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I. INTRODUCTION

Organized matter is ubiquitous in the natural world,
but the branch of physics which ought to handle it—
statistical mechanics—lacks a coherent, principled way of
describing, quantifying, and detecting the many different

kinds of structure nature exhibits. Statistical mechan-
ics has good measures of disorder in thermodynamic en-
tropy and in related quantities, such as the free energies.
When augmented with theories of critical phenomena [1]
and pattern formation [2], it also has an extremely suc-
cessful approach to analyzing patterns formed through
symmetry breaking, both in equilibrium [3] and, more
recently, outside it [4]. Unfortunately, these successes
involve many ad hoc procedures—such as guessing rele-
vant order parameters, identifying small parameters for
perturbation expansion, and choosing appropriate func-
tion bases for spatial decomposition. It is far from clear
that the present methods can be extended to handle all
the many kinds of organization encountered in nature,
especially those produced by biological processes.

Computational mechanics [5] is an approach that lets
us directly address the issues of pattern, structure, and
organization. While keeping concepts and mathemati-
cal tools already familiar from statistical mechanics, it
is distinct from the latter and complementary to it. In
essence, from either empirical data or from a probabilistic
description of behavior, it shows how to infer a model of
the hidden process that generated the observed behav-
ior. This representation—the ε-machine—captures the
patterns and regularities in the observations in a way
that reflects the causal structure of the process. With
this model in hand, one can extrapolate beyond the orig-
inal observations to predict future behavior. Moreover,
in a well defined sense that is the subject of the following,
the ε-machine is the unique maximally efficient model of
the observed data-generating process.

ε-Machines themselves reveal, in a very direct way, how
the process stores information, and how that stored infor-
mation is transformed by new inputs and by the passage
of time. This, and not using computers for simulations
and numerical calculations, is what makes computational
mechanics “computational”, in the sense of “computation
theoretic”.

The basic ideas of computational mechanics were intro-
duced a decade ago [6]. Since then they have been used
to analyze dynamical systems [7,8], cellular automata
[9], hidden Markov models [10], evolved spatial computa-
tion [11], stochastic resonance [12], globally coupled maps
[13], the dripping faucet experiment [14] and atmospheric
turbulence [15]. Despite this record of successful appli-
cation, there has been some uncertainty about the math-
ematical foundations of the subject. In particular, while
it seemed evident from construction that an ε-machine
captured the patterns inherent in a process and did so in
a minimal way, no explicit proof of this was published.
Moreover, there was no proof that, if the ε-machine was
optimal in this way, it was the unique optimal represen-
tation of a process. These gaps have now been filled.
Subject to some (reasonable) restrictions on the statisti-
cal character of a process, we prove that the ε-machine
is indeed the unique optimal causal model. The rigorous
proof of these results is the main burden of this paper.
We gave preliminary versions of the optimality results—
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but not the uniqueness theorem, which is new here—in
Ref. [16].

The outline of the exposition is as follows. We be-
gin by showing how computational mechanics relates to
other approaches to pattern, randomness, and causality.
The upshot of this is to focus our attention on patterns
within a statistical ensemble and their possible represen-
tations. Using ideas from information theory, we state a
quantitative version of Occam’s Razor for such represen-
tations. At that point we define causal states [6], equiva-
lence classes of behaviors, and the structure of transitions
between causal states—the ε-machine. We then show
that the causal states are ideal from the point of view of
Occam’s Razor, being the simplest way of attaining the
maximum possible predictive power. Moreover, we show
that the causal states are uniquely optimal. This com-
bination allows us to prove a number of other, related
optimality results about ε-machines. We examine the as-
sumptions made in deriving these optimality results, and
we note that several of them can be lifted without unduly
upsetting the theorems. We also establish bounds on a
process’s intrinsic computation as revealed by ε-machines
and by quantities in information and ergodic theories.
Finally, we close by reviewing what has been shown and
what seem like promising directions for further work on
the mathematical foundations of computational mechan-
ics.

A series of appendices provide supplemental material
on information theory, equivalence relations and classes,
ε-machines for time-reversed processes, technical issues
of conditional measures, semi-group theory, and connec-
tions and distinctions between computational mechanics
and other fields.

To set the stage for the mathematics to follow and to
motivate the assumptions used there, we begin now by
reviewing prior work on pattern, randomness, and causal-
ity. We urge the reader interested only in the mathemat-
ical development to skip directly to Sec. II F—a synopsis
of the central goals and assumptions of computational
mechanics—and continue from there.

II. PATTERNS

To introduce our approach to—and even to argue that
some approach is necessary for—discovering and describ-
ing patterns in nature we begin by quoting Jorge Luis
Borges:

These ambiguities, redundancies, and de-
ficiencies recall those attributed by Dr. Franz
Kuhn to a certain Chinese encyclopedia
entitled Celestial Emporium of Benevolent
Knowledge. On those remote pages it is writ-
ten that animals are divided into (a) those
that belong to the Emperor, (b) embalmed
ones, (c) those that are trained, (d) suck-
ling pigs, (e) mermaids, (f) fabulous ones, (g)

stray dogs, (h) those that are included in this
classification, (i) those that tremble as if they
were mad, (j) innumerable ones, (k) those
drawn with a very fine camel’s hair brush,
(l) others, (m) those that have just broken a
flower vase, (n) those that resemble flies from
a distance.

—J. L. Borges, “The Analytical Language of
John Wilkins”, in Ref. [17, p. 103]; see also
discussion in Ref. [18].

The passage illustrates the profound gulf between pat-
terns, and classifications derived from patterns, that are
appropriate to the world and help us to understand it and
those patterns which, while perhaps just as legitimate as
logical entities, are not at all informative. What makes
the Celestial Emporium’s scheme inherently unsatisfac-
tory, and not just strange, is that it tells us nothing about
animals. We want to find patterns in a process that “di-
vide it at the joints, as nature directs, not breaking any
limbs in half as a bad carver might” [19, 265D].

Computational mechanics is not directly concerned
with pattern formation per se [4]; though we suspect it
will ultimately be useful in that domain. Nor is it con-
cerned with pattern recognition as a practical matter as
found in, say, neuropsychology [20], psychophysics and
perception [21], cognitive ethology [22], computer pro-
gramming [23], or signal and image processing [24,25].
Instead, it is concerned with the questions of what pat-
terns are and how patterns should be represented. One
way to highlight the difference is to call this pattern dis-
covery, rather than pattern recognition.

The bulk of the intellectual discourse on what patterns
are has been philosophical. One distinct subset has been
conducted under the broad rubric of mathematical logic.
Within this there are approaches, on the one hand, that
draw on (highly) abstract algebra and the theory of rela-
tions; on the other, that approach patterns via the theory
of algorithms and effective procedures.

The general idea, in both approaches, is that some ob-
ject O has a pattern P—O has a pattern “represented”,
“described”, “captured”, and so on by P—if and only if
we can use P to predict or compress O. Note that the
ability to predict implies the ability to compress, but not
vice versa; here we stick to prediction. The algebraic and
algorithmic strands differ mainly on how P itself should
be represented; that is, they differ in how it is expressed
in the vocabulary of some formal scheme.

We should emphasize here that “pattern” in this sense
implies a kind of regularity, structure, symmetry, orga-
nization, and so on. In contrast, ordinary usage some-
times accepts, for example, speaking about the “pattern”
of pixels in a particular slice of between-channels video
“snow”; but we prefer to speak of that as the configura-
tion of pixels.
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A. Algebraic Patterns

Although the problem of pattern discovery appears
early, in Plato’s Meno [26] for example, perhaps the first
attempt to make the notion of “pattern” mathematically
rigorous was that of Whitehead and Russell in Principia
Mathematica. They viewed patterns as properties, not
of sets, but of relations within or between sets, and ac-
cordingly they work out an elaborate relation-arithmetic
[27, vol. II, part IV]; cf. [28, ch. 5–6]. This starts by
defining the relation-number of a relation between two
sets as the class of all the relations that are equivalent
to it under one-to-one, onto mappings of the two sets.
In this framework relations share a common pattern or
structure if they have the same relation-number. For
instance, all square lattices have similar structure since
their elements share the same neighborhood relation; as
do all hexagonal lattices. Hexagonal and square lattices,
however, exhibit different patterns since they have non-
isomorphic neighborhood relations—i.e., since they have
different relation-numbers. (See also recoding equivalence
defined in Ref. [29].) Less work has been done on this
than they—especially Russell [30]—had hoped.

A more recent attempt at developing an algebraic ap-
proach to patterns builds on semi-group theory and its
Krohn-Rhodes decomposition theorem. Ref. [31] dis-
cusses a range of applications of this approach to pat-
terns. Along these lines, Rhodes and Nehaniv have tried
to apply semi-group complexity theory to biological evo-
lution [32]. They suggest that the complexity of a bi-
ological structure can be measured by the number of
subgroups in the decomposition of an automaton that
describes the structure.

Yet another algebraic approach has been developed by
Grenander and co-workers, primarily for pattern recogni-
tion [33]. Essentially, this is a matter of trying to invent
a minimal set of generators and bonds for the pattern in
question. Generators can adjoin each other, in a suitable
n-dimensional space, only if their bonds are compatible.
Each pair of compatible bonds specifies at once a binary
algebraic operation and an observable element of the con-
figuration built out of the generators. (Our construction
in App. D, linking an algebraic operation with concate-
nations of strings, is analogous in a rough way, as are the
“observable operator models” of Ref. [34].) Probabili-
ties can be attached to these bonds, leading in a natural
way to a (Gibbsian) probability distribution over entire
configurations. Grenander and his colleagues have used
these methods to characterize, inter alia, several biolog-
ical phenomena [35,36].

B. Turing Mechanics: Patterns and Effective
Procedures

The other path to patterns follows the traditional ex-
ploration of the logical foundations of mathematics, as ar-

ticulated by Frege and Hilbert and pioneered by Church,
Gödel, Post, Russell, Turing, and Whitehead. A more
recent and relatively more popular approach goes back
to Kolmogorov and Chaitin, who were interested in the
exact reproduction of an individual object [37–40]; in par-
ticular, their focus was discrete symbol systems, rather
than (say) real numbers or other mathematical objects.
The candidates for expressing the pattern P were univer-
sal Turing machine (UTM) programs—specifically, the
shortest UTM program that can exactly produce the ob-
ject O. This program’s length is called O’s Kolmogorov-
Chaitin complexity. Note that any scheme—automaton,
grammar, or what-not—that is Turing equivalent and for
which a notion of “length” is well defined will do as a
representational scheme. Since we can convert from one
such device to another—say, from a Post tag system [41]
to a Turing machine—with only a finite description of the
first system, such constants are easily assimilated when
measuring complexity in this approach.

In particular, consider the first n symbols On of O and
the shortest program Pn that produces them. We ask,
What happens to the limit

lim
n→∞

|Pn|
n

, (1)

where |P| is the length in bits of program P? On the one
hand, if there is a fixed-length program P that generates
arbitrarily many digits of O, then this limit vanishes.
Most of our interesting numbers, rational or irrational—
such as 7, π, e,

√
2—are of this sort. These numbers

are eminently compressible: the program P is the com-
pressed description, and so it captures the pattern obeyed
by the sequence describing O. If the limit goes to 1, on
the other hand, we have a completely incompressible de-
scription and conclude, following Kolmogorov, Chaitin,
and others, that O is random [37–40,42,43]. This conclu-
sion is the desired one: the Kolmogorov-Chaitin frame-
work establishes, formally at least, the randomness of
an individual object without appeals to probabilistic de-
scriptions or to ensembles of reproducible events. And
it does so by referring to a deterministic, algorithmic
representation—the UTM.

There are many well-known difficulties with applying
Kolmogorov complexity to natural processes. First, as
a quantity, it is uncomputable in general, owing to the
halting problem [40]. Second, it is maximal for random
sequences; this can be construed either as desirable, as
just noted, or as a failure to capture structure, depending
on one’s aims. Third, it only applies to a single sequence;
again this is either good or bad. Fourth, it makes no al-
lowance for noise or error, demanding exact reproduction.
Finally, limn→∞ |Pn|/n can vanish, although the compu-
tational resources needed to run the program, such as
time and storage, grow without bound.

None of these impediments have kept researchers from
attempting to use Kolmogorov-Chaitin complexity for
practical tasks—such as measuring the complexity of nat-
ural objects (e.g. Ref. [44]), as a basis for theories of
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inductive inference [45,46], and generally as a means of
capturing patterns [47]. As Rissanen [48, p. 49] says,
this is akin to “learn[ing] the properties [of a data set] by
writing programs in the hope of finding short ones!”

Various of the difficulties just listed have been ad-
dressed by subsequent work. Bennett’s logical depth ac-
counts for time resources [49]. (In fact, it is the time
for the minimal-length program P to produce O.) Kop-
pel’s sophistication attempts to separate out the “reg-
ularity” portion of the program from the random or
instance-specific input data [50,51]. Ultimately, these ex-
tensions and generalizations remain in the UTM, exact-
reproduction setting and so inherit inherent uncom-
putability.

C. Patterns with Error

Motivated by these theoretical difficulties and practi-
cal concerns, an obvious next step is to allow our pattern
P some degree of approximation or error, in exchange
for shorter descriptions. As a result, we lose perfect re-
production of the original configuration from the pattern.
Given the ubiquity of noise in nature, this is a small price
to pay. We might also say that sometimes we are willing
to accept small deviations from a regularity, without re-
ally caring what the precise deviation is. As pointed out
in Ref. [18]’s conclusion, this is certainly a prime motiva-
tion in thermodynamic descriptions, in which we explic-
itly throw away, and have no interest in, vast amounts of
microscopic detail in order to find a workable description
of macroscopic observations.

Some interesting philosophical work on patterns-with-
error has been done by Dennett, with reference not just
to questions about the nature of patterns and their emer-
gence but also to psychology [52]. The intuition is that
truly random processes can be modeled very simply—“to
model coin-tossing, toss a coin.” Any prediction scheme
that is more accurate than assuming complete indepen-
dence ipso facto captures a pattern in the data. There
is thus a spectrum of potential pattern-capturers ranging
from the assumption of pure noise to the exact reproduc-
tion of the data, if that is possible. Dennett notes that
there is generally a trade-off between the simplicity of
a predictor and its accuracy, and he plausibly describes
emergent phenomena [53,54] as patterns that allow for
a large reduction in complexity for only a small reduc-
tion in accuracy. Of course, Dennett was not the first to
consider predictive schemes that tolerate error and noise;
we discuss some of the earlier work in App. H. However,
to our knowledge, he was the first to have made such
predictors a central part of an explicit account of what
patterns are. It must be noted that this account lacks the
mathematical detail of the other approaches we have con-
sidered so far, and that it relies on the inexact prediction
of a single configuration. In fact, it relies on exact predic-
tors that are “fuzzed up” by noise. The introduction of

noise, however, brings in probabilities, and their natural
setting is in ensembles. It is in that setting that the ideas
we share with Dennett can receive a proper quantitative
treatment.

D. Randomness: The Anti-Pattern?

We should at this point say a bit about the relations
between randomness, complexity, and structure, at least
as we use those words. Ignoring some foundational issues,
randomness is actually rather well understood and well
handled by classical tools introduced by Boltzmann [55];
Fisher, Neyman, and Pearson [56]; Kolmogorov [37]; and
Shannon [57], among others. One tradition in the study
of complexity in fact identifies complexity with random-
ness and, as we have just seen, this is useful for some
purposes. As these purposes are not those of analyzing
patterns in processes and in real-world data, however,
they are not ours. Randomness simply does not corre-
spond to a notion of pattern or structure at all and, by
implication, neither Kolmogorov-Chaitin complexity nor
any of its spawn measure pattern.

Nonetheless, some approaches to complexity conflate
“structure” with the opposite of randomness, as conven-
tionally understood and measured in physics by thermo-
dynamic entropy or a related quantity, such as Shannon
entropy. In effect, structure is defined as “one minus dis-
order”. In contrast, we see pattern—structure, organi-
zation, regularity, and so on—as describing a coordinate
“orthogonal” to a process’s degree of randomness. That
is, complexity (in our sense) and randomness each cap-
ture a useful property necessary to describe how a process
manipulates information. This complementarity is even
codified by the complexity-entropy diagrams introduced
in Ref. [6]. When we use the word “complexity” we mean
“degrees” of pattern, not degrees of randomness.

E. Causation

We want our representations of patterns in dynamical
processes to be causal—to say how one state of affairs
leads to or produces another. Although a key property,
causality enters our development only in an extremely
weak sense, the weakest one can use mathematically,
which is Hume’s [58]: one class of event causes another
if the latter always follows the former; the effect invari-
ably succeeds the cause. As good indeterminists, in the
following we replace this invariant-succession notion of
causality with a more probabilistic one, substituting a
homogeneous distribution of successors for the solitary
invariable successor. (A precise statement appears in
Sec. IVA’s definition of causal states.) This approach
results in a purely phenomenological statement of causal-
ity, and so it is amenable to experimentation in ways that
stronger notions of causality—e.g., that of Ref. [59]—are
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not. Ref. [60] independently reaches a concept of causal-
ity essentially the same ours via philosophical arguments.

F. Synopsis of Pattern

Our survey leads us to look for an approach to patterns
which is at once

1. Algebraic, giving us an explicit breakdown or de-
composition of the pattern into its parts;

2. Computational, showing how the process stores and
uses information;

3. Calculable, analytically or by systematic approxi-
mation;

4. Causal, telling us how instances of the pattern are
actually produced; and

5. Naturally stochastic, not merely tolerant of noise
but explicitly formulated in terms of ensembles.

Computational mechanics satisfies all these desiderata.

III. PATTERNS IN ENSEMBLES:
PADDLING AROUND OCCAM’S POOL

Here a pattern P is something knowledge of which lets
us predict, at better than chance rates, if possible, the
future of sequences drawn from an ensemble O: P has
to be statistically accurate and confer some leverage or
advantage as well. Let’s fix some notation and state the
assumptions that will later let us prove the basic results.

A. Hidden Processes

We restrict ourselves to discrete-valued, discrete-time
stationary stochastic processes. (See Sec. VII B for dis-
cussion of these assumptions.) Intuitively, such processes
are sequences of random variables Si, the values of which
are drawn from a countable set A. We let i range over
all the integers, and so get a bi-infinite sequence

↔
S= . . . S−1S0S1 . . . . (2)

In fact, we define a process in terms of the distribution
of such sequences; cf. Refs. [61,62].

Definition 1 (A Process) Let A be a countable set.
Let Ω = AZ be the set of bi-infinite sequences composed
from A, Ti : Ω 7→ A be the measurable function that re-
turns the ith element si of a bi-infinite sequence ω ∈ Ω,
and F the σ-algebra of cylinder sets of Ω. Adding a prob-
ability measure P gives us a probability space (Ω,F , P),
with an associated random variable

↔
S . A process is a

sequence of random variables Si = Ti(
↔
S ), i ∈ Z.

Here, and throughout, we follow the convention of using
capital letters to denote random variables and lower-case
letters their particular values.

It follows from Def. 1 that there are well defined prob-
ability distributions for sequences of every finite length.

Let
→
S

L

t be the sequence of St, St+1, . . . , St+L−1 of L ran-

dom variables beginning at St.
→
S

0

t≡ λ, the null sequence.

Likewise,
←
S

L

t denotes the sequence of L random variables

going up to St, but not including it;
←
S

L

t =
→
S

L

t−L. Both
→
S

L

t and
←
S

L

t take values from sL ∈ AL. Similarly,
→
S t

and
←
S t are the semi-infinite sequences starting from and

stopping at t and taking values
→
s and

←
s , respectively.

Intuitively, we can imagine starting with distributions
for finite-length sequences and extending them gradually
in both directions, until the infinite sequence is reached
as a limit. While this can be a useful picture to have
in mind, defining a process in this way raises some sub-
tle measure-theoretic issues, such as how distributions
over finite-length sequences limit on the infinite-length
distribution. To evade these questions, we start with
the latter, and obtain the former by “marginalization”.
(Readers will find a particularly clear exposition of this
approach in ch. 1 of Ref. [62].)

Definition 2 (Stationarity) A process Si is stationary
if and only if

P(
→
S

L

t = sL) = P(
→
S

L

0 = sL) , (3)

for all t ∈ Z, L ∈ Z+, and all sL ∈ AL.

In other words, a stationary process is one that is
time-translation invariant. Consequently, P(

→
S t=

→
s ) =

P(
→
S 0=

→
s ) and P(

←
S t=

←
s ) = P(

←
S 0=

←
s ), and so we drop

the subscripts from now on.

We will call
←
S and

←
S

L

pasts or histories, and
→
S and

→
S

L

, futures. We will need to refer to the class of all
measurable sets of histories; following convention, this
will be σ(

←
S ). Similarly, the class of all measurable sets

of futures is σ(
→
S ). It is readily checked [10] that σ(

←
S ) =⋃∞

L=1 σ(
←
S

L

), and likewise for σ(
→
S ).

B. The Pool

Our goal is to predict all or part of
→
S using some func-

tion of some part of
←
S . We begin by taking the set

←
S of

all pasts and partitioning it into mutually exclusive and
jointly comprehensive subsets. That is, we make a class
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R of subsets of pasts.1 (See Fig. 1 for a schematic ex-
ample.) Each ρ ∈ R will be called a state or an effective
state. When the current history

←
s is included in the set

ρ, we will speak of the process being in state ρ. Thus, we
define a function from histories to effective states:

η :
←
S 7→ R . (4)

A specific individual history
←
s ∈ ←S maps to a specific

state ρ ∈ R; the random variable
←
S for the past maps to

the random variable R for the effective states. It makes
little difference whether we think of η as being a function
from a history to a subset of histories or a function from
a history to the label of that subset. Each interpretation
is convenient at different times, and we will use both.

Note that we could use any function defined on
←
S to

partition that set, by assigning to the same ρ all the his-
tories

←
s on which the function takes the same value. Sim-

ilarly, any equivalence relation on
←
S partitions it. (See

App. B for more on equivalence relations.) Due to the
way we defined a process’s distribution, each effective
state has a well defined distribution of futures, though
not necessarily a unique one.2 Specifying the effective
state thus amounts to making a prediction about the
process’s future. All the histories belonging to a given ef-
fective state are treated as equivalent for purposes of pre-
dicting the future. (In this way, the framework formally
incorporates traditional methods of time-series analysis;
see App. H 1.)

1R

3R

2R

S
←

4R

1At several points our constructions require referring to sets
of sets. To help mark the distinction, we call the set of sets
of histories a class.

2This is not true if η is not at least nearly measurable (see
Sec. E 2 b). To paraphrase Ref. [63], readers should assume
that all our effective-state functions are sufficiently tame,
measure-theoretically, that whatever induced distributions we
invoke will exist.

FIG. 1. A schematic picture of a partition of the

set
←
S of all histories into some class of effective states:

R = {Ri : i = 1, 2, 3, 4}. Note that the Ri need not form
compact sets; we simply draw them that way for clarity. One
should have in mind Cantor sets or other more pathological
structures.

We call the collection of all partitions R of the set of
histories

←
S Occam’s pool.

C. A Little Information Theory

Since the bulk of the following development will be con-
sumed with notions and results from information theory
[57], we now review several highlights briefly, for the ben-
efit of readers unfamiliar with the theory and to fix no-
tation. Appendix A lists a number of useful information-
theoretic formulæ, which get called upon in our proofs.
Throughout, our notation and style of proof follow those
in Ref. [64].

1. Entropy Defined

Given a random variable X taking values in a count-
able set A, the entropy of X is

H [X ] ≡ −
∑
x∈A

P(X = x) log2 P(X = x) , (5)

taking 0 log 0 = 0. Notice that H [X ] is the expectation
value of − log2 P(X = x) and is measured in bits of infor-
mation. Caveats of the form “when the sum converges
to a finite value” are implicit in all statements about the
entropies of infinite countable sets A.

Shannon interpreted H [X ] as the uncertainty in X .
(Those leery of any subjective component in notions
like “uncertainty” may read “effective variability” in its
place.) He showed, for example, that H [X ] is the mean
number of yes-or-no questions needed to pick out the
value of X on repeated trials, if the questions are chosen
to minimize this average [57].

2. Joint and Conditional Entropies

We define the joint entropy H [X, Y ] of two variables
X (taking values in A) and Y (taking values in B) in the
obvious way,

H [X, Y ] ≡ (6)

−
∑

(x,y)∈A×B
P(X = x, Y = y) log2 P(X = x, Y = y) .

We define the conditional entropy H [X |Y ] of one random
variable X with respect to another Y from their joint
entropy:

7



H [X |Y ] ≡ H [X, Y ] − H [Y ] . (7)

This also follows naturally from the definition of
conditional probability, since P(X = x|Y = y) ≡
P(X = x, Y = y)/P(Y = y). H [X |Y ] measures the mean
uncertainty remaining in X once we know Y .3

3. Mutual Information

The mutual information I[X ; Y ] between two variables
is defined to be

I[X ; Y ] ≡ H [X ] − H [X |Y ] . (8)

This is the average reduction in uncertainty about X
produced by fixing Y . It is non-negative, like all entropies
here, and symmetric in the two variables.

D. Patterns in Ensembles

It will be convenient to have a way of talking about the
uncertainty of the future. Intuitively, this would just be
H [
→
S ], but in general that quantity is infinite and awk-

ward to manipulate. (The special case in which H [
→
S ]

is finite is dealt with in App. G.) Normally, we evade

this by considering H [
→
S

L

], the uncertainty of the next L
symbols, treated as a function of L. On occasion, we will
refer to the entropy per symbol or entropy rate [57,64]:

h[
→
S ] ≡ lim

L→∞
1
L

H [
→
S

L

] , (9)

and the conditional entropy rate,

h[
→
S |X ] ≡ lim

L→∞
1
L

H [
→
S

L

|X ] , (10)

where X is some random variable and the limits exist.
For stationary stochastic processes, the limits always ex-
ist [64, Theorem 4.2.1, p. 64].

These entropy rates are also always bounded above
by H [S]; which is a special case of Eq. (A3). More-
over, if h[

→
S ] = H [S], the process consists of inde-

pendent variables—independent, identically distributed
(IID) variables, in fact, since we are only concerned with
stationary processes here.

3We can still define the conditional entropy when the con-
ditioning variable is not discrete; in particular, we can still
define it when we sometimes need to condition on events of
probability zero. All the normal inequalities about condi-
tional entropy we invoke in our proofs still hold good. See
App. E.

Definition 3 (Capturing a Pattern) R captures a
pattern if and only if there exists an L such that

H [
→
S

L

|R] < LH [S] . (11)

This says that R captures a pattern when it tells us
something about how the distinguishable parts of a pro-
cess affect each other: R exhibits their dependence. (We
also speak of η, the function associated with pasts, as
capturing a pattern, since this is implied by R captur-
ing a pattern.) Supposing that these parts do not affect
each other, then we have IID random variables, which
is as close to the intuitive notion of “patternless” as one
is likely to state mathematically. Note that, because of
the independence bound on joint entropies (Eq. (A3)), if
the inequality is satisfied for some L, it is also satisfied
for every L′ > L. Thus, we can consider the difference

H [S] − H [
→
S

L

|R]/L, for the smallest L for which it is
nonzero, as the strength of the pattern captured by R.
We will now mark an upper bound (Lemma 1) on the
strength of patterns; later we will show how to attain
this upper bound (Theorem 1).

E. The Lessons of History

We are now in a position to prove a result about pat-
terns in ensembles that will be useful in connection with
our later theorems about causal states.

Lemma 1 (Old Country Lemma) For all R and for
all L ∈ Z+,

H [
→
S

L

|R] ≥ H [
→
S

L

| ←S ] . (12)

Proof. By construction (Eq. (4)), for all L,

H [
→
S

L

|R] = H [
→
S

L

|η(
←
S )] . (13)

But

H [
→
S

L

|η(
←
S )] ≥ H [

→
S

L

| ←S ] , (14)

since the entropy conditioned on a variable is never more
than the entropy conditioned on a function of the variable
(Eq. (A14)). QED.

Remark 1. That is, conditioning on the whole of the
past reduces the uncertainty in the future to as small
a value as possible. Carrying around the whole semi-
infinite past is rather bulky and uncomfortable and is a
somewhat dismaying prospect. Put a bit differently: we
want to forget as much of the past as possible and so
reduce its burden. It is the contrast between this desire
and the result of Eq. (12) that leads us to call this the
Old Country Lemma.
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Remark 2. Lemma 1 establishes the promised upper
bound on the strength of patterns: viz., the strength

of the pattern is at most H [S] − H [
→
S

L

| ←S ]/Lpast, where

Lpast is the least value of L such that H [
→
S

L

| ←S ] < LH [S].

F. Minimality and Prediction

Let’s invoke Occam’s Razor: “It is vain to do with
more what can be done with less” [65]. To use the razor,
we need to fix what is to be “done” and what “more” and
“less” mean. The job we want done is accurate predic-

tion, i.e., reducing the conditional entropies H [
→
S

L

|R] as
far as possible, the goal being to attain the bound set by
Lemma 1. But we want to do this as simply as possible,
with as few resources as possible. On the road to meeting
these two constraints—minimal uncertainty and minimal
resources—we will need a measure of the second. Since
there is a probability measure over pasts, there is an in-
duced measure on the η-states.4 Accordingly, we define
the following measure of resources.

Definition 4 (Complexity of State Classes) The
statistical complexity of a class R of states is

Cµ(R) ≡ H [R] (15)

= −
∑
ρ∈R

P(R = ρ) log2 P(R = ρ) ,

when the sum converges to a finite value.

The µ in Cµ reminds us that it is a measure-theoretic
property and depends ultimately on the distribution over
the process’s sequences, which induces a measure over
states.

The statistical complexity of a state class is the average
uncertainty (in bits) in the process’s current state. This,
in turn, is the same as the average amount of memory (in
bits) that the process appears to retain about the past,
given the chosen state class R. (We will later, in Def. 12,
see how to define the statistical complexity of a process
itself.) The goal is to do with as little of this memory
as possible. Restated then, we want to minimize statis-
tical complexity, subject to the constraint of maximally
accurate prediction.

The idea behind calling the collection of all partitions
of
←
S Occam’s pool should now be clear: One wants to

find the shallowest point in the pool. This we now do.

4Again, this assumes η is at least nearly measurable. See
Sec. E 2 b.

IV. COMPUTATIONAL MECHANICS

Those who are good at archery learnt from
the bow and not from Yi the Archer. Those
who know how to manage boats learnt from
the boats and not from Wo.

—Anonymous in Ref. [66].

The ultimate goal of computational mechanics is to
discern the patterns intrinsic to a process. That is, as
much as possible, the goal is to let the process describe
itself, on its own terms, without appealing to a priori
assumptions about the process’s structure. Here we sim-
ply explore the consistency and well-definedness of these
goals. In practice, we may be constrained to merely ap-
prxomate these ideals more or less grossly. Naturally,
such problems, which always turn up in implementation,
are much easier to address if we start from secure foun-
dations.

Our definitions and constructions in this section rely on
conditional probabilities. This is unproblematic so long
as we condition on events of non-zero probability. How-
ever, we need to condition on events, such as particular
histories, whose probability is generally zero. There are
well-established ways of handling this difficulty, but their
attendant technicalities tend to obscure the main lines of
our argument. To keep those lines as clear as possible,
in this section we state our definitions as though clas-
sical conditional probability was adequate, reserving the
measure-theoretic treatment of our main concepts for Ap-
pendix E, where we show that note the limitations and
caveats required by this stricter approach. Our proofs
are constructed so as to be compatible with the proper
use of conditional measures, but intelligible (if merely
heuristic) without it.

A. Causal States

Definition 5 (A Process’s Causal States) The
causal states of a process are the members of the range
of the function ε :

←
S 7→ 2

←
S—the power set of

←
S:

ε(
←
s ) ≡ {←s ′|P(

→
S∈ F |←S=

←
s ) = P(

→
S∈ F | ←S=

←
s
′
) ,

for all F ∈ σ(
→
S ),
←
s
′ ∈←S} , (16)

that maps from histories to sets of histories. We write
the ith causal state as Si and the set of all causal states
as S; the corresponding random variable is denoted S,
and its realization σ.

The cardinality and topology of S are unspecified. S
can be finite, countably infinite, a continuum, a Cantor
set, or something stranger still. Examples of these are
given in Refs. [5] and [10]; see especially the examples for
hidden Markov models given there.
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Alternately and equivalently, we could define an equiv-
alence relation ∼ε such that two histories are equivalent if
and only if they have the same conditional distribution of
futures, and then define causal states as the equivalence
classes generated by ∼ε. (In fact, this was the original
approach [6].) Either way, the divisions of this partition
of
←
S are made between regions that leave us in different

conditions of ignorance about the future.
This last statement suggests another, still equivalent,

description of ε:

ε(
←
s ) = {←s ′|P(

→
S

L

=
→
s

L| ←S=
←
s ) = P(

→
S

L

=
→
s

L| ←S=
←
s
′
) ,

→
s

L ∈ →S
L

,
←
s
′ ∈←S , L ∈ Z+} . (17)

Using this we can make the original definition, Eq. (16),
more intuitive by picturing a sequence of partitions of
the space

←
S of all histories in which each new partition,

induced using L + 1, is a refinement of the previous one
induced using L. At the coarsest level, the first partition
(L = 1) groups together those histories that have the
same distribution for the very next observable. These
classes are then subdivided using the distribution of the
next two observables, then the next three, four, and so
on. The limit of this sequence of partitions—the point
at which every member of each class has the same dis-
tribution of futures, of whatever length, as every other
member of that class—is the partition of

←
S induced by

∼ε. See App. B for a detailed discussion and review of
the equivalence relation ∼ε.

Although they will not be of direct concern in the fol-
lowing, due to the time-asymptotic limits taken, there are
transient causal states in addition to those (recurrent)
causal states defined above in Eq. (16). Roughly speak-
ing, the transient causal states describe how a length-
ening sequence (a history) of observations allows us to
identify the recurrent causal states with increasing pre-
cision. See the developments in App. B and in Refs. [10]
and [67] for more detail on transient causal states.

Causal states are a particular kind of effective state,
and they have all the properties common to effective
states (Sec. III B). In particular, each causal state Si

has several structures attached:

1. The index i—the state’s “name”.

2. The set of histories that have brought the process
to Si, which we denote {←s ∈ Si}.

3. A conditional distribution over futures, denoted
P(
→
S |Si), and equal to P(

→
S |←s ),

←
s ∈ Si. Since

we refer to this type of distribution frequently and
since it is the “shape of the future”, we call it the
state’s morph.

Ideally, each of these should be denoted by a different
symbol, and there should be distinct functions linking
each of these structures to their causal state. To keep the

growth of notation under control, however, we shall be
tactically vague about these distinctions. Readers may
variously picture ε as mapping histories to (i) simple
indices, (ii) subsets of histories, (iii) distributions over
futures or (iv) ordered triples of indices, subsets, and
morphs; or one may even leave ε uninterpreted, as pre-
ferred, without interfering with the development that fol-
lows.

1
S

4
S

3
S 5

S

2
S

6
S

S
←

FIG. 2. A schematic representation of the partitioning of

the set
←
S of all histories into causal states Si ∈ S. Within

each causal state all the individual histories
←
s have the same

morph—the same conditional distribution P(
→
S |←s ) for future

observables.

1. Morphs

Each causal state has a unique morph, i.e., no two
causal states have the same conditional distribution of
futures. This follows directly from Def. 5, and it is not
true of effective states in general. Another immediate
consequence of that definition is that

P(
→
S∈ F |S = ε(

←
s )) = P(

→
S∈ F | ←S=

←
s ). (18)

(Again, this is not generally true of effective states.) This
observation lets us prove a useful lemma about the con-
ditional independence of the past

←
S and the future

→
S .

Lemma 2 The past and the future are independent, con-
ditioning on the causal states.

Proof. By Prop. 4,
←
S and

→
S are independent

given S if and only if, for any measurable set of fu-
tures F , P(

→
S∈ F | ←S=

←
s ,S = σ) = P(

→
S∈ F |S = σ).

Since S = ε(
←
S ), it is automatically true (Eq. E5)

that P(
→
S∈ F | ←S=

←
s ,S = ε(

←
s )) = P(

→
S∈ F | ←S=

←
s ).

But then, P(
→
S∈ F | ←S=

←
s ) = P(

→
S∈ F |S = ε(

←
s )), so

P(
→
S∈ F | ←S=

←
s ,S = σ) = P(

→
S∈ F |S = σ). QED.
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2. Homogeneity

Following Ref. [60], we introduce two new definitions
and a lemma which are required later on, especially in
the proof of Lemma 7 and the theorems depending on
that lemma.

Definition 6 (Strict Homogeneity) A set X is
strictly homogeneous with respect to a certain random
variable Y when the conditional distribution P(Y |X) for
Y is the same for all measurable subsets of X.

Definition 7 (Weak Homogeneity) A set X is
weakly homogeneous with respect to Y if X is not strictly
homogeneous with respect to Y , but X \ X0 (X with X0

removed) is, where X0 is a subset of X of measure 0.

Lemma 3 (Strict Homogeneity of Causal States)
A process’s causal states are the largest subsets of his-
tories that are all strictly homogeneous with respect to
futures of all lengths.

Proof. We must show that, first, the causal states are
strictly homogeneous with respect to futures of all lengths
and, second, that no larger strictly homogeneous subsets
of histories could be made. The first point, the strict ho-
mogeneity of the causal states, is evident from Eq. (17):
By construction, all elements of a causal state have the
same morph, so any part of a causal state will have the
same morph as the whole state. The second point like-
wise follows from Eq. (17), since the causal state by con-
struction contains all the histories with a given morph.
Any other set strictly homogeneous with respect to fu-
tures must be smaller than a causal state, and any set
that includes a causal state as a proper subset cannot be
strictly homogeneous. QED.

Remark. The statistical explanation literature would
say that causal states are the “statistical-relevance basis
for causal explanations”. The elements of such a basis
are, precisely, the largest classes of combinations of inde-
pendent variables with homogeneous distributions for the
dependent variables. See Ref. [60] for further discussion
along these lines.

B. Causal State-to-State Transitions

The causal state at any given time and the next value
of the observed process together determine a new causal
state; this is proved shortly in Lemma 5. Thus, there is
a natural relation of succession among the causal states;
recall the discussion of causality in Sec. II E. Moreover,
given the current causal state, all the possible next val-

ues of the observed sequence (
→
S

1

) have well defined con-
ditional probabilities. In fact, by construction the entire

semi-infinite future (
→
S ) does. Thus, there is a well de-

fined probability T
(s)
ij of the process generating the value

s ∈ A and going to causal state Sj , if it is in state Si.

Definition 8 (Causal Transitions) The labeled transi-
tion probability T

(s)
ij is the probability of making the tran-

sition from state Si to state Sj while emitting the symbol
s ∈ A:

T
(s)
ij ≡ P(S′ = Sj ,

→
S

1

= s|S = Si) , (19)

where S is the current causal state and S′ its successor.
We denote the set {T (s)

ij : s ∈ A} by T.

Lemma 4 (Transition Probabilities) T
(s)
ij is given

by

T
(s)
ij = P(

←
S s ∈ Sj |

←
S∈ Si) , (20)

where
←
S s is read as the semi-infinite sequence obtained

by concatenating s ∈ A onto the end of
←
S .

Proof. We show that the events concerned are really
the same. That is, we want to show that{

S ′ = Sj ,
→
S

1

= s, S = Si

}
=

{←
S s ∈ Sj ,

←
S∈ S

}
.

Now, that S = Si and
←
S∈ Si are the same event is clear

by construction. So, too, for
←
S
′
∈ Sj and S′ = Sj . So

we can certainly assert that{
S ′ = Sj ,

→
S

1

= s, S = Si

}
=

{
←
S
′
∈ Sj ,

→
S

1

= s,
←
S∈ Si

}
.

The conjunction of the first and third events implies that,

for all
←
s , if

←
S=

←
s , then

←
S
′
=
←
s a, for some symbol a ∈ A.

But the middle event ensures that a = s. Hence,{
S′ = Sj ,

→
S

1

= s, S = Si

}
=

{
←
S s ∈ Sj ,

→
S

1

= s,
←
S∈ Si

}
.

But now the middle event is redundant and can be
dropped. Thus,{

S ′ = Sj ,
→
S

1

= s, S = Si

}
=

{←
S s ∈ Sj ,

←
S∈ Si

}
,

as promised. Since the events have the same proba-
bility, when conditioned on S, the events

{←
S s ∈ Sj

}
and

{
S ′ = Sj ,

→
S

1

= s

}
will yield the same conditional

probability.5 QED.

5Technically, they will yield versions of the same conditional
probability, i.e., will agree with probability 1. See Appendix
E.
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Notice that T
(λ)
ij = δij ; that is, the transition labeled

by the null symbol λ is the identity.

C. ε-Machines

The combination of the function ε from histories to
causal states with the labeled transition probabilities T

(s)
ij

is called the ε-machine of the process [5,6].

Definition 9 (An ε-Machine Defined)
The ε-machine of a process is the ordered pair {ε,T},
where ε is the causal state function and T is set of the
transition matrices for the states defined by ε.

Equivalently, we may denote an ε-machine by {S,T}.
To satisfy the algebraic requirement outlined in

Sec. II F, we make explicit the connection with semi-
group theory.

Proposition 1 (ε-Machines Are Monoids) The al-
gebra generated by the ε-machine {ε,T} is a semi-group
with an identity element, i.e., it is a monoid.

Proof. See App. D.
Remark. Due to this, ε-machines can be interpreted as

capturing a process’s generalized symmetries. Any sub-
groups of an ε-machine’s semi-group are, in fact, symme-
tries in the usual sense.

Lemma 5 (ε-Machines Are Deterministic) For each
Si ∈ S and each s ∈ A, there is at most one Sj ∈ S such
that, for every history

←
s ∈ Si, the history

←
ss ∈ Sj . If

such a Sj exists, then for all other Sk ∈ S, T
(s)
ik = 0.

If there is no such Sj, then T
(s)
ik = 0 for all Sk ∈ S

whatsoever.

Proof. The first part of the lemma asserts that for all
s ∈ A and

←
s ,
←
s
′ ∈ ←

S , if ε(
←
s ) = ε(

←
s
′
), then ε(

←
ss) =

ε(
←
s
′
s). (

←
ss is just another history and belongs to one or

another causal state.) We show that this follows directly
from causal equivalence.

Consider any pair of histories
←
s ,
←
s
′
such that ε(

←
s ) =

ε(
←
s
′
), any single symbol s, and a (measurable) set of fu-

ture events F . Let sF denote the set of futures obtained
by prefixing the symbol s to each future in F (sF is also
measurable). By causal equivalence, P(

→
S∈ sF | ←S=

←
s ) =

P(
→
S∈ sF | ←S=

←
s
′
). Now,

→
S∈ sF can be decomposed into

the intersection of two events:
→
S

1

= s and
→
S 1∈ F , where

→
S 1 is the random variable for the future sequence, ig-
noring the next symbol. We therefore begin with the
following equalities.

P(
→
S∈ sF | ←S=

←
s ) = P(

→
S∈ sF | ←S=

←
s
′
)

P(
→
S

1

= s,
→
S 1∈ F | ←S=

←
s ) = P(

→
S

1

= s,
→
S 1∈ F | ←S=

←
s
′
)

For any three random variables X, Y, Z, the conditional
probability P(Z ∈ A, Y = y|X = x) can be factored as
P(Z ∈ A|Y = y, X = x)P(Y = y|X = x) (Eq. E4) .6

P(
→
S 1∈ F |→S

1

= s,
←
S=

←
s )P(

→
S

1

= s| ←S=
←
s )

= P(
→
S 1∈ F |→S

1

= s,
←
S=

←
s
′
)P(
→
S

1

= s| ←S=
←
s
′
)

From causal equivalence, the second factors on each
side the equation are equal, so we divide through for

them. (We deal with the case where P(
→
S

1

= s| ←S=
←
s ) =

P(
→
S

1

= s| ←S=
←
s
′
) = 0 below.)

P(
→
S 1∈ F |→S

1

= s,
←
S=

←
s ) = P(

→
S 1∈ F |→S

1

= s,
←
S=

←
s
′
)

P(
→
S∈ F | ←S=

←
s s) = P(

→
S∈ F | ←S=

←
s
′
s)

The last step is justified by stationarity. Since the set
of future events F is arbitrary, it follows that

←
s s∼ε

←
s
′
s.

Consequently, for each Si and each s, there at most one
Sj such that T

(s)
ij > 0.

As remarked, causal equivalence tells us that

P(
→
S

1

= s| ←S=
←
s ) = P(

→
S

1

= s| ←S=
←
s
′
). But they could

both be equal to zero, in which case we can’t divide
through for them. But then, again as promised, it follows
that every entry in the transition matrix T

(s)
ij = 0, when

Si = ε(
←
s ). Thus the labeled transition probabilities have

the promised form. QED.
Remark 1. In automata theory [68,69], a set of states

and transitions is said to be deterministic if the current
state and the next input—here, the next result from the
original stochastic process—together fix the next state.
This use of the word “deterministic” is often confus-
ing, since many stochastic processes (e.g., simple Markov
chains) are deterministic in this sense.

Remark 2. Starting from a fixed state, a given symbol
always leads to at most one single state. But there can
be several transitions from one state to another, each
labeled with a different symbol.

Remark 3. Clearly, if T
(s)
ij > 0, then T

(s)
ij =

P(
→
S

1

= s|S = Si). In automata theory the “disallowed”
transitions (T (s)

ij = 0) are sometimes explicitly repre-
sented and lead to a “reject” state indicating that the
particular history does not occur.

Lemma 6 (ε-Machines Are Markovian) Given the
causal state at time t − 1, the causal state at time t is
independent of the causal state at earlier times.

6This assumes the regularity of the conditional probabilities,
which is valid for our discrete processes. See Appendix E.
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Proof. We start by showing that, writing S, S′, S′′ for
the sequence of causal states at three successive times, S
and S ′′ are conditionally independent, given S′.

Let M be a (measurable) set of causal states.

P(S ′′ ∈ M|S′ = σ′, S = σ) = P(
→
S

1

∈ A|S′ = σ′, S = σ) ,

where A ⊆ A is the set of all symbols that lead from σ′ to
some σ′′ ∈ M. This is a well-defined and measurable set,
in virtue of Lemma 5 immediately preceding, which also
guarantees (see Remark 3 to the Lemma) the equality of
conditional probabilities we have used. Invoking Lemma
3, conditioning on S has no further effect once we have
conditioned on S′,

P(
→
S

1

∈ A|S′ = σ′, S = σ) = P(
→
S

1

∈ A|S′ = σ′)
= P(S′′ ∈ M|S′ = σ′)

But (Prop. 4 and Eq. E3) this is true if and only if con-
ditional independence holds. Now the lemma follows by
straightforward mathematical induction. QED.

Remark 1. This lemma strengthens the claim that the
causal states are, in fact, the causally efficacious states:
given knowledge of the present state, what has gone be-
fore makes no difference. (Again, recall the philosophical
preliminaries of Sec. II E.)

Remark 2. This result indicates that the causal states,
considered as a process, define a kind of Markov process.
Thus, causal states can be roughly considered to be a
generalization of Markovian states. We say “kind of”
since the class of ε-machines is substantially richer [5,10]
than what one normally associates with Markov processes
[70,71].

Definition 10 (ε-Machine Reconstruction)
ε-Machine reconstruction is any procedure that given a
process P(

↔
S ) (resp. an approximation of P(

↔
S )), produces

the process’s ε-machine {S,T} (resp. an approximation
of {S,T}).

Given a mathematical description of a process, one can
often calculate analytically its ε-machine. (For example,
see the computational mechanics analysis of spin systems
in Ref. [67].) There is also a wide range of algorithms
which reconstruct ε-machines from empirical estimates
of P(

↔
S ). Some, such as those used in Refs. [5–7,72], op-

erate in “batch” mode, taking the raw data as a whole
and producing the ε-machine. Others could operate in-
crementally, in “on-line” mode, taking in individual mea-
surements and re-estimating the set of causal states and
their transition probabilities.

V. OPTIMALITIES AND UNIQUENESS

We now show that: causal states are maximally ac-
curate predictors of minimal statistical complexity; they

are unique in sharing both properties; and their state-
to-state transitions are minimally stochastic. In other
words, they satisfy both of the constraints borrowed from
Occam, and they are the only representations that do
so. The overarching moral here is that causal states
and ε-machines are the goals in any learning or model-
ing scheme. The argument is made by the time-honored
means of proving optimality theorems. We address, in
our concluding remarks (Sec. VII), the practicalities in-
volved in attaining these goals.

1R
3R

2R

1
S

4
S

3
S 5

S

2
S

6
S

S
← 4R

FIG. 3. An alternative class R of states (delineated by

dashed lines) that partition
←
S overlaid on the causal states S

(outlined by solid lines). Here, for example, S2 contains parts
of R1, R2, R3 and R4. The collection of all such alternative
partitions form Occam’s pool. Note again that the Ri need
not be compact nor simply connected, as drawn.

As part of our strategy, though, we also prove sev-
eral results that are not optimality results; we call these
lemmas to indicate their subordinate status. All of our
theorems, and some of our lemmas, will be established by
comparing causal states, generated by ε, with other rival
sets of states, generated by other functions η. In short,
none of the rival states—none of the other patterns—can
out-perform the causal states.

It is convenient to recall some notation before plung-
ing in. Let S be the random variable for the current

causal state,
→
S

1

∈ A the next “observable” we get from
the original stochastic process, S′ the next causal state,
R the current state according to η, and R′ the next η-
state. σ will stand for a particular value (causal state) of
S and ρ a particular value of R. When we quantify over
alternatives to the causal states, we quantify over R.

Theorem 1 (Causal States are Maximally Pre-
scient) [16]

For all R and all L ∈ Z+,

H [
→
S

L

|R] ≥ H [
→
S

L

|S] . (21)

Proof. We have already seen that H [
→
S

L

|R] ≥
H [
→
S

L

| ←S ] (Lemma 1). But by construction (Def. 5),
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P(
→
S

L

=
→
s

L| ←S=
←
s ) = P(

→
S

L

=
→
s

L|S = ε(
←
s )) . (22)

Since entropies depend only on the probability distri-

bution, H [
→
S

L

|S] = H [
→
S

L

| ←S ] for every L. Thus,

H [
→
S

L

|R] ≥ H [
→
S

L

|S], for all L. QED.
Remark. That is to say, causal states are as good at

predicting the future—are as prescient—as complete his-
tories. In this, they satisfy the first requirement borrowed
from Occam. Since the causal states are well defined and
since they can be systematically approximated, we have
shown that the upper bound on the strength of patterns
(Def. 3 and Lemma 1, Remark) can in fact be reached.
Intuitively, the causal states achieve this because, unlike
effective states in general, they do not throw away any
information about the future which might be contained
in
←
S . Even more colloquially, to paraphrase the defini-

tion of information in Ref. [73], the causal states record
every difference (about the past) that makes a difference
(to the future). We can actually make this intuition quite
precise, in an easy corollary to the theorem.

Corollary 1 (Causal States Are Sufficient Statis-
tics) The causal states S of a process are sufficient statis-
tics for predicting it.

Proof. It follows from Theorem 1 and Eq. (8) that, for
all L ∈ Z+,

I[
→
S

L

;S] = I[
→
S

L

;
←
S ] , (23)

where I was defined in Eq. (8). Consequently, the causal
state is a sufficient statistic—see Refs. [64, p. 37] and [74,
sec. 2.4–2.5]—for predicting futures of any length. QED.

All subsequent results concern rival states that are as
prescient as the causal states. We call these prescient
rivals and denote a class of them R̂.

Definition 11 (Prescient Rivals) Prescient rivals R̂
are states that are as predictive as the causal states; viz.,
for all L ∈ Z+,

H [
→
S

L

|R̂] = H [
→
S

L

|S] . (24)

Remark. Prescient rivals are also sufficient statistics.

Lemma 7 (Refinement Lemma) For all prescient ri-
vals R̂ and for each ρ̂ ∈ R̂, there is a σ ∈ S and
a measure-0 subset ρ̂0 ⊂ ρ̂, possibly empty, such that
ρ̂ \ ρ̂0 ⊆ σ, where \ is set subtraction.

Proof. We invoke a straightforward extension of The-
orem 2.7.3 of Ref. [64]: If X1, X2, . . . , Xn are random
variables over the same set A, each with distinct proba-
bility distributions, Θ a random variable over the integers

from 1 to n such that P(Θ = i) = λi, and Z a random
variable over A such that Z = XΘ, then

H [Z] = H

[
n∑

i=1

λiXi

]

≥
n∑

i=1

λiH [Xi] . (25)

In words, the entropy of a mixture of distributions is at
least the mean of the entropies of those distributions.
This follows since H is strictly concave, which in turn
follows from x log x being strictly convex for x ≥ 0. We
obtain equality in Eq. (25) if and only if all the λi are
either 0 or 1, i.e., if and only if Z is at least weakly
homogeneous (Def. 7).

The conditional distribution of futures for each rival
state ρ can be written as a weighted mixture of the
morphs of one or more causal states. (Cf. Fig. 3.) Thus,
by Eq. (25), unless every ρ is at least weakly homoge-

neous with respect to
→
S

L

(for each L), the entropy of
→
S

L

conditioned on R will be higher than the minimum,
the entropy conditioned on S. So, in the case of the
maximally predictive R̂, every ρ̂ ∈ R̂ must be at least

weakly homogeneous with respect to all
→
S

L

. But the
causal states are the largest classes that are strictly ho-

mogeneous with respect to all
→
S

L

(Lemma 3). Thus,
the strictly homogeneous part of each ρ̂ ∈ R̂ must be a
subclass, possibly improper, of some causal state σ ∈ S.
QED.

Remark 1. An alternative proof appears in App. F.
Remark 2. The content of the lemma can be made

quite intuitive, if we ignore for a moment the measure-0
set ρ̂0 of histories mentioned in its statement. It then as-
serts that any alternative partition R̂ that is as prescient
as the causal states must be a refinement of the causal-
state partition. That is, each R̂i must be a (possibly
improper) subset of some Sj . Otherwise, at least one R̂i

would have to contain parts of at least two causal states.
And so, using this R̂i to predict the future observables
would lead to more uncertainty about

→
S than using the

causal states. This is illustrated by Fig. 4, which should
be contrasted with Fig. 3.

Adding the measure-0 set ρ̂0 of histories to this picture
does not change its heuristic content much. Precisely be-
cause these histories have zero probability, treating them
in an “inappropriate” way makes no discernible difference
to predictions, morphs, and so on. There is a problem
of terminology, however, since there seems to be no stan-
dard name for the relationship between the partitions R̂
and S. We propose to say that the former is a refinement
of the latter almost everywhere or, simply, a refinement
a.e.

Remark 3. One cannot work the proof the other way
around to show that the causal states have to be a refine-
ment of the equally prescient R̂-states. This is precluded
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because applying the theorem borrowed from Ref. [64],
Eq. (25), hinges on being able to reduce uncertainty by
specifying from which distribution one chooses. Since
the causal states are constructed so as to be strictly ho-
mogeneous with respect to futures, this is not the case.
Lemma 3 and Theorem 1 together protect us.

Remark 4. Because almost all of each prescient rival
state is wholly contained within a single causal state,
we can construct a function g : R̂ 7→ S, such that, if
η(
←
s ) = ρ̂, then ε(

←
s ) = g(ρ̂) almost always. We can even

say that S = g(R̂) almost always, with the understanding
that this means that, for each ρ̂, P(S = g(ρ̂)|R̂ = ρ̂) = 1.

3R
∧

4R
∧

5R
∧

6R
∧

7R
∧

8R
∧

1R
∧

9R
∧

10R
∧

2R
∧

1
S

4
S

3
S 5

S

2
S

6
S

S
←

11R
∧

FIG. 4. A prescient rival partition R̂ must be a refine-
ment of the causal-state partition almost everywhere. That
is, almost all of each R̂i must contained within some Sj ; the
exceptions, if any, are a set of histories of measure 0. Here
for instance S2 contains the positive-measure parts of R̂3,
R̂4, and R̂5. One of these rival states, say R̂3, could have
member-histories in any or all of the other causal states, pro-
vided the total measure of such exceptional histories is zero.
Cf. Fig. 3.

Theorem 2 (Causal States Are Minimal) [16] For
all prescient rivals R̂,

Cµ(R̂) ≥ Cµ(S) . (26)

Proof. By Lemma 7, Remark 4, there is a function g
such that S = g(R̂) almost always. But H [f(X)] ≤ H [X ]
(Eq. (A11)) and so

H [S] = H [g(R̂)] ≤ H [R̂] . (27)

but Cµ(R̂) = H [R̂] (Def. 4). QED.
Remark 1. We have just established that no rival pat-

tern, which is as good at predicting the observations as
the causal states, is any simpler, in the sense given by
Def. 4, than the causal states. (This is the theorem of
Ref. [6].) Occam therefore tells us that there is no reason
not to use the causal states. The next theorem shows

that causal states are uniquely optimal, and so that Oc-
cam’s Razor all but forces us to use them.

Remark 2. Here it becomes important that we are try-
ing to predict the whole of

→
S and not just some piece,

→
S

L

. Suppose two histories
←
s and

←
s
′
have the same con-

ditional distribution for futures of lengths up to L, but
differing ones after that. They would then belong to dif-
ferent causal states. An η-state that merged those two
causal states, however, would have just as much ability

to predict
→
S

L

as the causal states. More, these R-states
would be simpler, in the sense that the uncertainty in the
current state would be lower. We conclude that causal
states are optimal, but for the hardest job—that of pre-
dicting futures of all lengths.

Remark 3. We have already seen (Theorem 1, Remark
2) that causal states are sufficient statistics for predict-
ing futures of all lengths; so are all prescient rivals. A
minimal sufficient statistic is one that is a function of all
other sufficient statistics [64, p. 38]. Since, in the course
of the proof of Theorem 2, we have shown that there is
a function g from any R̂ to S, we have also shown that
causal states are minimal sufficient statistics.

We may now, as promised, define the statistical com-
plexity of a process [5,6].

Definition 12 (Statistical Complexity of a Pro-
cess) The statistical complexity “Cµ(O)” of a process O
is that of its causal states: Cµ(O) ≡ Cµ(S).

Due to the minimality of causal states we see that the
statistical complexity measures the average amount of
historical memory stored in the process. Without the
minimality theorem, this interpretation would not be
possible, since we could trivially elaborate internal states,
while still generating the same observed process. Cµ for
those states would grow without bound and so be ar-
bitrary and not a characteristic property of the process
[18].

Theorem 3 (Causal States Are Unique) For all pre-
scient rivals R̂, if Cµ(R̂) = Cµ(S), then there exists an
invertible function between R̂ and S that almost always
preserves equivalence of state: R̂ and η are the same
as S and ε, respectively, except on a set of histories of
measure 0.

Proof. From Lemma 7, we know that S = g(R̂) almost
always. We now show that there is a function f such
that R̂ = f(S) almost always, implying that g = f−1

and that f is the desired relation between the two sets of
states. To do this, by Eq. (A12) it is sufficient to show
that H [R̂|S] = 0. Now, it follows from an information-
theoretic identity (Eq. (A8)) that

H [S] − H [S|R̂] = H [R̂] − H [R̂|S] . (28)

Since, by Lemma 7 H [S|R̂] = 0, both sides of Eq. (28)
are equal to H [S]. But, by hypothesis, H [R̂] = H [S].
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Thus, H [R̂|S] = 0 and so there exists an f such that
R̂ = f(S) almost always. We have then that f(g(R̂)) =
R̂ and g(f(S)) = S, so g = f−1. This implies that f
preserves equivalence of states almost always: for almost
all
←
s ,
←
s
′ ∈ ←S, η(

←
s ) = η(

←
s
′
) if and only if ε(

←
s ) = ε(

←
s
′
).

QED.
Remark. As in the case of the Refinement Lemma 7, on

which the theorem is based, the measure-0 caveats seem
unavoidable. A rival that is as predictive and as simple
(in the sense of Def. 4) as the causal states, can assign
a measure-0 set of histories to different states than the
ε-machine does, but no more. This makes sense: such
a measure-0 set makes no difference, since its members
are never observed, by definition. By the same token,
however, nothing prevents a minimal, prescient rival from
disagreeing with the ε-machine on those histories.

Theorem 4 (ε-Machines Are Minimally Stochas-
tic) [16] For all prescient rivals R̂,

H [R̂′|R̂] ≥ H [S′|S] , (29)

where S′ and R̂′ are the next causal state of the process
and the next η-state, respectively.

Proof. From Lemma 5, S′ is fixed by S and
→
S

1

to-

gether, thus H [S′|S,
→
S

1

] = 0 by Eq. (A12). Therefore,
from the chain rule for entropies Eq. (A6),

H [
→
S

1

|S] = H [S′,→S
1

|S] . (30)

We have no result like the Determinism Lemma 5
for the rival states R̂, but entropies are always non-

negative: H [R̂′|R̂,
→
S

1

] ≥ 0. Since for all L, H [
→
S

L

|R̂] =

H [
→
S

L

|S] by the definition, Def. (11), of prescient rivals,

H [
→
S

1

|R̂] = H [
→
S

1

|S]. Now we apply the chain rule again,

H [R̂′,→S
1

|R̂] = H [
→
S

1

|R̂] + H [R̂′|→S
1

, R̂] (31)

≥ H [
→
S

1

|R̂] (32)

= H [
→
S

1

|S] (33)

= H [S′,→S
1

|S] (34)

= H [S′|S] + H [
→
S

1

|S′,S] . (35)

In going from Eq. (33) to Eq. (34) we have used Eq. (30),
and in the last step we have used the chain rule once
more.

Using the chain rule one last time, we have

H [R̂′,→S
1

|R̂] = H [R̂′|R̂] + H [
→
S

1

|R̂′, R̂] . (36)

Putting these expansions, Eqs. (35) and (36), together
we get

H [R̂′|R̂] + H [
→
S

1

|R̂′, R̂] ≥ H [S′|S] + H [
→
S

1

|S′,S] (37)

H [R̂′|R̂] − H [S′|S] ≥ H [
→
S

1

|S′,S] − H [
→
S

1

|R̂′, R̂] .

From Lemma 7, we know that S = g(R̂), so there is an-
other function g′ from ordered pairs of η-states to ordered
pairs of causal states: (S′,S) = g′(R̂′, R̂). Therefore,
Eq. (A14) implies

H [
→
S

1

|S′,S] ≥ H [
→
S

1

|R̂′, R̂] . (38)

And so, we have that

H [
→
S

1

|S′,S] − H [
→
S

1

|R̂′, R̂] ≥ 0

H [R̂′|R̂] − H [S′|S] ≥ 0

H [R̂′|R̂] ≥ H [S′|S] . (39)

QED.
Remark. What this theorem says is that there is no

more uncertainty in transitions between causal states,
than there is in the transitions between any other kind
of prescient effective states. In other words, the causal
states approach as closely to perfect determinism—in the
usual physical, non-computation-theoretic sense—as any
rival that is as good at predicting the future.

VI. BOUNDS

In this section we develop bounds between measures
of structural complexity and entropy derived from ε-
machines and those from ergodic and information the-
ories, which are perhaps more familiar.

Definition 13 (Excess Entropy) The excess entropy
E of a process is the mutual information between its semi-
infinite past and its semi-infinite future:

E ≡ I[
→
S ;
←
S ] . (40)

The excess entropy is a frequently-used measure of the
complexity of stochastic processes and appears under a
variety of names; e.g., “predictive information”, “stored
information”, “effective measure complexity”, and so on
[75–81]. E measures the amount of apparent information
stored in the observed behavior about the past. As we
now establish, E is not, in general, the amount of mem-
ory that the process stores internally about its past; a
quantity measured by Cµ.

Theorem 5 (The Bounds of Excess) The statistical
complexity Cµ bounds the excess entropy E:

E ≤ Cµ , (41)

with equality if and only if H [S| →S ] = 0.
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Proof. E = I[
→
S ;
←
S ] = H [

→
S ] − H [

→
S | ←S ] and, by the

construction of causal states, H [
→
S | ←S ] = H [

→
S |S], so

E = H [
→
S ] − H [

→
S |S] = I[

→
S ;S] . (42)

Thus, since the mutual information between two vari-
ables is never larger than the self-information of either
one of them (Eq. (A9)), E ≤ H [S] = Cµ, with equality

if and only if H [S| →S ] = 0. QED.
Remark 1. Note that we have invoked H [

→
S ], not

H [
→
S

L

], but only while subtracting off quantities like
H [
→
S | ←S ]. We need not worry, therefore, about the ex-

istence of a finite L → ∞ limit for H [
→
S

L

], just that of

a finite L → ∞ limit for I[
→
S

L

;
←
S ] and I[

→
S

L

;S]. There
are many elementary cases (e.g., the fair coin process)
where the latter limits exist while the former do not. (See
Ref. [62] for details on how to construct such a mutual
information with full rigor.)

Remark 2. At first glance, it is tempting to see E
as the amount of information stored in a process. As
Theorem 5 shows, this temptation should be resisted. E
is only a lower bound on the true amount of information
the process stores about its history, namely Cµ. We can,
however, say that E measures the apparent information
in the process, since it is defined directly in terms of
observed sequences and not in terms of hidden, intrinsic
states, as Cµ is.

Remark 3. Perhaps another way to describe what E
measures is to note that, by its implicit assumption of
block-Markovian structure, it takes sequence-blocks as
states. But even for the class of block-Markovian sources,
for which such an assumption is appropriate, excess en-
tropy and statistical complexity measure different kinds
of information storage. Refs. [67] and [82] showed that in
the case of one-dimensional range-R spin systems, or any
other block-Markovian source where block configurations
are isomorphic to causal states:

Cµ = E + Rhµ , (43)

for finite R. Only for zero-entropy-rate block-Markovian
sources will the excess entropy, a quantity estimated di-
rectly from sequence blocks, equal the statistical com-
plexity, the amount of memory stored in the process.
Examples of such sources include periodic processes, for
which we have Cµ = E = log2 p, where p is the period.

Corollary 2 For all prescient rivals R̂,

E ≤ H [R̂] . (44)

Proof. This follows directly from Theorem 2, since
H [R̂] ≥ Cµ. QED.

Lemma 8 (Conditioning Does Not Affect Entropy
Rate) For all prescient rivals R̂,

h[
→
S ] = h[

→
S |R̂] , (45)

where the entropy rate h[
→
S ] and the conditional entropy

rate h[
→
S |R̂] were defined in Eq. (9) and Eq. (10), re-

spectively.

Proof. From Theorem 5 and its Corollary 2, we have

lim
L→∞

(
H [
→
S

L

] − H [
→
S

L

|R̂]
)

≤ lim
L→∞

H [R̂] , (46)

or,

lim
L→∞

H [
→
S

L

] − H [
→
S

L

|R̂]
L

≤ lim
L→∞

H [R̂]
L

. (47)

Since, by Eq. (A4), H [
→
S

L

] − H [
→
S

L

|R̂] ≥ 0, we have

h[
→
S ] − h[

→
S |R̂] = 0 . (48)

QED.
Remark. Forcing the process into a certain state R̂ = ρ̂

is akin to applying a controller, once. But in the infinite-

entropy case, H [
→
S

L

] →L→∞ ∞, with which we are con-
cerned, the future could contain (or consist of) an infi-
nite sequence of disturbances. In the face of this “grand
disturbance”, the effects of the finite control are simply
washed out.

Another way of viewing this is to reflect on the fact
that h[

→
S ] accounts for the effects of all the dependencies

between all the parts of the entire semi-infinite future.
This, owing to the time-translation invariance of station-
arity, is equivalent to taking account of all the dependen-
cies in the entire process, including those between past
and future. But these are what is captured by h[

→
S |R̂].

It is not that conditioning on R fails to reduce our un-
certainty about the future; it does so, for all finite times,
and conditioning on S achieves the maximum possible
reduction in uncertainty. Rather, the lemma asserts that
such conditioning cannot effect the asymptotic rate at
which such uncertainty grows with time.

Theorem 6 (Control Theorem) Given a class R̂ of
prescient rivals,

H [S] − h[
→
S |R̂] ≤ Cµ , (49)

where H [S] is the entropy of a single symbol from the
observable stochastic process.

Proof. As is well known (Ref. [64, Theorem 4.2.1,
p. 64]), for any stationary stochastic process,

lim
L→∞

H [
→
S

L

]
L

= lim
L→∞

H [SL|
→
S

L−1

] . (50)
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Moreover, the limits always exist. Up to this point, we
have defined h[

→
S ] in the manner of the left-hand side;

recall Eq. (9). It will be convenient in the following to
use that of the right-hand side.

From the definition of conditional entropy, we have

H [
←
S

L

] = H [
←
S

1

|←S
L−1

] + H [
←
S

L−1

]

= H [
←
S

L−1

|←S
1

] + H [
←
S

1

] . (51)

So we can express the entropy of the last observable the
process generated before the present as

H [
←
S

1

] = H [
←
S

L

] − H [
←
S

L−1

|←S
1

] (52)

= H [
←
S

1

|←S
L−1

] + H [
←
S

L−1

] − H [
←
S

L−1

|←S
1

] (53)

= H [
←
S

1

|←S
L−1

] + I[
←
S

L−1

;
←
S

1

] . (54)

We go from Eq. (52) to Eq. (53) by substituting the first

RHS of Eq. (51) for H [
←
S

L

].
Taking the L → ∞ limit has no effect on the LHS,

H [
←
S

1

] = lim
L→∞

(
H [
←
S

1

|←S
L−1

] + I[
←
S

L−1

;
←
S

1

]
)

. (55)

Since the process is stationary, we can move the first

term in the limit forward to H [SL|
→
S

L−1

]. This limit is
h[
→
S ], by Eq. (50). Furthermore, because of stationarity,

H [
←
S

1

] = H [
→
S

1

] = H [S]. Shifting the entropy rate h[
→
S ]

to the LHS of Eq. (55) and appealing to time-translation
once again, we have

H [S] − h[
→
S ] = lim

L→∞
I[
←
S

L−1

;
←
S

1

] (56)

= I[
←
S ;
→
S

1

] (57)

= H [
→
S

1

] − H [
→
S

1

| ←S ] (58)

= H [
→
S

1

] − H [
→
S

1

|S] (59)

= I[
→
S

1

;S] (60)
≤ H [S] = Cµ , (61)

where the last inequality comes from Eq. (A9). QED.
Remark 1. The Control Theorem is inspired by, and is

a version of, Ashby’s law of requisite variety [83, ch. 11].
This states that applying a controller can reduce the un-
certainty in the controlled variable by at most the en-
tropy of the control variable. (This result has recently
been rediscovered in Ref. [84].) Thinking of the control-
ling variable as the causal state, we have here a limitation
on the controller’s ability to reduce the entropy rate.

Remark 2. This is the only result so far where the
difference between the finite-L and the infinite-L cases
is important. For the analogous result in the finite case,
see App. G, Theorem 7.

Remark 3. By applying Theorem 2 and Lemma 8,
we could go from the theorem as it stands to H [S] −
h[
→
S |R̂] ≤ H [R̂]. This has a pleasing appearance of sym-

metry to it, but is actually a weaker limit on the strength
of the pattern or, equivalently, on the amount of control
that fixing the causal state (or one of its rivals) can exert.

VII. CONCLUDING REMARKS

A. Discussion

Let’s review, informally, what we have shown. We
began with questions about the nature of patterns and
about pattern discovery. Our examination of these issues
lead us to want a way of describing patterns that was at
once algebraic, computational, intrinsically probabilistic,
and causal. We then defined patterns in ensembles, in a
very general and abstract sense, as equivalence classes of
histories, or sets of hidden states, used for prediction. We
defined the strength of such patterns (by their forecasting
ability or prescience) and their statistical complexity (by
the entropy of the states or the amount of information re-
tained by the process about its history). We showed that
there was a limit on how strong such patterns could get
for each particular process, given by the predictive ability
of the entire past. In this way, we narrowed our goal to
finding a predictor of maximum strength and minimum
complexity.

Optimal prediction led us to the equivalence relation
∼ε and the function ε and so to representing patterns by
causal states and their transitions—the ε-machine. Our
first theorem showed that the causal states are maximally
prescient; our second, that they are the simplest way of
representing the pattern of maximum strength; our third
theorem, that they are unique in having this double op-
timality. Further results showed that ε-machines are the
least stochastic way of capturing maximum-strength pat-
terns and emphasized the need to employ the efficacious
but hidden states of the process, rather than just its gross
observables, such as sequence blocks.

Why are ε-machine states causal? First, ε-machine ar-
chitecture (say, as given by its semi-group algebra) de-
lineates the dependency between the morphs P(

→
S | ←S ),

considered as events in which each new symbol deter-
mines the succeeding morph. Thus, if state B follows
state A then A is a cause of B and B is an effect of A.
Second, ε-machine minimality guarantees that there are
no other events that intervene to render A and B inde-
pendent [18].

The ε-machine is thus a causal representation of all the
patterns in the process. It is maximally predictive and
minimally complex. It is at once computational, since it
shows how the process stores information (in the causal
states) and transforms that information (in the state-to-
state transitions), and algebraic (for details on which see
App. D). It can be analytically calculated from given
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distributions and systematically approached from empir-
ical data. It satisfies the basic constraints laid out in
Sec. II F.

These comments suggest that computational mechan-
ics and ε-machines are related or may be of interest to
a number of fields. Time series analysis, decision theory,
machine learning, and universal coding theory explicitly
or implicitly require models of observed processes. The
theories of stochastic processes, formal languages and
computation, and of measures of physical complexity are
all concerned with representations of processes—concerns
which also arise in the design of novel forms of comput-
ing devices. Very often the motivations of these fields
are far removed from computational mechanics. But it
is useful, if only by way of contrast, to touch briefly on
these areas and highlight one or several connections with
computational mechanics, and we do so in App. H.

B. Limitations of the Current Results

Let’s catalogue the restrictive assumptions we made at
the beginning and that were used by our development.

1. We know exact joint probabilities over sequence
blocks of all lengths for a process.

2. The observed process takes on discrete values.

3. The process is discrete in time.

4. The process is a pure time series; e.g., without spa-
tial extent.

5. The observed process is stationary.

6. Prediction can only be based on the process’s past,
not on any outside source of information.

The question arises, Can any be relaxed without much
trouble?

One way to lift the first limitation is to develop a statis-
tical error theory for ε-machine inference that indicates,
say, how much data is required to attain a given level of
confidence in an ε-machine with a given number of causal
states. This program is underway and, given its initial
progress, we describe several issues in more detail in the
next section.

The second limitation probably can be addressed, but
with a corresponding increase in mathematical sophis-
tication. The information-theoretic quantities we have
used are also defined for continuous random variables. It
is likely that many of the results carry over to the con-
tinuous setting.

The third limitation also looks similarly solvable, since
continuous-time stochastic process theory is well devel-
oped. This may involve sophisticated probability theory
or functional analysis.

As for the fourth limitation, there already exist tricks
to make spatially extended systems look like time series.

Essentially, one looks at all the paths through space-
time, treating each one as if it were a time series. While
this works well for data compression [85], it is not yet
clear whether it will be entirely satisfactory for captur-
ing structure [86]. More work needs to be done on this
subject.

It is unclear at this time how to relax the assumption of
stationarity. One can formally extend most of the results
in this paper to non-stationary processes without much
trouble. It is, however, unclear how much substantive
content these extensions have and, in any case, a system-
atic classification of non-stationary processes is (at best)
in its infant stages.

Finally, one might say that the last restriction is a pos-
itive feature when it comes to thinking about patterns
and the intrinsic structure of a process. “Pattern” is a
vague word, of course, but even in ordinary usage it is
only supposed to involve things inside the process, not
the rest of the universe. Given two copies of a document,
the contents of one copy can be predicted with an en-
viable degree of accuracy by looking at the other copy.
This tells us that they share a common structure, but
says absolutely nothing about what that pattern is, since
it is just as true of well-written and tightly-argued sci-
entific papers (which presumably are highly organized)
as it is of monkey-at-keyboard pieces of gibberish (which
definitely are not).

C. Conclusions and Directions for Future Work

Computational mechanics aims to understand the na-
ture of patterns and pattern discovery. We hope that the
foregoing development has convinced the reader that we
are neither being rash when we say that we have laid a
foundation for those projects, nor that we are being flip-
pant when we say that patterns are what are represented
by ε-machines, and that we discover them by ε-machine
reconstruction. We would like to close by marking out
two broad avenues for future work.

First, consider the mathematics of ε-machines them-
selves. We have just mentioned possible extensions
in the form of lifting assumptions made in this de-
velopment, but there are many other ways to go. It
would be helpful to have a good understanding of the
measurement-resolution scaling properties of ε-machines
for continuous-state processes, and of their relation to
such ideas in automata theory as the Krohn-Rhodes de-
composition [31]. Anyone who manages to absorb Vol-
ume II of Ref. [27] would probably be in a position to
answer interesting questions about the structures that
processes preserve, perhaps even to give a purely relation-
theoretic account of ε-machines. We have alluded in a
number of places to the trade-off between prescience and
complexity. For a given process there is presumably a
sequence of optimal machines connecting the one-state,
zero-complexity machine with minimal prescience to the
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ε-machine. Each member of the path is the maximally
prescient machine for a certain of complexity; it would
be very interesting to know what, if anything, we can say
in general about the shape of this “prediction frontier”.

Second, there is ε-machine reconstruction, an activ-
ity about which we have said next to nothing. As we
mentioned above (p. 13), there are already several algo-
rithms for reconstructing machines from data, even “on-
line” ones. It is fairly evident that these algorithms will
find the true machine in the limit of infinite time and
infinite data. What is needed is an understanding of the
error statistics [87] of different reconstruction procedures,
of the kinds of mistakes these procedures make and the
probabilities with which they make them. Ideally, we
want to find “confidence regions” for the products of re-
construction. The aim is to calculate (i) the probabilities
of different degrees of reconstruction error for a given vol-
ume of data, (ii) the amount of data needed to be con-
fident of a fixed bound on the error, or (iii) the rates
at which different reconstruction procedures converge on
the ε-machine. So far, an analytical theory has been de-
veloped that predicts the average number of estimated
causal states as a function of the amount of data used
when reconstructing certain kinds of processes [88]. Once
we possess a more complete theory of statistical inference
for ε-machines, analogous perhaps to what already exists
in computational learning theory, we will be in a position
to begin analyzing, sensibly and rigorously, the multitude
of intriguing patterns and information-processing struc-
tures the natural world presents.

ACKNOWLEDGMENTS

We thank Dave Albers, Dave Feldman, Jon Fetter,
Rob Haslinger, Wim Hordijk, Amihan Huesmann, Kris
Klinkner, Cris Moore, Mitch Porter, Erik van Nimwegen,
and Karl Young for advice on the manuscript. We also
wish to thank the participants in the 1998 SFI Complex
Systems Summer School, the University of Wisconsin-
Madison probability seminar, the UW-Madison Physics
Department’s graduate student mini-colloquium, and the
University of Michigan-Ann Arbor Complex Systems
seminar for numerous helpful comments on earlier pre-
sentations of these results.

This work was supported at the Santa Fe Institute
under the Computation, Dynamics, and Inference Pro-
gram via ONR grant N00014-95-1-0975, NSF grant PHY-
9970158, and DARPA contract F30602-00-2-0583.

APPENDIX A: INFORMATION-THEORETIC
FORMULÆ

The following formulæ prove useful in the development.
They are relatively intuitive, given our interpretation,

and they can all be proved with little more than straight
algebra; see Ref. [64, ch. 2]. Below, f is a function.

H [X, Y ] = H [X ] + H [Y |X ] (A1)
H [X, Y ] ≥ H [X ] (A2)
H [X, Y ] ≤ H [X ] + H [Y ] (A3)
H [X |Y ] ≤ H [X ] (A4)

H [X |Y ] = H [X ] iff X is independent of Y (A5)
H [X, Y |Z] = H [X |Z] + H [Y |X, Z] (A6)
H [X, Y |Z] ≥ H [X |Z] (A7)

H [X ] − H [X |Y ] = H [Y ] − H [Y |X ] (A8)
I[X ; Y ] ≤ H [X ] (A9)

I[X ; Y ] = H [X ] iff H [X |Y ] = 0 (A10)
H [f(X)] ≤ H [X ] (A11)

H [X |Y ] = 0 iff X = f(Y ) (A12)
H [f(X)|Y ] ≤ H [X |Y ] (A13)
H [X |f(Y )] ≥ H [X |Y ] (A14)

Eqs. (A1) and (A6) are called the chain rules for
entropies. Strictly speaking, the right hand side of
Eq. (A12) should read “for each y, P(X = x|Y = y) > 0
for exactly one x”.

APPENDIX B: THE EQUIVALENCE RELATION
THAT INDUCES CAUSAL STATES

Any relation that is reflexive, symmetric, and transi-
tive is an equivalence relation.

Consider the set
←
S of all past sequences, of any length:

←
S = {←s L

= sL−1 · · · s−1 : si ∈ A, L ∈ Z+} . (B1)

Recall that
←
s

0
= λ, the empty string. We define the

relation ∼ε over
←
S by

←
si

K ∼ε
←
sj

L ⇔ P(
→
S |←si

K
) = P(

→
S |←sj

L
) , (B2)

for all semi-infinite
→
S= s0s1s2 · · ·, where K, L ∈ Z

+.
Here we show that ∼ε is an equivalence relation by
reviewing the basic properties of relations, equivalence
classes, and partitions. (The proof details are straight-
forward and are not included. See Ref. [89].) We
will drop the length variables K and L and denote by
←
s ,
←
s
′
,
←
s
′′ ∈ ←

S members of any length in the set
←
S of

Eq. (B1).
First, ∼ε is a relation on

←
S since we can represent it

as a subset of the Cartesian product

←
S ×←S = {(←s ,

←
s
′
) :
←
s ,
←
s
′ ∈ ←S} . (B3)

Second, the relation ∼ε is an equivalence relation on
←
S

since it is
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1. reflexive:
←
s∼ε

←
s , for all

←
s ∈ ←S ;

2. symmetric:
←
s∼ε

←
s
′ ⇒ ←

s
′∼ε
←
s ; and

3. transitive:
←
s∼ε

←
s
′
and

←
s
′∼ε
←
s
′′ ⇒ ←

s∼ε
←
s
′′
.

Third, if
←
s ∈ ←S, the equivalence class of

←
s is

[
←
s ] = {←s ′ ∈ ←S :

←
s
′∼ε
←
s } . (B4)

The set of all equivalence classes in
←
S is denoted

←
S/∼ε

and is called the factor set of
←
S with respect to ∼ε. In

Sec. IV A we called the individual equivalence classes
causal states Si and denoted the set of causal states
S = {Si : i = 0, 1, . . . , k − 1}. That is, S =

←
S/∼ε.

(We noted in the main development that the cardinality
k = |S| of causal states may or may not be finite.)

Finally, we list several basic properties of the causal-
state equivalence classes.

1.
⋃
←
s∈←S [

←
s ] =

←
S .

2.
⋃k−1

i=0 Si =
←
S .

3. [
←
s ] = [

←
s
′
] ⇔ ←

s∼ε
←
s
′
.

4. If
←
s ,
←
s
′ ∈ ←S , either

(a) [
←
s ]

⋂
[
←
s
′
] = ∅ or

(b) [
←
s ] = [

←
s
′
] .

5. The causal states S are a partition of
←
S . That is,

(a) Si 6= ∅ for each i,

(b)
⋃k−1

i=0 Si =
←
S , and

(c) Si ∩ Sj = ∅ for all i 6= j.

We denote the start state with S0. The start state is
the causal state associated with

←
s = λ. That is, S0 = [λ].

APPENDIX C: TIME REVERSAL

The definitions and properties of the causal states ob-
tained by scanning sequences in the opposite direction,
i.e., the causal states

→
S /∼ε, follow similarly to those de-

rived just above in App. B. In general,
←
S/∼ε 6= →S /∼ε.

That is, past causal states are not necessarily the same
as future causal states; past and future morphs can dif-
fer; unlike entropy rate [16], past and future statistical

complexities need not be equal:
←
Cµ 6=

→
Cµ; and so on. The

presence or lack of this type of time-reversal symmetry, as
reflected in these inequalities, is a fundamental property
of a process.

APPENDIX D: ε-MACHINES ARE MONOIDS

A semi-group is a set of elements closed under an as-
sociative binary operator, but without a guarantee that
every, or indeed any, element has an inverse [90]. A
monoid is a semi-group with an identity element. Thus,
semi-groups and monoids are generalizations of groups.
Just as the algebraic structure of a group is generally
interpreted as a symmetry, we propose to interpret the
algebraic structure of a semi-group as a generalized sym-
metry. The distinction between monoids and other semi-
groups becomes important here: only semi-groups with
an identity element—i.e., monoids—can contain subsets
that are groups and so represent conventional symme-
tries.

We claim that the transformations that concatenate
strings of symbols from A onto other such strings form a
semi-group G, the generators of which are the transfor-
mations that concatenate the elements of A. The identity
element is to be provided by concatenating the null sym-
bol λ. The concatenation of string t onto the string s is
forbidden if and only if strings of the form st have proba-
bility zero in a process. All such concatenations are to be
realized by a single semi-group element denoted ∅. Since
if P(st) = 0, then P(stu) = P(ust) = 0 for any string
u, we require that ∅g = g∅ = ∅ for all g ∈ G. Can we
provide a representation of this semi-group?

Recall that, from our definition of the labeled tran-
sition probabilities, T

(λ)
ij = δij . Thus, T(λ) is an iden-

tity element. This suggests using the labeled transi-
tion matrices to form a matrix representation of the
semi-group. Accordingly, first define U

(s)
ij by setting

U
(s)
ij = 0 when T

(s)
ij = 0 and U

(s)
ij = 1 otherwise, to

remove probabilities. Then define the set of matrices
U = {T(λ)}⋃{U(s) , s ∈ A}. Finally, define G as the
set of all matrices generated from the set U by recursive
multiplication. That is, an element g of G is

g(ab...cd) = U(d)U(c) . . .U(b)U(a) , (D1)

where a, b, . . . c, d ∈ A. Clearly, G constitutes a semi-
group under matrix multiplication. Moreover, g(a...bc) =
0 (the all-zero matrix) if and only if, having emitted the
symbols a . . . b in order, we must arrive in a state from
which it is impossible to emit the symbol c. That is, the
zero-matrix 0 is generated if and only if the concatenation
of c onto a . . . b is forbidden. The element ∅ is thus the
all-zero matrix 0, which clearly satisfies the necessary
constraints. This completes the proof of Proposition 1.

We call the matrix representation—Eq. (D1) taken
over all words in Ak—of G the semi-group machine of
the ε-machine {S,T}. See Ref. [91].
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APPENDIX E: MEASURE-THEORETIC
TREATMENT OF CAUSAL STATES

In Sec. IV, where we define causal states, ε-machines,
and their basic properties, we use a great many condi-
tional probabilities. However, there are times when the
events on which we condition — particular histories, or
particular effective states — have probability zero. Then
classical formulæ for conditional probability do not apply,
and a more careful and technical treatment, going back
to the measure-theoretic basis of probability, is called for.
We provide such a treatment in this appendix, showing
that the concepts we introduced in Sec. IV — the causal
states, their morphs, and so forth — are well-defined
measure-theoretically. Our proofs in that section are
equally valid whether we interpret the conditional prob-
abilities they invoke classically or measure-theoretically.
(The measure-theoretic interpretation raises a few tech-
nicalities, which we have flagged with footnotes to those
proofs.) And we show here that our methods of proof
in subsequent sections are not affected by this change in
interpretation.

In what follows, we draw on Refs. [61,62,92–95]. Our
notation broadly follows that of Ref. [92]. A slightly dif-
ferent approach to these issues, and more than slightly
different terminology and notation, may be found in
chapter 2 of Ref. [10].

1. Abstract Definition of Conditional Probability

Definition 14 (Conditional Probability) Consider
a probability space (Ω,F , P ), and a σ-subalgebra G ⊂ F .
The conditional probability of an event A ∈ F , given
the family of events G, is a real-valued random function
PA||G(ω), with the following properties:

1. PA||G(ω) is measurable with respect to G;

2. for any G ∈ G,∫
G

PA||G(ω)dP = P (A ∩ G) (E1)

The latter condition generalizes the classical formula that
P (A ∩ G) =

∑
g∈G P (A|g)P (g).

Proposition 2 There always exists a function PA||G(ω)
satisfying the just-given conditions. Moreover, if f and
g are two functions which both satisfy the above require-
ments, f(ω) = g(ω) for P -almost-all ω.

Proof: The existence of such random variables is vouch-
safed to us by the Radon-Nikodym theorem; PA||G(ω) is
the Radon-Nikodym derivative of P (A ∩ G), which is a
measure over G, with respect to P (the latter also being
restricted to the σ-subalgebra G). The Radon-Nikodym

theorem also tells us that any two functions which satisfy
the two conditions above agree for P -almost-all points ω.
Any such function is called a version of the conditional
probability. (See any of Refs. [61,92–95] for further de-
tails.)

If G = σ(X), the σ-algebra generated by the random
variable X , then we may write PA||X=x(ω) or PA||X(ω)
in place of PA||G(ω).

It is not always the case that, if we let A vary, while
holding ω fixed, we get a proper probability measure.
Indeed, there are pathological examples where there are
no conditional probability measures, though there are of
course conditional probability functions. A conditional
probability function which is a measure for all ω is said
to be regular. If a regular conditional probability uses as
its conditioning σ-algebra that generated by a random
variable X , we write P (·|X = x), as usual.

a. Conditional Expectation

As well as conditional probabilities, we shall need
conditional expectations. Their definition is completely
analogous to Def. 14. The expectation of the random
variable X conditional on the σ-subalgebra G, denoted
E {X ||F} is an integrable, G-measurable random vari-
able such that

∫
G E {X ||F} dP =

∫
G XdP for all G ∈ G.

Conditional probabilities are, of course, the conditional
expectations of indicator functions. There is another im-
portant relationship between conditional probability and
conditional expectation, which we give in the form of an-
other proposition.

Proposition 3 (Coarsening Conditional Probability)
[92–95] Consider any two σ-subalgebras G and H, with
G ⊂ H. Then

PF ||G(ω) = E
{
PF ||H||F

}
(ω) a.s., (E2)

where we have been explicit about the conditional expec-
tation’s dependence on ω.

b. Conditional Independence

Let F be the conditioning σ-subalgebra, and let A
and B be two other σ-subalgebras. Then A and B are
conditionally independent, given F , just when, for any
pair of events A, B, A ∈ A and B ∈ B, PAB||F(ω) =
PA||F(ω)PB||F (ω) a.s.

Take any two σ-algebras over the same set, A and B;
their product, AB, is the σ-algebra generated by the sets
of the form a ∩ b, where a ∈ A and b ∈ B.

Proposition 4 [95, Sec. 2.5] A and B are conditionally
independent given F iff, for all B ∈ B, PB||AF (ω) =
PB||F(ω) a.e., where AF is defined as above. This is
also true if A and B are interchanged.
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Remark. Assuming regularity of conditional probabil-
ity, this is equivalent to saying that the random variables
Y and Z are independent given X if and only if

P (Z ∈ A|X = x, Y = y) = P (Z ∈ A|X = x) (E3)

Proposition 5 [94, p. 351] Assuming regularity of con-
ditional probability, for any three random variables

P (Z ∈ A, Y = y|X = x)
= P (Z ∈ A|Y = y, X = x)P (Y = y|X = x) (E4)

Let A = σ(X), and B = σ(f(X)), for a measurable,
non-random function f . Then AB = σ(X, f(X)) = A =
σ(X). Therefore,

PA||X,f(X)(ω) = PA||X(ω) a.e. , (E5)

since the conditioning σ-algebras are the same.

2. Re-Statements and Proofs of the Main Results

We begin by re-stating the definition of causal equiv-
alence, and so of causal states, in terms adapted to ab-
stract conditional probabilities. We then go through the
results of Sec. IV in order, and, where necessary, give
alternate proofs of them. (Where new proofs are not
needed, we say so.)

a. Definition of Causal States

For us, Ω is the space of two-sided infinite strings over
A; F is the σ-algebra generated by cylinders over such
strings; and the probability measure P is simply P (Def-
inition 1).

What we want to do is condition on histories; so we
make our conditioning σ-subalgebra σ(

←
S ), following the

usual convention that σ(X) is the σ-algebra induced by
the random variable X . This contains all finite-length
histories, and even all semi-infinite histories, as events.
Similarly, designate the σ-subalgebra for futures by σ(

→
S ).

We want there to be a function P
F ||σ(

←
S )

(ω), at least when

F ∈ σ(
→
S ); and we want this to be a probability measure

over σ(
→
S ), for fixed ω.

As we have seen (Prop. 2), the conditional probability
function exists. Moreover, it is regular, since σ(

←
S ) is

a subalgebra of the σ-algebra of cylinder sets, and St

always takes its values from a fixed, finite set [93,95].
Thus, we do have a random variable P

F ||←S=
←
s
(ω),

which is the probability of the set F ∈ σ(
→
S ), given that

←
S=

←
s . We now define causal equivalence thus:

←
s∼ε

←
s
′

iff, for P -almost all pairs ω, ω′, if ω ∈ ←s and ω′ ∈ ←s ′,
then P

F ||←S=
←
s
(ω) = P

F ||←S=
←
s
′(ω′), for all F ∈ σ(

→
S ). (It

is clear that this is an equivalence relation — in particu-
lar, that it is transitive.)

It may be comforting to point out (following Ref. [10,
Sec. 2.5]) that the functions P

F ||σ(
←
S

L
)
(ω), i.e., the prob-

abilities of the fixed future event F conditional on
longer and longer histories, almost always converge on
P

F ||σ(
←
S )

(ω). This is because of the martingale conver-

gence theorem of Doob [93, Theorem VII.4.3]. For each

L, σ(
←
S

L

) ⊂ σ(
←
S

L+1

), and the smallest σ-algebra con-
taining them all is σ(

←
S ). Thus for any random vari-

able X with E {|X |} < ∞, limL→∞E
{

X ||σ(
←
S

L

)
}

=

E
{
X ||σ(

←
S )

}
almost surely. Applied to the indicator

function 1F of the future event F , this gives the desired
convergence.

Note that if we want only causal equivalence for a finite
future, matters are even simpler. Since, for finite L, every

event in σ(
→
S

L

) consists of the union of a finite number
of disjoint elementary events (i.e., of a finite number of
length-L futures), it suffices if the conditional probability
assignments agree for the individual futures. If they agree
for every finite L, then we have the alternate definition
(Eq. 17) of causal states.

b. Measurability of ε

At several points, we need ε to be a measurable func-
tion, i.e., we need σ(S) ⊆ σ(

←
S ). This is certainly the case

for process which can be represented as Markov chains,
stochastic deterministic finite automata, or conventional
hidden Markov models generally. The strongest general
result yet obtained is that ε is, so to speak, nearly mea-
surable.

Proposition 6 [10, Prop. 2.5.3] For each causal state
Si, the set ε−1(Si) of histories mapping to Si is either
measurable, or the intersection of a measurable set and a
set of full measure.

Thus, each ε−1(Si) differs from a measurable set in
σ(
←
S ) by at most a subset of a set of measure zero. This

is close enough to complete measurability for our pur-
poses, and we will speak of ε as though it were always
measurable. Finding necessary and sufficient conditions
on the process for ε to be measurable would be an inter-
esting problem.

c. The Morph

We wish to show that the morph of a causal state is
well-defined, i.e., that the distribution of futures condi-
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tional on the entire history is the same as the distribution
conditional on the causal state. Start with the fact that,
since S = ε(

←
S ), and ε is measurable, σ(S) ⊆ σ(

←
S ). This

lets us use Prop. 3, and see that PF ||S=Si
(ω) is the expec-

tation of P
F ||←S=

←
s
(ω) over those ω ∈ Si. But, by the con-

struction of causal states, P
F ||←S=

←
s
(ω) has the same value

for P -almost-all ω. Thus P(F |S = Si) = P(F | ←S=
←
s )

for (almost every)
←
s ∈ Si. (We can always find ver-

sions of the conditional probabilities which eliminate the
“almost-all” and the “almost every” above.) So, since
this works for arbitrary future events F , it works in gen-
eral, and we may say that the distribution of futures is
the same whether we condition on the past or on the
causal state.

d. Existence of the Conditional Entropy of Futures

As we have seen, P→
S

L||←S
(ω) is a probability measure

over a finite set, so [62, Sec. 5.5] we define the entropy of
length-L futures conditional on a particular history

←
s as

H [
→
S

L

| ←S=
←
s ] (E6)

≡ −
∑
sL

P(
→
S

L

= sL| ←S=
←
s ) log2 P(

→
S

L

= sL| ←S=
←
s ) ,

with the understanding that we omit futures of condi-
tional probability zero from the sum. This is measurable,

since P(
→
S

L

= sL| ←S=
←
s ) is σ(

←
S )-measurable for each sL.

Now set

H [
→
S

L

| ←S ] ≡
∫

H [
→
S

L

| ←S=
←
s ]dP←

S
, (E7)

where P←
S

is the restriction of P to σ(
←
S ). (Measurability

tells us that the integral exists.)

The procedure for H [
→
S

L

|R] is similar, but if anything
even less problematic.

Note that we do not need to re-do the derivations
of Secs. V and VI, since those simply exploit standard
inequalities of information theory, which certainly ap-
ply to the conditional entropies we have just defined.
(Cf. [61,62].)

e. The Labeled Transition Probabilities

Recall that we defined the labeled transition probabil-
ity T

(s)
ij as the probability of the joint event S′ = Sj and

→
S

1

= s, conditional on S = Si. Clearly (Prop. 2), the
existence of such conditional probabilities is not at issue,
nor, as we have seen, is their regularity. We can thus
leave Def. 8 alone.

APPENDIX F: ALTERNATE PROOF OF THE
REFINEMENT LEMMA

The proof of Lemma 7 carries through verbally, but
we do not wish to leave loop-holes. Unfortunately, this
means introducing two new bits of mathematics.

First of all, we need the largest classes that are strictly

homogeneous (Def. 6) with respect to
→
S

L

for fixed L;
these are, so to speak, truncations of the causal states.
Accordingly, we will talk about SL and σL, which are
analogous to S and σ. We will also need to define the
function φL

σρ ≡ P(SL = σL|R = ρ).
Putting these together, for every L we have

H [
→
S

L

|R = ρ] = H [
∑
σL

φL
σρP(

→
S

L

|SL = σL)] (F1)

≥
∑
σL

φL
σρH [

→
S

L

|SL = σL] . (F2)

Thus,

H [
→
S

L

| R] =
∑

ρ

P(R = ρ)H [
→
S

L

|R = ρ] (F3)

≥
∑

ρ

P(R = ρ)
∑
σL

φL
σρH [

→
S

L

|SL = σL] (F4)

=
∑
σL,ρ

P(R = ρ)φL
σρH [

→
S

L

|SL = σL] (F5)

=
∑
σL,ρ

P(SL = σL, R = ρ)H [
→
S

L

|SL = σL] (F6)

=
∑
σL

P(SL = σL)H [
→
S |SL = σL] (F7)

= H [
→
S

L

|SL] . (F8)

That is to say,

H [
→
S

L

|R] ≥ H [
→
S

L

|SL] , (F9)

with equality if and only if every φL
σρ is either 0 or 1.

Thus, if H [
→
S

L

|R̂] = H [
→
S |SL], every ρ̂ is entirely con-

tained within some σL; except for possible subsets of
measure 0. But if this is true for every L—which, in
the case of a prescient rival R̂, it is—then every ρ̂ is
at least weakly homogeneous (Def. 7) with respect to

all
→
S

L

. Thus, by Lemma 3, all its members, except for
that same subset of measure 0, belong to the same causal
state. QED.

APPENDIX G: FINITE ENTROPY FOR THE
SEMI-INFINITE FUTURE

While cases where H [
→
S ] is finite—more exactly, where

limL→∞H [
→
S

L

] exists and is finite—may be uninterest-
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ing for information-theorists, they are of great interest to
physicists, since they correspond, among other things, to
periodic and limit-cycle behaviors. There are, however,
only two substantial differences between what is true
of the infinite-entropy processes considered in the main
body of the development and the finite-entropy case.

First, we can simply replace statements of the form

“for all L, H [
→
S

L

] . . . ” with H [
→
S ]. For example, the op-

timal prediction theorem (Theorem 1) for finite-entropy
processes becomes for all R, H [

→
S |R] ≥ H [

→
S |S]. The

details of the proofs are, however, entirely analogous.
Second, we can prove a substantially stronger version

of the control theorem (Theorem 6).

Theorem 7 (The Finite-Control Theorem) For all
prescient rivals R̂,

H [
→
S ] − H [

→
S |R̂] ≤ Cµ . (G1)

Proof. By a direct application of Eq. (A9) and the
definition of mutual information Eq. (8), we have that

H [
→
S ] − H [

→
S |S] ≤ H [S] . (G2)

But, by the definition of prescient rivals (Def. 11), H [
→
S

|S] = H [
→
S |R̂], and, by definition, Cµ = H [S]. Substi-

tuting equals for equals gives us the theorem. QED.

APPENDIX H: RELATIONS TO OTHER FIELDS

1. Time Series Modeling

The goal of time series modeling is to predict the fu-
ture of a measurement series on the basis of its past.
Broadly speaking, this can be divided into two parts:
identify equivalent pasts and then produce a prediction
for each class of equivalent pasts. That is, we first pick
a function η :

←
S 7→ R and then pick another function

p : R 7→→S. Of course, we can choose for the range
of p futures of some finite length (length 1 is popular)
or even choose distributions over these. While practical
applications often demand a single definite prediction—
“You will meet a tall dark stranger”, there are obvious
advantages to predicting a distribution—“You have a .95
chance of meeting a tall dark stranger and a .05 chance of
meeting a tall familiar albino.” Clearly, the best choice
for p is the actual conditional distribution of futures for
each ρ ∈ R. Given this, the question becomes what the
best R is; i.e., What is the best η? At least in the case
of trying to understand the whole of the underlying pro-
cess, we have shown that the best η is, unambiguously,
ε. Thus, our discussion has implicitly subsumed that of
traditional time series modeling.

Computational mechanics—in its focus on letting the
process speak for itself through (possibly impoverished)
measurements—follows the spirit that motivated one ap-
proach to experimentally testing dynamical systems the-
ory. Specifically, it follows in spirit the methods of re-
constructing “geometry from a time series” introduced
by Refs. [96] and [97]. A closer parallel is found, how-
ever, in later work on estimating minimal equations of
motion from data series [98].

2. Decision-Theoretic Problems

The classic focus of decision theory is “rules of induc-
tive behavior” [99–101]. The problem is to chose func-
tions from observed data to courses of action that possess
desirable properties. This task has obvious affinities to
considering the properties of ε and its rivals η. We can
go further and say that what we have done is consider a
decision problem, in which the available actions consist
of predictions about the future of the process. The cal-
culation of the optimum rule of behavior in general faces
formidable technicalities, such as providing an estimate
of the utility of every different course of action under
every different hypothesis about the relevant aspects of
the world. On the one hand, it is not hard to concoct
time-series tasks where the optimal rule of behavior does
not use ε at all. On the other hand, if we simply aim to
predict the process indefinitely far into the future, then
because the causal states are minimal sufficient statistics
for the distribution of futures (Theorem 2, Remark 4),
the optimal rule of behavior will use ε [100].

3. Stochastic Processes

Clearly, the computational mechanics approach to pat-
terns and pattern discovery involves stochastic processes
in an intimate and inextricable way. Probabilists have,
of course, long been interested in using information-
theoretic tools to analyze stochastic processes, particu-
larly their ergodic behavior [61,62,102,103]. There has
also been considerable work in the hidden Markov model
and optimal prediction literatures on inferring mod-
els of processes from data or from given distributions
[10,34,104–106]. To the best of our knowledge, however,
these two approaches have not been previously combined.

Perhaps the closest approach to the spirit of compu-
tational mechanics in the stochastic process literature
is, surprisingly, the now-classical theory of optimal pre-
diction and filtering for stationary processes, developed
by Wiener and Kolmogorov [107–111]. The two theories
share the use of information-theoretic notions, the uni-
fication of prediction and structure, and the conviction
that “the statistical mechanics of time series” is a “field
in which conditions are very remote from those of the
statistical mechanics of heat engines and which is thus
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very well suited to serve as a model of what happens in
the living organism” [111, p. 59]. So far as we have been
able to learn, however, no one has ever used this the-
ory to explicitly identify causal states and causal struc-
ture, leaving these implicit in the mathematical form
of the prediction and filtering operators. Moreover, the
Wiener-Kolmogorov framework forces us to sharply sep-
arate the linear and nonlinear aspects of prediction and
filtering, because it has a great deal of trouble calculating
nonlinear operators [109,110]. Computational mechanics
is completely indifferent to this issue, since it packs all
of the process’s structure into the ε-machine, which is
equally calculable in linear or strongly nonlinear situa-
tions.

4. Formal Language Theory and Grammatical
Inference

A formal language is a set of symbol strings (“words”
or “allowed words”) drawn from a finite alphabet. Ev-
ery formal language may be described either by a set of
rules (a “grammar”) for creating all and only the allowed
words, by an abstract automaton which also generates
the allowed words, or by an automaton which accepts
the allowed words and rejects all “forbidden” words. Our
ε-machines, stripped of probabilities, correspond to such
automata—generative in the simple case or classificatory,
if we add a reject state and move to it when none of the
allowed symbols are encountered.

Since Chomsky [112,113], it has been known that for-
mal languages can be classified into a hierarchy, the
higher levels of which have strictly greater expressive
power. The hierarchy is defined by restricting the form
of the grammatical rules or, equivalently, by limiting the
amount and kind of memory available to the automata.
The lowest level of the hierarchy is that of regular lan-
guages, which may be familiar to Unix-using readers as
regular expressions. These correspond to finite-state ma-
chines, for which relatives of our minimality and unique-
ness theorems are well known [68], and the construction
of causal states is analogous to “Nerode equivalence class-
ing” [68,114]. Our theorems, however, are not restricted
to this low-memory, non-stochastic setting; for instance,
they apply to hidden Markov models with both finite and
infinite numbers of hiddens states [10].

The problem of learning a language from observational
data has been extensively studied by linguists, and by
computer scientists interested in natural-language pro-
cessing. Unfortunately, well developed learning tech-
niques exist only for the two lowest classes in the Chom-
sky hierarchy, the regular and the context-free languages.
(For a good account of these procedures see Ref. [115].)
Adapting and extending this work to the reconstruction
of ε-machines should form a useful area of future research,
a point to which we alluded in the concluding remarks.

5. Computational and Statistical Learning Theory

The goal of computational learning theory [116,117] is
to identify algorithms that quickly, reliably, and simply
lead to good representations of a target “concept”. The
latter is typically defined to be a binary dichotomy of
a certain feature or input space. Particular attention is
paid to results about “probably approximately correct”
(PAC) procedures [118]: those having a high probabil-
ity of finding members of a fixed “representation class”
(e.g., neural nets, Boolean functions in disjunctive nor-
mal form, or deterministic finite automata). The key
word here is “fixed”; as in contemporary time-series anal-
ysis, practitioners of this discipline acknowledge the im-
portance of getting the representation class right. (Get-
ting it wrong can make easy problems intractable.) In
practice, however, they simply take the representation
class as a given, even assuming that we can always count
on it having at least one representation which exactly cap-
tures the target concept. Although this is in line with im-
plicit assumptions in most of mathematical statistics, it
seems dubious when analyzing learning in the real world
[5,119,120].

In any case, the preceding development made no such
assumption. One of the goals of computational mechan-
ics is, exactly, discovering the best representation. This
is not to say that the results of computational learning
theory are not remarkably useful and elegant, nor that
one should not take every possible advantage of them
in implementing ε-machine reconstruction. In our view,
though, these theories belong more to statistical infer-
ence, particularly to algorithmic parameter estimation,
than to foundational questions about the nature of pat-
tern and the dynamics of learning.

Finally, in a sense computational mechanics’ focus on
causal states is a search for a particular kind of structural
decomposition for a process. That decomposition is most
directly reflected in the conditional independence of past
and future that causal states induce. This decomposi-
tion reminds one of the important role that conditional
independence plays in contemporary methods for artifi-
cial intelligence, both for developing systems that rea-
son in fluctuating environments [121] and the more re-
cently developed algorithmic methods of graphical mod-
els [122,123].

6. Description-Length Principles and Universal
Coding Theory

Rissanen’s minimum description length (MDL) prin-
ciple, most fully described in Ref. [48], is a procedure
for selecting the most concise generative model out of a
family of models that are all statistically consistent with
given data. The MDL approach starts from Shannon’s re-
sults on the connection between probability distributions
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and codes. Rissanen’s development follows the inductive
framework introduced by Solomonoff [45].

Suppose we choose a representation that leads to a
class M of models and are given data set X . The MDL
principle enjoins us to pick the model M ∈ M that mini-
mizes the sum of the length of the description of X given
M, plus the length of description of M given M. The
description length of X is taken to be − log P(X |M);
cf. Eq. (5). The description length of M may be regarded
as either given by some coding scheme or, equivalently, by
some distribution over the members of M. (Despite the
similarities to model estimation in a Bayesian framework
[124], Rissanen does not interpret this distribution as a
Bayesian prior or regard description length as a measure
of evidential support.)

The construction of causal states is somewhat similar
to the states estimated in Rissanen’s context algorithm
[48,125,126] (and to the “vocabularies” built by univer-
sal coding schemes, such as the popular Lempel-Ziv al-
gorithm [127,128]). Despite the similarities, there are
significant differences. For a random source—for which
there is a single causal state—the context algorithm es-
timates a number of states that diverges (at least loga-
rithmically) with the length of the data stream, rather
than inferring a single state, as ε-machine reconstruction
would. Moreover, we avoid any reference to encodings of
rival models or to prior distributions over them; Cµ(R)
is not a description length.

7. Measure Complexity

Ref. [77] proposed that the appropriate measure of the
complexity of a process was the “minimal average Shan-
non information needed” for optimal prediction. This
true measure complexity was to be taken as the Shannon
entropy of the states used by some optimal predictor.
The same paper suggested that it could be approximated
(from below) by the excess entropy; there called the ef-
fective measure complexity, as noted in Sec. VI above.
This is a position closely allied to that of computational
mechanics, to Rissanen’s MDL principle, and to the min-
imal embeddings introduced by the “geometry of a time
series” methods [96] just described.

In contrast to computational mechanics, however, the
key notion of “optimal prediction” was left undefined,
as were the nature and construction of the states of the
optimal predictor. In fact, the predictors used required
knowing the process’s underlying equations of motion.
Moreover, the statistical complexity Cµ(S) differs from
the measure complexities in that it is based on the well
defined causal states, whose optimal predictive powers
are in turn precisely defined. Thus, computational me-
chanics is an operational and constructive formalization
of the insights expressed in Ref. [77].

8. Hierarchical Scaling Complexity

Introduced in Ref. [129, ch. 9], this approach seeks,
like computational mechanics, to extend certain tradi-
tional ideas of statistical physics. In brief, the method is
to construct a hierarchy of nth-order Markov models and
examine the convergence of their predictions with the real
distribution of observables as n → ∞. The discrepancy
between prediction and reality is, moreover, defined in-
formation theoretically, in terms of the relative entropy
or Kullback-Leibler distance [64,74]. (We have not used
this quantity.) The approach implements Weiss’s dis-
covery that for finite-state sources there is a structural
distinction between block-Markovian sources (subshifts
of finite type) and sofic systems. Weiss showed that, de-
spite their finite memory, sofic systems are the limit of
an infinite series of increasingly larger block-Markovian
sources [130].

The hierarchical-scaling-complexity approach has sev-
eral advantages, particularly its ability to handle issues
of scaling in a natural way (see Ref. [129, sec. 9.5]).
Nonetheless, it does not attain all the goals set in
Sec. II F. Its Markovian predictors are so many black
boxes, saying little or nothing about the hidden states
of the process, their causal connections, or the intrin-
sic computation carried on by the process. All of these
properties, as we have shown, are manifest from the ε-
machine. We suggest that a productive line of future
work would be to investigate the relationship between
hierarchical scaling complexity and computational me-
chanics, and to see whether they can be synthesized.
Along these lines, hierarchical scaling complexity reminds
us somewhat of hierarchical ε-machine reconstruction de-
scribed in Ref. [5].

9. Continuous Dynamical Computing

Using dynamical systems as computers has become in-
creasingly attractive over the last ten years or so among
physicists, computer scientists, and others exploring the
physical basis of computation [131–134]. These propos-
als have ranged from highly abstract ideas about how to
embed Turing machines in discrete-time nonlinear con-
tinuous maps [7,135] to, more recently, schemes for spe-
cialized numerical computation that could in principle
be implemented in current hardware [136]. All of them,
however, have been synthetic, in the sense that they con-
cern designing dynamical systems that implement a given
desired computation or family of computations. In con-
trast, one of the central questions of computational me-
chanics is exactly the converse: given a dynamical sys-
tem, how can one detect what it is intrinsically comput-
ing?

We believe that having a mathematical basis and a
set of tools for answering this question are important to
the synthetic, engineering approach to dynamical com-
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puting. Using these tools we may be able to discover, for
example, novel forms of computation embedded in nat-
ural processes that operate at higher speeds, with less
energy, and with fewer physical degrees of freedom than
currently possible.
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APPENDIX: GLOSSARY OF NOTATION

In the order of their introduction.

Symbol Description Where Introduced
O Object in which we wish to find a pattern Sec. II, p. 3
P Pattern in O Sec. II, p. 3
A Countable alphabet Sec. III A, p. 6
↔
S Bi-infinite, stationary, discrete stochastic process on A Def. 1, p. 6
↔
s Particular realization of

↔
S Def. 1, p. 6

→
S

L

Random variable for the next L values of
↔
S Sec. III A, p. 6

→
s

L
Particular value of

→
S

L

Sec. III A, p. 6
→
S

1

Next observable generated by
↔
S Sec. III A, p. 6

←
S

L

As
→
S

L

, but for the last L values, up to the present Sec. III A, p. 6
←
s

L
Particular value of

←
S

L

Sec. III A, p. 6
→
S Semi-infinite future half of

↔
S Sec. III A, p. 6

→
s Particular value of

→
S Sec. III A, p. 6

←
S Semi-infinite past half of

↔
S Sec. III A, p. 6

←
s Particular value of

←
S Sec. III A, p. 6

λ Null string or null symbol Sec. III A, p. 6
←
S Set of all pasts realized by the process

↔
S Sec. III B, p. 6

R Partition of
←
S into effective states Sec. III B, p. 6

ρ Member-class of R; a particular effective state Sec. III B, p. 6
η Function from

←
S to R Sec. III B, Eq. (4), p. 7

R Current effective (η) state, as a random variable Sec. III B, p. 6
R′ Next effective state, as a random variable Sec. III B, p. 6

H [X ] Entropy of the random variable X Sec. III C 1, p. 7
H [X, Y ] Joint entropy of the random variables X and Y Sec. III C 2, p. 7
H [X |Y ] Entropy of X conditioned on Y Sec. III C 2, p. 7
I[X ; Y ] Mutual information of X and Y Sec. III C 3, p. 8

Symbol Description Where Introduced
hµ[
→
S ] Entropy rate of

→
S Sec. III D, Eq. (9), p. 8

hµ[
→
S |X ] Entropy rate of

→
S conditioned on X Sec. III D, Eq. (10), p. 8

Cµ(R) Statistical complexity of R Def. 4, p. 9
S Set of the causal states of

↔
S Def. 5, p. 9

σ Particular causal state Def. 5, p. 9
ε Function from histories to causal states Def. 5, p. 9
S Current causal state, as a random variable Def. 5, p. 9
S′ Next causal state, as a random variable Def. 5, p. 9
∼ε Relation of causal equivalence between two histories Sec. IVA, p. 10
T

(s)
ij Probability of going from causal state i to j, emitting s Def. 8, p. 11
R̂ Set of prescient rival states Def. 11, p. 14
ρ̂ Particular prescient rival state Def. 11, p. 14
R̂ Current prescient rival state, as a random variable Def. 11, p. 14
R̂′ Next prescient rival state, as a random variable Def. 11, p. 14

Cµ(O) Statistical complexity of the process O Def. 12, p. 15
Cµ Without an argument, short for Cµ(O) Def. 12, p. 15
E Excess entropy Def. 13, p. 16
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