
Coupled Replicator Equations for the

Dynamics of Learning in Multiagent Systems

Yuzuru Sato1, 2, ∗ and James P. Crutchfield2, †

1Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Saitama 351-0198, Japan
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

(Dated: January 7, 2003)

Starting with a group of reinforcement-learning agents we derive coupled replicator equations
that describe the dynamics of collective learning in multiagent systems. We show that, although
agents model their environment in a self-interested way without sharing knowledge, a game dynamics
emerges naturally through environment-mediated interactions. An application to rock-scissors-paper
game interactions shows that the collective learning dynamics exhibits a diversity of competitive and
cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deter-
ministic chaos—behaviors that should be expected in heterogeneous multiagent systems described
by the general replicator equations we derive.
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Adaptive behavior in multiagent systems is an impor-
tant interdisciplinary topic that appears in various guises
in many fields, including biology [1], computer science [2],
economics [3], and cognitive science [4]. One of the key
common questions is how and whether a group of intelli-
gent agents truly engages in collective behaviors that are
more functional than individuals acting alone.

Suppose that many agents interact with an environ-
ment and each independently builds a model from its sen-
sory stimuli. In this simple type of coupled multiagent
system, collective learning (if it occurs) is a dynamical
behavior driven by agents’ environment-mediated inter-
action [5, 6]. Here we show that the collective dynamics
in multiagent systems, in which agents use reinforcement
learning [7], can be modeled using a generalized form of
coupled replicator equations.

While replicator dynamics were introduced originally
for evolutionary game theory [8], the relationship be-
tween reinforcement learning and replicator equations
has been developed only recently [9]. Here, we extend
these considerations to multiagent systems, introducing
the theory behind a previously reported game-theoretic
model [10]. We show that replicator dynamics emerges as
a special case of the continuous-time limit for multiagent
reinforcement-learning systems. The overall approach,
though, establishes a general framework for dynamical-
systems analyses of adaptive behavior in collectives.

Notably, in learning with perfect memory, our model
reduces to the form of a multipopulation replicator equa-
tion introduced in Ref. [11]. For two agents with perfect
memory interacting via a zero-sum rock-scissors-paper
game the dynamics exhibits Hamiltonian chaos [10]. In
contrast, as we show here, with memory decay multiagent
systems generally become dissipative and display the full
range of nonlinear dynamical behaviors, including limit
cycles, intermittency, and deterministic chaos.

Our multiagent model begins with simple
reinforcement-learning agents. To clarify the devel-

opment, we assume that there are two such agents
X and Y that at each time step take one of N ac-
tions: i = 1, . . . , N . Let the probability for X to
chose action i be xi(n) and yi(n) for Y , where n
is the number of the learning iterations from the
initial state at n = 0. The agents’ choice distribu-
tions at time n are x(n) = (x1(n), . . . , xN (n)) and
y(n) = (y1(n), . . . , yN(n)), with Σixi(n) = Σiyi(n) = 1.

Let RX
ij and RY

ij denote the rewards for X taking action
i and Y action j at step n, respectively. Given these
actions, X ’s and Y ’s memories, QX

i (n) and QY
i (n), of

the past benefits from their actions are governed by

QX
i (n + 1) − QX

i (n) = RX
ij − αXQX

i (n) and (1)

QY
i (n + 1) − QY

i (n) = RY
ij − αY QY

i (n) ,

where αX , αY ∈ [0, 1) control each agent’s memory decay
rate and QX

i (0) = QY
i (0) = 0. The agents choose their

next actions according to the Q’s, updating their choice
distributions as follows:

xi(n) =
eβXQX

i (n)

Σje
βXQX

j
(n)

and yi(n) =
eβY QY

i (n)

Σje
βY QY

j
(n)

, (2)

where βX , βY ∈ [0,∞] control the learning sensitivity:
how much the current choice distributions are affected
by past rewards. Using Eq. (2), the dynamic governing
the change in agent state is given by:

xi(n + 1) =
xi(n)eβX(QX

i (n+1)−QX
i (n))

Σjxj(n)eβX(QX
j

(n+1)−QX
j

(n))
, (3)

and similarly for yi(n + 1).
Consider the continuous-time limit corresponding to

agents performing a large number of actions (iterates
of Eqs. (1)) for each choice-distribution update (iter-
ates of Eq. (3)). In this case, we have two different
time scales—that for agent-agent interactions and that
for learning. We assume that the learning dynamics is
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very slow compared to interactions and so x and y are
essentially constant during the latter. Then, based on Eq.
(3), continuous-time learning for agent X is governed by

ẋi = βXxi(Q̇
X
i − ΣjQ̇

X
j xj) , (4)

and for the dynamic governing memory updates we have

Q̇X
i = RX

i − αXQX
i , (5)

where RX
i is the reward for X choosing action i, aver-

aged over Y ’s actions during the time interval between
learning updates. Putting together Eqs. (2), (4), and (5)
one finds

ẋi

xi

= βX [RX
i − ΣjxjR

X
j ] + αXIX

i , (6)

where IX
i ≡ Σjxj log(xj/xi) represents the effect of mem-

ory with decay parameter αX . (The continuous-time dy-
namic of Y follows in a similar manner.) Eq. (6), ex-
tended to account for any number of agents and actions,
constitutes our general model for reinforcement-learning
multiagent systems.

Simplifying again, assume a fixed relationship between
pairs (i, j) of X ’s and Y ’s actions and between rewards
for both agents: RX

ij = aij and RY
ij = bij . Assume fur-

ther that x and y are independently distributed, then
the time-average rewards for X and Y become

RX
i = Σjaijyj and RY

i = Σjbijxj , (7)

In this restricted case, the continuous-time dynamic is:

ẋi

xi

= βX [(Ay)i − x · Ay] + αXIX
i ,

ẏi

yi

= βY [(Bx)i − y · Bx] + αY IY
i , (8)

where (A)ij = aij and (B)ij = bij , (Ax)i is the ith ele-
ment of the vector Ax, and βX and βY control the time
scale of each agent’s learning.

We can regard A and B as X ’s and Y ’s game-theoretic
payoff matrices for action i against opponent’s action j
[18]. In contrast with game theory, which assumes agents
have exact knowledge of the game structure and of other
agent’s strategies, reinforcement-learning agents have no
knowledge of a “game” in which they are playing, only a
myopic model of the environment—other agent(s)—given
implicitly via the rewards they receive. Nonetheless, a
game dynamics emerges—via RX and RY in Eq. (6)—as
a description of the collective’s global behavior.

Given the basic equations of motion for the
reinforcement-learning multiagent system (Eq. (8)), one
becomes interested in, on the one hand, the time evolu-
tion of each agent’s state vector in the simplices x ∈ ∆X

and y ∈ ∆Y and, on the other, the dynamics in the
higher-dimensional collective simplex (x,y) ∈ ∆X ×∆Y .

Following Ref. [12], we transform from (x,y) ∈ ∆X×∆Y

to U = (u,v) ∈ R2(N−1) with u = (u1, . . . , uN−1) and
v = (v1, . . . , vN−1), where ui = log(xi+1/x1) and vi =
log(yi+1/y1), (i = 1, . . . , N −1). The result is a new ver-
sion of our simplified model (Eqs. (8)), useful both for
numerical stability during simulation and also for analy-
sis in certain limits:

u̇i = βX

∑N−1
j=1 ãi,je

vj + ãi0

1 +
∑N−1

j=1 evj

− αXui

(9)

v̇i = βY

∑N−1
j=1 b̃i,je

uj + b̃i0

1 +
∑N−1

j=1 euj

− αY vi ,

where ãij = ai+1,j+1 − a1,j+1 and b̃ij = bi+1,j+1 − b1,j+1.
Since the dissipation rate γ in U is

γ = Σi

∂u̇i

∂ui

+ Σj

∂v̇j

∂vj

= −(N − 1)(αX + αY ), (10)

Eqs. (8) are conservative when αX = αY = 0 and the
time average of a trajectory is the Nash equilibrium of
the game specified by A and B, if a limit set exists in
the interior of ∆X × ∆Y [19]. Moreover, if the game is
zero-sum, the dynamics are Hamiltonian in U with

H = − βY [Σjx
∗
juj − log(1 + Σje

uj )] (11)

− βX [Σjy
∗
j vj − log(1 + Σje

vj )] ,

where (x∗,y∗) is an interior Nash equilibrium [12].
To illustrate the dynamical-systems analysis of learn-

ing in multiagent systems using the above framework, we
now analyze the behavior of the two-person rock-scissors-
paper interaction [20]. This familiar game describes a
nontransitive three-sided competition: rock beats scis-
sors, scissors beats paper, and paper beats rock. The
reward structure (environment) is given by:

A =





εX 1 −1
−1 εX 1
1 −1 εX



 and B =





εY 1 −1
−1 εY 1
1 −1 εY



 , (12)

where εX , εY ∈ [−1.0, 1.0] are the rewards for ties. The
mixed Nash equilibrium is x∗

i = y∗
i = 1/3, (i = 1, 2, 3)—

the centers of ∆X and ∆Y . If εX = −εY , the game is
zero-sum.

In the special case of perfect memory (αX = αY = 0)
and with equal learning sensitivity (βX = βY ), the linear
version (Eqs. (8)) of our model (Eq. (6)) reduces to
multipopulation replicator equations [11]:

ẋi

xi

= [(Ay)i − x · Ay] and
ẏi

yi

= [(Bx)i − y · Bx] . (13)

The game-theoretic behavior in this case with rock-
scissors-paper interactions (Eqs. (12)) was investigated
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FIG. 1: Quasiperiodic tori and chaos: εX = −εY = 0.5,
αX = αY = 0, and βX = βY . We give a Poincaré section
(top) on the hyperplane defined by u̇1 = 0 and v̇1 > 0; that
is, in the (x,y) space: (3 + εX)y1 + (3 − εX)y2 − 2 = 0 and
(3 + εY )x1 + (3 − εY )x2 − 2 < 0. There are 23 randomly
selected initial conditions with energies H = −1/3(u1 + u2 +
v1 + v2) + log(1 + eu1 + eu2) + log(1 + ev1 + ev2 ) = 2.941693,
which surface forms the outer border of H ≤ 2.941693. Two
rows (bottom): Representative trajectories, simulated with
a 4th-order symplectic integrator [13], starting from initial
conditions within the Poincaré section. The upper simplices
show a torus in the section’s upper right corner; see the en-
larged section at the upper right. The initial condition is
(x,y) = (0.3, 0.054196, 0.645804, 0.1, 0.2, 0.7). The lower sim-
plices are an example of a chaotic trajectory passing through
the regions in the section that are a scatter of dots; the initial
condition is (x,y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7).

in [10]. Here, before contrasting our more general set-
ting, we briefly recall the behavior in these special cases,
noting several additional results.

Figure 1 shows Poincaré sections of Eqs. (13)’s trajec-
tories on the hyperplane (u̇1 = 0, v̇1 > 0) and represen-
tative trajectories in the individual agent simplices ∆X

and ∆Y . When εX = −εY = 0.0, we expect the system
to be integrable and only quasiperiodic tori should exist.
Otherwise, εX = −εY > 0.0, Hamiltonian chaos can oc-
cur with positive-negative pairs of Lyapunov exponents
[10]. The dynamics is very rich, there are infinitely many
distinct behaviors near the unstable fixed point at the
center—the classical Nash equilibrium—and a periodic
orbit arbitrarily close to any chaotic one. Moreover, when
the game is not zero-sum (εX 6= εY ), transients to hete-
roclinic cycles are observed [10]: On the one hand, there
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FIG. 2: Limit cycle (top: εY = 0.025) and chaotic attractors
(bottom: εY = −0.365), with εX = 0.5, αX = αY = 0.01,
and βX = βY .

are intermittent behaviors in which the time spent near
pure strategies (the simplicial vertices) increases subex-
ponentially with εX + εY < 0 and, on the other hand,
with εX + εY > 0, chaotic transients persist; cf. [14].

Our framework goes beyond these special cases and,
generally, beyond the standard multipopulation replica-
tor equations (Eqs. (13)) due to its accounting for the ef-
fects of individual and collective learning and since the re-
ward structure and the learning rules need not lead to lin-
ear interactions. For example, if the memory decay rates
(αX and αY ) are positive, the system becomes dissipative
and exhibits limit cycles and chaotic attractors; see Fig.
2. Figure 3 (top) shows a diverse range of bifurcations as
a function of εY : dynamics on the hyperplane (u̇1 = 0,
v̇1 > 0) projected onto y1. When the game is nearly
zero-sum, agents can reach the stable Nash equilibrium,
but chaos can also occur, when εX + εY > 0. Figure 3
(bottom) shows that the largest Lyapunov exponent is
positive across a significant fraction of parameter space;
indicating that chaos is common. The dual aspects of
chaos, irregularity and coherence, imply that agents may
behave cooperatively or competitively (or switch between
both) in the collective dynamics. Such global behaviors
ultimately derive from self-interested, myopic learning.

Within this framework a number of extensions suggest
themselves as ways to investigate the emergence of collec-
tive behaviors. The most obvious is the generalization to
an arbitrary number of agents with an arbitrary number
of strategies and the analysis of behaviors in thermody-
namic limit; see, e.g., [15] as an alternative approach. It
is relatively straightforward to develop an extension to
the linear-reward version (Eqs. (8)) of our model. For
three agents X , Y , and Z, one obtains:

ẋi

xi

= βX [Σj,kaijkyjzk −Σj,k,lajklxjykzl] + αXIX
i , (14)

with tensor (A)ijk = aijk , and similarly for Y and Z.
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FIG. 3: Bifurcation diagram (top) of dissipative (learning
with memory loss) dynamics projected onto coordinate y1

from the Poincaré section hyperplane (u̇1 = 0, v̇1 > 0) and the
largest two Lyapunov exponents λ1 and λ2 (bottom) as a func-
tion of εY ∈ [−1, 1]. Here with εX = 0.5, αX = αY = 0.01,
and βX = βY . Simulations show that λ3 and λ4 are always
negative.

Not surprisingly, this is also a conservative system when
the α’s vanish. However, extending the general collec-
tive learning equations (Eq. (6)) to multiple agents is
challenging and so will be reported elsewhere.

To be relevant to applications, one also needs to de-
velop a statistical dynamics generalization [16] of the
deterministic equations of motion to account for finite
and fluctuating numbers of agents and also finite histo-
ries used in learning. Finally, another direction, espe-
cially useful if one attempts to quantify collective func-
tion in large multiagent systems, will be structural and
information-theoretic analyses [17] of local and global
learning behaviors and, importantly, their differences.
Analyzing the stored information in each agent versus
that in the collective, the causal architecture of infor-
mation flow between an individual agent and the group,
and how individual and global memories are processed to
sustain collective function are projects now made possible
using this framework.

We presented a dynamical-systems model of collec-
tive learning in multiagent systems, which starts with
reinforcement-learning agents and reduces to coupled
replicator equations, demonstrated that individual-agent
learning induces a global game dynamics, and inves-
tigated some of the resulting periodic, intermittent,

and chaotic behaviors with simple (linear) rock-scissors-
papers game interactions. Our model gives a macroscopic
description of a network of learning agents that can be
straightforwardly extended to model a large number of
heterogeneous agents in fluctuating environments. Since
deterministic chaos occurs even in this simple setting,
one expects that in high-dimensional and heterogeneous
populations typical of multiagent systems intrinsic un-
predictability will become a dominant collective behav-
ior. Sustaining useful collective function in multiagent
systems becomes an even more compelling question in
light of these results.
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