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We solve a long-standing problem—determining structural information for disordered materials
from their diffraction spectra—for the special case of planar disorder in close-packed structures
(CPSs). Our solution offers the most complete possible statistical description of the disorder and,
from it, we find the minimum effective memory length for stacking sequences in CPSs. We contrast
this description with the so-called ‘fault’ model by comparing the structures inferred using both
approaches on two previously published zinc sulphide diffraction spectra.
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Describing the structure of solids—by which we sim-
ply mean the placement of atoms in (say) a crystal—is
essential to a detailed understanding of material prop-
erties. Crystallography has long used the sharp Bragg
peaks in X-ray diffraction spectra to infer crystal struc-
ture. For those cases where there is diffuse scattering,
however, finding—let alone describing—the structure of
a solid has been more difficult [1]. Indeed, it is known
that without the assumption of crystallinity, the infer-
ence problem has no unique solution [2]. Moreover, dif-
fuse scattering implies that a solid’s structure deviates
from strict crystallinity. Such deviations can come in
many forms—Schottky defects, substitution impurities,
line dislocations, and planar disorder, to name a few. Of
these, here we consider only planar disorder; that caused
by one plane of atoms slipping relative to another in a
layered material. This kind of disorder is known to be
prevalent in a broad class of materials called polytypes.

First discovered in SiC by Baumhauer [3] in 1912, poly-
types [4, 5] are solids built up from identical layers, called
modular layers (MLs) [6] that differ only in their stack-
ing orientation. A polytype is simply described by its
stacking sequence—the one-dimensional list of successive
orientations found as one moves along the stacking direc-
tion. We refer to the effective stochastic process induced
by scanning the list as the stacking process. In the Hägg
notation [5] for stacking sequences one replaces the set
{A, B, C} of allowed orientations with a binary alphabet
A = {0, 1}: an ML is labeled ‘1’, if it is cyclically related
to the preceding ML, or 0, if it is not.

Polytypism is found in dozens of materials; one of the
best studied is ZnS. There are approximately 185 identi-
fied crystalline structures [4] and many samples exhibit
varying degrees of disorder. Notably, some ZnS crystals
have unit cells extending over 100 MLs [5]. These differ-
ent stacking sequences can occur under virtually identical
thermodynamic growth conditions. The mystery of poly-
typism then is two-fold: How can so many different struc-
tures (crystalline and noncrystalline) exist? And, what

are the source and range of interlayer interactions that
produce these structures? Over the last fifty years, con-
siderable effort has been expended to understand poly-
typism, with over a dozen theories having been proposed;
but a general explanation is still lacking [4, 5].

Attempts to describe planar disorder in CPSs have a
long history. Early studies [7, 8] focused on stacking
errors or faults that permeated a parent crystal. Dif-
ferent kinds of stacking faults were postulated, such as
growth faults, deformation faults, and layer displacement

faults [5]. In this fault model (FM) theory, stacking faults
were introduced randomly into the parent crystal and
their effect on the intensity, placement, and broaden-
ing of Bragg peaks was calculated as a function of the
fault frequency. These efforts met with good success
for several weakly faulted specimens as such cobalt [8]
and lithium [9]. However, for polytypes such as ZnS and
SiC, the random insertion of faults often did not describe
the observed Bragg peaks well. More sophisticated mod-
els [5, 10] were introduced which attempted to account
for nonrandom fault insertion by assuming the existence
of some “coordination” between faults. These more com-
plicated models gave mixed results.

We find several drawbacks to the FM. The first is the
need to assume a single parent crystalline structure into
which stacking defects are introduced; this precludes the
description of disorder interspersed between distinct crys-
tal structures. In some polytypes, such as ZnS, for ex-
ample, there is considerable interest in characterizing the
transformation between the hexagonally closed-packed
(HCP) structure and the cubic close-packed (CCP) struc-
ture when the crystal is subjected to an external stress,
such as annealing [5]. In these cases, there is no single
parent crystal in which to introduce faulting. A second
drawback is not inherit to the FM, but in the way it is
analyzed [5]. By restricting the quantitative analysis [5]
to the effects of faulting on the Bragg peaks, information
in the diffuse scattering is ignored. (Our second example
below demonstrates how misleading this can be.) Our fi-
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nal difficulty is with the FM generally. Here we show that
it is not possible to uniquely identify and assign faulting
sequences to disordered crystals, except in those special
cases to which the FM is restricted.

In this Letter, we introduce a novel method for dis-
covering and describing disordered stacking sequences
in CPSs that overcomes these difficulties. We analyze
two previously published diffraction spectra for polytypic
ZnS [5] and compare our results with those of the FM.

Our method can be broken into three parts. In the
first, we use a diffraction spectrum to find average cor-
relations between MLs as a function of the number n of
separating layers. If we assume that the MLs themselves
are undefected, that each ML has the same scattering
power, and that the spacing between MLs is indepen-
dent of the local stacking arrangement, then correlation
factors (CFs), Qc(n) and Qa(n) [11], can be found by
Fourier analysis of the diffraction spectrum [2]. Qc(n)
and Qa(n) are defined as the probability that any two
MLs at separation n are cyclically or anticyclically re-
lated, respectively.

In the second part of our approach, we infer the spa-
tial patterns of MLs that reproduce these CFs by recon-
structing an ε-machine [12], which describes the minimal
effective states of the stacking process. Assume we know
the probability p(ω) of stacking sequences ω. At each ML

in a stacking sequence define the “past”
←
ω as those MLs

already seen and the “future”
→
ω as those yet to be seen:

ω =
←
ω
→
ω . The effective states of the stacking process then

are defined as the sets of pasts
←
ω that lead to statistically

equivalent futures:

←
ω i∼

←
ωj if and only if p(

→
ω |
←
ω i) = p(

→
ω |
←
ωj) . (1)

These equivalence classes of pasts are the stacking pro-
cess’s causal states. Along with their transitions, they
comprise the process’s ε-machine—a statistical descrip-
tion of the ensemble of spatial patterns that produces the
stacking distribution p(ω). It has been shown that the
ε-machine is the optimal predictor of minimal size (as
measured by the number of states) of a process, and, up
to state-relabeling, it is the unique such description [12].

To find the causal states we must first estimate the
probability p(ω) of stacking sequences ω averaged over
the sample. Note that, from conservation of probability,
p(u) = p(0u) + p(1u) = p(u0) + p(u1), for all u ∈ Ar,
where Ar is the set of all sequences of length r. Addi-
tionally, the probabilities for sequences of the same length
are normalized:

∑
ω∈Ar+1 p(ω) = 1. Together these con-

straints provide 2r independent relations among proba-
bilities for the 2r+1 possible stacking sequences of length
r + 1.

The other 2r constraints come from relating CFs to
sequence probabilities via

Qα(n) =
∑

ω∈An

α

p(ω) , (2)

where An
α is that subset of length-n sequences with a

cyclic (α = c) or an anticyclic (α = a) rotation between
MLs at separation n. We take as many of these latter re-
lations as necessary to form a complete set of equations.
At a fixed r, the set of equations describes the stacking
sequence as generated by an rth-order Markov process.
At r = 3 one encounters the first nonlinearities due to
the necessity of using CFs at n = 5 to obtain a complete
set of equations. We rewrite the probability of sequences
of length n = 5 in terms of the conditional probabilities
of those at n = 4, and it is this mapping that is non-
linear. We solve numerically for the stacking sequence
probabilities p(ω) and then find the set of causal states
using the equivalence relation Eq. (1). The causal-state
transitions are estimated from the conditional distribu-
tions of the next ML orientation given pasts

←
ω associated

with each causal state.
In the third and final part, we begin with the r = 1 re-

constructed ε-machine, use it to generate a sample stack-
ing sequence (here we used length 400, 000), and from this
we estimate the ε-machine’s predicted CFs and diffrac-
tion spectrum. We then compare the latter to the ex-
perimental diffraction spectrum. If there is not sufficient
agreement, we increment r and repeat the reconstruc-
tion and comparison. The resulting r is called the stack-
ing process’s memory length, since it is the amount of
history (in MLs) one must use to optimally predict the
process.

ZnS can be thought to have a CPS with a basis com-
posed of two atoms, zinc and sulphur, with the sulphurs
displaced one quarter of a body diagonal (as referred
to the conventional unit cell) along the stacking direc-
tion [5]. We take an ML to be this zinc sulphur pair ar-
ranged in a hexagonal net [6], giving (as with any CPS)
three absolute orientations for the MLs, but only two
relative orientations for neighboring layers. We correct
the experimentally obtained diffraction spectrum for the
atomic scattering factors, the structure factor, dispersion
factors, and polarization of the incident radiation [13].

We now give the results for ε-machine reconstruc-
tion for two experimental diffraction spectra, SK134 and
SK135 from [5]. Let l be a continuous variable that in-
dexes the magnitude of the perpendicular component of
the diffracted wave k = 2πl/c, where c is the spacing
between adjacent MLs. We select a unit interval in l on
which to analyze each spectra. Since many diffraction
spectra suffer from experimental error [5], we show else-
where [14] that there are relations that the CFs must
obey for any CPS and that we can use them to select a
relatively error-free l-interval. The spectra from experi-
ment and ε-machine reconstruction are normalized.

The triangles in Fig. 1 show the experimental diffrac-
tion spectrum SK134 along the 10.l row for an HCP ZnS
crystal annealed at 300 C for one hour. Sebastian and
Krishna [5] attribute the observed disorder to a 5% prob-
ability of deformation faulting at each ML. (This is the
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FIG. 1: Comparison of the experimental diffraction spectrum
SK134 along the 10.l row (triangles) for a disordered ZnS
single crystal [5, p. 134] with spectra estimated from the
FM with 5% deformation faulting (dashed line) and r = 3
ε-machine (solid line). The vertical scale in the inset is loga-
rithmic intensity.

FM predicted spectrum given as a dashed line in Fig. 1).
We find that the smallest-r ε-machine that gives adequate
agreement (solid line) with experiment is estimated at
r = 3; it is shown in Fig. 2.

It is possible to give an approximate equivalent of this
ε-machine in terms of the FM, but we stress that this
decomposition is not unique. We associate each closed,
nonintersecting loop (called a simple cycle or SC [15]) in
the ε-machine with either a crystal structure or a fault.
In this way, ε-machines directly describe familiar struc-
tures in polytypes. For instance, the closed loop between
causal states C and H in Fig. 2 implies a stacking se-
quence . . . 010101 . . ., which is simply the Hägg nota-
tion for the HCP structure. One concludes, then, that
there is no qualitative difference between what one calls
faults and crystal structure. The distinction is, in fact,
quantitative and one of convenience—crystal structures
have relatively high probabilities, as opposed to the rarer
faults. For the most general r = 3 ε-machine, it is known
that there are 19 such SCs [16]. Since eight indepen-
dent CFs are sufficient to specify an r = 3 ε-machine,
the problem of decomposing the ε-machine into SCs is
underdetermined. This conclusion holds for all r ≥ 2.
Therefore, without a fortuitous vanishing of causal states
or transitions, the fault description is not unique.

For the sake of comparison with previous FM analyses,
we decompose the ε-machine in Fig. 2 into SCs with the
assumption that faults corresponding SCs of length 7 or
greater are not present. We define the fault density as
the sum of the weights of the arcs forming the fault [14].
We can then assign a fault density distribution for SK134
(second column) as follows and compare it to that of [5]
(third column):
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FIG. 2: The recurrent causal states {A − H} of the recon-
structed ε-machine estimated from the experimental diffrac-
tion spectrum SK134 of Fig. 1 with r = 3. Asymptotic state
probabilities are given in parentheses; edge label s|p indicates
a transition on symbol s with probability p.

HCP 64% 83%
CCP 8% 0%
Deformation Fault 16% 17%
Growth Fault 6% 0%
Layer Displacement Fault 6% 0%

The ε-machine description of the crystal differs signifi-
cantly from that of Sebastian and Krishna [5]. While
we both find qualitatively that deformation faulting is
important, we also detect CCP structures, as well as
growth faults and layer displacement faults. Overall, ε-
machine analysis finds a much more disordered crystal.
This is borne out when comparing the FM and ε-machine
diffraction spectra. Fig. 1 shows that, while both agree
reasonably well with experiment at the broadened peaks
at l = 0.5 and 1, the ε-machine is in better agreement
along the shoulders of the Bragg peaks, as well as at the
rise in broadband intensity at l ≈ 0.67 (inset in Fig. 1).

Fig. 3 plots the experimental diffraction spectrum
along the 10.l row (triangles) for a HCP ZnS crystal an-
nealed at 500 C for one hour. Sebastian and Krishna [5]
calculate a twin-fault probability of 12% from the ob-
served half-widths of the peaks. The calculated diffrac-
tion spectrum for such a faulting mechanism is shown in
Fig. 3 (dashed line). Only the peak at l = −0.33 was
used to find the faulting mechanism, and one sees that
the FM reproduces it well. However, the second peak at
l = −0.67 is poorly represented, as is the diffuse scat-
tering between the two peaks. This demonstrates the
pitfalls in simply fitting an FM to a single Bragg peak,
ignoring the information contained in other peaks and in
the diffuse scattering. We also note that the small rise in
diffracted intensity at l ≈ −0.16 is likewise missed by the
FM. The ε-machine spectrum (solid line) also misses this
rise, but otherwise is in excellent agreement with the ex-
periment. Fig. 4 shows the reconstructed ε-machine ob-
tained at r = 3. The large probabilities for causal states
A and F and their large self-loop transition probabili-
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FIG. 3: Comparison of the experimental diffraction spectrum
SK135 along the 10.l row (triangles) for a disordered CCP ZnS
single crystal [5, p. 135] with the diffraction spectra calculated
from the the FM with 12% twinned faulting (dashed line) and
r = 3 ε-machine (solid line).

ties, associated with stacking sequences . . . 1111 . . . and
. . . 0000 . . ., indicate that this is a twinned-CCP crystal.
The missing H → C causal-state transition, and so the
resulting absence of the . . . 0101 . . . stacking, implies that
the original HCP structure has been eliminated.

In conclusion, we presented a novel method for discov-
ering and describing planar disorder and organization in
CPSs. We demonstrated that the FM, both in concep-
tion and practice, is unable to accommodate the variety
of stacking arrangements possible in nature. In contrast,
ε-machines provide a unique description of structure and
can be used to quantify any amount of disorder. We
argued that simply examining the effects of disordered
stacking on the Bragg peaks is insufficient to properly
detect the disorder present. Moreover, we quantified the
memory length for disordered 1D systems; for the ZnS
samples considered it was 3 MLs. Thus, we find that
the memory length in disordered structures for ZnS (as
for long-period ordered structures) clearly extend beyond
the calculated range (1 ML) of interlayer interaction [17].
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FIG. 4: Recurrent states of the reconstructed ε-machine for
the experimental diffraction data SK135 of Fig. 3 using r = 3.

While we performed ε-machine reconstruction only to
r = 3, the extension to higher r is straightforward, but
quite demanding computationally. Additionally, know-
ing the ε-machine for a material’s spatial patterns al-
lows calculation of physically relevant quantities. We
show elsewhere that given the coupling constants be-
tween MLs [17], we can determine the average stacking-
fault energy for a disordered crystal [14]. We expect that
other physical parameters will be amenable to calculation
directly from ε-machines.
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