ

(
(x′, y′)− TBaker(x, y)

)
ρ̂(x, y) .

(δ(·) here, and only here, is the Dirac delta-function.)

Calculation shows that ρ̂ has full support on the unit

square I2 and so its fractal dimension is df = 2 for all

δ, γ ∈ (0, 1). The particle density is uniform when, dur-

ing TE, the Demon’s memory mesostate partition falls

at η = γδ. However, when η 6= γδ, the density is not

uniform, which is reflected in ρ̂’s information dimension

dI < df , [16, Chs. 11-12]. This corresponds to chang-

ing the efficiency of the Demon’s information extraction,

which we see is reflected in the difference df − dI .
The Szilard Map Jacobian also determines its local lin-

earization and so one can easily calculate the spectrum of

Lyapunov characteristic exponents (LCEs) for the over-

all cycle and so realize the contribution of each protocol

step. This gives insight into the directions (submanifolds)

of stability (convergence) and instability (divergence).

There are two LCEs: one positive λ+ = H(δ) and one

negative λ− = −H(δ), where H(δ) is the (base 2) binary

entropy function [17]. (See Supplementary Material for

details.) Note that energy conservation (TSzilard’s area

preservation) is reflected in the exact balance of instabil-

ity and stability: λ+ + λ− = 0. The unstable manifolds

(parallel the x-axis) support the mechanism that ampli-

fies small fluctuations from the heat bath to macroscopic

scale during energy extraction (TC). The stable mani-

folds (parallel the y-axis) are the mechanism that dissi-

pates energy into the ambient heat bath, during erasure

(TE).

The overall information production rate is given by

TSzilard’s Kolmogorov-Sinai entropy hµ [18]. For the

Szilard Engine, given the well behaved nature of ρ̂,

hµ =
∑
λ>0 λ = λ+ by Pesin’s Theorem [16]. (That is,

hµ = H(δ), directly verified shortly.) This measures the

flow of information from the SUS into the Demon: infor-

mation harvested from the bath and used by the Demon

to convert thermal energy into work. Simply stated, the

degree of chaos determines the rate of energy extraction

from the bath.

Computational Mechanics Analysis The Demon

memory and particle location mesostates form Markov

partitions for the Szilard Map dynamics [16, Chs. 7,9]:

tracking sequences of symbols in {A,B} or in {R,L} (or

all four pairs {AR,AL,BR,BL}) leads to a symbolic

dynamics that captures all of the joint system’s infor-

mation processing behavior. We now use this fact to

analyze the various kinds of information processing and

introduce a way to measure the Demon’s “intelligence”

or, more appropriately, that of the entire engine. We do

this by calculating computational mechanics’ ε-machines

and ε-transducers from the engine’s symbolic dynamics

[19, 20]. The overall engine transducer is shown in Fig.

2(a), that for the SUS particle dynamics in Fig. S2(a),

and for the Demon memory dynamics in Fig. S2(b).

In addition to explicitly expressing the effective mech-

anisms that support information processing, ε-machines

allow us to quantify the effects of measurement, control,

and erasure. The engine’s Kolmogorov-Sinai entropy hµ
can be calculated directly from the ε-machines’s causal-

state averaged transition uncertainty. To quantitatively

measure the minimal required memory—a key compo-

nent of “intelligence”—for the information engine func-

tioning, we employ the ε-machine’s statistical complex-

ity Cµ = H[Pr(σ)], where σ ∈ S are the system’s causal

states [19] and H[·] is the Shannon information [17].

It is important to emphasize an aspect of the informa-

tion engine ε-machine construction: It is stage-dependent

in that, to fully capture the component operations and

their thermodynamic effects, the individual maps must

to taken into account. This observation should be con-

trasted with the symbolic dynamics and particle position
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FIG. 2. ε-Transducers for the symbolic dynamics of the Szi-
lard information engine from the Markov partition of its joint
state space: (a) The ε-transducer for TSzilard that reads in the
periodic control signal for measure (M), control (C), and erase
(E). (b) TSzilard single-state ε-transducer: Memoryless over
the full measure-control-erase protocol. Transitions β|α : p
denote reading protocol symbol α, taking the transition with
probability p, emitting symbol β. Asymptotic state probabil-
ities are given in parentheses underneath state names.

ε-machine for the overall Szilard map in its Baker’s map

form. The resulting process arises from stroboscopically

observing the behavior after driving the engine with the

three-symbol word MCE. As an example, the particle

position process’s ε-machine is shown in Fig. 2(b); it is

a biased coin—a single-state ε-machine with no memory:

Cµ(TBaker) = 0. This is as it should be: The overall cy-

cle must return to the same state storing no memory of

previous cycles.

Computational mechanics analysis shows that, over

the three-step cycle, the Engine has an entropy rate of

hµ = H(δ) as seen above (or H(δ)/3 per map step) and a

statistical complexity of Cµ = log2 3+H(δ). (See Supple-

mentary Materials for details, including analysis of SUS

and Demon subsystems.) How predictable is the Engine’s

operation? The information in its future predictable from

its past is given by the excess entropy : E = I[
←−
Z ;
−→
Z ],

where
←−
Z is the past and

−→
Z is the future of the joint pro-

cess over random variable Zt ∈ {A,B} ⊗ {R,L}. We see

that the machine in Fig. 2(a), driven by the protocol, is

counifilar and so E = Cµ [21].

Thermodynamics During each protocol step the En-

gine interacts thermodynamically with the heat bath.

The Supplementary Materials calculate the average heat

〈Q〉 and work 〈W 〉 flows between the Demon and the bath

and between the SUS and the bath during each step. For

the Szilard Engine heat and work are equivalent and so

we discuss only the heat as energies 〈Qdiss〉 dissipated to

the bath for each interaction. As we will see, although

γ—the Demon memory partition—did not play a direct

role in the informational properties, it does in the ther-

modynamics.

The expected heat flow during measurement is

〈Qmeasure〉 = −kBT (1−δ) ln ((1− γ)/γ). Since γ ∈ [0, 1],

the dissipated heat can be negative or positive. It van-

ishes at γ = 1/2. Negative dissipated heat means that

the engine absorbs energy from the heat bath and, in that

case, turns it into work. The work
∫
P dV done by the

particle on the barrier is kBT H(δ) ln 2. Thus, the average

heat absorbed by the engine from the heat bath during

thermodynamic control is 〈Qcontrol〉 = −kBT H(δ) ln 2,

which is maximized when δ = 1/2. During memory era-

sure the Demon shifts back to its default state, without

affecting the SUS state. The barrier partitioning the De-

mon’s mesostates slides, compressing the contained par-

ticle into the default state A, say. The heat dissipated

in this process is 〈Qerase〉 = kBT (1 − δ) ln ((1− γ)/γ) +

kBT H(δ) ln 2.
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FIG. 3. Beyond Landauer’s Principle: Thermodynamic costs
(energy dissipation Qdiss) for measurement, control, and era-
sure in Szilard’s information engine as a function of γ (Demon
partition) with SUS barrier at δ = 1/2. Landauer’s Principle
applies only at γ = 1/2 (vertical yellow band): measurements
are thermodynamically free, erasure costs since heat is dissi-
pated as a result of Demon resetting. Costs exactly flip at
γ = 4/5, though.

While the heat dissipated during control is indepen-

dent of γ, both measurement and erasure can dissipate

any positive or negative amount of heat, depending on

γ. Notably, for γ > 1/2, the Szilard Engine violates

Landauer’s Principle [22, 23] in that 〈Qerase〉 ≤ ln 2; in

energy units of kBT . Indeed, for γ = 4/5, erasure is

thermodynamically free and measurement is costly—an

anti-Landauer Principle.

Figure 3 illustrates the trade-offs in thermodynamic

costs for each step. They sum to zero and so the En-

gine respects the Second Law over the whole range of

δ and γ. The erasure and measurement steps together
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obey the relation: 〈Qerase〉+ 〈Qmeasure〉 = kBT H(δ) ln 2,

recovering trade-offs noted previously [24–27]. That is,

the Szilard Engine achieves the lower bounds on energy

dissipation during measurement and erasure. And so, it

plays an analogous optimal role in the conversion of infor-

mation into work as the Carnot Engine does for optimal

efficiency when converting thermal energy to work.

Final Remarks We leveraged a straightforward ob-

servation to give a thorough dynamical systems, compu-

tational mechanics, and thermodynamic analysis of Szi-

lard’s Engine: an information engine’s intrinsic computa-

tion is supported by the evolution of its joint state-space

distribution and its thermodynamic costs monitor how

those distributional changes couple energetically to its

environment.

The Szilard Map construction is straightforward and

easy to interpret. For these reasons, we selected it to

illustrate the bridge between thermodynamics, informa-

tion theory, and dynamical systems necessary to fully

analyze information engines. The approach generalizes.

We can now state our central proposal : (i) an informa-

tion engine is the dynamic over a joint state space of a

thermodynamic system and a physically embodied con-

troller, (ii) the causal states of the joint dynamics, formed

from the predictive equivalence classes of system histo-

ries, capture its information processing and emergent or-

ganization, (iii) a necessary component of the engine’s

effective “intelligence”, its memory, is given by its statis-

tical complexity Cµ, (iv) its dissipation is given by the

dynamical system negative LCEs, and (v) the rate of en-

ergy extracted from the heat bath is governed by the

Kolmogorov-Sinai entropy hµ.

Sequels use this approach to analyze the informa-

tion thermodynamics of more sophisticated engines, in-

cluding the Mandal-Jarzynski ratchet [28], experimental

nanoscale information processing devices, and intelligent

macromolecules.

Supplementary Materials: Calculational details, fur-

ther discussion and interpretation, and animation illus-

trating a continuous-time embedding of TSzilard.
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Supplementary Materials

I. SZILARD MAP CONSTRUCTION DETAILS

Here, we mention several details underlying the construction of TSzilard and TBaker. There is, in fact, a family

of related maps. Partly, this comes from the incompleteness of Szilard’s presentation [S1]; partly, due to possible,

permitted variations in implementation. The following comments only hint at these variations. A sequel will develop

them more systematically.

Erasure: TE maps both the A and B Demon memory mesostates back to a selected Demon memory reset mesostate.

If that reset state is A, then the mapping is:

T AE (x, y) =

{
(x, yδ) y < γ ,(
x, δγ + y−γ

1−γ γ(1− δ)
)

y ≥ γ .

If the reset state is B, then the mapping is:

T BE (x, y) =

{(
x, γ − y + y

γ (1− δ(1− γ))
)

y < γ ,

(x, 1− δ(1− y)) y ≥ γ .

The cell boundary required by area preservation (probability invariance) under map T AE is y′ = δγ and for map

T BE , y′ = 1 − δ(1 − γ). The reason for this is that during the control operation horizontal stretching by δ−1 or by

(1− δ)−1 “dilutes the gas” or reduces the probability density. To maintain probability invariance (or “gas density”)

we must compensate in the erase operation by multiplying the Demon (vertical) coordinate by δ or 1− δ.
Full cycle operation: The overall information engine cycle, then, is the map given by the composition of the

component maps: TSzilard = T AE ◦ TC ◦ TM. The action of TSzilard is shown in Fig. S1(a), where η = γδ. The map is

area preserving, as is verified below by calculating the determinant of its Jacobian.

Initial-reset engine: If one first resets the engine with T AE , then we obtain the familiar Baker’s Map TBaker =

TC ◦ TM ◦ T AE :

TBaker(x, y) =

{
(xδ , δy) x < δ ,(
x−δ
1−δ , δ + y(1− δ)

)
x ≥ δ .

It’s action on the joint state space is show in Fig. S1(b).

Due to several choices in the construction of the component maps, the two distinct TSzilard maps that individually

require proper initialization (reset to A or reset to B) can be combined into a single, more general T̂Szilard that does

not. The resulting map simply operates on what it is given as initial conditions (x0, y0) ∈ I2. Mesostates in one or

the other reset memory are properly transformed. This composite map is:

T̂Szilard(x, y) =



(xδ , δy) x < δ, y < γ ,(
x−δ
1−δ , δγ + y(1− δ)

)
x ≥ δ, y < γ ,(

x
δ , δγ + y−γ

1−γ γ(1− δ)
)

x < δ, y ≥ γ ,(
x−δ
1−δ ,

y−γ
1−γ γδ

)
x ≥ δ, y ≥ γ .

II. SZILARD ENGINE DYNAMICAL SYSTEM: AN ANIMATION

Probably the most direct way to understand the operation of Szilard’s Engine is via a continuous-time embedding

of TSzilard. Animations can be viewed at http://csc.ucdavis.edu/~cmg/compmech/pubs/dds.htm.

Here, we provide accompanying descriptive text that addresses several issues: How the discrete-time TSzilard is

http://csc.ucdavis.edu/~cmg/compmech/pubs/dds.htm
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FIG. S1. Dynamical Szilard Engine Composite Maps: (a) Szilard Map TSzilard = T A
Erase ◦TControl ◦TMeasure and (b) Asymmetric

Baker’s Map TBaker = TControl ◦ TMeasure ◦ T A
Erase. These assume the Demon’s reset memory state is A. Areas left and right of δ

are colored only as an aid to understanding the maps’ action and to track the particle location history.

embedded in continuous time, what the protocol cycle looks like in operation, where the instability and chaos occur

(during energy extraction), what erasure affects, and, notably, the appearance of self-similar (fractal) structure in the

joint state-space distribution.

Background: In 1929 Szilard [S1] gave Maxwell’s Demon its first logical resolution—that “intelligence” was not

violating the Second Law—by accounting for the Demon’s own, what we now call, information processing:

. . . we must conclude that the intervention which establishes the coupling between y and x, the measure-

ment of x by y, must be accompanied by a production of entropy.

(Cf. Smoluchowski’s “physical” resolution [S2–S4].)

Szilard Engine Operation: There are two ways to describe the Engine’s operation: as its action on a single particle

or that on an infinite ensemble of particles via evolving a probability density. The graphics and animations show the

latter. The former is easier to describe, initially.

Consider a single particle in a box, whose position the Demon determines by placing a partition at x = δ. Then,

noting on which side (left or right) the particle falls, the Demon lets the particle push the partition (right or left,

respectively) to extract energy (
∫ 1

δ
P dV or

∫ 0

δ
P dV , respectively). (See Sec. V for the thermodynamic calculations.)

The entire system is held at constant temperature T by a heat bath. Finally, the Demon’s memory is reset to its

original state (mesostate A or B).

Our construction of TSzilard demonstrates that Szilard’s Engine is, in fact, a deterministic chaotic map of the unit

square I2 = [0, 1]× [0, 1]. The construction “symmetrizes” the Demon and System Under Study (SUS). (The latter is

the name for the particle-in-a-box thermodynamic subsystem.) That is, we look at the joint state-space of both the

Demon and SUS.

Interpretation: In the ensemble view, information processing describes changes in the support and shape of the

joint state-space distributions. The thermodynamics describes the energy flow to/from the heat bath during each

protocol step.

Animation: This is a continuous-time embedding of the 2D map. Suspending a discrete-time map in a continuous-

time flow is a standard, if somewhat under-utilized, visualization technique [S5].

The animation shows the evolution of the Engine state-space distribution, beginning when the Demon starts in

its “reset” mesostate A. Two pieces of the distribution are colored to correspond to the particle in the left or right

side of the partition placed at x = δ. This is an aid to visually track the particle’s location and also to highlight the

component maps’ actions on areas.

The animation steps through the protocol (i) Measurement (Demon memory state and particle location come into

correlation), (ii) Control (extract energy from heat bath), and (iii) Erase (clear Demon memory to start the cycle

anew).

The parameter γ ∈ [0, 1] represents the division between Demon memory mesostates A and B.

γ and δ together let us explore the “efficiency” of Demon measurements of particle location.

The energy extraction (“gas expansion”) corresponds to the state-space stretching during the thermodynamic

control step TC. This is particularly noteworthy: The instability of chaos is essential to energy extraction.

Crucially, one sees another consequence of the chaotic dynamics: The build-up over each cycle of the self-similar

(fractal) structure of the joint state-space distribution.
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The construction allows one to make a solid connection between thermodynamics, information processing, and

chaotic dynamics. Indeed, everything can be analytically calculated. Leaving few, if any, remaining mysteries for the

Szilard Engine, as originally conceived. In this light, Szilard’s conclusion takes on new meaning [S1]:

. . . a simple inanimate device can achieve the same essential result as would be achieved by the intervention

of intelligent beings. We have examined the “biological phenomena” of a nonliving device and have seen

that it generates exactly that quantity of entropy which is required by thermodynamics.

With this firm foundation, designing and analyzing more sophisticated thermodynamic control systems becomes

possible, including monitoring information creation and the necessary attributes of “intelligence”.

III. SPECTRUM OF LYAPUNOV CHARACTERISTIC EXPONENTS

The Szilard Map Jacobian ∂xyTSzilard determines its local linearization and so one can easily calculate the spectrum

of Lyapunov characteristic exponents (LCEs) for each thermodynamic step and for the overall cycle [S15, S16]. This

gives insight into the directions (submanifolds) of stability (convergence) and instability (divergence). We work with

TBaker. There are two LCEs. We find that one is positive:

λ+ = lim
t→∞

t−1 log2

∣∣∂xyT tBaker(x0, y0) · δ~x
∣∣ ,

where, since the unstable manifolds parallel the x-axis, the initial vector is δ~x = (1, 0). Due to ergodicity, we can

calculate via:

λ+ =

∫ 1

0

dx

[∫ δ

0

dy ρ̂ log2 δ +

∫ 1

δ

dy ρ̂ log2(1− δ)
]

= H(δ) .

There is no dependence on initial condition (x0, y0) ∈ I2. There is a companion negative LCE that monitors state

space contraction. Since the stable manifolds parallel the y-axis, we take the initial vector δ~y = (0, 1), finding:

λ− = lim
t→∞

t−1 log2

∣∣∂xyT tBaker(x0, y0) · δ~y
∣∣

= −H(δ) .

Note that state-space area preservation is reflected in the exact balance of instability and stability: λ+ + λ− = 0.

More specifically, the unstable manifold supports the mechanism that amplifies small fluctuations from the heat bath

to macroscopic scale and so to extractable work. The stable manifold is the mechanism that dissipates energy into

the ambient heat bath, due to Demon memory resetting.

IV. INTRINSIC COMPUTATION CALCULATIONS

We can project the global symbolic dynamics, captured by the ε-transducer of Fig. 2(a), onto just that for the

Demon (over alphabet {A,B}) or just that for the SUS (over alphabet {L,R}). The SUS and Demon ε-transducers

are shown in Fig. S2(a) and S2(b), respectively. Comparisons are insightful.

The projections make it clear that the SUS and Demon ε-transducers are duals of each other. When one splits into

multiple causal states, the other contracts its causal states, as expected. Branching and contraction must be balanced

in a state-space volume preserving system.
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Computational mechanics analysis shows that the SUS system has an entropy rate of:

hSUS
µ = H[X|S]

= −
∑

σ∈SSUS

Pr(σ)
∑

x∈{L,R}
Pr(x|σ) log2 Pr(x|σ)

= H(δ)/3 ,

where SSUS is the set of its causal states, and a statistical complexity of:

CSUS
µ = H[Pr(S)]

= −
∑

σ∈SSUS

Pr(σ) Pr(σ) log2 Pr(σ)

= log2 3 + 2/3 H(δ) .

Note that the time scale here is measured in individual protocol steps.

The Demon’s memory process has the same entropy rate hDemon
µ = H(δ)/3, but different statistical complexity

CDemon
µ = log2 3 + 1/3 H(δ). For the overall Szilard information engine (Fig. 2(a)) we find that it has the same

entropy rate hSzilardµ = H(δ)/3, but statistical complexity CSzilard
µ = log2 3+H(δ). The analysis shows us that the SUS

and the Demon subsystems are not independent, however. The joint CSzilard
µ is substantially less than the sum of that

of the two subsystems: CSzilard
µ = CSUS

µ + CDemon
µ − log2 3. Not surprisingly, the two subsystems are redundant in

their operation. The log2 3 bits of memory reflect the synchronization of SUS and Demon during the period-3 control

protocol, which is accounted for only once in the overall Engine CSzilard
µ .

An information engine is a control system and its effectiveness depends on the controller (Demon) knowing the

state of the thermodynamic subsystem (SUS). So, how predictable is the SUS from the Demon’s perspective? And,

for that matter, since our construction is symmetrized, the Demon from the viewpoint of the SUS? The answers

start with the information engine’s past-future mutual information, the excess entropy : ESzilard = I[
←−
Z ;
−→
Z ], where←−

Z = . . . Z−3Z−2Z−1 is the past and
−→
Z = Z0Z1Z2 . . . is the future of the joint process over random variable Zt ∈

{A,B} ⊗ {R,L}. ESzilard measures the amount of future information predictable from the past. We can also ask

about the predictability of the individual SUS and Demon subprocesses using ESUS and EDemon, respectively, defined

similarly. We see that the machines in Fig. S2 are counifilar [S6, S21] and so ESzilard = CSzilard
µ , EDemon = CDemon

µ ,

and ESUS = CSUS
µ [S21]. (Section VI calculates the inter-subsystem information flows.)

V. ENGINE THERMODYNAMICS

The minimum energy cost of the measurement, control, and erasure protocol steps can be calculated by treating

the Szilard Engine as a box of ideal gas. (Sequels address more realistic models of the working fluid.) Each of the

transitions shown in Fig. 1 is achieved by isothermal sliding of barriers, so the work done is exactly calculable by

integrating the force on these barriers. The work done on this system is equal to the heat dissipated, since the thermal

energy of the particle does not change for an isothermal process.

For each component-map thermodynamic transformation, the work done on the system is given by W = −
∫
PdV ,

where P = kBT/V for a single particle. Thus:

W = −
∫ V1

V0

kBT

V
dV = kBT ln

V0
V1

,

where V0 is the initial volume of the region being manipulated and V1 is the final volume.

Assume the Demon resets to mesostate A.

To calculate the thermodynamic cost of measurement 〈Qmeasure〉, note that there are two regions where the particle

can exist. The particle starts in a uniform distribution over the L⊗A and R⊗A regions. The probability of being in

each of those regions is proportional to the the region’s volume. Assuming the box has volume V , the size of region

L⊗A is δγV and the size of region R⊗A is (1− δ)γV . Thus, before measurement, the probability of being in R⊗A
is (1− δ).



5

c(
1
3

)

a(
δ
3

) b(
1−δ
3

)

d(
δ
3

) e(
1−δ
3

)

L|M :1

L|C :δ R|C :1− δ

L|E :1 R|E :1

R|M :1

a(
1
3

)

b(
δ
3

) c(
1−δ
3

)

d(
1
3

)

A|M :δ B|M :1− δ

A|C :1 B|C :1

A|E :1

(a) SUS ε-transducer. (b) Demon ε-transducer.

FIG. S2. ε-Transducers for the symbolic dynamics of the Szilard information engine from the Markov partition of the Demon
and SUS state spaces: (a) ε-Transducer for the thermodynamic system, giving the {R,L}-symbolic dynamics of particle location
when the engine’s ε-transducer is driven by the period-3 measurement protocol: M → C → E → . . .. (b) ε-Transducer for the
Demon’s memory, with the engine similarly driven. ε-Transducer transitions β|α : p denote taking a transition with probability
p on seeing α = {M,E,C} and emitting symbol β ∈ {R,L} or β ∈ {A,B}. Asymptotic state probabilities are given in
parentheses underneath state names.

The region L ⊗ A is unchanged under the measurement map TM, meaning that there is no work done in the case

where the particle is on the left. However, if the particle is on the right, volume is being moved to the R⊗B region,

so we have a change in volume. The resulting average work done is the average dissipated heat:

〈Qmeasure〉 = 〈Wmeasure〉

= Pr(L⊗A)× 0 + Pr(R⊗A)×−
∫ VR⊗B

VR⊗A

PdV

= 0 + (1− δ)kBT ln
VR⊗A
VR⊗B

= −kBT (1− δ) ln
1− γ
γ

.

Before the thermodynamic control transformation TC, the particle has probability δ of being in the L ⊗ A region

and probability 1− δ of being in the R⊗B region. If the particle is in the L⊗A region, then after control the particle

occupies the whole A region, and if it was in R⊗B, then it occupies the whole B region. According to the change in

volume, the average heat dissipated is:

〈Qcontrol〉 = 〈Wcontrol〉

= −Pr(L⊗A)

∫ VL⊗A+VR⊗A

VL⊗A

kBT

V
dV − Pr(R⊗B)

∫ VR⊗B+VL⊗B

VR⊗B

kBT

V
dV

= −δkBT ln
V γ

V δγ
− (1− δ)kBT ln

V (1− γ)

V (1− δ)(1− γ)

= −kBT (−δ ln δ − (1− δ) ln(1− δ))
= −kBT ln 2 H(δ) .

Before the erasure transformation TE, the particle has probability δ of being distributed uniformly over the A region

and probability 1 − δ of being distributed uniformly over the B region. The B region is compressed into the region

between η = γδ and γ on the vertical demon axis, which has volume γ(1− δ)V . The A region is compressed between
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0 and η on the Demon axis, which has volume γδV . The associated heat dissipation is, then:

〈Qerase〉 = 〈Werase〉

= −Pr(B)

∫ γ(1−δ)V

(1−γ)V

kBT

V
dV − Pr(A)

∫ γδV

γV

kBT

V
dV

= −kBT ((1− δ) ln
γ(1− δ)

1− γ + δ ln δ)

= kBT ln 2 H(δ) + kBT (1− δ) ln
1− γ
γ

.

After erasure, the particle is once again uniformly distributed over the A region.

We close by commenting on the main text’s mention of the Szilard Engine’s optimality. We note that the results

above match those in Ref. [S27] for δ = 1/2. Moreover, they achieve the bounds described there for all δ and γ.

Specifically, for δ = 1/2, our results match Eq. (7.23) for erasure and Eq. (7.40) for measurement. And, our results

achieve the lower bounds given there in Eqs. (7.41), (7.43), and (7.44), since IQC = H(δ). Our development, though,

places measurement, control, and erasure on the same footing, allowing us to make the same statements about each,

which is that we quantify how much heat they dissipate.

VI. MONITORING CORRELATION AND COORDINATION DURING THE CONTROL PROTOCOL

There are many different correlations potentially relevant to Demon functioning and to monitoring its interaction

with the SUS. Let Y be the random variable for the Demon’s memory {A,B}. Let X be the random variable for the

SUS’s particle locations {L,R}. Let SY be that for Demon’s causal states (Fig. S2(b)) and SX that for SUS’s causal

states (Fig. S2(a)).

The first mutual information we consider is the asymptotic communication rate between the Demon and the SUS:

lim
`→∞

I[X0:`;Y0:`]

`
, (S1)

where the random variable blocks are X0:` = X0X1 . . . X`−1 and Y0:` = Y0Y1 . . . Y`−1. This can be evaluated by

breaking it into components:

lim
`→∞

I[X0:`;Y0:`]

`
= lim
`→∞

1

`
(H[X0:`] + H[Y0:`]−H[X0:`, Y0:`])

= hµ[
←→
X ] + hµ[

←→
Y ]− hµ[

←→
X ,
←→
Y ]

= H(δ)/3 + H(δ)/3−H(δ)/3

= H(δ)/3 .

Note that the Shannon (base 2) binary entropy function H(δ) [S9] features prominently in the expressions for heat

dissipation. However, the above shows that it often signifies an amount of shared or mutual information, not just a

degree of Shannon information uncertainty. These two interpretations are rather distinct.

This should be compared to single-symbol (length-1 block) mutual information between the Demon and SUS:

I[X0;Y0] =
δ(2 + δ)

3
log2

2 + δ

1 + δ
+

(1− δ)(1 + δ)

3
log2

1 + δ

2 + δ
(S2)

− δ(1− δ)
3

+
(1− δ)(2− δ)

3
log2

2− δ
2− 2δ

. (S3)

Note that this differs from the asymptotic rate above and so the single-symbol quantity misestimates the degree of

Demon-SUS correlation.

To measure the degree of internal coordination between the SUS and the Demon, consider now the single-symbol

mutual information between the SUS and Demon causal states. First, we find the stationary distribution over the

causal states in the joint process (Fig. 2(a)) and label the joint causal states with the corresponding causal states of
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the SUS and Demon. The resulting single-state mutual information is:

I[SX0 ;SY0 ] = log2 3 .

This tells us the correlation between SUS and Demon causal states is limited to their synchronization within the three

step cycle of measurement, control, and erasure.

We can similarly calculate the correlation rate between the Demon and SUS states. For this we need the

ε-transducers for the joint, Demon, and SUS processes in Figs. 2(a), S2(a), and S2(b), respectively. It turns out

that the entropy rate for all three machines is also H(δ)/3 as well, so:

lim
`→∞

I[SX0:`;S
Y
0:`]

`
= H(δ)/3 + H(δ)/3−H(δ)/3

= H(δ)/3 .

This equals the communication rate between the Demon and SUS symbolic processes above, indicating that there is

little “hidden” internal state information compared to the symbolic processes. The Szilard Engine is not a cryptic

process [S6].

Last, adopting the transducer perspective, we calculate the single-symbol conditional mutual information between

the Demon and SUS variables given the three possible control protocol inputs. These monitor the dependence of

correlation during the individual protocol steps. Let our input control variable be Z over alphabet {M,C,E}. For

instance, during the measurement step, we directly calculate:

I[X0;Y0|Z0 = M ] =
∑

y∈{A,B}

∑
x∈{L,R}

Pr(X0 = x, Y0 = y|Z0 = M) log2

(
Pr(X0 = x, Y0 = y|Z0 = M)

Pr(X0 = x|Z0 = M) Pr(Y0 = y|Z0 = M)

)
= H(δ) .

Similarly, we calculate that during erasure there is no correlation:

I[X0;Y0|Z0 = E] = 0 ,

and that during thermodynamic control the same holds true:

I[X0;Y0|Z0 = C] = 0 .

Thus, the single-symbol correlation between Demon and SUS comes from measurement. There is also a connection

between these quantities and the work extracted during control. The work extracted in control is 〈W 〉 = kBT H(δ) ln 2.

That is, the Engine uses the decrease in correlation of mesostates between measurement and control to extract work

from the thermal bath.

Note that these calculations for the Szilard Engine are straightforward. We detail them here to show the individual

analyses, uncluttered by distracting calculational moves, that one must do for more complex information engines.

In the latter cases, especially when the thermodynamical system is nonhyperbolic, the calculations can be quite

challenging. Sequels illustrate.
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