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Computation in Sofic Quantum Dynamical Systems
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We analyze how measured quantum dynamical systems store and process information, introduc-
ing sofic quantum dynamical systems. Using recently introduced information-theoretic measures
for quantum processes, we quantify their information storage and processing in terms of entropy
rate and excess entropy, giving closed-form expressions where possible. To illustrate the impact of
measurement on information storage in quantum processes, we analyze two spin-1 sofic quantum
systems that differ only in how they are measured.

I. INTRODUCTION

Extending concepts from symbolic dynamics to the
quantum setting, we forge a link between quantum dy-
namical systems and quantum computation, in general,
and with quantum automata, in particular.

Symbolic dynamics originated as a method to study
general dynamical systems when, nearly 100 years ago,
Hadamard used infinite sequences of symbols to analyze
the structure of geodesics on manifolds of negative cur-
vature; see Ref. [1] and references therein. In the 1930’s
and 40’s Hedlund and Morse coined the term symbolic
dynamics [2, 3] to describe the study of dynamics over
the space of symbol sequences in their own right. In the
1940’s Shannon used sequence spaces to describe infor-
mation channels [4]. Subsequently, the techniques and
ideas have found significant applications beyond dynam-
ical systems, in data storage and transmission, as well as
in linear algebra [5].

On the flip side of the same coin, computation theory
codes symbol sequences using finite-state automata. The
class of sequences that can be coded this way define the
regular languages [21]. It turns out that many dynamical
systems can also be coded with finite-state automata us-
ing the tools of symbolic dynamics [5]. In fact, Sofic sys-
tems are the particular class of dynamical systems that
are the analogs of regular languages in automata theory.

The study of quantum behavior in classically chaotic
systems is yet another active thread in dynamical sys-
tems [6, 7] which has most recently come to address the
role of measurement. Measurement interaction leads to
genuinely chaotic behavior in quantum systems, even far
from the semi-classical limit [8]. Classical dynamical sys-
tems can be embedded in quantum dynamical systems
as the special class of commutative dynamical systems,
which allow for unambiguous assignment of joint proba-
bilities to two observations [9].

An attempt to construct symbolic dynamics for quan-
tum dynamical systems was made by Alicki and Fannes
[9], who defined shifts on spin chains as the analog of
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shifts in sequence space. Definitions of entropy followed
from this. However, no connection to quantum finite-
state automata was established there.

In the following we develop an approach that differs
from this and other previous attempts since it explic-
itly accounts for observed sequences, in contrast to se-
quences of (unobservable) quantum objects, such as spin
chains. The recently introduced computational model
class of quantum finite-state generators provides the re-
quired link between quantum dynamical systems and the
theory of automata and formal languages [10]. It gives
access to an analysis of quantum dynamical systems in
terms of symbolic dynamics. Here, we strengthen that
link by studying explicit examples of quantum dynam-
ical systems. We construct their quantum finite-state
generators and establish their sofic nature. In addition
we review tools that give an information-theoretic analy-
sis for quantifying the information storage and processing
of these systems. It turns out that both the sofic nature
and information processing capacity depend on the way
a quantum system is measured.

II. QUANTUM FINITE-STATE GENERATORS

To start, we recall the quantum finite-state generators
(QFGs) defined in Ref. [10]. They consist of a finite set
of internal states Q = {qi : i = 1, . . . , |Q|}. The state
vector is an element of a |Q|-dimensional Hilbert space:
〈ψ| ∈ H. At each time step a quantum generator outputs
a symbol s ∈ A and updates its state vector.

The temporal dynamics is governed by a set of |Q|-
dimensional transition matrices {T (s) = U ·P (s), s ∈ A},
whose components are elements of the complex unit disk
and where each is a product of a unitary matrix U and a
projection operator P (s). U is a |Q|-dimensional unitary
evolution operator that governs the evolution of the state
vector 〈ψ|. P = {P (s) : s ∈ A} is a set of projection oper-
ators—|Q|-dimensional Hermitian matrices—that deter-
mines how the state vector is measured. The operators
span the Hilbert space:

∑

s P (s) = 1.
Each output symbol s is identified with the measure-

ment outcome and labels one of the system’s eigenvalues.
The projection operators determine how output symbols
are generated from the internal, hidden unitary dynam-
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ics. They are the only way to observe a quantum pro-
cess’s current internal state.

A quantum generator operates as follows. Uij gives
the transition amplitude from internal state qi to internal
state qj . Starting in state vector 〈ψ0| the generator up-
dates its state by applying the unitary matrix U . Then
the state vector is projected using P (s) and renormal-
ized. Finally, symbol s ∈ A is emitted. In other words,
starting with state vector 〈ψ0|, a single time-step yields
〈ψ(s)| = 〈ψ0|U · P (s), with the observer receiving mea-
surement outcome s.

A. Process languages

The only physically consistent way to describe a quan-
tum system under iterated observation is in terms of

the observed sequence
↔
S ≡ . . . S−2S−1S0S1 . . . of dis-

crete random variables St. We consider the family of
word distributions, {Pr(st+1, . . . , st+L) : st ∈ A}, where
Pr(st) denotes the probability that at time t the ran-
dom variable St takes on the particular value st ∈ A
and Pr(st+1, . . . , st+L) denotes the joint probability over
sequences of L consecutive measurement outcomes. We
assume that the distribution is stationary:

Pr(St+1, . . . , St+L) = Pr(S1, . . . , SL) . (1)

We denote a block of L consecutive variables by SL ≡
S1 . . . SL and the lowercase sL = s1s2 · · · sL denotes a
particular measurement sequence of length L. We use the
term quantum process to refer to the joint distribution

Pr(
↔
S ) over the infinite chain of random variables. A

quantum process, defined in this way, is the quantum
analog of what Shannon referred to as an information
source [11].

Such a quantum process can be described as a stochas-
tic language L, which is a formal language with a prob-
ability assigned to each word. A stochastic language’s
word distribution is normalized at each word length:

∑

{sL∈L}

Pr(sL) = 1 , L = 1, 2, 3, . . . (2)

with 0 ≤ Pr(sL) ≤ 1 and the consistency condition
Pr(sL) ≤ Pr(sLs).

A process language is a stochastic language that is sub-
word closed : all subwords of a word are in the language.

We can now determine word probabilities produced by
a QFG. Starting the generator in 〈ψ0|, the probability
of output symbol s is given by the state vector without
renormalization:

Pr(s) = 〈ψ(s)|ψ(s)〉 . (3)

While the probability of outcome sL from a measurement
sequence is

Pr(sL) = 〈ψ(sL)|ψ(sL)〉 . (4)

In [10] the authors established a hierarchy of process
languages and the corresponding quantum and classi-
cal computation-theoretic models that can recognize and
generate them.

B. Alternative quantum finite-state machines

Said most prosaically, we view quantum generators as
representations of the word distributions of quantum pro-
cess languages. Despite similarities, this is a rather dif-
ferent emphasis than that used before. The first men-
tion of quantum automata as an empirical description of
physical properties was made by Albert in 1983 [12]. Al-
bert’s results were subsequently criticized by Peres for
using an inadequate notion of measurement [13]. In a
computation-theoretic context, quantum finite automata
were introduced by several authors and in varying ways,
but all as devices for recognizing word membership in
a language. For the most widely discussed quantum
automata, see Refs. [14–16]. Ref. [17] summarizes the
different classes of languages which they can recognize.
Quantum transducers were introduced by Freivalds and
Winter [18]. Their definition, however, lacks a physical
notion of measurement. We, then, introduced quantum
finite-state machines, as a type of transducer, as the gen-
eral object that can be reduced to the special cases of
quantum recognizers and quantum generators of process
languages [10].

III. INFORMATION PROCESSING IN A SPIN-1
DYNAMICAL SYSTEM

We will now investigate concrete examples of quantum
processes. Consider a spin-1 particle subject to a mag-
netic field which rotates the spin. The state evolution
can be described by the following unitary matrix:

U =





1√
2

1√
2

0

0 0 −1
− 1√

2

1√
2

0



 . (5)

Since all entries are real, U defines a rotation in R
3

around the y-axis by angle π
4

followed by a rotation
around the x-axis by an angle π

2
.

Using a suitable representation of the spin operators
Ji [19, p. 199]:

Jx =





0 0 0
0 0 i
0 −i 0



 , Jy =





0 0 i
0 0 0
−i 0 0



 ,

Jz =





0 i 0
−i 0 0
0 0 0



 , (6)

the relation Pi = 1 − J2
i defines a one-to-one correspon-

dence between the projector Pi and the square of the spin
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FIG. 1: The Golden Mean quantum generator.

component along the i-axis. The resulting measurement
answers the yes-no question, Is the square of the spin
component along the i-axis zero?

Consider the observable J2
y . Then the following pro-

jection operators together with U in Eq. (5) define the
quantum finite-state generator:

P (0) = |010〉 〈010|

and P (1) = |100〉 〈100| + |001〉 〈001| . (7)

A graphical representation of the automaton is shown
in Fig. 1.

The process language generated by this QFG is the
so-called Golden-Mean Process language [1]. The word
distribution is shown in Fig. 2. It is characterized by the
set of irreducible forbidden words F = {00}: no consec-
utive zeros occur. In other words, for the spin-1 particle
the spin component along the y-axis never vanishes twice
in a row. This restriction—the dominant structure in the
process—is a short-range correlation since the measure-
ment outcome at time t only depends on the immediately
preceding one at time t−1. If the outcome is 0, the next
outcome will be 1 with certainty. If the outcome is 1, the
next measurement is maximally uncertain: outcomes 0
and 1 occur with equal probability.

Consider the same Hamiltonian, but now use instead
the observable J2

x . The corresponding projection opera-
tors define the QFG:

P (0) = |100〉 〈100|

and P (1) = |010〉 〈010| + |001〉 〈001| . (8)

The QFG defined by U and these projection operators
is shown in Fig. 3. The process language generated by
this QFG is the so-called Even Process language [1, 20].
The word distribution is shown in Fig. 4. It is de-
fined by the infinite set of irreducible forbidden words
F = {012k−10}, k = 1, 2, 3, .... That is, if the spin com-
ponent equals 0 along the x-axis it will be zero an even
number of consecutive measurements before being ob-
served to be nonzero. This is a type of infinite corre-
lation: For a possibly infinite number of time steps the
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FIG. 2: Golden Mean process language: Word {00} has zero
probability; all others have nonzero probability. The loga-
rithm base 2 of the word probabilities is plotted versus the bi-
nary string sL, represented as base-2 real number “0.sL”. To
allow word probabilities to be compared at different lengths,
the distribution is normalized on [0, 1]—that is, the probabil-
ities are calculated as densities.
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FIG. 3: The Even Process quantum generator.

system tracks the evenness or oddness of number of con-
secutive measurements of “spin component equals 0 along
the x-axis”.

Note that changing the measurement, specifically
choosing J2

z as the observable, yields a QFG that gen-
erates Golden Mean process language again.

The two processes produced by these quantum dynam-
ical systems are well known in the context of symbolic dy-
namics [5]—a connection we will return to shortly. Let
us first, though, turn to another important property of
finite-state machines and explore its role in computa-
tional capacity and dynamics.
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FIG. 4: Even Process language: Words {012k−10}, k =
1, 2, 3, ... have zero probability; all others have nonzero prob-
ability.

IV. DETERMINISM

The label determinism is used in a variety of senses,
some of which are seemingly contradictory. Here,
we adopt the notion, familiar from automata theory
[21], which differs from that in physics, say, of non-
stochasticity. One calls a finite-state machine (classical
or quantum) deterministic whenever the transition from
one state to the next is uniquely determined by the out-
put symbol, or input symbol for recognizers. It is impor-
tant to realize that a deterministic finite-state machine
can still behave stochastically—stochasticity here refer-
ring to the positive probability of generating symbols.
Once the symbol is determined, though, the transition
taken by the machine to the next state is unique. Thus,
what is called a stochastic process in dynamical systems
theory can be described by a deterministic finite-state
generator without contradiction.

We can easily check the two quantum finite-state ma-
chines in Figs. 1 and 3 for determinism by inspecting each
state and its outgoing transitions. One quickly sees that
both generators are deterministic. In contrast, the third
QFG mentioned above, defined by U in Eq. (5) and J2

z ,
is nondeterministic.

Determinism is a desirable property for various rea-
sons. One is the simplicity of the mapping between ob-
served symbols and internal states. Once the observer
synchronizes to the internal state dynamics, the output
symbols map one-to-one onto the internal states. In gen-
eral, though, the observed symbol sequences do not track
the internal state dynamics (orbit) directly. (This brings
one to the topic of hidden Markov chains [22].)

For optimal prediction, however, access to the internal
state dynamics is key. Thus, when one has a determin-
istic model, the observed sequences reveal the internal

dynamics. Once they are known and one is synchro-
nized, the process becomes optimally predictable. A fi-
nal, related reason why determinism is desirable is that
closed-form expressions can be given for various informa-
tion processing measures, as we will discuss in Sec. VI.

V. SOFIC SYSTEMS

In symbolic dynamics, sofic systems are used
as tractable representations with which to analyze
continuous-state dynamical systems [1, 5]. Let the al-
phabet A together with an n×n adjacency matrix (with
entries 0 or 1) define a directed graph G = (V,E) with V
the set of vertices and E the set of edges. Let X be the
set of all infinite admissible sequences of edges, where ad-
missible means that the sequence corresponds to a path
through the graph. Let T be the shift operator on this
sequence; it plays the role of the time-evolution operator
of the dynamical system. A sofic system is then defined
as the pair (X,T ) [23]. The Golden Mean and the Even
process are standard examples of sofic systems. The Even
system, in particular, was introduced by Hirsch et al in
the 1970s [20].

Whenever the rule set for admissible sequences is finite
one speaks of a subshift of finite type. The Golden Mean
process is a subshift of finite type. Words in the language
are defined by the finite (single) rule of not containing the
subword 00. The Even Process, on the other hand, is not
of finite type, since the number of rules is infinite: The
forbidden words {012k+10} cannot be reduced to a finite
set. As we noted, the rule set, which determines allowable
words, implies the process has a kind of infinite memory.
One refers, in this case, to a strictly sofic system.

The spin-1 example above appears to be the first time
a strictly sofic system has been identified in quantum dy-
namics. This ties quantum dynamics to languages and
quantum automata theory in a way similar to that found
in classical dynamical systems theory. In the latter set-
ting, words in the sequences generated by sofic systems
correspond to regular languages—languages recognized
by some finite-state machine. We now have a similar
construction for quantum dynamics. For any (finite-
dimensional) quantum dynamical system under observa-
tion we can construct a QFG, using a unitary operator
and a set of projection operators. The language it gen-
erates can then be analyzed in terms of the rule set of
admissible sequences. One interesting open problem be-
comes the question whether the words produced by sofic
quantum dynamical systems correspond to the regular
languages. An indication that this is not so is given by
the fact that finite-state quantum recognizers can accept
nonregular process languages [10].
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VI. INFORMATION-THEORETIC ANALYSIS

The process languages generated by the spin-1 particle
under a particular observation scheme can be analyzed
using well known information-theoretic quantities such as
Shannon block entropy and entropy rate [11] and others
introduced in Ref. [24]. Here, we will limit ourselves to
the excess entropy. The applicability of this analysis to
quantum dynamical systems has been shown in Ref. [25],
where closed-form expressions are given for some of these
quantities when the generator is known.

We can use the observed behavior, as reflected in the
word distribution, to come to a number of conclusions
about how a quantum process generates randomness and
stores and transforms historical information. The Shan-
non entropy of length-L sequences is defined

H(L) ≡ −
∑

sL∈AL

Pr(sL)log2Pr(sL) . (9)

It measures the average surprise in observing the “event”
sL. Ref. [24] showed that a stochastic process’s informa-
tional properties can be derived systematically by taking
derivatives and then integrals of H(L), as a function of
L. For example, the source entropy rate hµ is the rate of
increase with respect to L of the Shannon entropy in the
large-L limit:

hµ ≡ lim
L→∞

[H(L) −H(L− 1)] , (10)

where the units are bits/measurement [11].
Ref. [25] showed that the entropy rate of a quantum

process can be calculated directly from its QFG, when
the latter is deterministic. A closed-form expression for
the entropy rate in this case is given by:

hµ = −|Q|−1

|Q|−1
∑

i=0

|Q|−1
∑

j=0

|Uij |
2 log2 |Uij |

2 , (11)

The entropy rate hµ quantifies the irreducible random-
ness in processes: the randomness that remains after the
correlations and structures in longer and longer sequences
are taken into account.

The latter, in turn, is measured by a complementary

quantity. The amount I(
←
S ;
→
S ) of mutual information [11]

shared between a process’s past
←
S and its future

→
S is

given by the excess entropy E [24]. It is the subextensive
part of H(L):

E = lim
L→∞

[H(L) − hµL] . (12)

Note that the units here are bits.
Ref. [24] gives a closed-form expression for E for order-

R Markov processes—those in which the measurement
symbol probabilities depend only on the previous R − 1
symbols. In this case, Eq. (12) reduces to:

E = H(R) −R · hµ , (13)

Quantum Spin-1
Dynamical System Particle

Observable J2

y J2

x

hµ [bits/measurement ] 0.666 0.666
E [bits] 0.252 0.902

TABLE I: Information storage and generation for example
quantum processes: entropy rate hµ and excess entropy E.

where H(R) is a sum over |A|R terms. Given that the
quantum generator is deterministic we can simply employ
the above formula for hµ and compute the block entropy
at length R to obtain the excess entropy for the order-R
quantum process.

Ref. [25] computes these entropy measures for various
example systems, including the spin-1 particle. The re-
sults are summarized in Table I. The value for the excess
entropy of the Golden Mean process obtained by using
Eq. (13) agrees with the value obtained from simulation
data, shown in Table I. The entropy hµ = 2/3 bits per
measurement for both processes, and thus they have the
same amount of irreducible randomness. The excess en-
tropy, though, differs markedly. The Golden Mean pro-
cess (J2

y measured) stores, on average, E ≈ 0.25 bits at

any given time step. The Even Process (J2
x measured)

stores, on average, E ≈ 0.90 bits, which reflects its longer
memory of previous measurements.

VII. CONCLUSION

We have shown that quantum dynamical systems store
information in their dynamics. The information is ac-
cessed via measurement. Closer inspection would suggest
even that information is created through measurement.
In any case, the key conclusion is that, since both pro-
cesses are represented by a 3-state QFG constructed from
the same internal quantum dynamics, it is the means
of observation alone that affects the amount of memory.
This was illustrated with the particular examples of the
spin-1 particle in a magnetic field. Depending on the
choice of observable the spin-1 particle generates differ-
ent process languages. We showed that these could be
analyzed in terms of the block entropy—a measure of
uncertainty, the entropy rate—a measure of irreducible
randomness, and the excess entropy—a measure of struc-
ture. Knowing the (deterministic) QFG representation,
these quantities can be calculated in closed form.

We established a connection between quantum au-
tomata theory and quantum dynamics, similar to the
way symbolic dynamics connects classical dynamics and
automata. By considering the output sequence of a re-
peatedly measured quantum system as a shift system we
found quantum processes that are sofic systems. Taking
one quantum system and observing it in one way yields
a subshift of finite type. Observing it in a different way
yields a (strictly sofic) subshift of infinite type. Conse-
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quently, not only the amount of memory but also the
soficity of a quantum process depend on the means of
observation.

This can be compared to the fact that, classically
the Golden Mean and the Even sofic systems can be
transformed into each other by a two-block map. The
adjacency matrix of the graphs is the same. A similar
situation arises here. The unitary matrix, which is the
corresponding adjacency matrix of the quantum graph,
is the same for both processes. The processes can be
transformed into each other by expressing one set of
projection operators in the eigenbasis of the other. This
transformation always exists since the operators simply
represent different orthonormal basis sets spanning the
Hilbert space.

The preceding attempted to forge a link between quan-
tum dynamical systems and quantum computation by
extending concepts from symbolic dynamics to the quan-
tum setting. We believe the results suggest further study
of the properties of quantum finite-state generators and
the processes they generate is necessary and will shed
light on a number of questions in quantum information
processing. One open technical question is whether sofic
quantum systems are the closure of quantum subshifts of
finite-type, as they are for classical systems [23]. There
are indications that this is not so. For example, as
we noted, quantum finite-state recognizers can recognize
nonregular process languages [10].
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