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I. INTRODUCTION

We are interested in answering two very basic questions

about continuous-time renewal processes:

• What are their minimal maximally predictive

models—their ε-machines?

• What are information-theoretic characterizations

of their randomness, predictability, and complex-

ity?

For shorthand, we refer to the former as causal ar-

chitecture and the latter as informational architecture.

Minimal maximally predictive models of discrete-time,

discrete-state, discrete-output processes are relatively

well understood; e.g., see Refs. [1–3]. Some progress

has been made on understanding minimal maximally pre-

dictive models of discrete-time, continuous-output pro-

cesses; e.g., see Refs. [4–6]. Relatively less is under-

stood about minimal maximally predictive models of

continuous-time, discrete-output processes, beyond those

with exponentially decaying state-dwell times [6]. The

following is a first attempt at a remedy that comple-

ments the spectral methods developed in Ref. [6], as we

address the seemingly unwieldy case of uncountably infi-

nite causal states.

We analyze continuous-time renewal processes in-

depth, as addressing the challenges there carries over

to other continuous-time processes. When analyzing

discrete-time renewal processes, we can use the ε-machine
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definitions outlined in Ref. [1] and the information

anatomy definitions outlined in Ref. [7], but neither def-

initions carry over to the continuous-time case. The dif-

ficulties are both technical and conceptual. First, the

causal states are now continuous or mixed random vari-

ables, unless the renewal process is Poisson. Second,

transitions between causal states are now described by

partial differential equations. Finally, and perhaps most

challenging, most informational architecture quantities

must be redefined.

Our main thesis is that minimal maximally predictive

models of continuous-time renewal processes require a

wholly new ε-machine calculus. To develop it, Sec. II

describes the required notation and definitions that en-

able extending computational mechanics, which is oth-

erwise well understood for discrete-time processes [1, 8].

Sections III-V determine the causal and informational

architecture of continuous-time renewal processes. We

conclude by describing the challenges overcome and ben-

efits to understanding the information measures, using

the new formulae of Table I.

II. BACKGROUND AND NOTATION

A point process is labeled only with times between

events: . . . , τ−1, τ0, τ1, . . .. We view the time se-

ries ←→τ as a realization of random variables
←→T =

. . . , T−1, T0, T1, . . .. When the observed time series is

strictly stationary and the process ergodic, we can cal-

culate the probability distribution Pr(
←→T ) from a single

realization ←→τ .

Demarcating the present splits T0 into two parts: the

time T0+ since first emitting the previous symbol and
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FIG. 1. Interevent intervals τi in the past and future and how
they relate to the present; shown as they would be identified
in a neural spike train (blue line). The 0th interval, of total
length τ0 = τ0+ + τ0− , is split by the present marker into a
time since last event τ0+ and a time until next event τ0− .

the time T0− to next symbol. Thus, we define T−∞:0+ =

. . . , T−1, T0+ as the past and T0−:∞ = T0− , T1, . . . as the

future. (To reduce notation, we drop the∞ indices.) The

present T0+:0− itself extends over an infinitesimally small

length of time. See Fig. 1.

Continuous-time renewal processes, a special kind of

point process, have a relatively simple generative model.

Interevent intervals Ti are drawn from a probability

density function φ(t). The survival function Φ(t) =∫∞
t
φ(t′)dt′ is the probability that an interevent interval

is greater than or equal to t and, in a nod to neuroscience,

we define the mean firing rate µ as:

µ−1 =

∫ ∞
0

tφ(t)dt .

Finally, we briefly recall the definitions of entropy, con-

ditional entropy, and mutual information. The entropy

of a discrete random variable X with probability distri-

bution p(x) is H[X] = −∑x p(x) log p(x); the entropy of

a continuous random variable X with probability den-

sity function ρ(x) is H[X] = −
∫
ρ(x) log ρ(x)dx; and the

entropy of a mixed random variable X with “probabil-

ity density function” ρ(x) and “probability distribution”

p(x) with
∫
ρ(x)dx+

∑
p(x) = 1 was defined in Ref. [9]

as H[X] = −∑ p(x) log p(x) −
∫
ρ(x) log ρ(x)dx. Condi-

tional entropy of a random variable X with respect to

random variable Y is, as above, H[X|Y ] = 〈H[X|Y =

y]〉y. Mutual information between random variable X

and random variable Y is I[X;Y ] = H[X] − H[X|Y ] or,

equivalently, I[X;Y ] = H[Y ]−H[Y |X].

A. Causal architecture

A process’ forward-time causal states are defined, as

usual, by the predictive equivalence relation [1], written

A 1|0, τ ∼ φ

FIG. 2. The smallest generative model of a continuous-time
renewal process consists of a single causal state. The transi-
tion is labeled p|s, τ ∼ Pr(T ), denoting the transition is taken
with probability p, emits symbol s for duration τ distributed
according to Pr(T ). The length Ti = τ of periods of silence
(corresponding to output symbol 0) are drawn independently,
identically distributed (IID) from probability density φ(t).

here for the case of point processes:

τ:0+ ∼ε+τ:0+
′

⇔ Pr(T0−:|T:0+ = τ:0+) = Pr(T0−:|T:0+ = τ:0+
′) .

This partitions the set of allowed pasts. Each equiva-

lence class of pasts is a forward-time causal state σ+ =

ε+(τ:0+), in which ε+(·) is the function that maps a past

to its causal state. The set of forward-time causal states

S+ = {σ+} inherits a probability distribution Pr(S+)

from the probability distribution over pasts Pr(T:0+).

Reverse-time causal states are essentially forward-time

causal states of the time-reversed process. In short,

reverse-time causal states S− = {σ−} are the classes

defined by the retrodictive equivalence relation, written

here for the case of point processes:

τ0−: ∼ε−τ ′0−:

⇔ Pr(T:0+ |T0−: = τ0−:) = Pr(T:0+ |T0−: = τ ′0−:) .

Reverse-time causal states S− = ε−(T0−:) inherit a prob-

ability measure Pr(S−) from the probability distribution

Pr(T0−:) over futures.

The smallest generative model for a continuous-time

renewal process is therefore a single causal-state machine

with a continuous-value observable T ; as shown in Fig. 2.

Moreover, the forward- and reverse-time causal states are

the same.

Forward-time prescient statistics are any refinement of

the forward-time causal-state partition. By construction,

they are a sufficient statistic for prediction, but are not

necessarily minimal sufficient statistics [1]. Reverse-time

prescient statistics are any refinement of the reverse-time

causal-state partition. They are sufficient statistics for

retrodiction, but are again not necessarily minimal.

The main import of these definitions derives from the

causal shielding relations:

Pr(T0−:, T:0+ |S+) = Pr(T0−:|S+) Pr(T:0+ |S+) (1)

Pr(T0−:, T:0+ |S−) = Pr(T0−:|S−) Pr(T:0+ |S−) . (2)
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The consequence of these is illustrated in Fig. 3. Causal

shielding holds not just for forward- and reverse-time

causal states, but for forward- and reverse-time prescient

statistics as well. However, these causal shielding rela-

tions are special to prescient statistics, causal states, and

their defining functions ε+(·) and ε−(·). That is, arbi-

trary functions of the past and future do not shield the

two aggregate past and future random variables from one

another. Forward- and reverse-time generative models do

not, in general, have state spaces that satisfy Eqs. (1) and

(2).

H[T:0+ ]

H[T0−:]

E

C−
µ = H[S−]

C+
µ = H[S+]

FIG. 3. Predictability, compressibility, and causal irreversibil-
ity in renewal processes graphically illustrated using a Venn-
like information diagram over the random variables for the
past T:0+ (left oval, red), the future T0−: (right oval, green),
the forward-time causal states S+ (left circle, purple), and
the reverse-time causal states S− (right circle, blue). (Cf.
Ref. [10].) The forward-time and reverse-time statistical com-
plexities are the entropies of S+ and S−, i.e., the memories
required to losslessly predict or retrodict, respectively. The
excess entropy E = I[T:0+ ; T0−:] is a measure of process pre-
dictability (central pointed ellipse, dark blue) and Theorem
1 of Ref. [10, 11] shows that E = I[S+;S−] by applying the
causal shielding relations in Eqs. (1) and (2).

The forward-time ε-machine is that with state space

S+ and transition dynamic between forward-time causal

states. The reverse-time ε-machine is that with state

space S− and transition dynamic between reverse-time

causal states. Defining these transition dynamics for

continuous-time processes requires a surprising amount

of care, as discussed in Secs. III-V.

B. Informational architecture

We are broadly interested in information-theoretic

characterizations of a process’ predictability, compress-

ibility, and randomness. A list of current quantities of

interest, though by no means exhaustive, is given in

Figs. 3 and 7. Many lose meaning when naively applied

to continuous-time processes; e.g., see Refs. [5, 12, 13].

We redefine many of these in order to avoid trivial diver-

gences and zeros in Sec. V.

The forward-time statistical complexity C+
µ = H[S+]

is the cost of coding the forward-time causal states and

the reverse-time statistical complexity C−µ = H[S−] is the

cost of coding reverse-time causal states. When S+ or S−
are mixed or continuous random variables, one employs

differential entropies for H[·]. The result, though, is that

the statistical complexities are potentially negative or in-

finite or both [14, Ch. 8.3], perhaps undesirable charac-

teristics for a definition of process complexity. This def-

inition, however, allows for consistency with complexity

definitions for discretized continuous-time processes. See

Ref. [15] for possible alternatives for H[·].

III. CONTINUOUS-TIME CAUSAL STATES

Discrete-time renewal processes are temporally sym-

metric [16], and the same is true for continuous-time

renewal processes. As such, we will refer to forward-

time causal states and the forward-time ε-machine as

simply causal states or the ε-machine, with the under-

standing that reverse-time causal states and reverse-time

ε-machines will take the exact same form with slight la-

beling differences.

We start by describing prescient statistics for

continuous-time processes. The Lemma which does this

exactly parallels that of Lemma 1 of Ref. [16]. The only

difference is that the prescient statistic is the time since

last event, rather than the number of 0s (count) since

last event.

Lemma 1. The time T0+ since last event is a prescient

statistic of renewal processes.

Proof. From Bayes Rule:

Pr(T0−:|T:0+) = Pr(T0− |T0+:) Pr(T1:|T:1) .

Interevent intervals Ti are independent of one another,

so Pr(T1:|T:1) = Pr(T1:). The random variables T0+ and

T0− are functions of T0 and the location of the present.

Both T0+ and T0− are independent of other interevent

intervals. And so, Pr(T0− |T0+:) = Pr(T0− |T0+). This

implies:

Pr(T0−:|T:0+) = Pr(T1:) Pr(T0− |T0+) . (3)

The predictive equivalence relation groups two pasts

τ:0+ and τ ′:0+ together when Pr(T0−:|T:0+ = τ:0+) =

Pr(T0−:|T:0+ = τ ′:0+). We see that τ0+ = τ ′0+ is a suf-

ficient condition for this from Eq. (3). The Lemma fol-

lows.

Some renewal processes are quite predictable, while

others are purely random. A Poisson process is the lat-

ter: Interevent intervals are drawn independently from an

exponential distribution and so knowing the time since

last event provides no predictive benefit. A fractal re-
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newal process can be the former. There, the interevent

interval is so structured that the resultant process can

have power-law correlations [17]. Then, knowing the time

since last event can provide quite a bit of predictive power

[18].

Intermediate between these two extremes is a broad

spectrum of renewal processes whose interevent intervals

are structured up to a point and then fall off exponen-

tially only after some time T ∗. These intermediate cases

can be classified as either of the following types of renewal

process, in analogy with Ref. [16]’s classification.

Definition 1. An eventually Poisson process has:

φ(t) = φ(T )e−λ(t−T ) ,

almost everywhere, for some λ > 0 and T > 0. We

associate the eventually Poisson process with the minimal

such T .

Note that a Poisson process is an eventually Poisson

renewal process with T = 0. Another perhaps familiar,

but degenerate example of an eventually Poisson renewal

process is found in the spike trains generated by Poisson

neurons with refractory periods [13]. There, the neuron is

effectively prevented from firing two spikes within a time

T of each other—the period during which its ion channels

re-energize the membrane voltage to their nonequilibrium

steady state. After that, the time to next spike is drawn

from an exponential distribution and so Poisson. To ex-

actly predict the spike train’s future, we must know the

time since last spike, as long as it is less than T . We

gain a great deal of predictive power from that piece of

information. However, we do not care about the time

since last spike exactly if it is greater than T , since at

that point the neuron acts as a memoryless Poisson neu-

ron. Moreover, the renewal process that operates before

T (during the refractory period) is degenerate, allowing

no spiking.

Eventually ∆-Poisson processes described in Def. 2 are

far less intuitive, as φ(t) is discontinuous.

Definition 2. An eventually ∆-Poisson process with

∆∗ > 0 has an interevent interval distribution satisfying:

φ(t) = φ(T ∗ + (t− T ∗) mod ∆∗)e−λb(t−T
∗)/∆∗c

almost everywhere, for the smallest possible T ∗ for which

∆∗ exists.

Finally, we categorize all other renewal processes as

“typical” in Def. 3. For instance, the process generated

by any generalized integrate-and-fire neuron is typical.

Definition 3. A typical renewal process is neither even-

tually Poisson nor eventually ∆-Poisson.

Theorem 1 shows that Defs. 1-3 offer a complete predic-

tive classification of continuous-time renewal processes.

Theorem 1. A renewal process has three different types

of causal state:

1. When the renewal process is typical, the causal

states are the time since last event;

2. When the renewal process is eventually Poisson, the

causal states are the time since last event up until

time T ∗; or

3. When the renewal process is eventually ∆-Poisson,

the causal states are the time since last event up

until time T ∗ and are the times since T ∗ mod ∆

thereafter.

Proof. Lemma 1 implies that two pasts are causally

equivalent if they have the same time since last event,

if τ0+ = τ ′0+ . From Lemma 1’s proof, we further see that

two times since last event are causally equivalent when

Pr(T0− |T0+ = τ0+) = Pr(T0− |T0+ = τ ′0+). In terms of

φ(t), we find that:

Pr(T0− = τ0− |T0+ = τ0+) =
φ(τ0− + τ0+)

Φ(τ0+)
,

using manipulations very similar to those in the proof of

Thm. 1 of Ref. [16]. So, to find causal states, we look

for τ0+ 6= τ ′0+ such that:

φ(τ0− + τ0+)

Φ(τ0+)
=
φ(τ0− + τ ′0+)

Φ(τ ′0+)
.

for all τ0− ≥ 0.

To unravel the consequences of this, we suppose that

τ0+ < τ ′0+ without loss of generality. Define ∆ =

τ ′0+ − τ0+ and T = τ0+ , for convenience. The predic-

tive equivalence relation can then be rewritten as:

φ(T + ∆ + τ0−) = λφ(T + τ0−) ,

for any τ0− ≥ 0, where λ = Φ(T + ∆)/Φ(T ). Iterating

this relationship, we find that:

φ(T + τ0−) = λbτ0−/∆cφ (T + (τ0− mod ∆)) .

This immediately implies the theorem’s first case. If a re-

newal process is not eventually ∆-Poisson, then φ(τ0− +

τ0+)/Φ(τ0+) = φ(τ0− + τ ′0+)/Φ(τ ′0+) for all τ0− ≥ 0 im-

plies τ0+ = τ ′0+ , so that the prescient statistics of Lemma

1 are also minimal.

To understand the theorem’s last two cases, we con-

sider more carefully the set of all pairs (T,∆) for which

φ(τ0− + T )/Φ(T ) = φ(τ0− + T + ∆)/Φ(T + ∆) for all
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τ0− ≥ 0 holds. Define the set:

ST,∆ :=
{

(T,∆) :

φ(τ0− + T )

Φ(T )
=
φ(τ0− + T + ∆)

Φ(T + ∆)
, for all τ0− ≥ 0

}
and define the parameters T ∗ and ∆∗ by:

T ∗ := inf{T : there exists ∆ such that (T,∆) ∈ ST,∆}

and:

∆∗ := inf{∆ : (T ∗,∆) ∈ ST,∆} .

Note that T ∗ and ∆∗ defined in this way are unique and

exist, as we assumed that ST,∆ is nonempty. When ∆∗ >
0, then the process is eventually ∆-Poisson. If ∆∗ = 0,

then the process must be an eventually Poisson process

with parameter T ∗. To see this, we return to the equation:

φ(T ∗ + ∆ + τ0−) =
Φ(T ∗ + ∆)

Φ(T ∗)
φ(T ∗ + τ0−) ,

and rearrange terms to find:

φ(T ∗ + ∆ + τ0−)− φ(T ∗ + τ0−)

φ(T ∗ + τ0−)
=

Φ(T ∗ + ∆)− Φ(T ∗)
Φ(T ∗)

.

As ∆∗ = 0, we can take the limit that ∆→ 0 and we find

that:

d log φ(t)

dt

∣∣
t=T∗+τ0−

=
d log Φ(t)

dt

∣∣
t=T∗

.

The righthand side is a parameter independent of τ0− .

So, this is a standard ordinary differential equation for

φ(t). It is solved by φ(t) = φ(T ∗)e−λ(t−T∗) for λ :=

−d log Φ(t)/dt
∣∣
t=T∗

.

Theorem 1 implies that there is a qualitative change

in S+ depending on whether or not the renewal process

is Poisson, eventually Poisson, eventually ∆-Poisson, or

typical. In the first case, S+ is a discrete random vari-

able; in the second case, S+ is a mixed random variable;

and in the third and fourth cases, S+ is a continuous

random variable.

IV. WAVE PROPAGATION ON

CONTINUOUS-TIME ε-MACHINES

Identifying causal states in continuous-time follows an

almost entirely similar path to that used for discrete-

time renewal processes in Ref. [16]. The seemingly slight

differences between the causal states of eventually Pois-

son, eventually ∆-Poisson, and typical renewal processes,

however, have surprisingly important consequences for

S+

FIG. 4. ε-Machine for the generic not eventually Poisson re-
newal process: Continuous-time causal states S+, tracking
the time since last event and depicted as the semi-infinite
horizontal line, are isomorphic with the positive real line. If
no event is seen, probability flows towards increasing time
since last event, as described in Eq. (6). Otherwise, arrows
denote allowed transitions back to the reset state or “0 node”
(solid orange circle at left), denoting that an event occurred.

continuous-time ε-machines.

As described by Thm. 1, there is often an uncountable

infinity of continuous-time causal states. As one might

anticipate from Refs. [13, 16], however, there is an order-

ing to this infinity of causal states that makes calculations

tractable. There is one major difference between discrete-

time ε-machines and continuous-time ε-machines: transi-

tion dynamics often amount to specifying the evolution

of a probability density function over causal-state space.

As such, a continuous-time ε-machine constitutes an

unusual presentation of the process generated by a hid-

den Markov model. It appears as a conveyor belt that

transports the distribution of times since last event. Un-

der special conditions, the conveyor belt ends in a trash

bin or a second mini-conveyor belt. Compare Figs. 4, 5,

and 6.

The exception to this general rule is given by the Pois-

son process itself. The ε-machine of a Poisson process is

exactly the minimal generative model shown in Fig. 2.

At each iteration, an interevent interval is drawn from a

probability density function φ(t) = λe−λt, with λ > 0.

Knowing the time since last event does not aid in predict-

ing the time to next event, above and beyond knowing

λ. Hence, the Poisson ε-machine has only a single state.

In the general setting, though, the ε-machine dynamic

describes the evolution of the probability density func-

tion over its causal states. We therefore search for la-

beled transition operators O(x) such that ∂ρ(σ, t)/∂t =

O(x)ρ(σ, t), giving partial differential equations that gov-

ern the labeled-transition dynamics.

Finally, we provide expressions for the forward- and

reverse-time statistical complexities of continuous-time

renewal processes. Interestingly, a renewal process

viewed in reverse-time has equivalent statistics. There-

fore, the forward- and reverse-time ε-machines are equiv-

alent, and so C+
µ = C−µ . As such, we can relabel both as

Cµ without fear of confusion.
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A. Typical Renewal Processes

The ε-machine of a renewal process that is not even-

tually Poisson takes the state-transition form shown in

Fig. 4. Let ρ(σ, t) be the probability density function

over the causal states σ at time t. Our approach to de-

riving labeled transition dynamics parallels well-known

approaches to determining Fokker-Planck equations us-

ing a Kramers-Moyal expansion [19]. Here, this means

that any probability at causal state σ at time t + ∆t

could only have come from causal state σ−∆t at time t,

if σ ≥ ∆t. This implies:

ρ(σ,t+ ∆t)

= Pr(St+∆t = σ|St = σ −∆t)ρ(σ −∆t, t) . (4)

However, Pr(St+∆t = σ|St = σ−∆t) is simply the proba-

bility that the interevent interval is greater than σ, given

that the interevent interval is at least σ −∆t, or:

Pr(St+∆t = σ|St = σ −∆t) =
Φ(σ)

Φ(σ −∆t)
. (5)

Together, Eqs. (4) and (5) imply that:

ρ(σ, t+ ∆t) =
Φ(σ)

Φ(σ −∆t)
ρ(σ −∆t, t) .

From this, we obtain:

∂ρ(σ, t)

∂t
= lim

∆t→0

ρ(σ, t+ ∆t)− ρ(σ, t)

∆t

= lim
∆t→0

Φ(σ)
Φ(σ−∆t)ρ(σ −∆t, t)− ρ(σ, t)

∆t

= lim
∆t→0

( Φ(σ)
Φ(σ−∆t) − 1)ρ(σ −∆t, t)

∆t

+ lim
∆t→0

ρ(σ −∆t, t)− ρ(σ, t)

∆t

=
∂ log Φ(σ)

∂σ
ρ(σ, t)− ∂ρ(σ, t)

∂σ
. (6)

Hence, the labeled transition operator O(0) given no

event takes the form:

O(0) =
∂ log Φ(σ)

∂σ
− ∂

∂σ
.

The probability density function ρ(σ, t) changes discon-

tinuously after an event occurs, though. All probability

mass shifts from σ > 0 resetting back to σ = 0:

O(1)ρ(σ, t) = − φ(σ)

Φ(σ)
ρ(σ, t) + δ(σ)

∫ ∞
0

φ(σ′)
Φ(σ′)

ρ(σ′, t)dσ′ .

In other words, an event “collapses the wavefunction”.

T ∗
S+

FIG. 5. ε-Machine for an eventually Poisson renewal process:
Continuous-time causal states S+ are isomorphic with the real
line only to [0, T ∗], as they again denote time since last event.
A leaky absorbing node at T ∗ (solid white circle at right)
corresponds to any time since last event after T ∗. If no event
is seen, probability flows towards increasing time since last
event or the leaky absorbing node, as described in Eqs. (6)
and (7). When an event occurs the process transitions (curved
arrows) back to the reset state—node 0 (solid blue circle at
left).

The stationary distribution ρ(σ) over causal states is

given by setting ∂tρ(σ, t) to 0 and solving. (At the risk of

notational confusion, we adopt the convention that ρ(σ)

denotes the stationary distribution and that ρ(σ, t) does

not.) Straightforward algebra shows that:

ρ(σ) = µΦ(σ) .

From this, the continuous-time statistical complexity

directly follows:

Cµ =

∫ ∞
0

µΦ(σ) log
1

µΦ(σ)
dσ .

Recall that for renewal processes, H[S+] = H[S−] = Cµ.

This was the nondivergent component of the infinitesimal

time-discretized renewal process’ statistical complexity

found in Ref. [13].

B. Eventually Poisson Processes

As Thm. 1 anticipates, there is a qualitatively different

topology to the ε-machine of an eventually Poisson re-

newal process, largely due to the continuous-time causal

states being mixed discrete-continuous random variables.

For σ < T ∗, there is “wave” propagation completely anal-

ogous to that described in Eq. (6) of Sec. IV A. However,

there is a new kind of continuous-time causal state at

σ = T ∗, which does not have a one-to-one correspon-

dence to the dwell time. Instead, it denotes that the

dwell time is at least some value; viz., T ∗. New notation

follows accordingly: ρ(σ, t), defined for σ < T ∗, denotes a

probability density function for σ < T ∗ and π(T ∗, t) de-

notes the probability of existing in causal state σ = T ∗.
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Normalization, then, requires that:∫ T∗

0

ρ(σ, t)dσ + π(T ∗, t) = 1 .

The transition dynamics for π(T ∗, t) are obtained sim-

ilarly to that for ρ(σ, t), in that we consider all ways in

which probability flows to π(T ∗, t + ∆t) in a short time

window ∆t. Probability can flow from any causal state

with T ∗−∆t ≤ σ < T ∗ or from σ = T ∗ itself. That is, if

no event is observed, we have:

π(T ∗, t+ ∆t) = e−λ∆tπ(T ∗, t)

+

∫ ∆t

0+

ρ(T ∗ − t′, t)Φ(T ∗)e−λ(∆t−t′)

Φ(T ∗ − t′) dt′.

The term e−λ∆tπ(T ∗, t) corresponds to probability flow

from σ = T ∗ and the integrand corresponds to proba-

bility influx from states σ = T ∗ − t′ with 0 < t′ ≤ ∆t.

Assuming differentiability of π(T ∗, t) with respect to t,

we find that:

∂

∂t
π(T ∗, t) = −λπ(T ∗, t) + ρ(T ∗, t) , (7)

where ρ(T ∗, t) is shorthand for limσ→T∗ ρ(σ, t). This im-

plies that the labeled transition operator O(0) takes a

piecewise form which acts as in Eq. (6) for σ < T ∗ and

as in Eq. (7) for σ = T ∗. As earlier, observing an event

causes the “wavefunction collapse” to a delta distribution

at σ = 0.

The causal-state stationary distribution is determined

again by setting ∂tρ(σ, t) and ∂tπ(σ, t) to 0. Equivalently,

one can use the prescription suggested by Thm. 1 to cal-

culate π(T ∗) via integration of the stationary distribution

over the prescient machine given in Sec. IV A:

π(T ∗) =

∫ ∞
T∗

ρ(σ)dσ

= µ

∫ ∞
T∗

Φ(σ)dσ .

If we recall that Φ(σ) = Φ(T ∗)e−λ(t−T∗), we find that:

π(T ∗) = µΦ(T ∗)/λ .

The process’ continuous-time statistical complexity—

precisely, entropy of this mixed random variable—is

given by:

Cµ =

∫ T∗

0

µΦ(σ) log
1

µΦ(σ)
dσ − µΦ(T ∗)

λ
log

µΦ(T ∗)
λ

.

This is the sum of the nondivergent Cµ component and

the rate of divergence of Cµ of the infinitesimal time-

∆∗

T ∗

S+

FIG. 6. ε-Machine for an eventually ∆-Poisson renewal pro-
cess: Graphical elements as in the previous figure. The circu-
lar causal-state space at T ∗ (circle on right) has total duration
∆∗, corresponding to any time since last event after T ∗ mod
∆∗. If no event is seen, probability flows as indicated around
the circle, as described in Eq. (6).

discretized renewal process [13].

C. Eventually-∆ Poisson Processes

Probability wave propagation equations, like those in

Eq. (6), hold for σ < T ∗ and for T ∗ < σ < T ∗ + ∆.

At σ = T ∗, if no event is observed, probability flows in

from both (T ∗ + ∆)− and from (T ∗)−, giving rise to the

equation:

ρ(T ∗, t+ ∆t) = ρ(T ∗ −∆t, t) + ρ(T ∗ + ∆∗ −∆t, t) .

Unfortunately, there is a discontinuous jump in ρ(σ, t) at

σ = T ∗ coming from (T ∗)− and (T ∗ + ∆∗)−. And so,

we cannot Taylor expand either ρ(T ∗ −∆t, t) or ρ(T ∗ +

∆∗ −∆t, t) about ∆t = 0.

Again, we can use the prescription suggested by

Thm. 1 to calculate the probability density function

over these causal states and, from that, calculate the

continuous-time statistical complexity. Below σ < T ∗,
the probability density function over causal states is ex-

actly that described in Sec. IV A: ρ(σ) = µΦ(σ). For

T ∗ ≤ σ < T ∗ + ∆, the probability density function be-

comes:

ρ(σ) =
∑

σ′:(σ′−T∗)mod ∆∗=σ

µΦ(σ′)

= µ

∞∑
i=0

Φ(σ + i∆∗) .

Recalling Def. 2, we see that Φ(σ+ i∆∗) = e−λiΦ(σ) and

so find that for σ > T ∗:

ρ(σ) = µΦ(σ)

∞∑
i=0

e−λi

=
µΦ(σ)

1− e−λ .
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Altogether, using Ref. [9], this gives the statistical com-

plexity:

Cµ =

∫ T∗

0

µΦ(σ) log
1

µΦ(σ)
dσ

+

∫ T∗+∆∗

T∗

µΦ(σ)

1− e−λ log
1− e−λ
µΦ(σ)

dσ .

V. DIFFERENTIAL INFORMATION RATES

Discrete-time entropy rates are usually defined via

limT→∞H[X0:T ]/T , which is equivalent to H[X0|X:0] by

the Cesaro Mean Theorem. The definition for the en-

tropy rate hµ of continuous-time processes follows an

analogous pattern. We let Γδ be the symbol sequence

observed over an arbitrarily small length of time δ, start-

ing at the present 0−. We have hµ = limT→∞H[T T0 ]/T ,

and the Cesaro Mean Theorem again yields that hµ =

limδ→0 dH[Γδ|
←−T ]/dδ.

We must similarly redefine other information measures

listed in Ref. [20] as differential information rates, where

we craft new definitions largely based on Fig. 7. Fol-

lowing Fig. 7 too closely would yield infinities in the

final answer that are regularizable; e.g., as described

in Ref. [13]. These infinities are exactly related to a

well-known problem with differential entropy: the en-

tropy of a coarse-grained continuous random variable X

with probability density function ρ(x) takes the form of

−
∫
ρ(x) log ρ(x)dx + log 1

ε , where ε is the length of the

boxes used in coarse-graining.

Correspondingly, the original set-theoretic definitions

[21] do not quite extend to the continuous-time case. As

mentioned earlier, the present extends over an infinitesi-

mal time. To define information anatomy rates more pre-

cisely, we let Γδ be the symbol sequence observed over an

arbitrarily small length of time δ, starting at the present

0−. It could be that Γδ encompasses some portion of T1;

the notation leaves this ambiguous. The entropy rate is

now:

hµ = lim
δ→0

dH[Γδ|T:0+ ]

dδ
. (8)

Again, this is equivalent to the more typical random-

variable “block” definition of entropy rate [8]:

limT→∞H[T T0 ]/T .

Similarly, we define the single-measurement entropy

rate as:

H0 = lim
δ→0

dH[Γδ]

dδ
, (9)

the bound information rate as:

bµ = lim
δ→0

d I[Tδ:; Γδ|T:0+ ]

dδ
, (10)

the ephemeral information rate as:

rµ = lim
δ→0

dH[Γδ|T:0+ , Tδ:]
dδ

, (11)

and the co-information rate as:

qµ = lim
δ→0

d I[T:0+ ; Γδ; Tδ:]
dδ

. (12)

In direct analogy to discrete-time process information

anatomy, we have the relationships:

H0 = 2bµ + rµ + qµ ,

hµ = bµ + rµ .

So, the entropy rate hµ, the instantaneous rate of in-

formation creation, again decomposes into a component

bµ that represents active information storage and a com-

ponent rµ that monitors “dissipated” information. The

information-diagram for rates is given in Fig. 7; comple-

menting the causal-state diagram of Fig. 3.

H[T:0+ ] H[T0−+δ:]

H0 δ

rµδ

bµδbµδ

qµδ

FIG. 7. Predictively useful and predictively useless infor-
mation for renewal processes: Information diagram for the
past T:0+ , infinitesimal present Γδ, and future Tδ:. The mea-
surement entropy rate H0 is the rate of change of the single-
measurement entropy H[Γδ] at δ = 0. The ephemeral informa-
tion rate rµ = H[Γδ|T:0+ , Tδ:] is the rate of change of useless
information generation at δ = 0. The bound information rate
bµ = I[Γδ; Tδ:|T:0+ ] is the rate of change of active information
storage. And, the co-information rate qµ = I[T:0+ ; Γδ; Tδ:]
is the rate of change of shared information between past,
present, and future. These definitions closely parallel those
in Ref. [20].

Prescient states (not necessarily minimal) are adequate

for deriving all information measures aside from C±µ . As

such, we focus on the transition dynamics of noneventu-

ally ∆-Poisson ε-machines and, implicitly, their bidirec-
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tional machines.

To find the joint probability density function of the

time to next event σ− and time since last event σ+, we

note that σ+ + σ− is an interevent interval; hence:

ρ(σ+, σ−) ∝ φ(σ+ + σ−) .

The normalization factor of this distribution is:

Z =

∫ ∞
0

∫ ∞
0

φ(σ+ + σ−)dσ+dσ−

=

∫ ∞
0

∫ ∞
σ−

φ(σ+)dσ+dσ−

=

∫ ∞
0

Φ(σ−)dσ−

= µ−1 .

So, the joint probability distribution is:

ρ(σ+, σ−) =
φ(σ+ + σ−)

Z

= µφ(σ+ + σ−) .

Equivalently, we could have calculated the conditional

probability density function of time-to-next-event given

that it has been at least σ+ since the last event. This,

by similar arguments, is φ(σ+ +σ−)/Φ(σ+). This would

have given the same expression for ρ(σ+, σ−).

To find the excess entropy, which is defined as

I[T:0+ ; T0−:] or equivalently as limT→∞
(
H[T T0 ]− hµT

)
[8], where T T0 is a future of time length T , we merely

need calculate [10, 11]:

E = I[S+;S−]

= H[S+] + H[S−]−H[S+,S−]

= −
∫ ∞

0

µΦ(σ+) log
(
µΦ(σ+)

)
dσ+

−
∫ ∞

0

µΦ(σ−) log
(
µΦ(σ−)

)
dσ−

+

∫ ∞
0

∫ ∞
0

µφ(σ+ + σ−) log
(
µφ(σ+ + σ−)

)
dσ+dσ−.

Since
∫∞

0

∫∞
0
f(x+ y)dxdy =

∫∞
0
xf(x)dx, which can be

shown by recourse to Riemann sums [16], we have:

E =

∫ ∞
0

µ t φ(t) log2

(
µφ(t)

)
dt

− 2

∫ ∞
0

µΦ(t) log2

(
µΦ(t)

)
dt .

This agrees with the formula given in Ref. [13], which

was derived by considering the limit of infinitesimal time

discretization [22].

Now, we turn to the more technically challenging task

of calculating differential information anatomy rates.

Suppose that Γδ is a random variable for paths of length

δ. Each path is uniquely specified by a list of event

times. The trajectory distribution is therefore quite com-

plicated. However, only trajectories with zero or one

event matter for calculating these differential information

anatomy rates. Let Xδ be a random variable defined by:

Xδ =


0 No events in Γδ

1 1 event in Γδ

2 ≥ 2 events in Γδ

.

We first illustrate how to find H0, since the same tech-

nique allows calculating hµ. We can rewrite the path

entropy as:

H[Γδ] = H[Xδ] + H[Γδ|Xδ] .

For renewal processes, when µ is finite, we see that:

Pr(Xδ = 0) = 1− µδ +O(δ2) ,

Pr(Xδ = 1) = µδ +O(δ2) , and

Pr(Xδ = 2) = O(δ2) .

Straightforward algebra shows that:

H[Xδ] = µδ − µδ log(µδ) +O(δ2 log δ) .

We would like to find a similar asymptotic expansion

for H[Γδ|Xδ], which can be rewritten as:

H[Γδ|Xδ] = Pr(Xδ = 0) H[Γδ|Xδ = 0]

+ Pr(Xδ = 1) H[Γδ|Xδ = 1]

+ Pr(Xδ = 2) H[Γδ|Xδ = 2] .

First, we notice that Γδ is deterministic given that Xδ =

0—the path of all silence. So, H[Γδ|Xδ = 0] = 0.

Second, we can similarly ignore the term Pr(Xδ =

2) H[Γδ|Xδ = 2] since Pr(Xδ = 2) is O(δ2) and, we claim,

H[Γδ|Xδ = 2] is O(log δ). Then, note that Pr(Γδ|Xδ = 2)

is a probability density function of two variables with the

stipulation that neither is negative and that the sum is

less than δ. Hence, by standard maximum entropy ar-

guments, H[Γδ|Xδ = 2] is at most log δ. By noting that

trajectories with only one event are a strict subset of

trajectories with more than one event but with multi-

ple events arbitrarily close to one another: H[Γδ|Xδ =

2] ≥ H[Γδ|Xδ = 1]. The latter, by arguments below, is

O(log δ). Thus, the term Pr(Xδ = 2) H[Γδ|Xδ = 2] is

O(δ2 log δ) at most.

Finally, to calculate H[Γδ|Xδ = 1], we note that when

Xδ = 1, paths can be uniquely specified by an event time,
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whose probability is Pr(T = t|Xδ = 1) ∝ Φ(t)Φ(δ −
t). A Taylor expansion about δ/2 shows that Pr(T =

t|Xδ = 1) = δ−1 + O(δ), and so H[Γδ|Xδ = 1] is log δ

with corrections of O(δ). Hence, the largest corrections

to H[Γδ|Xδ] come from ignoring the paths with two or

more events, rather than from approximating all paths

with only one event as equally likely. In sum, we see

that:

H[Γδ|Xδ] = µδ log δ +O(δ2 log δ) .

Together, these manipulations give:

H[Γδ] = µδ − µδ logµ+O(δ2 log δ) .

This then implies:

H0 = lim
δ→0

dH[Γδ]

dδ

= µ− µ logµ .

A similar series of arguments helps to calculate

hµ(σ+) defined in Eq. (8), where now µ is replaced by

φ(σ+)/Φ(σ+):

hµ(σ+) =
φ(σ+)

Φ(σ+)
− φ(σ+)

Φ(σ+)
log

φ(σ+)

Φ(σ+)
, (13)

which gives:

hµ =

∫ ∞
0

µφ(σ+)dσ+ −
∫ ∞

0

µφ(σ+) log
φ(σ+)

Φ(σ+)
dσ+ .

Algebra (namely, integration by parts) not shown here

yields the expression:

hµ = −µ
∫ ∞

0

φ(t) log φ(t)dt . (14)

This is the nondivergent component of the expression

given in Eq. (10) of Ref. [13] for the τ -entropy rate

of renewal processes, and it agrees with an alternative

derivation [23].

We need slightly different techniques to calculate bµ,

as we no longer need to decompose a path entropy. From

Eq. (10), we have:

bµ(σ+) = lim
δ→0

dH[S−δ |S+
0 = σ+]

dδ
.

Let us develop a short-time δ-asymptotic expansion for

Pr(S−δ = σ−|S+
0 = σ+). First, notice we have the

Markov chain S+
0 → S+

δ → S−δ , so that:

Pr(S−δ = σ−|S+
0 = σ+)

=

∫ ∞
0

Pr(S−δ = σ−|S+
δ = σ′) Pr(S+

δ = σ′|S+
0 = σ+)dσ′.

We already can identify:

Pr(S−δ = σ−|S+
δ = σ′) =

φ(σ− + σ′)
Φ(σ′)

.

To understand Pr(S+
δ = σ′|S+

0 = σ+), we expand:

Pr(S+
δ = σ′|S+

0 = σ+) =

2∑
x=0

Pr(S+
δ = σ′, Xδ = x|S+

0 = σ+) .

Recall that Pr(Xδ = 2|S+
0 = σ+) is O(δ2), so we have:

Pr(S+
δ = σ′, Xδ = 0|S+

0 = σ+) =
Φ(σ′)
Φ(σ+)

δ(σ′ − δ − σ+) ,

and:

Pr(S+
δ = σ′, Xδ = 1|S+

0 = σ+)

=

{
φ(σ++δ−σ′)

Φ(σ+) Φ(σ′) σ′ ≤ δ
0 σ′ > δ

.

Then, straightforward algebra not shown gives:

Pr(S−δ = σ−|S+
0 = σ+)

=
φ(σ+ + σ−)

Φ(σ+)
+
φ′(σ+ + σ−) + φ(σ−)φ(σ+)

Φ(σ+)
δ +O(δ2) .

This can be used to derive:

bµ(σ+) =
φ(σ+)

Φ(σ+)

(
log φ(σ+)− 1

−
∫ ∞

0

φ(σ−) log φ(σ+ + σ−)dσ−
)
,

in nats. When φ(t) = λe−λt, for instance, bµ(σ+) = 0

for all σ+, confirming that Poisson processes really are

memoryless. This allows us to calculate the total bµ as:

bµ =

∫ ∞
0

µΦ(σ+)bµ(σ+)dσ+

= −µ
(

1 +

∫ ∞
0

∫ ∞
0

φ(t)φ(t′) log φ(t+ t′)dtdt′

−
∫ ∞

0

φ(t) log φ(t)dt
)
,
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in nats. From this, we find rµ using:

rµ = hµ − bµ

= −µ
∫ ∞

0

φ(σ+) log φ(σ+)dσ+

+ µ
(

1 +

∫ ∞
0

∫ ∞
0

φ(σ+)φ(σ−) log Φ(σ+)dσ+dσ−

−
∫ ∞

0

φ(σ+) log φ(σ+)dσ+
)

= −µ
(

2

∫ ∞
0

φ(t) log φ(t+ t′)dt− 1

−
∫ ∞

0

φ(t)

∫ ∞
0

φ(t′) log φ(t+ t′)dt′dt
)
.

Continuing, we calculate qµ from:

qµ = H0−(hµ + bµ)

= −µ logµ− µ

+ µ
(∫ ∞

0

φ(t)

∫ ∞
0

φ(t′) log φ(t+ t′)dt′dt+ 1
)

= µ

∫ ∞
0

φ(t)

∫ ∞
0

φ(t′) log φ(t′)dt′dt− µ logµ .

And, we calculate ρµ via:

ρµ = H0−hµ

= −µ logµ− µ+ µ

∫ ∞
0

φ(σ+) log φ(σ+)dσ+ .

All these quantities are gathered in Table I, which gives

them in bits rather than nats.

VI. CONCLUSIONS

Though the definition of continuous-time causal states

of renewal processes parallels that for discrete-time

causal states, continuous-time ε-machines and informa-

tion measures are markedly different from their discrete-

time counterparts. Similar technical difficulties arise

more generally when describing minimal maximally pre-

dictive models of other continuous-time, discrete-symbol

processes that are not the continuous-time Markov pro-

cesses analyzed in Ref. [6]. The resulting ε-machines

do not appear like conventional HMMs—recall Figs. 4-

6—and most of the information measures (excepting the

excess entropy) must be reinterpreted as differential in-

formation rates. And so, the machinery required to de-

ploy continuous-time ε-machines differs significantly from

that accompanying discrete-time ε-machines.

That said, the ε-machine continuous-time machinery

gave us a new way to calculate these information mea-

sures. Practically, the formulae in Table I provide new
approaches to binless plug-in information-measure esti-

mation; e.g., following Ref. [24].

Traditionally, expressions for such information mea-

sures come from calculating the time-normalized path

entropy of arbitrarily long trajectories; e.g., as in Ref.

[25]. Instead, we calculated the path entropy of arbitrar-

ily short trajectories, conditioned on the past. This al-

lows us to extend the results of Ref. [25] for the entropy

rate of continuous-time, discrete-alphabet processes to

hidden semi-Markov processes; see the sequel Ref. [26].

We hope that our results here pave the way toward un-

derstanding the difficulties that lie ahead when study-

ing the structure and information in continuous-time,

continuous-value processes.
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