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We introduce stochastic and quantum finite-state transducers as representations of classical
stochastic and quantum finitary processes. Formal process languages serve as the literal repre-
sentation of the behavior of these processes and are recognized and generated by subclasses of
stochastic and quantum transducers. We compare deterministic and nondeterministic stochastic
and quantum automata, summarizing their relative computational power in a hierarchy of finitary
process languages. Quantum finite-state transducers and generators represent a first step toward
a computational description of individual closed quantum systems observed over time. They are
explored via several physical examples, including the iterated beam splitter, an atom in a magnetic
field, and atoms in an ion trap—a special case of which implements the Deutsch quantum algorithm.
We show that the behavior of these systems, and so their information processing capacity, depends
sensitively on the measurement protocol.
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I. INTRODUCTION

Automata theory is the study of abstract computing
devices, or machines, and the class of functions they can
perform on their inputs. In the 1940’s and 1950’s, simple
kinds of machines, so-called finite-state automata, were
introduced to model brain function [1, 2]. They turned
out to be extremely useful for a variety of other pur-
poses, such as studying the lower limits of computational
power and synthesizing logic controllers and communi-
cation networks. In the late 1950’s, the linguist Noam
Chomsky developed a classification of formal languages
in terms of the grammars and automata required to rec-
ognize them [3]. On the lowest level of Chomsky’s hi-
erarchy, for example, whether or not a given sentence
obeys the grammatical rules of a language is answered
by a finite-state automaton.

Our understanding of the nature of computing has
changed substantially in the intervening half century. In
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recent years the study of computation with elementary
components that obey quantum mechanical laws has de-
veloped into a highly active research area.

The physical laws underlying quantum computation
are a mixed blessing. There is a growing body of theoreti-
cal results suggesting that a computational device whose
components are directly governed by quantum physics
may be considerably more powerful than its classical
counterpart. Undoubtedly, the most celebrated of these
results is Shor’s factoring algorithm from 1994 [4]. Other
results include Grover’s quantum search algorithm from
1996 [5]. These results assume the use of powerful compu-
tational architectures, such as quantum Turing machines
[6], that are decidedly more powerful than finite-state
machines. For a review of theoretical and experimental
studies of quantum computation see, for example, Refs.
[7, 8].

However, to date, implementation efforts have fallen
substantially short of the theoretical promise. So far ex-
perimental tests of quantum computation are finite—in
fact, very finite. Currently, the largest coherent system
of information storage is 7 quantum bits or qubits [9].
Quantum finite-state automata have drawn much interest
in the last decade for this reason. They reflect the capa-
bilities of currently feasible quantum computers. Thus,
the study of finite-state quantum automata is motivated
by very practical concerns. As was also true in the first
days of digital computers, it is also the starting point for
developing a computational hierarchy for quantum dy-
namical systems.

A. Physical Motivations

Recent developments in experimental quantum com-
putation allow for the preparation and control of indi-
vidual quantum systems [10] and the control of quantum
systems through repeated measurements [11]. One area
of investigation that combines the two techniques, but
is as yet unrelated to quantum computation, is single
molecule spectroscopy [12–14] where the experimentalist
attaches a single molecule to a substrate and records its
time-dependent fluorescence over milliseconds. This is an
example of a single quantum molecular system measured
repeatedly over time. Quantum theory, in contrast, often
focuses only on predicting the expectation of outcomes
from an ensemble of isolated measurements; that is, it
predicts an observable’s mean value. For molecular and
quantum processes this is insufficient, since one needs to
describe a system’s behavior.

Quantum mechanics can be extended to address be-
havior [15], but the resulting formalism leaves unan-
swered important questions about a system’s compu-
tational capacity. That is, given a natural system—
say, a molecule that is irradiated and simply behaves in
response—what is its capacity to store its history and
process that information? Indeed, even if a system is
designed to have a desired capacity, a question always

remains about whether or not that capacity is actually
used during operation. Moreover, for quantum systems,
it is essential to include measurement in any description.
Observation must be the basis for modeling a quantum
process—either its behavior or its computational capac-
ity. Here we introduce a computation-theoretic descrip-
tion of observed quantum processes that, using a combi-
nation of tools from quantum mechanics and stochastic
processes, attempts to address the issues of control, mea-
surement, and behavior.

An intriguing, but seemingly unrelated area of re-
search in quantum mechanics is quantum chaos. Since
any quantum dynamical system is described by the
Schrödinger equation, which is linear, no chaotic behav-
ior can arise. However, quantum systems that exhibit
chaotic behavior in the classical limit, also show signa-
tures of chaos in a semi-classical regime [16]. It turns out
that measurement interaction leads to genuinely chaotic
behavior in quantum systems, even far from the semi-
classical limit [17]. Studies of quantum chaos are, in
effect, extensions of the theory of nonlinear classical dy-
namics. The behavior of nonlinear classical dynamical
systems can be coded by finite-state automata, using
symbolic dynamics [18]. The quantum automata intro-
duced in the following provide a similar kind of link for
quantum systems; see, in particular, Ref. [19].

B. Technical Setting

In the following we develop a line of inquiry comple-
mentary to both quantum computation and quantum dy-
namical systems by investigating the intrinsic computa-
tion of quantum processes. Intrinsic computation in a
dynamical system is an inherent property of the behavior
the system generates [20]. One asks three basic questions
of the system: First, how much historical information is
stored in the current state? Second, in what architecture
is that information stored? Finally, how is the stored in-
formation transformed to produce future behavior? This
approach has been used to analyze intrinsic computation
in classical dynamical systems and stochastic processes
[21–23].

We view the present contribution as a direct extension
of this prior work and, also, as complementary to the
current design and theoretical-engineering approach to
quantum computation. Specifically, we focus on the dy-
namics of quantum processes, rather than on methods to
construct devices that implement a desired function and
express the intrinsic information processing using various
kinds of finite-memory devices. We emphasize the effects
of measurement on a quantum system’s behavior and so,
in this way, provide a somewhat different view of quan-
tum dynamical systems for which, typically, observation
is often ignored. An information-theoretic analysis using
the resulting framework can be found in Refs. [19, 24].

Most directly, we are interested, as natural scientists
are, in behavior—how a system state develops over time.
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In the computation-theoretic setting this translates into
a need to represent behaviors as formal process languages
and to model these via generators. In contrast, the con-
ventional setting for analyzing the computational power
of automata centers around detecting membership of
words in a language. As a consequence, the overwhelming
fraction of existing results on automata concerns devices
that recognize an input string—and on problems that
can be recast as such. A second, substantial fraction of
work focuses on transducers, mostly for human-language
recognition tasks. Automata that spontaneously gener-
ate outputs are much less often encountered, if at all,
in the theory of computation. Nonetheless, generators
are necessary if one wants to model physical processes
using dynamical systems. In particular, as we hope to
show, process languages and generators are key tools for
answering questions about the information processing ca-
pabilities inherent in natural processes [24, 25].

C. Results

In this vein, we introduce a computation-theoretic
model for quantum dynamical systems. Although quan-
tum mechanical systems have received much attention
in the last few years, there is a dearth of formal results
on computational models of the behavior generated by
quantum processes. The following provides such models
at the lowest, finite-memory level of an as-yet partially
understood quantum-computation hierarchy.

The computation-theoretic models are analyzed as if
they are stochastic processes. The results give a way to
represent and analyze computation in natural quantum
mechanical systems, providing the foundation for meth-
ods to quantify intrinsic computation of quantum dy-
namical systems [24]. Quantum systems are prevalent in
the molecular world, as we noted above. During its tem-
poral evolution any such system stores some amount of
historical information and uses this to generate its future
behavior. With computation-theoretic models of quan-
tum dynamics in hand, such as the ones we use here, a
process’s computational capacity can be analyzed infor-
mation theoretically [24]. This is a goal with experimen-
tal consequences.

While such results should be useful for the design of
quantum systems for computational tasks, design is not
our goal in the following. Rather, the focus is on devel-
oping a finite-memory computational model for quantum
processes and on how it can be used as a tool for iden-
tifying finite-memory processes in nature. As a practical
consequence, since today all experiments testing quan-
tum computation support only (very) finite memory and
since the experiments are physical processes (in the sense
in which we use the phrase), the results should be of im-
mediate use in analyzing experimental systems.

D. Overview

Due to the range of topics, in the following we give
a self-contained treatment. We review what is needed
from automata, formal languages, and quantum theory,
though familiarity with those areas is helpful. Citations
to reference texts are given at the appropriate points.

Our approach will make most sense, especially to those
unfamiliar with the theory of formal languages, if we de-
vote some time to reviewing basic automata theory and
its original goals. This also allows us to establish, in a
graded fashion, the necessary notation for the full devel-
opment, clearly identifying which properties are quantum
mechanical and which, in contrast, are essentially clas-
sical (and probabilistic). In addition, it illustrates one
of the principle benefits of discrete computation theory:
i.e., the classification of devices that implement different
kinds of computation. Those for whom automata and
formal languages are well known, though, should appre-
ciate by the end of the review the physical and dynamical
motivations, since these will be expressed within the ex-
isting frameworks of discrete computation and stochastic
processes.

To lay the foundations for a computational perspective
on quantum dynamical systems we introduce a class of
finite-state automata called quantum finite-state trans-
ducers. In the next sections we introduce the concept
of process languages, building on formal language theory.
We then present stochastic finite-state transducers and
their subclasses—stochastic recognizers and generators—
as classical representations of process languages. The re-
lationship between automata and languages is discussed
in each case and we provide an overview (and intro-
duce notation) that anticipates their quantum analogs.
We then introduce quantum finite-state transducers and
their subclasses—quantum recognizers and generators—
and discuss their various properties. Finally, we illustrate
the main ideas by analyzing specific examples of quantum
dynamical systems that they can model.

II. FINITARY STOCHASTIC PROCESSES

Consider the temporal evolution of the state of some
natural system. The evolution is monitored by a series of
measurements—numbers registered in some way, perhaps
continuously, perhaps discretely. Each such measurement
can be taken as a random variable. The distribution
over sequences of these random variables is what we refer
to as a stochastic process. An important question for
understanding the structure of natural systems is what
kinds of stochastic processes there are.

The class of finitary stochastic processes was intro-
duced to identify those that require only a finite amount
of internal resources to generate their behavior. This
property is important in several settings. In symbolic
dynamical systems, for example, it was shown that the
sofic subshifts have a form of infinite correlation in their
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temporal behaviors despite being finitely specified [26].
The information-theoretic characterization of stochastic
processes [27], as another example, defines finitary pro-
cesses as those with a bounded value of mutual informa-
tion between past and future behaviors. Here, we remain
close to these original definitions, giving explicit struc-
tural models, both classical and quantum, for finitary
processes.

In this, we use formal language theory. Our use of for-
mal language theory differs from most, though, in how it
analyzes the connection between a language and the sys-
tems that can generate it. In brief, we observe a system
through a finite-resolution measuring instrument, repre-
senting each measurement with a symbol σ from discrete
alphabet Σ. The temporal behavior of a system, then,
is a string or a word consisting of a succession of mea-
surement symbols. The collection of all (and only) those
words is the language that captures the possible, tempo-
ral behaviors of the system.

Definition. A formal language L is a set of words
w = σ0σ1σ2 . . . each of which consists of a finite series
of symbols σt ∈ Σ from a discrete alphabet Σ.

In the following λ denotes the empty word. Σ∗ denotes
the set of all possible words, including λ, of any length
formed using symbols in Σ. We denote a word of length
L by σL = σ0σ1 . . . σL−1, with σt ∈ Σ. The set of all
words of length L is ΣL.

Since a formal language, as we use the term, is a set
of observed words generated by a process, then each sub-
word σtσt+1 . . . σu−1σu, t ≤ u, t, u = 0, 1, . . . , L − 1, of
a word σL has also been observed and is considered part
of the language. This leads to the following definition.

Definition. A language L is subword closed if, for each
w ∈ L, all of w’s subwords sub(w) are also members of
L: sub(w) ⊆ L.

Finally, we imagine that a physical system can run for
an arbitrarily long time and so the language describing
its behaviors has words of arbitrary length. In this way,
a subword-closed formal language—as a set of arbitrar-
ily long series of measurements—represents the allowed
(and, implicitly, disallowed) behaviors of a system.

Beyond a formal language listing which words (or be-
haviors) occur and which do not, we are also interested
in the probability of their occurrence. Let Pr(w) denote
the probability of word w, then we have the following.

Definition. A stochastic language S is a formal lan-
guage with a word distribution Pr(w) that is normalized
at each length L:

∑

{σL∈Σ}

Pr(σL) = 1 , L = 1, 2, 3, . . . (1)

with 0 ≤ Pr(σL) ≤ 1 .

Definition. The joint probability of symbol σ following
word w is written Pr(wσ).

Definition. The conditional probability Pr(σ|w) of
symbol σ given the preceding observation of word w is

Pr(σ|w) = Pr(wσ)/Pr(w) . (2)

For purposes of comparison between various computa-
tional models, it is helpful to refer directly to the set of
words in a stochastic language S. This is the support of
a stochastic language:

supp (S) = {w ∈ S : Pr(w) > 0} . (3)

These lead us, finally, to define the main object of
study.

Definition. A process language P is a stochastic lan-
guage that is subword closed. It obeys the consistency
condition Pr(σL) ≥ Pr(σLσ).

A process language represents all of a system’s possible
behaviors, w ∈ supp (P), and their probabilities Pr(w)
of occurrence. In its completeness it could be taken as a
model of the system, but at best it is a rather prosaic and
unwieldy representation. Indeed, a model of a process is
usually intended to be a more compact description than
a literal listing of observations. In the best of circum-
stances a model’s components capture some aspect of a
system’s structure and organization. Here we will be even
more specific, the models that we will focus on not only
have to describe a process language, but they will also
consist of two structural components: states and transi-
tions between them. (One should contrast the seeming
obviousness of the latter with the fact that there are alter-
native computational models, such as grammars, which
do not use the concept of state.)

To illustrate process languages we give an example
in Fig. 1, which shows a language—from the Golden
Mean Process—and its word distribution at different
word lengths. In this process language Σ = {0, 1} and
word 00 and all words containing it have zero probability.
Moreover, if a 1 is seen, then the next σ ∈ Σ occurs with
fair probability.

Figure 1 plots the base-2 logarithm of the word prob-
abilities versus the binary string σL, represented as the

base-2 real number 0.σL =
∑L−1

t=0 σt2
−t−1 ∈ [0, 1]. At

length L = 1 (upper leftmost plot) both words 0 and 1
are allowed but have different probabilities. At L = 2 the
first disallowed string 00 occurs. As L grows an increas-
ing number of words are forbidden—those containing the
shorter forbidden word 00. As L→ ∞ the set of allowed
words forms a self-similar, uncountable, closed, and dis-
connected (Cantor) set in the interval [0, 1] [18]. Note
that the language is subword closed. The process’s name
comes from the fact that the logarithm of the number of
allowed words grows exponentially with L at a rate given
by the logarithm of the golden mean φ = 1

2
(1 +

√
5).
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FIG. 1: Example of a process language: In the Golden Mean
Process, with alphabet Σ = {0, 1}, word 00 and all words con-
taining it have zero probability. All other words have nonzero
probability. The logarithm base 2 of the word probabilities
is plotted versus the binary string σL, represented as base-2
real number “0.σL”. To allow word probabilities to be com-
pared at different lengths, the distribution is normalized on
[0, 1]—that is, the probabilities are calculated as densities.

III. STOCHASTIC TRANSDUCERS

The process languages developed above require a new
kind of finite-state machine that can represent them.
And so, our immediate goal is to construct a consistent
formalism for machines that can recognize, generate, and
transform process languages. We refer to the most gen-
eral of the following representations as stochastic trans-
ducers. We will then specialize these transducers into
recognizers and generators.

A few comments on the various models of stochastic
transducers introduced by other authors will help to in-
troduce our approach, which has the distinct goal of rep-
resenting process languages. Paz defines stochastic se-
quential machines that are, in effect, transducers [28].
Rabin defines probabilistic automata that are stochas-
tic sequential machines with no output [29]. Both mod-
els are capable of generating process languages, though
not recognizing them. Neither, though, considers process
languages or the “generation” of any language for that
matter. Vidal et al define stochastic transducers, though
based on a different definition of stochastic language [30].
As a result, their stochastic transducers cannot represent
process languages.

In our definition of a stochastic transducer we follow
Paz’s definition of stochastic sequential machines.

Definition. A stochastic finite-state transducer (ST) is
a tuple {S,X, Y, {T (y|x)}} where

1. S is a finite set of states. S includes a start state
s0.

2. X and Y are finite alphabets of input and output
symbols, respectively.

3. {T (y|x) : x ∈ X, y ∈ Y } is a set of square sub-
stochastic matrices of dim |S|, one for each in-
put/output pair y|x.

4. The matrix entries Tij(y|x) define the conditional
probability, when in state i, of going to state j and
reading in symbol x and emitting symbol y.

Generally, an ST operates by reading in symbols that,
along with the current state, determine the next state(s)
and output symbol(s). At each step a symbol x ∈ X is
read from the input word. The transducer stochastically
chooses a transition Tij(y|x) > 0, emits symbol y ∈ Y ,
and updates its state from i to j. An ST thus maps an in-
put word to one or more output words. Unless otherwise
explicitly stated, in our models there is no delay between
reading an input symbol and producing the associated
output symbols.

STs are our most general model of finitary (and non-
quantum) computation. They are structured so that spe-
cialization leads to a graded family of models of increas-
ing sophistication.

A. Graph Representation

The set {T (y|x)} can be represented as a directed
graph G(T ) with the nodes corresponding to states—
the matrix row and column indices. An edge connects
two nodes and corresponds to an element Tij > 0 that
gives the nonzero transition probability from state i to
state j. Edges are labeled x|p|y with the input symbol
x ∈ X, output symbol y ∈ Y , and transition probability
p = Tij(y|x). Since an ST associates outputs with transi-
tions, in fact, what we have defined is a Mealy ST, which
differs from the alternative, and equivalent, Moore ST in
which an output is associated with a state [28].

Definition. A path in a machine is a sequence of edges
with Tij > 0.

Definition. A directed graph G is connected if there is
at least one path between every pair of states.

Definition. A directed graph G is strongly connected if
for every pair of states, i and j, there is at least one path
from i to j and at least one from j to i.

The states in the graph of an ST can be classified as
follows, refining the definitions given by Paz [28, p. 85].

Definition. A state j is a consequent of state i if there
is a path beginning at i and ending at j.

Definition. A state is called transient if it has a con-
sequent of which it is not itself a consequent.

Definition. A state is called recurrent if it has at least
one consequent of which it is itself a consequent.
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Note that transient and recurrent states can be over-
lapping sets. We therefore make the following distinc-
tions.

Definition. A state is called asymptotically recurrent
if it is recurrent, but not transient.

Definition. A state is called transient recurrent if it is
transient and recurrent.

Generally speaking, an ST starts in a set of transient
states and ultimately transits to one or another of the
asymptotically recurrent subsets. That is, there can be
more than one set of asymptotically recurrent states. Un-
less stated otherwise, though, in the following we will
consider STs that have only a single set of asymptoti-
cally recurrent states.

B. Word Probabilities

Before discussing the process languages associated
with an ST we must introduce the matrix notation re-
quired for analysis. To facilitate comparing classical
stochastic models and their quantum analogs, we use
Dirac’s bra-ket notation: Row vectors 〈·| are called bra
vectors; and column vectors |·〉, ket vectors.

Notation. Let |η〉 = (1, 1, . . . , 1, 1)T denote a column
vector with |S| components that are all 1s.

Notation. Let 〈π| = (π0, π1, . . . , π|S|−1) be a row vector
whose components, 0 ≤ πi ≤ 1, give the probability of
being in state i. The vector is normalized in probability:
∑|S|−1

i=0 πi = 1. The initial state distribution, with all of
the probability concentrated in the start state, is denoted
〈π0| = (1, 0, . . . , 0).

For a series of L input symbols the action of the cor-
responding ST is a product of transition matrices:

T (yL|xL) = T (y0|x0)T (y1|x1) · · ·T (yL−1|xL−1) ,

whose elements Tij(y
L|xL) give the probability of making

a transition from state i to j and generating output yL

when reading input xL.

Starting in state distribution 〈π0|, the state distribu-
tion 〈π(yL|xL)| after reading in word xL and emitting
word yL is

〈π(yL|xL)| = 〈π0|T (yL|xL) . (4)

This can then be used to compute the probability of
reading out word yL conditioned on reading in word xL:

Pr(yL|xL) = 〈π(yL|xL)|η〉 . (5)

IV. STOCHASTIC RECOGNIZERS AND

GENERATORS

We are ready now to specialize this general architec-
ture into classes of recognizing and generating devices. In
each case we address those aspects that justify our calling
them models; viz., we can calculate various properties of
the process languages that they represent directly from
the machine states and transitions, such as the word dis-
tribution and statistical properties that derive from it.

Generally speaking, a recognizer reads in a word and
has two possible outputs for each symbol being read in:
accept or reject. This differs from the common model [31]
of reading in a word of finite length and only at the end
deciding to accept or reject. This aspect of our model is
a consequence of reading in process languages which are
subword closed.

In either the recognition or generation case, we will
discuss only models for arbitrarily long, but finite-time
observations. This circumvents several technical issues
that arise with recognizing and generating infinite-length
strings, which is the subject of ω-language theory of
Büchi automata [32].

Part of the burden of the following sections is to intro-
duce a number of specializations of stochastic machines.
Although it is rarely good practice to use terminology
before it is defined, in the present setting it will be help-
ful when tracking the various machine types to explain
our naming and abbreviation conventions now.

In the most general case—in particular, when the text
says nothing else—we will discuss, as we have just done,
machines. These are input-output devices or transduc-
ers and we will denote this in any abbreviation with a
capital T. These will be specialized to recognizers, abbre-
viated R, and generators, denoted G. Within these basic
machine types, there will be various alternative imple-
mentations. We will discuss stochastic (S) and quantum
(Q) versions. Within these classes we will also distinguish
the additional subsidiary property determinism, denoted
D.

As we noted above, the entire development concerns
machines with a finite set of states. And so, we will al-
most always drop the adjectives “finite-state” and “fini-
tary”, unless we wish to emphasize these aspects in par-
ticular.

A. Stochastic Recognizers

Stochastic devices and how they recognize an input
have been variously defined since the first days of au-
tomata theory. Rabin defined probabilistic automata in
1963 [29]. The probabilistic aspect arose from the con-
struction of stochastic matrices for each input symbol.
For a given state and input symbol the machine would
stochastically transition to a next state. Acceptance of
an input string xL with cut point λ was then defined
by repeatedly reading in the same string and determin-
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ing that the acceptance probability was above threshold:
p(x) > λ. Acceptance with isolated cut point was defined
for some δ > 0 with |p(x) − λ| ≥ δ.

The difference from our recognition via a word-
probability threshold is the normalization over accepted
strings of the same length. Thus, Rabin’s probabilistic
automata do not recognize stochastic languages as de-
fined above, but merely assign a number between 0 and
1 to each word being read in. The same is true for the
stochastic sequential machines defined by Paz [28].

Here we introduce a stochastic recognizer that applies
isolated cut-point recognition to process languages.

Definition. A stochastic finite-state recognizer (SR) is
an ST with a reject state sr, and Y = {accept, reject}.
In addition:

1. No transitions are allowed from the reject state to
any state but itself.

2. A stochastic matrix is obtained by summing over
accept-transitions:

∑

x∈X,j∈S

Tij(accept|x) = 1 , ∀i ∈ S . (6)

Condition 2 is necessary for the recognition of process
languages. Due to the definition of T (y|x), the probabil-
ities of accepting a given input symbol and of accepting
any other input symbol sum to 1. This is expressed in
the following two conditions that are implied by the SR
definition:

Pr(accept|x) + Pr(reject|x) = 1

Pr(accept|x) + Pr(accept|x′ 6= x) = 1 (7)

In the following we will not explicitly represent the
reject state in the discussion of SRs. It can be sim-
ply thought of as a probability sink. An SR’s opera-
tion is completely defined by the non-reject states due
to the conditions in Eqs. (7). Thus, in stead of writing
T (accept|x), in the following we simplify notation and
simply write T (x).

The state-to-state transition matrix for an SR is
stochastic:

T =
∑

x∈X

T (x) . (8)

Definition. Given a process language P, an SR accepts
a word w ∈ P with threshold 0 ≤ δ ≤ 1, if and only if

|Pr(w) − 〈π0|T (w)|η〉 | ≤ δ . (9)

The first criterion for accepting a word is that the word
leads the machine through a series of transitions with
positive probability. That is, it accepts the support of
the language. The second criterion is that the probabil-
ity of accepting the word is equal to the word’s proba-
bility within a threshold δ. Thus, an SR not only tests

for membership in a formal language, it also recognizes
a function: the probability distribution of the language.
For example, if δ = 0 the SR accepts exactly a process
language’s word distribution. If δ > 0 it accepts the prob-
ability distribution with some fuzziness, still rejecting all
probability-0 words. As mentioned before, recognition
happens at each time step. This means that in practice
the experimenter runs an ensemble of SRs on the same in-
put. The frequency of acceptance can then be compared
to the probability of the input string computed from the
T (x).

Definition. The stationary state distribution 〈πs|,
which gives the asymptotic state visitation probabilities,
is determined by the left eigenvector of T (x):

〈πs| = 〈πs|T (x) , (10)

normalized in probability:
∑|S|−1

i=0 πs
i = 1.

For a series x0x1 · · ·xL−1 of input symbols the action
of the corresponding SR upon acceptance is a product of
transition matrices:

T (xL) = T (x0)T (x1) · · ·T (xL−1) ,

whose elements Tij(x
L) give the probability of making a

transition from state i to j and generating output accept
when reading input xL.

If the SR starts in state distribution 〈π0|, the proba-
bility of accepting xL is

Pr(xL) = 〈π0|T (xL)|η〉 . (11)

The state distribution 〈π(xL)| after accepting word xL

starting in state distribution 〈π0| is

〈π(xL)| = 〈π0|T (xL) . (12)

These seemingly simple expressions—e.g., for the prob-
ability of a single word—are actually costly to compute
since the number of elements to be summed increases
exponentially with L.

We have the following special class of stochastic recog-
nizers.

Definition. A stochastic deterministic finite-state rec-
ognizer (SDR) is a stochastic finite-state recognizer
whose substochastic transition matrices T (x) have at
most one nonzero element per row.

A word that is accepted by an SDR is associated with
one and only one series of transitions. This allows us to
give an efficient expression for the word distribution of
the language exactly (δ = 0) recognized by an SDR:

Pr(xL) = Ts0s1
(x0)Ts1s2

(x1) · · ·TsL−1sL
(xL−1) , (13)

where s0s1 . . . sL is the unique series of states along the
path selected by xL and where by Tij(x) we refer only to
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A B
1 | 1.0

1 | 2/3

1 | 1/2

0 | 1/2

0 | 1/3

FIG. 2: Stochastic deterministic recognizer for the Golden
Mean process language of Fig. 1. The edges are labeled x|p,
where x ∈ X and p = Tij(x). The start state 〈π0| = (1, 0, 0)
is double circled. The reject state and all transitions to it are
omitted; as is the output accept on all edges.

the single component of T (x) for the transition selected
by x.

There is an important difference here with Eq. (11).
Due to determinism, the computational cost for com-
puting the word probability Pr(xL) from SDRs increases
only linearly with L; whereas it is exponential for SRs.

Figure 2 shows an example of an SDR that recognizes
the Golden Mean process language. That is, it rejects any
word containing two consecutive 0s and accepts any other
word with respective nonzero probability. This leads, in
turn, to the self-similar structure of the support of the
word probability distribution noted in Fig. 1.

A useful way to characterize this property is to list
a process language’s irreducible forbidden words—the
shortest disallowed words. In the case of the Golden
Mean formal language, this list has one member: F =
{00}. Each irreducible word is associated with a family
of longer words containing it. This family of forbidden
words forms a Cantor set in the space of sequences, as
described above. (Recall Fig. 1).

If we take the threshold to be δ = 0, then the SDR
recognizes only the process language shown in Fig. 1. If
δ = 1, in contrast, the SDR would accept process lan-
guages with any distribution on the Golden Mean pro-
cess words. That is, it always recognizes the language’s
support.

One can easily calculate word probabilities and state
distributions for the Golden Mean Process using the
SDR’s matrix representation.

T (0) =





0 0 1
3

0 0 1
2

0 0 0



 and T (1) =





0 2
3

0
0 1

2
0

0 1 0



 . (14)

We use Eq. (11) with the start state distribution 〈π0| =
(1, 0, 0) to calculate the L = 1 word probabilities.

Eq. (13) would be equally applicable.

Pr(0) = 〈π0|T (0)|η〉 = 1
3
,

Pr(1) = 〈π0|T (1)|η〉 = 2
3
. (15)

At L = 3 one finds for σ3 = 011:

Pr(011) = 〈π0|T (011)|η〉
= 〈π0|T (0)T (1)T (1)|η〉
= 1

6
. (16)

In fact, all L = 3 words have the same probability, except
for σ3 = 101, which has a higher probability: Pr(101) =
1
3
. (Cf. the L = 3 word distribution in Fig. 1.)
The conditional probability of a 1 following a 0, say, is

calculated in a similarly straightforward manner:

Pr(1|0) =
Pr(01)

Pr(0)

=
〈π0|T (0)T (1)|η〉

〈π0|T (0)|η〉
= 1 . (17)

Whereas, the probability Pr(0|0) of a 0 following a 0 is
zero, as expected.

B. Stochastic Generators

As noted in the introduction, finite-state machines gen-
erating strings of symbols can serve as useful models for
structure in dynamical systems. They have been used as
computational models of classical dynamical systems for
some time; see Refs. [18, 21, 23, 25, 33–36], for example.

As we also noted, automata that only generate outputs
are less often encountered in formal language theory [31]
than automata operating as recognizers. One reason is
that redefining a conventional recognizer to be a device
that generates output words is incomplete. A mechanism
for choosing which of multiple transitions to take when
leaving a state needs to be specified. And this leads nat-
urally to probabilistic transition mechanisms, as one way
of completing a definition. We will develop finite-state
generators by paralleling the development of recognizers
in the previous section.

Definition. A stochastic finite-state generator (SG) is
an ST with |X| = 1.

The input symbol can be considered a clock signal that
drives the machine from state to state. The transition
matrices can be simplified to T (y|x) = T (y).

The state-to-state transition probabilities of an SG are
given by the stochastic state-to-state transition matrix :

T =
∑

y∈Y

T (y) . (18)
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The word probabilities are computed in the exact same
way as those of an SR, detailed in Section IV A: One
simply exchanges input symbols x with output symbols y.
We obtain the following equation for word probabilities:

Pr(yL) = 〈π0|T (yL)|η〉 . (19)

We define the following special class of SGs.

Definition. A stochastic deterministic finite-state gen-
erator (SDG) is a stochastic finite-state generator in
which each matrix T (y) has at most one nonzero entry
per row.

As with recognizers, given the generator’s state and
an output symbol, the next state is uniquely determined.
And, again, it is less costly to compute word probabili-
ties.

Pr(yL) = Ts0s1
(y0)Ts1s2

(y1) · · ·TsL−1sL
(yL−1) , (20)

Given an initial state distribution, a sum is taken over
those states, weighted by their probability. Even so, the
computation increases only linearly with word length.

In the following we concentrate on deterministic finite-
state generators. As an example, consider the generator
for the Golden Mean process language. Its matrix repre-
sentation is the same as for the Golden Mean recognizer
given in Eqs. (14) and Fig. 2. Due to the latter’s deter-
minism, one can construct a generator simply by swap-
ping input symbols to output symbols. (We return to the
relationship between recognizers and equivalent genera-
tors shortly.) It turns out this is the smallest generator,
but the proof of this will be presented elsewhere.

One can easily calculate word probabilities and state
distributions for the Golden Mean Process using the
SDG’s matrix representation. We here introduce a way
of computing these probabilities using the asymptotically
recurrent states only. This is done using the stationary
state distribution and the transition matrices restricted
to the asymptotically recurrent states. The method is
useful whenever the start state is not known, but the
asymptotic behavior of the machine is. The transition
matrices for the SDG, following Eqs. (14), become:

T (0) =

(

0 1
2

0 0

)

and T (1) =

(

1
2

0
1 0

)

. (21)

The stationary state distribution 〈πs| is calculated as the
left eigenvector of the state-to-state transition matrix T ,
Eq. (18):

〈πs| = 〈 2
3
, 1

3
| . (22)

Thus, each state is assigned a probability Pr(i) = πs
i ,

where πs
i is the ith component of 〈πs|.

Assuming that the initial state is not known and that
the process has been running for a long time, we use
Eq. (19) with the stationary distribution 〈πs| to calculate
the L = 1 word probabilities:

Pr(0) = 〈πs|T (0)|η〉 = 1
3
, (23a)

Pr(1) = 〈πs|T (1)|η〉 = 2
3
. (23b)

A B
1 | 1

1/2 | 0

1/2 | 1

(2/3) (1/3)

FIG. 3: A deterministic generator of the Even Process: Blocks
of an even number of 1s are separated by 0s. Only the asymp-
totically recurrent states are shown. Edges are labeled p | y,
where y ∈ Y and p = Tij(y). The numbers in parentheses
give a state’s asymptotic probability.

At L = 3 one finds for σ3 = 011:

Pr(011) = 〈πs|T (011)|η〉
= 〈πs|T (0)T (1)T (1)|η〉
= 1

6
. (24)

In fact, all L = 3 words have the same probability, except
for σ3 = 101, which has a higher probability: Pr(101) =
1
3
. (Again, cf. the L = 3 word distribution in Fig. 1.)
Note that these are the same results that we calculated

for the Golden Mean Process recognizer in the previous
section. There, however, we used a different initial dis-
tribution. The general reason why these two calculations
lead to the same result is not as obvious as one might
think.

As a second example of a generator consider the Even
Process whose language consists of blocks of even num-
bers of 1s bounded by 0s. The substochastic transition
matrices for its recurrent states are

T (0) =

(

1
2

0
0 0

)

and T (1) =

(

0 1
2

1 0

)

. (25)

The corresponding graph is shown in Fig. 3. Notice
that the state-to-state transition matrix T is the same as
the previous model of the Golden Mean Process. How-
ever, the Even Process is substantially different; and
its SDG representation lets us see how. The set of
irreducible forbidden words is countably infinite [26]:
F = {012k+10 : k = 0, 1, 2, . . .}. Recall that the
Golden Mean Process had only a single irreducible for-
bidden word {00}. One consequence is that the words in
the Even Process have a kind of infinite correlation: the
“evenness” of the length of 1-blocks is respected over ar-
bitrarily long words. This makes the Even Process effec-
tively non-finite: As long as a sequence of 1s is produced,
memory of the initial state distribution persists. Another
difference is that the support of the word distribution has
a countable infinity of distinct Cantor sets—one for each
irreducible forbidden word. Thus, the Even Process falls
into the broader class of finitary processes.

C. Properties

We can now describe the similarities and differences
between stochastic and other kinds of recognizers and
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between the various classes of generators.
Recall that P(M) denotes the process language asso-

ciated with (recognized or generated by) automaton M.
The relationships between the languages associated

with the various machine types follow rather directly
from their definitions. Essentially, we swap input and
output alphabets and reinterpret the same transition ma-
trices, either as specifying x|p or p|y as required. All, that
is, except for the last two results, which may be unex-
pected.

Proposition 1. For every SR, supp L(SR) is a regular
language.

Proof. The graph of an SR, removing the probabilities,
defines a finite-state recognizer and accepts, by definition,
a regular language [31]. This regular language is the sup-
port of L(SR) by construction.

Proposition 2. For every SR, L(SR) is a process lan-
guage.

Proof. The first property to establish is that the set of
words recognized by an SR is subword closed: if Pr(yL) >
0, then all w ∈ sub(yL) have Pr(w) > 0. This is guaran-
teed by definition, see Condition 1 of the SR definition.

The second property to establish is that the word dis-
tribution Pr(xL) is normalized at each L. This follows
from Condition 2 of the same definition.

Proposition 3. SGs and SRs are equivalent: They rec-
ognize and generate the same set of languages, respec-
tively: P(SG) = P(SR).

Proof. Consider SG’s transition matrices T (y) and form
a new set T (accept|x) in which X = Y . The T (accept|x)
together with T (reject|x), where T (reject|x)isr

= 1 −
∑

j∈S T (accept|x)ij, define an SR that recognizes P(SG).

It follows that P(SG) ⊆ P(SR).
Now consider SR’s transition matrices T (accept|x) and

form a new set T (y) in which X = Y . The T (y) define
an SG that generates P(SR). It follows that P(SG) =
P(SR).

Corollary 1. For every SG, supp L(SG) is a regular
language.

Corollary 2. For every SG, L(SG) is a process lan-
guage.

Corollary 3. SDGs and SDRs are equivalent: They rec-
ognize and generate the same set of languages, respec-
tively: P(SDG) = P(SDR).

These equivalences are intuitive and expected. They
do not, however, hint at the following, which turn on the
interplay between nondeterminism and stochasticity.

Proposition 4. There exists an SG such that P(SG) is
not recognized by any SDR.

A B
1/2 | 1

1/2 | 0

1/2 | 1

1/2 | 1
(1/2) (1/2)

FIG. 4: A nondeterministic generator that produces a pro-
cess language not recognized by any (finite-state) SDR. Only
asymptotically recurrent states are shown. Edges are labeled
p | y, where y ∈ {0, 1} and p = Tij(y).

Proof. We establish this by example. Consider the non-
deterministic generator in Fig. 4, the Simple Nondeter-
ministic Source (SNS). To show that there is no possible
construction of an SDR we argue as follows. If a 0 ap-
pears, then the generator is in state A. Imagine this is
then followed by a block 1k. At each k the generator is
in either state A or B. The probability of seeing a 0 next
is ambiguous (either 0 or 1/2) and depends on the exact
history of internal states visited. Deterministic recogni-
tion requires that a recognizer be in a state in which the
probability of the next symbol is uniquely given. While
reading in 1s the recognizer would need a new state for
each 1 connecting to the same state (state A) on a 0.
Since this is true for all k, there is no finite-state SDR
that recognizes the SNS’s process language.

Ref. [27] gives an SDR for this process that is minimal,
but has a countably infinite number of states. Note that
supp P(SNS) is the support of the Golden Mean process
language.

Corollary 4. There exists an SR such that P(SR) is
not generated by any SDG.

These propositions say, in essence, that deterministic
machines generate or recognize only a subset of the fini-
tary process languages. In particular, Props. 3, 4, and
Cor. 3 imply proper containment: P(SDR) ⊂ P(SG),
and P(SDG) ⊂ P(SR). This is in sharp contrast with
the standard result in formal language theory: determin-
istic and nondeterministic automata recognize the same
class of languages—the regular languages [31].

This ends our development of classical machines and
their various specializations. We now enter the discus-
sion of their quantum analogs, using a strategy that will
be familiar by now. The reader should have a working
knowledge of quantum theory at the level of, say, Ref.
[37].

V. FINITARY QUANTUM PROCESSES

Consider any quantum system and its temporal evo-
lution. As in the case of stochastic processes, the evo-
lution of a quantum system is monitored by a series of
measurements—numbers registered in some way. Each
measurement can be taken to be the realization of a ran-
dom variable. The distribution over sequences of these
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random variables is what we call a quantum process. We
will consider the finitary version of quantum processes in
the same sense as used for the classical stochastic pro-
cesses: The internal resources used during the evolution
are finitely specified.

A. States in a Quantum System

Quantum mechanics is sometimes referred to as a gen-
eralization of classical probability theory with noncom-
muting probabilities. It is, therefore, helpful to compare
classical stochastic automata and quantum automata
and, in particular, to contrast the corresponding notions
of state. The goal is to appreciate what is novel in quan-
tum automata.

In the classical (stochastic) automaton setting an au-
tomaton has internal states and also a distribution over
them. The distribution can be taken to be a “state” of
the automaton. One interpretation of this “state” comes
from considering how an observer monitors a series of
outputs from a stochastic generator and predicts, with
each observed symbol, the internal state the automaton
is in. This prediction is a distribution over the internal
states—one that represents the observer’s best guess of
the automaton’s current internal state. The distribution
is, in a sense, the “state” of the best predictor.

Similarly, there are several kinds of “state” that one
might identify in a quantum automaton. Each quan-
tum automaton will consist of internal states and we will
take the state of the automaton to be a “superposition”
over them; we call the latter the state vector. The cru-
cial difference with classical (stochastic) automata is that
this superposition over internal states is not a probabil-
ity distribution. Internal states have complex amplitudes
associated with them and therefore they potentially in-
terfere. This, in turn, can affect the stochastic language
associated with the quantum automaton.

In the vocabulary of quantum mechanics, at any mo-
ment in time a given quantum automaton is in a pure
state, which is simply a superposition of its internal
states. An observer’s best guess as to the automa-
ton’s current state is a probability distribution over state
vectors—the well known density matrix. Whenever the
distribution contains more than one positive element we
speak of a mixed state; otherwise, it is a pure state.

One can imagine, for example, a collection of individ-
ual quantum automata, each in a (pure) state, that is
specified by a distribution of weights. One can also imag-
ine a single quantum automaton being in different pure
states at different moments in time. The “average” state
then is also a mixed state. It is the latter picture that
will be adopted here.

The various notions of “state” involved in a quan-
tum automaton already hints at the relationship between
states of an automaton and the state of a quantum sys-
tem. The latter is completely described by its state vector
which is a unit vector in the system’s state space. This

unit vector can be represented as a sum of basis states
that span the state space. Choosing as a basis the eigen-
states of an observable we find a simple correspondence
between a state vector of a quantum system (a superposi-
tion of basis states) and a state of a quantum automaton
(a distribution over internal states). Thus, we will use
the terms internal states (of an automaton) and basis
states (of a quantum state space) interchangeably, since
they are constructed to be interchangeable. By similar
reasoning, the terms state vector (of a quantum system)
and state (of a quantum automaton) will be used inter-
changeably.

Definition. A state vector 〈ψ| is a unit vector in the
system’s state space. It can be expanded in terms of basis
states 〈φi|:

〈ψ| =

n−1
∑

i=0

〈φi| ci , (26)

with ci ∈ C and
∑n−1

i=0 c
∗
i ci = 1 and where n is the di-

mension of the state space.

The fact that a quantum pure state can be a super-
position of basis states is regarded as the extra structure
of quantum mechanics that classical mechanics does not
have. In the following, we respect this distinction, build-
ing a hierarchy of quantum states that goes from basis
states to superpositions of basis states to mixtures of su-
perpositions. The analogous classical hierarchy goes from
internal states to distributions over internal states to dis-
tributions over distributions over internal states. Due to
the linearity of classical probability, a distribution over a
distribution is in itself a distribution.

B. Measurement

Having delineated the various types of state for a quan-
tum automaton and their analogs in a quantum dynam-
ical system, we now turn to the measurement process
which is crucial to the physical observation of a quan-
tum dynamical system. In setting up an experiment, one
makes choices of how and when to measure the state of a
quantum system. These choices typically affect what one
observes and in a way that differs radically from classical
physical systems.

Measurement is the experimental means of characteriz-
ing a system in the sense that it is the observed symbols
that determine the stochastic language and any subse-
quent prediction of the system’s behavior. The measure-
ment of a quantum mechanical system is mathematically
described by a Hermitian operator that projects the cur-
rent state onto one of the operator’s eigenstates. After a
measurement, the system is, with certainty, in one eigen-
state. Such an operator is also called an observable and
the eigenvalues corresponding to the eigenstates are the
observed measurement outcomes.
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When performing experiments on a quantum automa-
ton, a measurement is defined similarly through an oper-
ator that projects the automaton’s current state vector
onto one of its internal (basis) states. The “observed”
measurement outcome is emitted as a symbol labeling
the transition entering that internal state.

VI. QUANTUM TRANSDUCERS

The study of quantum finite-state automata and the
languages they recognize has produced a veritable zoo
of alternative models which we review in Section VIIB.
Since we are, again, interested in recognition, genera-
tion, and transduction of process languages, we start out
defining a quantum-finite state transducer. By specializ-
ing the latter we develop a series of quantum finite-state
automaton models that are useful for recognition and
generation and, ultimately, for modeling intrinsic com-
putation in finitary quantum processes.

The quantum transducers we introduce shortly are de-
signed to model a general experiment on a quantum dy-
namical system. As such they should be compared to the
transducers of Ref. [38]. The transducers defined there
include a measurement to determine acceptance, rejec-
tion, or continuation of the computation. In addition,
they have a function mapping the current quantum state
onto an output. This function, however, is not associated
with a measurement process and lacks physical meaning.
The quantum transducer defined below is in one-to-one
correspondence to the quantum mechanical description
of a physical experiment.

Definition. A QT is a tuple {Q, 〈ψ| ∈ H,X, Y,T(Y |X)}
where

1. Q = {qi : i = 0, . . . , n − 1} is a set of n internal
states.

2. The state vector 〈ψ| lives in an n-dimensional
Hilbert space H; its initialization is defined as start
state 〈ψ0|.

3. X and Y are finite alphabets for input and output
symbols, respectively.

4. T(Y |X) is a set of n × n transition matrices
{T (y|x) = U(x)P (y), x ∈ X, y ∈ Y } that are prod-
ucts of

(a) a unitary matrix U(x) ∈ U ≡ {U(x) : x ∈ X}.
U is a set of n-dimensional unitary operators
that govern the state vector’s evolution; and

(b) a projection operator P (y) ∈ P ≡ {P (y) : y ∈
Y ∪ {λ}}. P is a set of n-dimensional pro-
jection operators. λ is the null symbol and
P (λ) = I.

At each time step a QT reads a symbol x ∈ X from the
input, outputs a symbol y ∈ Y , and updates its state
vector.

The operation of a QT is described by the evolution of
a bra (row) vector. We make this choice, which is uncon-
ventional in quantum mechanics, for two reasons. First,
the state of a classical finite-state machine is described
via a row vector. And second, the graphical meaning of
a transition from state i to j is reflected in the transition
matrix entries Tij , only if one uses row vectors and left
multiplication with T . Our previous discussion of state
leads to the following definition of a QT’s internal states
and state vector.

Definition. One associates an internal state qi ∈ Q with
a basis vector 〈φi| such that:

1. For each qi ∈ Q there is a basis vector 〈φi| =
(0, . . . , 1, . . . , 0) with a 1 in the ith component.

2. The set {〈φi| : i = 0, 1, . . . , n− 1} spans the Hilbert
space H.

The projection operators are familiar from quantum
mechanics and can be defined in terms of the internal
states as follows.

Definition. A projection operator P (y) is the linear op-
erator

P (y) = |φi〉 〈φi| , (27)

where φi is the eigenvector of the observable with eigen-
value y. In the case of degeneracy P (y) sums over a
complete set of mutually orthogonal eigenstates:

P (y) =
∑

i

|φi〉 〈φi| . (28)

Each P is Hermitian (P † = P ) and idempotent (P 2 =
P ).

In the eigenbasis of a particular observable the cor-
responding matrices only have 0 and 1 entries. In the
following we assume such a basis. The special case of
P (λ) = I, where I is the identity matrix, is regarded as
separate. Since λ is a place holder for “no output”, P (λ)
is not included in the calculation of word probabilities,
for example.

The identification of internal and basis states connects
the machine view of a quantum system with a vocabulary
that is familiar from standard developments of quantum
mechanics. The mathematical representation of a QT
state is given by its current state vector. At each time
step a symbol is read in, which selects a unitary operator.
The operator is applied to the state vector and the latter
is measured. The result, an eigenvalue of the observable,
is output as a symbol. In the case of no measurement,
the null symbol λ is output. This is different from a
nonselective measurement where a projection takes place
but the outcome is not detected. The decision whether
to perform a measurement or not should be considered
as an input to the QT.

Each projection operator projects the state vector onto
one eigenstate of the observable and the corresponding
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eigenvalue is the observed quantity—the outcome of the
measurement. The probability of a particular measure-
ment outcome can be calculated from the projected state
vector before renormalization. We base our analysis on
the class of projective measurements, applicable to closed
quantum systems [52]. (Open systems will be considered
elsewhere.)

In quantum mechanics, one distinguishes between com-
plete and incomplete measurements [39]. A complete
measurement projects onto a one-dimensional subspace
of H. That is, the operators in a set of complete mea-
surements all have distinct eigenvalues. In contrast, the
operators associated with an incomplete measurement
have degenerate eigenvalues. Such an operator has an
effective dimension greater than 1 and projects onto a
higher-dimensional subspace of H. After such a measure-
ment the QT is potentially in a superposition of states
∑

i ci 〈φi|, where i sums over a complete set of mutually
orthogonal eigenstates. Just as degeneracy leads to in-
teresting consequences in quantum physics, we will see in
the examples to follow that degenerate eigenvalues lead
to interesting quantum languages.

A. Word distributions

We can now describe a QT’s operation as it scans its
input. Starting in state 〈ψ0| it reads in a symbol x ∈ X
from an input word and updates its state by applying the
unitary matrix U(x). Then the state vector is projected
with P (y) and renormalized. Finally, symbol y ∈ Y is
emitted. That is, a single time-step of a QT is given by:

〈ψ(y|x)| =
〈ψ0|T (y|x)

√

〈ψ0|T (y|x)T †(y|x)|ψ0〉

=
〈ψ0|U(x)P (y)

√

〈ψ0|U(x)P (y)U†(x)|ψ0〉
, (29)

where † is the complex transpose. In the following we
drop the renormalization factor in the denominator to
enhance readability. It will be mentioned explicitly when
a state is not to be normalized.

When a QT reads in a length-L word xL ∈ XL and
outputs a length-L word yL ∈ Y L, the transition matrix
becomes

T (yL|xL) = U(x0)P (y0)U(x1)P (y1) · · ·U(xL−1)P (yL−1)
(30)

and the updated state vector is

〈ψ(yL|xL)| = 〈ψ0|T (yL|xL) . (31)

The QT state after reading in symbol x and emitting
symbol y is given in Eq. (29). Starting the QT in 〈ψ0|
the conditional probability Pr(y|x) of the output symbol
y given the input symbol x can be calculated from the
state vector in Eq. (29), before renormalization.

Pr(y|x) = 〈ψ(y|x)|ψ(y|x)〉 . (32)

The probability Pr(yL|xL) of output sequence yL con-
ditioned on input sequence xL can be calculated from the
corresponding state vector in Eq. (31).

Pr(yL|xL) = 〈ψ(yL|xL)|ψ(yL|xL)〉 . (33)

B. Properties

Properties of QTs are related to a subclass of STs,
those with doubly stochastic transition matrices. It is
useful to recall the relationship between unitary and dou-
bly stochastic matrices to get a more intuitive under-
standing of the properties of QTs.

Definition. Given a unitary matrix U , matrix M with
Mij = |Uij |2 is called a unistochastic matrix.

A unistochastic matrix is always doubly stochastic,
which follows directly from the properties of unitary ma-
trices. Compared to stochastic transducers, the struc-
ture of QTs is constrained through unitarity and this
constraint is reflected in the architecture of the machine.
We define the existence of a path between node i and
node j based on the unistochastic matrix M as the con-
dition Mij > 0. An equivalent description of a quantum
transducer is given by its graphical representation.

At any particular point in time the QT is in one or sev-
eral internal states. During one time step the QT reads
in a symbol and follows all outgoing edges from each oc-
cupied internal state labeled with the input symbol. It
then chooses probabilistically an output symbol and ends
in those states that are connected by an edge labeled with
that symbol.

Recall the various types of graph states reviewed in
Section IIIA, we find that only a subset of them can be
found in graphs of quantum transducers. The following
Proposition states that there are no transient states in
the graph of a QT.

Proposition 5. Every node i of G(QT), if connected to
a set of nodes j 6= i, is a member of a strongly connected
set.

Proof. Given that one path exists from (say) i to j, we
must show that the reverse one exists, going from j to i.
According to our definition of path it is sufficient to show
this for the unistochastic matrix Mij = |Uij |2. A dou-
bly stochastic matrix can always be expressed as a linear
combination of permutation matrices. Thus, any vector
(0, 0, . . . , 1, . . . ) with only one 1 entry can be permuted
into any other vector with only one 1 entry. This is equiv-
alent to saying that, if there is a path from node i to j
there is a path from j to i.

Corollary 5. The maximum size of the output alphabet
Y of a QT is equal to the dimension of the Hilbert space.

Proof. This follows directly from the definition of QTs
since the output symbols are directly associated with
eigenvalues. The number of eigenvalues is bounded by
the dimension of the Hilbert space.
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The discussion of unistochastic matrices leads one to
conclude that QT graphs constitute a subset of directed
graphs, namely the strongly connected ones. Moreover,
there is a constraint on incoming edges to a node.

Proposition 6. All incoming transitions to an internal
state are labeled with the same output symbol.

Proof. Incoming transitions to internal state qi are la-
beled with output symbol y if 〈φi| is an eigenstate of pro-
jection operator P (y). The operators P (y) are orthogonal
and so no two operators project onto the same state. So
the incoming transitions to any particular state qi are la-
beled with the same output symbol representing one eigen-
value.

Proposition 7. A QT’s transition matrices T (y|x)
uniquely determine the unitary matrices U(x) and the
projection operators P (y).

Proof. Summing the T (y|x) over all y for each x yields
the unitary matrices U(x):

∑

y∈Y

T (y|x) =
∑

y∈Y

U(x)P (y) = U(x) . (34)

The P (y) are obtained through the inverse of U−1(x) =
U†(x):

P (y) = U†(x)T (y|x) . (35)

Definition. A QT is reversible if the automaton defined
by the transpose of each U(x) and P (y) is also a QT.

Since unitary matrices always have an inverse, given
by their complex conjugate transpose, any (unmeasured)
state evolution is reversible. This leads to the result that
QTs are always reversible.

Proposition 8. All QTs are reversible.

Proof. The transpose of a unitary matrix is unitary.
The transpose of a projection operator is the operator it-
self.

Graphically, the reversed QT is obtained by simply
switching the direction of the edges. This produces a
transducer with the transition amplitudes Tji, formerly
Tij . The original input and output symbols, which
labeled ingoing edges to state qi, remain unchanged.
Therefore, in general, the languages generated by a QT
and its inverse are not the same. Notably, this simple
operation applied to an ST does not, in general, yield
another ST.

VII. QUANTUM RECOGNIZERS AND

GENERATORS

A quantum transducer is the most general object, de-
scribing a quantum dynamical process in terms of inputs

and outputs. We will now specialize a quantum trans-
ducer into recognizers and generators. We do this by
following the strategy we adopted for developing classes
of stochastic transducers. For each machine class we first
give a general definition and then specialize, yielding fully
deterministic versions. We establish a number of prop-
erties for each type and then compare their descriptive
powers. The comparison is done in terms of the process
languages each class can recognize or generate. The re-
sults are collected together in a computational hierarchy
of finitary quantum processes.

A. Quantum Recognizers

Quantum finite-state machines are almost exclusively
discussed as recognizing devices. Following our develop-
ment of a consistent set of quantum finite-state trans-
ducers, we can now introduce quantum finite-state rec-
ognizers as restrictions of QTs and compare these with
alternative models of quantum recognizers. Since we are
interested in the recognition of process languages our def-
inition of quantum recognizers differs from those intro-
duced elsewhere, see Sec. VIIB below. The main differ-
ence is the recognition of a process language including
its word distribution. The restrictions that will be im-
posed on a QT to achieve this are similar to those of the
stochastic recognizer.

Definition. A quantum finite-state recognizer (QR) is
a QT with U(x) = U,∀x ∈ X, and Y = {accept, reject}.

The definition of a QR is such that the conditions for
recognizing process languages in Eq. (7) are fulfilled. In
practice, recognition works similar to classical recogni-
tion. The experimenter runs an ensemble of QRs on the
same input. The frequency of acceptance can then be
compared to the probability of the input string computed
from the T (x).

Definition. A QR accepts a process language P with
word-probability threshold 0 ≤ δ ≤ 1, if for all w ∈ P}

∣

∣Pr(w)−〈ψ0|T (w)T †(w)|ψ0〉
∣

∣ ≤ δ . (36)

Acceptance or rejection happens at each time step. It
is worth pointing out that the reject state that we en-
countered in stochastic recognizers as a sink of probabil-
ity is now part of the recurrent part of the QR’s graph.
(This follows from the graph properties discussed above
in Sec. VIB.)

We also have deterministic versions of QRs.

Definition. A quantum deterministic finite-state recog-
nizer (QDR) is a quantum recognizer with transition ma-
trices T (x) that have at most one nonzero element per
row.
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B. Alternative Quantum Recognizers

Quantum finite automata were introduced by several
authors in different ways, and they recognize different
classes of languages. To our knowledge the first men-
tion of quantum automata was made by Albert in 1983
[40]. Albert’s results have been subsequently criticized
by Peres as being based on an inadequate notion of mea-
surement [41].

Kondacs and Watrous introduced 1-way and 2-way
quantum finite-state automata [42]. The 1-way automata
read symbols once and from left to right (say) in the input
word. Their 2-way automata scan the input word many
times moving either left to right or right to left. The au-
tomata allow for measurements at every time step, check-
ing for acceptance, rejection, or continuation. They show
that a 2-way QFA can recognize all regular languages and
some nonregular languages. 1-way QFA are less power-
ful: They can only recognize a subset of the regular lan-
guages. A more powerful generalization of a 1-way QFA
is a 1-way QFA that allows mixed states, introduced by
Aharonov et al. [43]. They also allow for nonunitary evo-
lution. Introducing the concept of mixed states simply
adds classical probabilities to quantum probabilities and
is inherent in our model of QTs.

The distinctions between these results and the QRs in-
troduced here largely follow from the difference between
regular languages and process languages. Thus, the re-
sult in Ref. [42], that no 1-way quantum automaton can
recognize the language {0, 1}∗0, does not apply to QTs.
It clearly is a regular language, but not a process lan-
guage. Also, the result by Bertoni and Carpentieri, that
quantum automata can recognize non-regular languages,
does not apply here [44]. A quantum automaton that is
not measured at each time step and, in addition, does
not underlie normalization constraints can recognize a
nonregular language. Measuring the whole system, not
only parts of it, causes information stored in the quantum
phase to be immediately destroyed. On the other hand,
in order to represent a process language, the measure-
ment operators must be constant over time. We return
to this point in Theorem 4 below.

Interestingly, the number of states of a quantum au-
tomaton is of the order of 2n, when a classical determin-
istic automaton needs only n states [45]. Moore and one
of the authors introduced a 1-way quantum automaton
(without using the term “1-way”) [46]. It is less power-
ful than the 1-way automaton by Kondacs and Watrous,
since it allows only for a single measurement, after the
input has been read in. They also introduced a gener-
alized quantum finite-state automaton whose transition
matrices need not be unitary, in which case all regular
languages are recognized. Freivalds and Winter intro-
duced quantum transducers, mentioned earlier [38]. The
model, however, lacks a direct physical interpretation.

These alternative models for quantum automata ap-
pear to be the most widely discussed. There are others,
however, and so the above list is by no means complete.

Our motivation to add yet another model of quantum
finite-state recognizer to this list is the inadequacy of the
alternatives to recognize process languages—languages
that represent quantum dynamical systems subject to re-
peated measurement.

C. Quantum Generators

We now introduce quantum finite-state generators as
restrictions of QTs and as a complement to recogniz-
ers. They serve as a representation for the behavior of
autonomous quantum dynamical systems. In contrast
to quantum finite-state recognizers, quantum finite-state
generators appear to not have been discussed before. A
quantum generator is a QT with only one input. As in
the classical case, one can think of the input as a clock
signal that drives the machine through its transitions.

Definition. A quantum finite-state generator (QG) is a
QT with |X| = 1.

At each step it makes a transition from one state to
another and emits a symbol. As in the classical case
there are nondeterministic (just implicitly defined) and
deterministic QGs.

Definition. A quantum deterministic finite-state gener-
ator (QDG) is a QT in which each matrix T (y) has at
most one nonzero entry per row.

Interestingly, there is a mapping from a given QDG to
a classical automaton.

Definition. Given a QDG M = {U,P (y)}, the equiv-
alent (classical) SDG M′ = {T (y)} has unistochas-
tic state-to-state transition matrix T with components
Tij = [Uij ]

2.

We leave the technical interpretation of “equivalence”
to Thm. 3 below.

As mentioned earlier, in quantum mechanics one dis-
tinguishes between complete and incomplete measure-
ments. Having introduced the different types of quantum
generators, we can now make a connection to complete
measurements.

Definition. A quantum complete finite-state generator
(QCG) is a QG observed via complete measurements.

D. Density Matrix Formalism

Coming back to the various notions of “state” dis-
cussed in Section V A we now extend the formalism of
quantum automata to distributions over states, so called
mixed states. This enables us to average over observa-
tions. Let a system be described by a state vector 〈ψi|
at time t. If we do not know the exact form of 〈ψi| but
only a set of possible 〈ψi|, then we give the best guess
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as to the system’s state in terms of a statistical mixture
of the 〈ψi|. This statistical mixture is represented by a
density operator ρ with weights pi assigned to the 〈ψi|:

ρ =
∑

i

pi |ψi〉 〈ψi| . (37)

The main difference from common usage of “mixed state”
is that we compare the same state over time; whereas,
typically different systems are compared at a single time.
Nevertheless, in both cases, the density matrix formalism
applies.

With this notation in hand, we can now establish a
number of properties of the quantum machines.

Definition. The stationary state ρs of a QR or QG is
the mixed state which is invariant under unitary evolu-
tion:

ρs =
∑

σ∈Σ

P (σ)U†ρsUP (σ) . (38)

Theorem 1. The stationary state of a QDR or QDG is
the following maximally mixed state:

ρs = |Q|−1

n−1
∑

i=0

|φi〉 〈φi| (39)

= |Q|−11 . (40)

Since the 〈φi| are basis states, ρs is a diagonal matrix
equal to the identity multiplied by a factor.

Proof.

ρs =
∑

σ∈Σ

P (σ)U†ρsUP (σ) (41)

= |Q|−1
∑

σ∈Σ

P (σ)U†UP (σ) (42)

= |Q|−1
∑

σ∈Σ

P (σ) (43)

= |Q|−11 (44)

Recall that the stationary distribution of a Markov
chain with doubly stochastic transition matrix is always
uniform [47].

Having established the concept of stationary state we
can now use it to give asymptotic symbol probabilities
conditioned on the stationary state ρs. We find:

Pr(σ) = tr
(

T †(σ)ρsT (σ)
)

= tr
(

P †(σ)U†ρsUP (σ)
)

= tr
(

U†ρsUP (σ)
)

, (45)

where tr is the trace operator. Similarly, the asymptotic
word probabilities Pr(σL) are:

Pr(σL) = tr
(

T †(σL)ρsT (σL)
)

. (46)

No further simplification is possible for the general case.

Equation (45), however, can be further simplified for
single-symbol probabilities. As a result we find a con-
cise expression for single-symbol probabilities of QGs and
QRs.

Theorem 2. The symbol distribution generated by a QG
or recognized by a QR only depends on the dimension
of the projection operators and the dimension |Q| of the
Hilbert space.

Proof. Eq. (45) simplifies as follows:

Pr(σ) = tr(ρsP (σ))

= |Q|−1dim P (σ) . (47)

Although the single-symbol distribution is determined
by the dimension of the subspaces onto which the P (σ)
project, distributions of words σL with L > 1 are not
similarly restricted.

E. Hierarchy of Finitary Process Languages

To better appreciate what these machines are capa-
ble of we amortize the effort in developing the preced-
ing results to describe the similarities and differences be-
tween quantum recognizers and generators, as well as
between stochastic and quantum automata. We collect
the results, give a summary and some interpretation, and
present a road map (Fig. 5) that lays out the computa-
tional hierarchy of finitary quantum processes. As above,
when we refer to P(M) we mean the language produced
by a machine in class M .

Proposition 9. QCGs are deterministic.

Proof. Since all projection operators have dimension
one, all transition matrices have at most one nonzero
element per row. This is the condition for being a QDG.

Complete measurements always define a QDG. There
are incomplete measurements, however, that also can
lead to QDGs, as we will show shortly. One concludes
that P(QCG) ⊂ P(QDG).

We now show that for any QDG there is an SDG gen-
erating the same process language. Thereby we establish
observational equivalence between the different classes of
machine.

Theorem 3. Every P(QDG) is generated by some SDG:
P(QDG) ⊆ P(SDG).

Proof. We show that the SDG generating P(QDG) is
the equivalent SDG, as defined in Sec. VIIC, and that
the QDG M and its equivalent SDG M′ generate the
same word distribution and so the same process language.
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The word probabilities PrM(yL) for M are calculated
using Eq. (46) and the QDG’s transition matrices TM:

PrM(yL) = tr
(

T †
M(yL)ρsTM(yL)

)

= |Q|−1tr(T †T )

= |Q|−1
∑

i

[T †T ]ii

= |Q|−1
∑

i

∑

j

T †
ijTji

= |Q|−1
∑

ij

T 2
ij .

The word probabilities PrM ′(yL) for M ′ are calculated
using Eq. (19) and the SDG’s transition matrices TM:

PrM′(yL) = 〈π0|TM′(yL)|η〉

=

n−1
∑

i=0



π0
i

∑

j

(TM′(yL))ij





= |S|−1

n−1
∑

i,j=0

(TM′(yL))ij . (48)

Since (TM(yL))2ij = (TM′(yL))ij, from the definition of
an equivalent SDG, the claim follows.

A given QDG can be observationally equivalent to
more than one SDG. This occurs because the phases of
the transition amplitudes cancel in the transformation
from a QDG. We can now easily check the languages
produced by QDGs.

Corollary 6. For every QDG, supp P(QDG) is a reg-
ular language.

Proof. This follows directly from Thm. 3 and Cor. 1.

Corollary 7. For every QDG, P(QDG) is a process lan-
guage.

Proof. This follows directly from Thm. 3 and Cor. 2.

With this we can begin to compare the descriptive
power of the different machine types.

Proposition 10. QGs and QRs are equivalent: They
recognize and generate the same set of languages, respec-
tively: P(SG) = P(SR).

Proof. Consider QG’s transition matrices T (y) =
UP (y) and form a new set T (x) = UP (x) in which
P (accept|x) = P (y). The T (accept|x) together with
T (reject|x), where T (reject|x) = UP (reject|x) = 1 −
P (accept|x), define a QR that recognizes P(QG). It fol-
lows that P(QG) ⊆ P(QR).

Now consider QR’s transition matrices T (accept|x) =
UP (accept|x) and form a new set T (y) in which P (y) =
P (accept|x). The T (y) define a QG that generates
P(QR). It follows that P(QG) = P(QR).

Corollary 8. QDGs and QDRs are equivalent: They
recognize and generate the same set of languages, respec-
tively: P(QDG) = P(QDR).

Proof. This follows directly from Prop. 10 and the fact
that QDRs and QDGs are special cases of QRs and QGs,
respectively.

Corollary 9. For every QDR, supp P(QDR) is a reg-
ular language.

Proof. This follows directly from Cor. 8 and Cor. 1.

Corollary 10. For every QDR, P(QDR) is a process
language.

Proof. This follows directly from Cor. 8 and Cor. 7.

Theorem 4. For every QG, supp P(QG) is a regular
language.

Proof. We show this by making the argument that any
quantum-like quantity such as superposition of states or
relative phases only affects a measurement once and not
repeatedly. It is “used up” in one measurement and can
not serve as a permanent stack.

Classically, what is needed for generating a nonregular
language is a stack, which is an auxiliary storage device.
Quantum mechanically, a relative phase can serve as
stack, creating a state such as 〈ψ| = 1√

2
(〈φA|+ eiθ 〈φB |).

A projective measurement turns any relative phase be-
tween states of two different subspaces into an absolute
phase, such as eiθ 〈φB| which is unmeasurable. Any phase
between states in the same subspace has no measurable ef-
fect since the eigenvalues of those states are degenerate.

Thus, a quantum stack can only be probed once, after
which it is emptied.

Proposition 11. There exists an SDG such that
P(SDG) is not generated by any QDG.

Proof. The process language generated by the SDG given
by

T (0) =
(

1√
2

)

and T (1) =
(

1 − 1√
2

)

(49)

(a biased coin) cannot be generated by any QDG. Accord-
ing to Thm. 2,

Pr(y) =
dimP (y)

n
, (50)

which is a rational number, whereas Pr(y) for the above
biased coin is irrational.

Corollary 11. P(QDG) ⊂ P(SDG).

Proof. From Thm. 3 and Prop. 11.

Corollary 12. P(QDR) ⊂ P(SDR):

Proof. From Cor. 8, Cor. 3, Thm. 3, and Prop. 11.
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QDG=QDR

SDG=SDR

CQG

QG=QRSG=SR

FIG. 5: Finitary process language hierarchy: Each circle rep-
resents the set of process languages recognized or generated
by the inscribed machine class. Increasing height indicates
proper containment; machine classes at the same height are
not linearly comparable. The hierarchy summarizes the the-
orems, propositions, and corollaries in Secs. IVC and VII E.

At this point it is instructive to graphically summarize
the relations between recognizer and generator classes.
Figure 5 shows a machine hierarchy in terms of languages
recognized or generated. The class of QCGs is at the
lowest level. This is contained in the class of QDGs
and QDRs. The languages they generate or recognize
are properly included in the set of languages generated
or recognized by classical deterministic machines—SDGs
and SDRs. These, in turn, are included in the set of
languages recognized or generated by classical nondeter-
ministic machines, SGs and SRs, as well as QRs and
QGs.

Finally, an important comparison at a lower level re-
mains open.

Conjecture 1. There exists a QG such that P(QG) is
not recognized by any QDR.

The preceding results and conjecture serve to indicate
how the finitary process hierarchy is organized. For ex-
ample, analyzing how varying the acceptance threshold
δ modifies the hierarchy awaits further investigation.

VIII. QUANTUM GENERATORS AND

FINITARY PROCESSES: EXAMPLES

It will be helpful at this point to illustrate various fea-
tures of QGs by modeling example quantum processes.
We start out with deterministic QGs before we arrive at
the last example which illustrates a (nondeterministic)
quantum transducer (i.e., a QT) with input and output.

A. Two-State Quantum Processes

According to Thm. 2 the symbol distribution gener-
ated by a QG only depends on the dimension of the pro-
jection operator and the dimension of the Hilbert space.
What are the consequences for two-state QGs? First of

D

D

D

D

FIG. 6: Experimental set-ups for the iterated beam splitter:
Solid lines are mirrors; beam splitters, horizontal dashed lines.
Photon nondemolition detectors, marked as D, are placed be-
tween every pair of beam splitters. Under measurement pro-
tocol I all detectors are in operation; under protocol II only
the solid-line detectors are activated. The apparatus is re-
peated indefinitely to the right.

all, according to Cor. 5 the maximum alphabet size is 2.
The corresponding projection operators can either have
dimension 2 (for a single-letter alphabet) or dimension
1 for a binary alphabet. The only symbol probabilities
possible are Pr(y) = 1 for the single-letter alphabet and
Pr(y) = 1/2 for a binary alphabet. So we can set aside
the single-letter alphabet case as a bit too simple.

At this point, we see that a binary-alphabet QDG can
produce only a highly restricted set of process languages.
It is illustrative to look at the equivalent SDG. Its state-
to-state transition matrix is given by

T =

(

p 1 − p
1 − p p

)

. (51)

For p = 0.5, for example, this is the fair coin process. It
becomes immediately clear that the Golden Mean and the
Even processes, which are modeled by two-state classical
automata, cannot be represented with a two-state QDG.
(The three-state models are given below.)

1. Iterated Beam Splitter

We now turn to a physical two-state process and build
a quantum generator for it.

The iterated beam splitter is an example that, despite
its simplicity, makes a close connection with real experi-
ment. Figure 6 shows the experimental apparatus. Pho-
tons are sent through a beam splitter (thick dashed line),
producing two possible paths. The paths are redirected
by mirrors (thick horizontal solid lines) and recombined
at a second beam-splitter. From this point on the same
apparatus is repeated indefinitely to the right. After the
second beam-splitter there is a third and a fourth and
so on. Single-photon quantum nondemolition detectors
are located along the paths, between every pair of beam-
splitters. One measures if the photon travels in the upper
path and another determines if the photon follows the
lower path. In practice one detector would be sufficient.
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This is a quantum dynamical system: a photon passing
repeatedly through various beam splitters. It has a two-
dimensional state space with two eigenstates—“above”
and “below”. Its behavior is given by the evolution of
the state vector 〈ψ|. The overall process can be rep-
resented in terms of a unitary operation for the beam
splitter and projection operators for the detectors. The
unitary operator for the beam splitter is the Hadamard
matrix UH :

UH =
1√
2

(

1 1
1 −1

)

. (52)

The measurement operators have the following matrix
representation in the experiment’s eigenbasis:

P (0) =

(

1 0
0 0

)

and P (1) =

(

0 0
0 1

)

, (53)

where the measurement symbol 0 stands for “above” and
symbol 1 stands for “below”.

Before we turn to constructing a quantum finite-state
generator to model this experiment we can understand
intuitively the measurement sequences that result from
running the experiment for long times. If entering the
beam splitter from above, the detectors record the pho-
ton in the upper or lower path with equal probability.
Once the photon is measured, though, it is in that de-
tector’s path with probability 1. And so it enters the
beam splitter again via only one of the two possible
paths. Thus, the second measurement outcome will have
the same uncertainty as the first: the detectors report
“above” or “below” with equal probability. The result-
ing sequence of measurements after many beam splitter
passages is simply a random sequence. Call this mea-
surement protocol I.

Now consider altering the experiment slightly by re-
moving the detectors after every other beam splitter. In
this configuration, call it protocol II, the photon enters
the first beam splitter, does not pass a detector and in-
terferes with itself at the next beam splitter. That inter-
ference, as we will confirm shortly, leads to destructive
interference of one path after the beam splitter. The pho-
ton is thus in the same path after the second beam split-
ter as it was before the first beam splitter. A detector
placed after the second beam splitter therefore reports
with probability 1 that the photon is in the upper path,
if the photon was initially in the upper path. If it was
initially in the lower path, then the detector reports that
it is in the upper path with probability 0. The resulting
sequence of upper-path detections is a very predictable
sequence, compared to the random sequence from proto-
col I.

We now construct a QDG for the iterated-beam splitter
using the matrices of Eqs. (52)-(53) and the stationary
state of Eq. (40). The output alphabet consists of two
symbols denoting detection “above” or “below”: Y =
{0, 1}. The set of states consists of the two eigenstates
of the system “above” and “below”: Q = {A,B}. The

1
√2

A B | 0

 | 11
√2

 | 01
√2

−     | 11
√2

FIG. 7: Quantum finite-state machine for the iterated beam
splitter: The resulting symbol sequences are statistically iden-
tical to the measurement sequences obtained with the mea-
surement protocols I and II shown in Fig. 6. When no mea-
surement is made, transitions along all edges occur.

transition matrices are:

T (0) = UHP (0) =
1√
2

(

1 0
1 0

)

, (54a)

T (1) = UHP (1) =
1√
2

(

0 1
0 −1

)

. (54b)

The resulting QDG is shown in Fig. 7.
The word distribution for the process languages gen-

erated by protocols I and II are obtained from Eq. (46).
Word probabilities for protocol I (measurement at each
time step) are, to give some examples:

Pr(0) = |Q|−1dim(P (0)) =
1

2
, (55a)

Pr(1) = |Q|−1dim(P (1)) =
1

2
, (55b)

Pr(00) = tr
(

T †(0)T †(0)ρsT (0)T (0)
)

=
1

4
, (55c)

Pr(01) = Pr(10) = Pr(11) =
1

4
. (55d)

Continuing the calculation for longer words shows that
the word distribution is uniform at all lengths Pr(yL) =
2−L.

For protocol II (measurement every other time step)
we find:

Pr(0) = tr
(

T †(0λ)ρsT (λ0)
)

=
1

2
, (56a)

Pr(1) = tr
(

T †(1λ)ρsT (λ1)
)

=
1

2
, (56b)

Pr(00) = tr
(

T †(0λ0λ)ρsT (λ0λ0)
)

=
1

2
, (56c)

Pr(11) = tr
(

T †(1λ1λ)ρsT (λ1λ1)
)

=
1

2
, (56d)

Pr(10) = Pr(01) = 0 . (56e)

If we explicitly denote the output at the unmeasured time
step as λ, the sequence 11 turns into λ1λ1, as do the
other sequences in protocol II. As one can see, the word
probabilities calculated from the QDG agree with our
earlier intuitive conclusions.

Comparing the iterated beam splitter QDG to its clas-
sically equivalent SDG reveals several crucial differences
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(a)

(b)

1
2 A B | 0

 | 11
2

 | 01
2

     | 11
2

A B1 | 0 1 | 1

FIG. 8: Classical deterministic generators for the iterated
beam splitter: (a) Protocol I and (b) protocol II, p = 2. (Cf.
Fig. 6.)

in performance. Following the recipe from Sec. VII E, on
how to build an SDG from a QDG, gives the classical
generator shown in Fig. 8(a). Its transition matrices are:

T (0) =
1

2

(

1 0
1 0

)

and T (1) =
1

2

(

0 1
0 1

)

. (57)

The measurement sequence generated by this SDG for
protocol I is the uniform distribution for all lengths, as
can be easily verified using Eq. (19) or, since it is de-
terministic, Eq. (20). This is equivalent to the language
generated by the QDG. However, the probability distri-
bution of the sequences for the generator under protocol
II, ignoring every second output symbol, is still the uni-
form distribution for all lengths L. This could not be
more different from the language generated by the QDG
in protocol II.

The reason is that the classical machine is unable to
capture the interference effects present in experimental
set-up II. A second SDG has to be constructed from the
QDG’s transition matrices for set-up II. This is done by
carrying out the matrix product first and then forming
its equivalent SDG. The result is shown Fig. 8(b). Its
transition matrices are:

T (0) =
1

2

(

1 0
0 0

)

and T (1) =
1

2

(

0 0
0 1

)

. (58)

The two classical SDGs are clearly (and necessarily)
different. Thus, a single QG can model a quantum
system’s dynamics for different measurement periods.
Whereas an SG only captures the behavior of each in-
dividual experimental set-up. This illustrates the utility
of QGs over SGs in modeling the behavior of quantum
dynamical systems.

C B

−1/√2 | 1

A

1/√2 | 1

1/√2 | 0

1/√2 | 0

−1.0 | 1

FIG. 9: Quantum generator for the Golden Mean Process.

B. Three-State Quantum Processes

1. Golden Mean Quantum Machine

Recall the classical Golden Mean generator of Sec-
tion IV B. A QDG, which generates the same process
language, is shown in Fig. 9. Consider a spin-1 particle
subject to a magnetic field that rotates its spin. The
state evolution can be described by the unitary matrix

U =





1√
2

1√
2

0

0 0 −1
− 1√

2

1√
2

0



 , (59)

which is a rotation in R
3 around the y-axis by angle π

4

followed by a rotation around the x-axis by π
2
.

Using a suitable representation of the spin operators

Ji [48, p.199], such as: Jx =
(

0 0 0
0 0 i
0 −i 0

)

, Jy =
(

0 0 i
0 0 0
−i 0 0

)

,

and Jz =
(

0 i 0
−i 0 0
0 0 0

)

, the relation Pi = 1 − J2
i defines a

one-to-one correspondence between the projector Pi and
the square of the spin component along the i-axis. The
resulting measurement poses the yes-no question, Is the
square of the spin component along the i-axis zero? Con-
sider measuring J2

y . Then U and the projection operators
P (0) = |100〉 〈100| + |001〉 〈001| and P (1) = |010〉 〈010|
define a quantum generator.

The transition matrices T (y) are then

T (0) = UP (0) =





0 1√
2

0

0 0 0
0 1√

2
0



 , (60a)

T (1) = UP (1) =





1√
2

0 0

0 0 −1
− 1√

2
0 0



 . (60b)

To illustrate that this QDG produces the Golden Mean
word distribution we show how to calculate several of the
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C B

−1/√2 | 0

A

1/√2 | 0

1/√2 | 1

1/√2 | 1

−1.0 | 1

FIG. 10: Quantum generator for the Even Process.

word probabilities using Thm. 2 and Eq. (46):

Pr(0) = |Q|−1dim(P (0)) =
1

3
, (61a)

Pr(1) = |Q|−1dim(P (1)) =
2

3
,

Pr(011) = tr
(

T †(011)ρsT (011)
)

=
1

6
. (61b)

2. Quantum Even Process

The next example is a quantum representation of the
Even Process. Consider the same spin-1 particle. This
time the J2

y component is chosen as observable. Then
U and P (0) = |100〉 〈100| and P (1) = |011〉 〈011| define
a quantum finite-state generator. The QDG is shown in
Fig. 10. The word distributions for lengths up to L = 9
are shown in Fig. 11.

Note that the unitary evolution for the Golden Mean
Process and the Even Process are the same, just as the
state-to-state transition matrices were the same for their
classical versions. The partitioning into subspaces in-
duced by the projection operators leads to the (substan-
tial) differences in the word distributions.

The dependence on subspace partitioning indicates
a way to count the number of QGs for each unitary
evolution U . For 3-dimensional Hilbert spaces this is
rather straightforward. For each unitary matrix and
with a binary alphabet we have three choices for par-
titioning subspaces of the Hilbert space: one subspace
is two-dimensional and the others one-dimensional. This
yields three QGs that are distinct up to symbol exchange
(0 ↔ 1). For the unitary matrix that generates the
Golden Mean and the Even Process (Eq. (59)). The third
QG turns out to be nondeterministic. But no phase in-
terference is possible and it generates the Golden Mean
process language. The sofic nature of these quantum pro-
cesses has been discussed in Ref. [19].

0.0 1.0

L = 9

0.0 1.0

L = 8

0.0 1.0
-10

0 L = 7

-10

0 L = 1

-10

0 L = 4

L = 2 L = 3

L = 5 L = 6

lo
g 2 P

r(
sL

)

sL

lo
g 2 P

r(
sL

)
lo

g 2 P
r(

sL
)

sL sL

FIG. 11: Process language of the Even QDG.

This very limited number of possible QGs for any given
unitary matrix is yet another indication of the limitations
of QGs. Classical SGs do not have the same structural
restrictions, since they are not bound by orthogonal par-
titioning into subspaces, for example. The saving grace
for QGs is that they have complex transition amplitudes
and so can compute with phase, as long as they are not
observed. This is reflected in the distinct languages gen-
erated by one QG under different measurement protocols.

C. Four-State Quantum Process

We are now in the position to explore the full capa-
bilities of QTs, turning from generators to transducers.
The following example illustrates quantum machines us-
ing the tools required to investigate information process-
ing of quantum dynamical systems.

1. Quantum Transducer For Trapped Ions

Consider an atom exposed to short wavelength
radiation—the core of numerous experiments that in-
vestigate electronic structure and dynamics. The usual
protocol is a one-time experiment, exposing the atom to
radiation and monitoring changes in structure through
electron or photon detectors. As a particular set-up we
choose ion-trap experiments found in low-temperature
physics and quantum computation implementations, as
described in Ref. [7]. For our present purposes it will be
sufficient to review the general physical setting.

Imagine a pair of ions kept in a trap by laser fields and
static electromagnetic fields. Only two of the electronic
levels of each ion are of interest: the ground state and an
excited state. Call these level 0 and level 1, respectively.
A third auxiliary level is required for laser cooling and
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00

electronic

(de-)excitation

11

phonon

exchange

ion 1 ion 2

FIG. 12: Schematic view of two vibrationally-coupled trapped
ions undergoing electronic excitation. Only the two electronic
levels of interest are drawn.

other operations, which we leave aside here since it has
no significance for the description of the process. The two
ions are coupled to each other through phonon exchange,
as shown schematically in Fig. 12.

By choosing suitable wavelengths several distinct op-
erators can be implemented. One of them is a Hadamard
operator that produces a superposition of electronic
states |0〉 and |1〉. Another is a phase operator that yields
an entangled state of the two ions. The respective laser
pulses, so-called Rabi pulses, induce an electronic exci-
tation and a vibrational excitation. The result is vibra-
tional coupling of the four levels. All other operations
are combinations of these two; see Ref. [7]. The opera-
tors are named Ua, Ub, and Uc; matrix representations
are given below. As is already familiar from the iterated
beam splitter, the operators are activated repeatedly one
after the other in a closed loop.

To model the quantum dynamical system the state vec-
tor and operator matrices need to be specified. The four
basis states spanning the Hilbert space are given by [53]:

〈φA| = 〈00| ,
〈φB | = 〈01| ,
〈φC | = 〈10| ,
〈φD| = 〈11| .

The three unitary operations in matrix form are:

Ua = H ⊗H =
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






, (62a)

Ub =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1






, (62b)

Uc = H ⊗ I =
1√
2







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1






. (62c)

The projection operators are chosen to measure the

electronic state of ion 1 only and have the matrix form:

P (0) =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






and P (1) =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






.

(63)

The QT is now easily assembled. The set of states and
the input and output alphabets are, respectively:

Q = {A,B,C,D} ,
X = {a, b, c} , and

Y = {0, 1} .

This QT’s graph is shown in Fig. 13.

To illustrate its operation we consider two measure-
ment protocols. For each we use input sequence (abc)+.

• Measurement protocol I: Measure ion 1 after each
unitary operation. The resulting state vector evo-
lution is:

〈ψt+1| = 〈ψt|UaP (y) , (64a)

〈ψt+2| = 〈ψt+1|UbP (y) , (64b)

〈ψt+3| = 〈ψt+2|UcP (y) . (64c)

• Measurement protocol II: Measure ion 1 only after
three unitary operations. This leads to evolution
according to

〈ψt+3| = 〈ψt|UaUbUcP (y) . (65)

The probability distributions of the observed sequences
are shown in Figs. 14 and 15. The two distributions differ
substantially. On the one hand, protocol II simply yields
the process language of alternating 0s and 1s. Protocol
I, on the other hand, yields a much larger set of allowed
words. In particular, it is striking that supp PII is for-
bidden behavior under protocol I. The words 0101 and
1010 are forbidden under protocol I, whereas they are the
only allowed words of length L = 4 under protocol II.

Not only does this example illustrate that a simple
change in measurement protocol leads to a substantial
change in the observed dynamics. It is also not clear
a priori when a more complicated behavior is to be ex-
pected. That is, more frequent measurement yields more
complicated behavior. Without quantifying how complex
that complicated behavior is, it turns out that it is not
always the longer period of coherent, unperturbed uni-
tary evolution that yields more complex processes. This
will have consequences for feasible implementations of
quantum computational algorithms. For a quantitative
discussion of the languages generated by quantum pro-
cesses see Ref. [24].
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a|1/2|0
A D

B C

c|1/√2|0

a|1/2|1

a|1/2|1

a|−1/2|0 a|1/2|0
a|−1/2|1

a|1/2|0

a|1/2|1

b|1|0

b|1|0

b|1|1

b|1|1c|1/√2|0
c|−1/√2|1

c|−1/√2|1

a|1/2|0

a|1/2|0

a|1/2|0
c|−1/√2|0
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a|1/2|1

c|1/√2|1

FIG. 13: Quantum transducer for a trapped-ion system exposed to radiation of various wavelengths. The input alphabet
X = {a, b, c} and output alphabet Y = {0, 1} represent unitary operations and electronic states, respectively.
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FIG. 14: Process language generated by the trapped-ion
quantum dynamical system of Fig. 12 for protocol I (mea-
surements performed at each time step).

2. Deutsch Algorithm as a Special Case

It turns out that the trapped-ion experiment imple-
ments a quantum algorithm first introduced by Deutsch
[6]. The algorithm provided an explicit example of how
a quantum machine could be superior to a classical one.

Consider a binary-valued function f : {1, 2, . . . , 2N} →
{0, 1}. Let U be the device that computes the function
f . If we successively apply f to 1, 2, . . . , 2N , we get a
string x2N of length 2N . The problem then is to find a

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 1

L = 8

0 1

L = 9

0 1
σL σL σL

FIG. 15: The generated process languages of the trapped-ion
dynamical system from Fig. 12 for measurements performed
every three time steps.

true statement about x2N by testing the following two
properties:

A: f is not constant: There are not only 0s or only 1s
in x2N .

B: f is not balanced: There are not as many 0s as 1s
in x2N .

If statement A is false, we can be certain that statement
B is true and vice versa. Deutsch and Josza [49] showed
that a quantum computer can determine the true state-
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H

H

H x x

y y ⊕ f(x)

U
f

0

1

ψ
0

ψ
1

ψ
2

ψ
3

FIG. 16: Deutsch algorithm to classify balanced and constant
functions (N = 2) depicted as a quantum circuit.

ment, either A or B, after only two invocations of the
operation U , whereas a classical computer requires N+1
calls in the worst case. Taking into account the compu-
tational steps for establishing the start state and read-
ing out the result, a quantum computer can evaluate the
function f in constant time, whereas a classical computer
needs a time polynomial in N .

To compare the algorithm with the trapped-ion dy-
namical system, and to keep issues simple but still infor-
mative, we use the basic version (N = 2) of the Deutsch
algorithm of Ref. [50, p. 32]. (Recall that in our nota-
tion 〈ψ| is the state vector, not |ψ〉, as is common else-
where.) Figure 16 shows the algorithm as a quantum
circuit. Each qubit occupies one horizontal line and the
applied unitary transformations are shown as boxes. The
overall procedure is summarized in Table I. The unitary
operations H and Uf in Fig. 16 are the same as H and
Ub in the trapped-ion experiment. The unitary operator
in the trapped-ion system is that for a balanced function.

The implementation of the Deutsch algorithm is equiv-
alent to the trapped-ion system under measurement pro-
tocol II, with Ub chosen accordingly. Measuring ion 1
after three time steps delivers the desired answer as out-
put (0=A or 1=B). Thus, implementing the Deutsch al-
gorithm corresponds to the trapped-ion system running
for three time steps.

The Deutsch algorithm task is solved with a consid-
erable speed-up compared to a classical implementation.
Our approach is an extension of this that focuses on what
type of computation is carried out intrinsically by the
system under continuous external driving and observa-
tion. Comparing these two different views of quantum
information manipulation—designed quantum comput-
ing versus quantum intrinsic computation—suggests that
the analysis of NMR experiments with single atoms or
molecules in terms of quantum finite-state machines will
be a straightforward extensions of the preceding analysis
of the Deutsch algorithm.

IX. CONCLUDING REMARKS

We developed a line of inquiry complementary to both
quantum computation and quantum dynamical systems

1. Two qubits put in states 〈ψ0| = 〈01|
〈0| and 〈1|, respectively.

2. Hadamard transform applied 〈ψ1| = (H ⊗H) 〈ψ0|
to both qubits.

3. Operation Uf implementing 〈ψ2| = (−1)f(x)(I ⊗ I) 〈ψ1|
the function f(x) is applied.

4. Hadamard transform applied 〈ψ3| = (H ⊗ I) 〈ψ2|
to the first qubit.

5. First qubit is measured. 〈ψ3|P (0)

TABLE I: Deutsch algorithm to determine if f(x) is balanced
or constant. H and I are the Hadamard and identity matrices,
respectively. ⊗ denotes the tensor product.

by investigating intrinsic computation in quantum pro-
cesses. Laying the foundations for a computational per-
spective on quantum dynamical systems we introduced
quantum finite-state transducers. Residing at the base
of the computational hierarchy, it is the most general
representation of a finitary quantum process. It allows
for a quantitative description of intrinsic computation in
quantum processes—the number of internal states and
allowed transitions and the process languages they gen-
erate. As far as we are aware, this has not been developed
before in the quantum setting.

We laid out the mathematical foundations of these
models and developed a hierarchy of classical (stochas-
tic) and quantum machines in terms of the set of lan-
guages they recognize or generate. In many cases it
turned out that quantum devices were less powerful than
their classical analogs. We saw that the limitations of
quantum finite-state machines originate in the unitarity
of the transition matrices. This suggested that QTs, be-
ing reversible, are less powerful than nonreversible classi-
cal automata, since the inverse condition constrains the
transition matrices.

However, one must be careful to not over-interpret this
state of affairs. It has been known for some time that
any universal computation can be implemented in a re-
versible device [51]. Typically, this requires substantially
more resources, largely to store outcomes of intermedi-
ate steps. In short, reversibility does not, in general,
imply less power for classical computers. At the end
of the day, computational resources are variables that
trade-off against each other. The 2-state QDG examples
of the Beam Splitter process illustrated such a trade-off.
Although the QDG needs more states than the equiva-
lent SDG to generate the same process language, differ-
ent measurement protocols yielded a new set of process
languages—an aspect that makes QDGs more powerful
than SDGs.

These results were then applied to physical systems
that could be analyzed in terms of the process languages
they generate. One example, that of two trapped ions ex-
hibited a process language of very rich structure. This,
and the fact that the system implements a quantum algo-
rithm, opens up a way to an information-theoretic analy-
sis of quantum processes. One can begin to analyze quan-
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tum algorithms in terms of their information processing
power and do so independent of particular physical im-
plementations.

For example, starting from the computation-theoretic
representation of quantum processes presented here, we
used tools from information theory, automata theory, and
symbolic dynamics to define a measure of intrinsic com-
putation inherent in quantum systems [19, 24]. The basic
question one asks about a dynamical system’s intrinsic
computation—amount of historical information stored,
storage architecture, and transformations that produce
future behavior—can now be clearly stated. Further-
more, we are currently extending the formalism to more
general types of measurements appropriate, for example,
to open quantum systems. The power of the resulting
quantum transducers is expected to be greater than those
here and even greater than the stochastic transducers. In
general, we hope that integrating quantum computation

and quantum dynamics will receive further attention.
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