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We generalize the exact predictive regularity of symmetry groups to give an algebraic theory of
patterns, building from a core principle of future equivalence. For topological patterns in fully-
discrete one-dimensional systems, future equivalence uniquely specifies a minimal semiautomaton.
We demonstrate how the latter and its semigroup algebra generalizes translation symmetry to par-
tial and hidden symmetries. This generalization is not as straightforward as previously considered.
Here, though, we clarify the underlying challenges. A stochastic form of future equivalence, known
as predictive equivalence, captures distinct statistical patterns supported on topological patterns.
Finally, we show how local versions of future equivalence can be used to capture patterns in space-
time. As common when moving to higher dimensions, there is not a unique local approach, and we
detail two local representations that capture different aspects of spacetime patterns. A previously-
developed local spacetime variant of future equivalence captures patterns as generalized symmetries
in higher dimensions, but we show this representation is not a faithful generator of its spacetime
patterns. This motivates us to introduce a local representation that is a faithful generator, but
we demonstrate that it no longer captures generalized spacetime symmetries. Taken altogether,
building on future equivalence, the theory defines and quantifies patterns present in a wide range of
classical field theories.
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I. PATTERNS IN NATURE

Symmetry plays a central role in fundamental physics.
When we look out at the world around us, on the human
scale, however, there is a notable lack of exact symme-
tries. Cows are not spherical, for instance. The discon-
nect between physics at the fundamental level and the
human scale is often described in terms of spontaneous
symmetry breaking. How and why spontaneous symme-
try breaking occurs so ubiquitously in natural systems
are interesting and challenging questions, but not our
concern here. Rather, we are interested in the question of
what structures result from broken symmetries. In par-
ticular, a special case of spontaneous symmetry breaking
is spontaneous self-organization. But what is organiza-
tion in the first place? Can we mathematically formalize
it and quantitatively measure it?

We will use the general rubric pattern to refer to the
forms of organization that spontaneously emerge in nat-
ural systems. When a system undergoes a spontaneous
symmetry breaking event it self-organizes into some pat-
tern, either in time, space, or both.

In many canonical examples of pattern formation near
equilibrium [1-3]—recall the convection roles that emerge
in Bénard flow [4, 5] or the spiral waves in the Belousov-
Zhabotinsky chemical reaction [6, 7]—a system under-
goes a continuous-to-discrete symmetry breaking bifur-
cation event. This occurs when it self-organizes, going
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from a homogeneous state with trivial continuous space-
time symmetries to a state with nontrivial discrete sym-
metries.

Hexagonal convection cells form in a fluid with veloc-
ity initially zero everywhere during a Bénard instabil-
ity. Belousov first discovered a “chemical clock” with
a discrete-time symmetry oscillation that arises from an
initially stationary mixture. Farther from equilibrium,
these discrete symmetries may be further broken during
subsequent bifurcations, resulting in states we may con-
sider “patterned”, but that have no discernible simple
symmetries remaining. Turbulent fluid flows containing
coherent structures [8, 9], such as Jupiter’s Great Red
spot [10, 11], provide many commonly-encountered ex-
amples.

What we would like then, and what the following con-
tributes, is a unified account of patterns—an account
that rigorously and formally describes the full range of
phenomenon including, but going beyond, organizations
with exact symmetries. Given that symmetries are for-
mally captured using the mathematics of group theory
and given the enormous success group theory has had
in formulating physical theory [12], we take an algebraic
approach to framing patterns as generalized symmetries.

We start with the simplest setting of discrete one-
dimensional spatial systems (e.g., spin lattices) and
show how the semigroup algebra of semiautomata—
a mathematical representation originating in symbolic
computation—generalizes translational symmetry. In do-
ing so, we rigorously clarify subtleties posed by this
generalization—subtleties that have not been previously
addressed. Based on this, we introduce a classification
hierarchy in terms of exact symmetries, partial symme-



tries, hidden symmetries, and general patterns. We also
describe distinct statistical structures supported on these
one-dimensional patterns and show that stochastic gen-
eralizations of semiautomata provide mathematical rep-
resentations of these statistical structures.

In addition, we explore generalizations to patterns in
higher dimensions. We introduce a class of local mod-
els that generalize the semiautomata approach for spa-
tiotemporal systems. Two models in this class are shown
to be particularly useful. Intriguingly, the utility of
these models are apparently mutually exclusive. The
first model, introduced previously, can discover hidden
spacetime symmetries and coherent structures [13], such
as those in turbulent fluid flows [14]. However, we de-
scribe a previously unknown shortcoming of these mod-
els: they are not consistent generators of their associated
spacetime field patterns. The second model, introduced
here for the first time, corrects this flaw and introduces
a consistent generator of spacetime field patterns. Un-
fortunately, it loses the first model’s useful generalized
spacetime symmetries.

These  representations’  conflicting  strengths—
generalized spacetime symmetries and consistent
spacetime generation—add new questions and suggest
new paths of inquiry to the enigma of patterns in higher
dimensions [15-17].

II. ONE-DIMENSIONAL PATTERNS

Abstractly, we can think of a pattern as a predictive
regularity [18]:

. some object O has a pattern P—O has a
pattern ‘represented’, ‘described’, ‘captured’,
and so on by P—if and only if we can use P
to predict or compress O.

On one extreme, symmetries represent an exact predic-
tive regularity. If the symmetries are known, the pattern
can be perfectly predicted at any other point in time
or space. On the other extreme, a completely random
system is entirely devoid of predictive regularity. If ev-
ery point in spacetime is an independent, identically dis-
tributed random variable, there is no regularity. And so,
knowledge of any part of the system cannot be leveraged
to predict other parts of the system. The notion of pat-
tern that we seek encompasses both of these extremes
and systems in between. A general pattern will be nei-
ther perfectly predicable nor entirely unpredictable—it
will be an amalgamation of regularity and randomness.
Before proceeding, let us briefly compare and contrast
the theory developed here with the Pattern Theory of
Ulf Grenander and colleagues [19]. As both aim at a
general quantitative understanding of what patterns are
and how to discover them in the world, there are many
conceptual similarities. While some quantitative simi-
larities emerge, in particular the use of nonparametric
learning algorithms for hidden Markov models [20], most

of the quantitative machinery differs. Pattern Theory is
grander in scope than what is developed here, and so we
do not require the very general constructs of bonds, con-
nectors, configurations, images, and the like [19]. Like-
wise, Pattern Theory does not employ the machinery of
symbolic dynamics, sofic shifts, and predictive equiva-
lence used here. Thus, our work is complementary to the
more general approach of Pattern Theory.

A. Statistical Field Theories

The following mainly concerns fully-discrete one-
dimensional spatial systems. These are given as a
shift space X—a set of indexed bi-infinite sequences, or
strings, of symbols taken from a finite alphabet A. Before
diving into details, let’s first take a moment to compare
shift spaces to the analogous setup from statistical me-
chanics for analyzing ordered systems.

A shift space can be thought of as a topological ensem-
ble—a set of strings—in contrast with a statistical ensem-
ble that is a distribution over a set of strings. This is an
abstraction of discrete-spin models in one-dimension—
e.g., A = {—1,1} for a standard Ising model. Rather
than specify interactions on the spin lattice and analyze
the resulting statistical field theory, we wish to analyze
any pattern present for a given (topological) ensemble X.

A key distinction between a shift space X as a topolog-
ical ensemble and a spin lattice ensemble in a statistical
field theory is that all elements z € X are related to
one another through the shift operator o. (Formally de-
scribed below.) In fact, for the irreducible sofic shifts we
consider, (X, o) is an ergodic dynamical system. And so,
every member x of the ensemble can eventually be sam-
pled through ¢’s action. Thus, we equivalently consider
(i) X as an ensemble of points and ¢ as a deterministic
mapping between those points or (ii) X as a single in-
finite lattice and o moves indices on that lattice. The
difference is that of active versus passive transformation.

Spontaneous symmetry breaking in statistical field the-
ories is monitored through an order parameter; such as
total magnetization for an Ising model. In the symmet-
ric “ordered” phase, the order parameter has a nonzero
value and, after a symmetry-breaking phase transition,
the order parameter vanishes. For the Ising model, be-
low the transition—below the critical temperature—spins
tend to align giving nonzero magnetization. At zero
temperature the model reaches its ground state with all
spins aligned. This is a fully symmetric state with maxi-
mal magnetization, corresponding to strings of the form
{..,1,1,1,...}or{...,—1,—1,—1,...}. Above the crit-
ical temperature, this symmetry is fully broken, with zero
magnetization.

While effective as an approach to thermal spin lattices,
such as the Ising and related lattice models, abstractly
quantifying “order” with a single scalar quantity—the
order parameter—is far from ideal.

First, for the Ising model, there are only two configura-



tions with maximal magnetization, as given above. Sec-
ond, these configurations are maximally symmetric, with
oP(x) = « for integer p. Consider, though, configurations
of the form {...,—1,1,—-1,1,—1,...}. These configura-
tions are still symmetric, with 0?P(z) = x, although they
have vanishing order parameter. There are many such
symmetric configurations with zero magnetization: e.g.,
those of the form {...,(=1)",(1)",...}, with o?"?(z) =
z. More novelly, there are zero order-parameter con-
figurations that are neither completely symmetric nor
completely random. Third, these symmetric sequences
with zero order parameter are not the ground state and
they are not stable under thermal perturbations. Thus,
though singled out by the choice of total magnetization
as the order parameter, they are edge cases that will al-
most never be seen. Finally and more generally, order
parameters in statistical mechanics are not determined
from first physical principles. They must be posited ini-
tially and then proved appropriate.

Similarly, correlation functions and structure factors
are additional and commonly-employed scalar quantities
that capture one or another notion of order. Conceptu-
ally, a system considered highly ordered will surely be
highly correlated. Patterns that emerge on the macro-
scopic scale correspond to collective behaviors on the mi-
croscale that certainly exhibit nonzero correlations. How-
ever, as with order parameters, there can be many degen-
eracies between specific patterns and correlation values.
In short, order is something beyond correlation. A di-
verging correlation length in an Ising model at the criti-
cal temperature does not signify the presence of intricate
patterns and organization, such as spiral wave patterns
in lattice models of excitable media [21]. To remedy these
failings we seek a definition of pattern that is not scalar.

This is not to banish all scalar quantities. Many, in
given settings, can be insightful [22-25]. We will show
that the algebraic presentations for topological patterns
have a natural extension to patterns in statistical field
theories. Moreover, scalar quantities of interest, like cor-
relation functions, can be computed in closed-form from
the stochastic presentations. We also return later, briefly,
to discuss generalized order parameters in light of the al-
gebraic theory.

B. Symbolic Dynamics

We now detail shift spaces and how they quantify topo-
logical patterns as generalized symmetries. Consider a
finite alphabet of n symbols A = {0,1,...,(n — 1)} and
(indexed) bi-infinite symbol sequences or strings. The set
AZ of all possible bi-infinite sequences is known as the
full-n shift. A particular sequence © = ...x_129Z1... €
A? is described as a point in A”. For now, we need not
specify whether sequence indices are time coordinates or
space coordinates. In either case, translations are gener-
ated via the shift operator o that maps a point € A% to

another point y = o(z) whose i*"" coordinate is y; = x4,

for all 4. (That is, o shifts every element of  one place
to the left.) Our interest is in patterns as predictive reg-
ularity, and the predictions are made over translations
generated by o. Thus, we want to capture patterns in
closed, o-invariant subsets of A%. The subsets are called
shift spaces (or subshifts or simply shifts).

Often one can concisely specify a shift space as the set
of all strings that do not contain a collection of forbidden
words. A word is a finite block of symbols a; € A and a
point z is said to contain or admit a word w = agay - - - ax
if there are indices i and j = ¢ + k such that z;; = w;
explicitly, z; = ao, %41 = a1,...,2j—1 = ai. Again, a
word is a finite sequence of symbols; a string, bi-infinite.

For a collection F of forbidden words, define Xz to
be the subset of strings in A% that do not contain any
words w € F. A shift space X is a subset of the full shift
AZ such that X = X for some collection F of forbidden
words [26]. The language W(X) = F°¢ of a shift space X
is the collection of all words that occur in some point in
X.

If F is a finite set, the resulting shift space is called
a subshift of finite type [27] or an intrinsic or a topo-
logical Markov chain [28]. A wider class of finitely-
definable shift spaces are the sofic shifts. These are the
closure of subshifts of finite type under continuous lo-
cal mappings—k-block factor maps [29]. Though, note
that there are many equivalent definitions of sofic shifts;
several of which are given below as needed. A sofic
shift is srreducible if, for every ordered pair of words
u,v € W(X), there is a word w such that uwv ¢ F. For
reasons elaborated on shortly, we define general discrete
one-dimensional patterns as irreducible sofic shifts.

C. Sofic Shifts as Topological Patterns

To recap, we seek a mathematical specification of pat-
terns in strings that captures a range of organizations
spanning fully-symmetric sequences to arbitrary (“ran-
dom”) sequences. Moreover, we wish to identify, from
first principles, an associated algebra that generalizes the
group algebra of symmetries. For physical consistency,
we started with shift spaces since they are shift-invariant
subspaces of strings. To fulfill the algebraic requirement,
we now further restrict to sofic shifts as they are shift
spaces defined in terms of a finite semigroup [29].

Recall that a group is a set of elements closed under an
associative and invertible binary operation with an iden-
tity element. In this, they are too restrictive and impose
only exact symmetry. In contrast, semigroups require
neither invertibility nor an identity operation. This re-
laxation is key to defining generalized patterns, as we laid
out above. It permits exact symmetries but also allows
expressing noisy and approximate symmetries.

The elements of a sofic shift’s semigroup are words and
the binary operation is word concatenation. For exam-
ple, the set W(A%) of all words in A% and their concate-
nation products together form the free semigroup. For



example, the product of u = 00 and v = 11 in the free
semigroup is the word w = wv = 0011. A sofic shift
X = Xz is defined in terms of a finite semigroup G with
an absorbing element e, whose product is ge = eg = ¢
for all g € G. The absorbing element e together with
the elements from the alphabet A = {0,1,...,(n — 1)}
generates G via single-symbol concatenations. G’s pro-
duction rules are such that for any pair of allowed words
u,v ¢ F, if their concatenation w = uv contains a for-
bidden word f € F, then their product in G gives the
absorbing element uv = e.

A semigroup of word concatenations is also associ-
ated with a simple presentation in the form of a semiau-
tomaton finite-state machine [30]—the triple (2, .4, M),
where E = {&,&1,...,&n} is a set of internal states,
A = {0,1,...,(n — 1)} is the symbol alphabet, and
M = {My, My,...,M,_1)} is a set of mappings from
Z into =. To be explicit, we consider deterministic
and fully-specified semiautomata for which each M, is
a function—each input has one and only one output—
with domain over the full set = of internal states. Semi-
automata can be usefully depicted as an edge-labeled di-
rected graph. The vertices represent the internal states in
= and for every pair (&;,¢;) such that & = M,(&;) there
is an edge labeled a € A that leads from &; to §;. For a
deterministic and fully-specified semiautomaton, there is
an edge labeled with each symbol in A emanating from
every state in =.

A fully-specified semiautomaton directly determines a
subshift’s algebra from the free semigroup as follows. For
every state & € Z and any element agay - - - ag of the the
free semigroup A% there is a map M,, o M,, o---o M,,
from ¢; to another state {; € = [30]. A deterministic
and fully-specified semiautomaton is a presentation of a
sofic shift if we include an absorbing “forbidden” state
¢ € Z. That is, the mappings associated with all ele-
ments of the free semigroup containing a forbidden word
in F lead to the forbidden state. And, all mappings from
the forbidden state return the forbidden state. That is,
My (&) = & for all & and w € F, and M, (&) = & for
all a € A. See Fig. 1 for presentations of example shifts.

Since sofic shifts are defined by a finite semigroup,
every sofic shift can be presented by a semiautomaton
with a finite set of states =. Recall from above that the
idea of compression is related to our intuition of pat-
tern. A pattern—a predictive regularity—allows for a
compressed representation of a system’s behaviors. Note
that sofic shifts and their presentations provide a finite
representation of an ensemble of infinite strings through
their finite semigroup.

Here, we distinguish between three types of sofic-shift
semiautomaton presentation. Appendix A gives example
constructions of these three types of presentation.

The most straightforward presentation assigns a state
& € = to each element of a semigroup G of X and fills in
the state transitions M, using G’s production rules [31].
While straightforward to construct, if a G is known, this
semiautomaton presentation is not necessarily minimal,
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in terms of the state set size |E|. To specify a particular
pattern as a sofic shift, it is crucial to have a minimal
and unique presentation associated with the given sofic
shift. This also allows extracting unambiguous quantita-
tive measures of the ensemble of strings, such as measures
of correlation, from the finite presentation.

An important presentation that is minimal and con-
structible without knowing any G is X’s future cover [32],
defined below. The future cover semiautomaton of every
irreducible sofic shift X has a unique strongly connected
component [33, 34]. This irreducible component is our
mathematical representation of patterns as generalized
symmetries. We refer to it as the canonical machine pre-
sentation P(X) of X. The future cover and its recurrent
component P(X) provide a unique, minimal mathemat-
ical representation of X.

The future set (sometimes follower set) Fx(w) of a
word w € W(X) is the collection of all words u such that
wu € W(X). Define the future equivalence relation ~p
on X as:

u ~p v < Fy(u)=Fxr(v), (1)

for all u,v € W(X).
An important definition of sofic shifts that we use
shortly is:

Theorem (1). [26, Theorem 3.2.10] A shift space is sofic
if and only if it has a finite number of future sets.

Therefore, sofic shifts have finitely-many equivalence
classes, denoted [-]p, and these equivalence classes plus
the absorbing forbidden state are the internal states = of
the future cover semiautomaton.

The mappings M, that give the state transitions are
defined from the allowed concatenations that do not
contain a forbidden word in F. That is, each state
& € 2\ {&} is an equivalence class [u]r and, for each
symbol a € A, the concatenation v = ua # e belongs
to the equivalence class [v]p assigned as state & € Z,
giving M, (&;) = &;. Note that this is independent of the
choice u € [u]r and that [v]F in some cases may be equal
to [u]p. This gives a self-edge transition in the semiau-
tomaton: M, (&) = &. If ua = e, then M,(&;) maps to
the forbidden state &.

This natural transition structure follows from future
equivalence and it leads to a very important property of
the future-cover semiautomata. They are called unifilar
[35] in information theory, equivalently also called right
resolving in symbolic dynamics [26, Corollary 3.3.19] or
deterministic in automata theory [36]. A fully-specified
semiautomata is unifilar if for every internal state &; and
every word (element of the free semigroup) apa; - - - ag
the map M,, o M,, o---M,, leads to one and only one
internal state &;. (It may be that j = i.)

Unifilarity is the defining property of a predictive semi-
automaton. Since the goal is to formalize patterns as pre-
dictive regularities, this is an important point to stress.
By way of contrast, first note that any presentation of
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FIG. 1. Semiautomata presentations P(X): (a) Exact symmetry shift, (b) partial symmetry shift, (¢) hidden symmetry shift,

and (d) general pattern sofic shift.

a sofic shift X', whether unifilar or not, is a generator
of X. Every string in X' can be generated by following
the symbol-labeled transitions of the presentation and no
forbidden words can be generated. Thus, being genera-
tive can be thought of as the baseline property of any
model of a sofic shift. Prediction is an additional capa-
bility beyond generation that arises from a presentation
being unifilar.

Unifilarity establishes a presentation as predictive in
the following way. For topological patterns, the task of
prediction is to establish what may happen in the fu-
ture, given what has happened in the past. Specifically,
given a word w, what words are allowed to follow in the
shift space? That is, what is w’s future set? Due to
the implied determinism, each internal state of a unifilar
presentation is uniquely specified by the word w leading
to that state. Notably, this is not guaranteed for an ar-

bitrary generator of a shift. Furthermore, in a unifilar
presentation every subsequent word again uniquely leads
to another internal state. It is straightforward to see that
the future cover is a predictive presentation: By defini-
tion, its internal states are future separated—the set of all
words that may follow from each internal state is unique.
To establish that sofic shifts and their canonical ma-
chine presentations express patterns as generalized sym-
metries, it is helpful to first describe how they capture
exact translation symmetries of symbolic sequences.

D. Exact Symmetries

A string = has a discrete translation symmetry if
oP(x) = x, where the minimal such p € N is the sym-
metry’s period. The symmetry group is the set {o"?



n € N} with 0?¢/P = "7 where k = i + j. Since here p
is finite, the action of o on x produces a compact shift-
invariant subspace of A%. Therefore, translation sym-
metric strings are shift spaces X.

We now show that the shift space X of translation sym-
metric strings is sofic. The action of the symmetry group
used to define x is determined by the shift operator o,
while the action of sofic semigroups is word concatena-
tion.

To connect these, consider windows x;.; (i < j) that
return the word w from coordinates ¢ through j in x.
For (i < j < k), if ;5 = v and xj, = v, then
T = w = uwv gives the concatenated window. Recall
that o shifts indices in = so that o%(x); = z;ys. If we
have a word u € W(X), there is some (4, ) such that
%35 = u. Then the allowed concatenations uv # e are
determined by the shift operator o, since we can write
v =24k = (xj)0(x);0%(); - oF(x);. All such con-
catenations determine X’s semigroup G. For translation
symmetric strings with o?(z) = z, o?(z); = ;. And so,
intuitively, there is only a finite number of elements in G.
Therefore, X for translation symmetric strings is sofic.

We now show this explicitly by constructing the canon-
ical machine presentation P(X) with a finite number of
states.

Proposition. Translation-symmetric strings, o?(x) = x
for some p € N, together with their shifts y = o™(x) for
all n € N, form an irreducible sofic shift space.

Proof. First, note that o (x) = x implies x can be written
as a tiling ---bbbbb- - -, where b is a word of length p.
Pick any x; as the first symbol by in the word b. Then
o(z)i = b1, 02(z); = by, ..., with 0P~ = b,. Applying
o one more time gives o?(z); = x; = by, arriving at the
next tile b.

Second, using this observation we create P(X) using
p + 1 internal states, where we have a state &, for each
symbol b; € A in the tile b (there are p of these) and one
absorbing state .. Let &, be the future set equivalence
class [b]p of the word b. Due to z’s exact symmetry,
there is one and only one symbol a € A such that ua # e
for u € [b]p; namely by. Therefore, let My, (&p,) = &by s
and then all other M, map to &, for a # b;. Now,
&b, = [bb1]r and bs is the only symbol such that ua # e
for u € [bbi]p. Thus, My, (&,) = &, and all other M,
map to &, for a # by. Repeat this argument for all
generators in b, with &, = [bbiby...bylr = [bb]p.

Third, as with &,, the only symbol that can follow is
b1 and we repeat the full argument again, where each b;
sequentially follows. Therefore, [bb]r’s future set equals
that of [b]z and so [bb]p = [b]p. Thus, the only transition
from &, that is allowed returns to the original state &, .
This completely specifies P(X) with a finite number of
states = = {&py, .- -,&,, &} Given Theorem (1) above,
one concludes that the shift space X for a translation
symmetric sequence is sofic. O

Figure 1(a) gives an example of P(X) for the set
of translation symmetric strings ---000111000111000 - - -

with b = 111000. For visual clarity it omits the self-loops
on state ..

Recall that P(X) is the irreducible component of the
future cover, so for a given shift there may be additional
states beyond those just described. However, these are
equivalence classes for words of length less than p, since
we started with [b]p. Since p is finite, there are only
finitely many additional equivalence classes. These cor-
respond to transient (nonrecurrent) states of the future
cover semiautomaton.

In Fig. 1(a)’s example, knowing x; = 0 does not fully
specify which state P(X) is in, since three states &3, &4,
and &5 correspond to observing symbol 0. The additional
transient states of the future cover specify how to syn-
chronize to P(X)’s states from the generators a € A
(single-symbol words).

Having constructed the canonical machine presenta-
tion P(X), we can further relate X’s semigroup action to
2’s translation symmetry group. For each state &, € E
there is one and only one transition that does not lead
to the absorbing forbidden state £.. That is, only one
generator a € A can be concatenated to the words
u € [u]p = &,. Similarly, if we consider a word u € &; as
the window u = z;.;, then a unit shift by o reveals one
and only one new symbol at index j in U(iﬂ)i:j. There-
fore, ignoring the absorbing state and transitions to it,
the graph of P(X) is a cyclic graph with period p: Every
p-length path from &; returns to &; for all §; € =\ {&.}.
Thus, the permutation symmetries of this (edge-labeled)
graph correspond to elements of z’s translation symme-
try group.

In Fig. 1(a)’s example, the state labeled &, corre-
sponds to the start of the tile b = 111000, but we could
equivalently use &, as the start of tile 000111. Fur-
thermore, the internal states have a functional mean-
ing. They are the elements of the quotient group of the
translation symmetry—counters that track the symme-
try’s phase.

It must be emphasized that sofic shifts and their semi-
groups do not formally generalize such exact symmetries
in the obvious way. That is, the semigroup of a sofic
shift for exact symmetry strings does not become a sym-
metry group. G’s absorbing semigroup element e is still
required for an exact symmetry sofic shift X'. From our
construction of translation symmetric P(X) we see that,
for every internal state &,, # &., there is one and only
one transition that does not lead to &. This makes it
clear that exact symmetries are a highly restrictive form
of pattern. By representing exact symmetries using sofic
shifts and their machine presentations, though, it is now
straightforward to generalize by relaxing the restrictions
that impose exact symmetries.

E. Generalized Symmetries

Ignoring &, a sofic shift X whose machine presentation
is not cyclic then represents a pattern as a generalized



symmetry. We can again either consider X as an ensem-
ble of strings or one infinite sequence that possesses a gen-
eralized symmetry described by A’s semigroup, which is
well represented by the machine presentation P(X). By
removing the restriction of a cyclic graph in P(X)—that
imposed the perfect regularity of x = ---bbbbb - - - —we
now can capture a much wider class of patterned strings
with approximate or partial regularities.

Consider the extreme case of the full shift A% that has
no regularity. There are no products uv = e in G for
A% and so there are no restrictions on its words. The
algebra of the full shift is the free semigroup. Its machine
presentation P(A%) is a single state with all M, mapping
that one state back to itself—i.e., all transitions are self
transitions. Since all words can be concatenated to each
other, they all belong to a single future equivalence class.

We interpret A%’s complete lack of regularity to be a
null pattern. Analogously, the opposite extreme of total
regularity with strings of the form z = - - - aaaaa - - - for
a € A is also a null pattern with a single-state (again,
ignoring &.) machine presentation that has a single self-
transition. The null pattern, in these cases, has zero
memory—rthe logarithm of |=\{. }| vanishes. While both
extremes at first seem to be polar opposites, recall our
goal is that “pattern” represents a predictive regularity
and this is lacking in both cases. The full shift is com-
pletely “random” and thus unpredictable. Whereas, for
trivially translation symmetric strings x = ---aaaa - - -,
the future is always the same. There is nothing to pre-
dict.

Between the complete regularity of exact symmetries
and lack of predictive regularity in null patterns, we iden-
tify several categories of partial predictive regularity.

First, note that for translation symmetric strings
oP(x); = z; for all .

Second, there are string classes for which o?(z); = z;
for only some i. We call these partial symmetries.
A particular case of partial symmetries are stochastic
symmetries. For simplicity, consider binary sequences
with A = {0,1}, and let w denote a “wildcard” that
can be either 0 or 1 [37]. Sofic shifts with stochas-
tic (partial) symmetries are fully translation symmet-
ric after making wildcard substitutions. For example,
we can specify a sofic shift with sequences of the form
= - ww 0 ww 0 wwO -, say. Examples of such
strings are ---11 001 0000 10 0 11 0---, where spaces
help emphasize the “fixed” Os that are the scaffolding
of the partial symmetry. Note that the canonical ma-
chine presentation P(X’) for such stochastic symmetries
are also cyclic graphs, as shown in Fig. 1(b).

Third, recall that if the canonical presentation P(X)
is a cyclic graph, every p-length path from &; returns to
& for all & € 2\ {&}. Similar to how we generalized
from exact to partial symmetries, we define hidden sym-
metries for which only some states & € E\ {&.} return
to themselves on all p-length paths in P(X). We ex-
clude the case of p = 1, so that self-loops do not count
as a hidden symmetry. Figure 1(c) shows an example

with & as the symmetric state. The canonical machine
presentation specifies a sofic shift consisting of arbitrary
arrangements of blocks ¢ = 000 and b = 111; e.g.,

xr = ---aababba--- = ---000000111000111111000- - -.
The exact symmetry shift in Fig. 1(a) is the special case
of the symmetric tiling x = - - - abababa - - - .

Finally, Fig. 1 (d) gives an example of a general nonnull
pattern that is not an exact, partial, or hidden symme-
try. This is the well-known Even Shift [29, 31]—the set
of binary strings in which only even blocks of 1s bounded
by 0Os are allowed. This ...01270... pattern extends to
arbitrary lengths, despite being specified by only two in-
ternal states. While there are no states in the presenta-
tion P(X) that always return to themselves after p # 1
transitions, there is still predictive regularity. In partic-
ular, if a 1 is seen after a 0, it is guaranteed that the
next symbol will be a 1. This is specified by &g hav-
ing only one allowed transition to £4 on a 1. Appendix
A 2 discusses this example in more detail, along with its
semigroup and three semiautomaton presentations.

Before moving to probabilistic patterns represented by
measure sofic shifts, we note that Krohn-Rhodes theory
[38, 39] was the first to connect finite automata with a
semigroup algebra. Moreover, it showed that finite semi-
groups and their corresponding automata naturally de-
compose into simpler components, including finite simple
groups. This is yet another perspective showing finite au-
tomata and their semigroup algebra capture patterns as
generalized symmetries. Further exploration of the con-
nection between Krohn-Rhodes theory and the perspec-
tive developed here is left for future work. One important
difference to note is that their approach did not address
statistical or noisy patterns, as the following now does.

F. Statistical Patterns Supported on Sofic Shifts

The exposition on sofic shift patterns did not invoke
probabilities over symbols, words, or strings. Shifts
spaces are not concerned with the probability of a word
occurring, only whether a word can possibly occur or not.
This is why we referred to sofic shifts as topological pat-
terns. We just saw that exact symmetries are given as
sofic shifts and so are topological patterns. Recall that
our key motivation for showing this was to argue for sofic
shifts as a mathematical formalism that captures a no-
tion of (topological) pattern that greatly expands exact
symmetry to generalized symmetry. However, as we now
describe, we can generalize further to formalize statisti-
cal patterns that are supported on sofic shifts. Doing
so provides a direct link with the more familiar statisti-
cal measures of order and organization used in statistical
mechanics, such as correlation functions.

Our goal is to build a probability space on top of a
shift space. The key property of this probability space is
that words are assigned positive probability if and only if
they are allowed in the shift space. This is accomplished
through the use of cylinder sets as the sigma algebra on



a shift space X [40]. For a shift space X and a length-n
word w, the cylinder set C;(w) is defined as:

Cilw):={zeX : zfi:i+n—-1]=w}.

Naturally then, a probability measure w is assigned such
that the probability of a word w occurring is given as:

Pr(w) = pu(C;(w)) -

By definition, Pr(w) = 0 if w € F, as the associated
cylinder sets will be empty for forbidden words.

Such a probability measure defines a stationary
stochastic process over the shift space X if it is shift-
invariant, such that the probability of a word is inde-
pendent of the index ¢ in C;(w), and each word satisfies
prefix and suffix marginalization:

and:

pw)= > p(wa).

{a:waeW(X)}

This is the Kolmogorov extension theorem that guar-
antees the finite-dimensional word distributions consis-
tently define a stochastic process [41]. We only consider
shift-invariant measures and, so without loss of general-
ity, we simply use Cy(w) for the cylinder sets.

Crucially, the semigroup algebra and canonical ma-
chine presentation machinery for topological patterns
have natural generalizations to stochastic patterns, as we
now describe.

Following Ref. [42] in the context of shift spaces, a
(free) stochastic semigroup is a function F defined on
the free semigroup S, with identity element 1 (the empty
symbol), that satisfies the following properties ([40, Def-
inition 4.29]):

1. F(n) =1,
2. F(s) > 0 for each s € S and F(a) > 0 for each
a € A, and

3. D aeal(ais) =32, c 4 F(sa;) for each s € S.

For a sofic shift X', we define a stochastic semigroup
on X using the semigroup G defined above, with absorb-
ing element e corresponding to forbidden words. We
simply set F(e) = 0. Then, a shift-invariant measure
v satisfying Kolmogorov extension on a sofic shift X
with semigroup G forms a stochastic semigroup as fol-
lows. For all elements of the free semigroup aga; - - - ap—
i.e., for every word w = agay - - - ay—define F such that
F(n) =1, Flw) = 0 if and only if w € F (equiva-
lently, aga; ---ax = e in the semigroup G), and other-
wise F(w) = p(Co(w)). Such a measure 4 is called a
sofic measure [40].

In this way, sofic measures allow for statistical struc-
ture on top of a sofic shift X', while maintaining an alge-
braic structure related to AX’s semigroup algebra. More
importantly, there is a canonical machine presentation
associated with sofic measures, analogous to the canoni-
cal machine presentation of sofic shifts. As in the topo-
logical case for sofic shifts, the canonical machine presen-
tation of sofic measures provides the mathematical for-
mulation of statistical patterns.

Recall that the future cover semiautomaton—the
canonical topological machine presentation—is defined
from Eq. (1)’s future equivalence relation. The canon-
ical stochastic machine presentation is defined through
a stochastic generalization of future equivalence, called
predictive or causal equivalence, defined on semi-infinite
words. Each index ¢ partitions a sequence into a semi-
infinite past T; = {z;},7 < i, and semi-infinite fu-
ture 7; = {zr},k > 4. In the topological case, two
pasts are considered future-equivalent if they have the
same future—the same set of futures that follow. In
the stochastic case, two pasts are predictively or causally

equivalent if they have the same distribution Pr(X|X)
over futures conditioned on the past:

FimeT; = PrX|X=%) =Pr(X|X=5,). (2

Just as the future equivalence relation ~p defines the
unique minimal semiautomaton presenting a sofic shift,
the causal equivalence relation ~. defines the unique min-
imal hidden Markov chain (HMC) that presents a sofic
measure and its stationary stochastic process [18, 43].

Speaking simply, a hidden Markov chain (Z,.4,7)
is a semiautomaton whose deterministic symbol-labeled
transitions M = {My, My,...,M_1y} are re-
placed by symbol-labeled transition probabilities 7 =
{T°,7",..., 7TV}, where T¢e is the probability of
transitioning from state £ to £’ on the symbol a € A.

Paralleling the topological setting, the canonical
stochastic machine presentation is a hidden Markov chain
whose internal states Z=—the predictive or causal states—
are the equivalence classes of Eq. (2)’s causal equiva-
lence relation. The symbol-labeled transitions are then
defined through the one-step conditional distributions
Pr(X! = o/X = 7).
write Pr(X|X = ¢) since by definition each past ; in
the equivalence class £ = [?i]e has the same predictive
distribution.

The transition probability Tie s then given as

Pr(X! = a|y = &), with ¢ = [%,a]., where T ;a is
the new past given by concatenating the observed sym-
bol a onto the current past ;. This follows from unifi-
larity [18]: in the stochastic setting each internal state
¢ € = and symbol a € A there is at most one internal
state ¢ such that T¢'., > 0. It then follows that [T 0.
is the same for all & ; € ¢

Historically, the canonical stochastic machine presen-
tation (Z,.A,7) is known as the e-machine [18] of the
associated stochastic process. As described shortly, the

For a given causal state &, we



e-machine is a generator of its associated statistical field
theory. It generates all words with their correspond-
ing probabilities. Similar to its topological counterpart,
unifilarity additionally elevates the e-machine to a pre-
dictive presentation. Prediction in the stochastic setting
means identifying the predictive distribution associated
with a given past. And, by definition, an e-machine’s
causal states carry unique predictive distributions.

Summing over all symbol-labeled transitions produces
a Markov transition operator over the internal causal
states: Tc = ), 4T“ This operator evolves proba-
bility distributions over the causal states, regardless of
the symbols involved, and specifies an order-1 Markov
process over the states [18]. The left eigenvector of T
with unit eigenvalue provides the stationary distribution
over causal states: 7T, = w. For ergodic systems, as we
consider here, 7 is unique.

We emphasize that the causal states identify a hidden,
internal Markov process underlying the non-Markovian
process, over the symbols in A, specified by a sofic mea-
sure on a sofic shift. This inverts the abstract definition
of sofic measures, given as factor maps on Markov pro-
cesses [40]. There, a shift-invariant measure obeying Kol-
mogorov extension on a subshift of finite type produces a
Markov chain of finite order and sofic shifts are abstractly
defined as factor maps of subshifts of finite type. Hid-
den Markov chains are then given as the pushforward of
the Markov measure along the factor map. Here, in con-
trast, we start with a statistical field theory supported on
a sofic shift. The causal equivalence relation then identi-
fies the underlying causal states and the Markov process
defined over them.

With our given assumption of a stationary ergodic pro-
cess over symbols we can use the stationary distribution
7 and the symbol-labeled transition operators to directly
extract the word probabilities Pr(w) = p(Cp(w)) from
the e-machine presentation. First, single-symbol proba-
bilities are given as:

Pr(a) =Y m(¢) > T¢ . (3)

(EE §'eE

Where 25, T¢e gives the probability of observing the
symbol a € A, conditioned on being in causal state &,
and this is summed over all states in = weighted by their
stationary probabilities 7. We write this compactly as:

Pr(a) =

where (7| indicates 7 as a row vector and |1) is the col-
umn vector of all 1s.
The probability of a word w = aga; ...

Pr(aga; -+ - ax) = M(Co(aoal A, ak))
= (r|T™T™ ... T%[1) . (5)

(x[T*[1) , (4)

ay is then:

Recall that in the topological case, the semigroup algebra
of the canonical machine presentation is given through
composition of the mappings M = {M,}. Now, we see

the same semigroup algebraic structure in the products
of the symbol-labeled transition matrices 7 = {T*}. In
fact, the topological structure, the set of mappings M, is
recovered from the statistical structure, the set of transi-
tions T, by setting all nonzero elements of each T* € T
to unity and then applying future equivalence.

It must be emphasized that this last step, applying
future equivalence, is essential. There may be distinct
e-machines—presentations of statistical patterns—that
are supported on the same sofic shift—topological pat-
tern. Said another way, statistical patterns signify dis-
tinct structure supported on topological patterns. They
are not merely “adding probabilities onto” topological
patterns. Formally, the symbol-labeled transition matri-
ces T can represent a different semigroup than that rep-
resented by their topological counterparts M on which
they are supported. Appendix B illustrates this distinc-
tion.

Let us briefly turn to mention the quantitative benefits
of having these presentations. Using the word probabili-
ties as just described, in addition to the underlying pat-
tern of the sofic shift that supports the ensemble, a wide
range of statistical properties of the sequence ensembles,
such as correlation functions, power spectral densities,
and informational properties [44, 45] can be directly de-
termined via the e-machine. For example, the Shannon
entropy rate h, of an ensemble measures its degree of
randomness and can be calculated as:

H[Xo.(]
h'u o £1~>oo V4

= lim H[X0|X_g:0]
£—00

) Y Y T ok T

(€= acAg'€eE

where Xg.¢ for £ > 0 is the random variable for the subse-
quence of symbols zgxy - - - x¢_1. Moreover, the Shannon
information in the causal states measures a process’ his-
torical memory. For more nuanced information measures
of patterns in stochastic processes and spin systems, see
Refs. [24, 46-52].

III. PATTERNS IN SPACETIME

The preceding demonstrated that sofic shifts and their
semiautomaton presentations provide a formulation of
patterns in discrete one-dimensional systems. And, it
showed how they generalize to stochastic ensembles with
associated information-theoretic measures. With this,
one can argue that the theory of one-dimensional pat-
terns in discrete stationary processes, augmented with
the cited extensions, is largely complete. Now, we turn to
the question of how to capture patterns in higher dimen-
sions. While patterns in this new setting are amenable to
similar analysis, there are key differences, new phenom-
ena, and open problems.



Consider now the time evolution of symbols A on the
sites of a spatial lattice £. A spacetime field x € A*®7 is
a time series xg, x1, . .. of spatial configurations z; € A~.
With a d-dimensional lattice £ = Z? a spacetime field x

is an element of a spacetime shift space AL [15, 17].
In what follows, upper indices on field values are spatial
coordinates (e.g., at time ¢ site ¢ has value z*) and lower
indices are time coordinates (e.g., x¢).

Multidimensional shift spaces are notoriously diffi-
cult to study, with many simple properties being un-
computable [17]. Similarly, while sofic shifts and their
canonical machine presentations provide a mathemat-
ical formalism for patterns as generalized symmetries
in one dimension, generalizing to higher dimensions is
not straightforward. Significantly, there is not a unique
generalization for finite-state machines and regular lan-
guages in higher dimensions [16]. If there were a
unique generalization, we could use the semiautomata
special case as the mathematical representation of high-
dimensional patterns.

As we argued, models that create a compressed rep-
resentation of a system’s behavior must do so by har-
nessing patterns—predictive regularities—in the system.
Fully-discrete one-dimensional systems are ideal as there
is a unique minimal presentation—the e-machine—of the
system and, in this case, that predictive presentation is
the pattern. The situation is more complicated in higher
dimensions. A conflict arises between useful generalized
spacetime symmetries and predictive presentations that
faithfully generate fields in their spacetime shift spaces.

We now outline the local spacetime generalization of
predictive equivalence for constructing presentations of
spacetime patterns. As with finite-state machines and
regular languages, degeneracy is broken when moving to
higher dimensions as the spacetime generalization is not
unique. In particular, we demonstrate that the shape of
local “futures” determines the algebraic properties of the
resulting local presentation.

A. Local Spacetime Presentations

Since an evolving spacetime field is a time series of
spatial lattice configurations, it can be interpreted as a
one-dimensional shift space over an exponentially-large
alphabet (of lattice configurations). While formally well
defined, however, this perspective is an unwieldy basis
for a mathematical formulation of patterns in spacetime.
First, for space and time translation symmetries, we typ-
ically consider the idealized case of infinitely-large spa-
tial lattices. Thus, one must work with shift spaces over
an infinitely-large alphabet. Second, capturing patterns
within the spatial configurations themselves means not
treating an entire lattice configuration simply as a sin-
gle symbol, as done with the one-dimensional framing.
There is internal organization within the spatial configu-
rations that is dynamically and structurally important.

Therefore, we take a local approach to generalizing
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machine presentations of spacetime shift spaces [13, 53].
This is implemented by identifying equivalence classes
over local pasts that have the same future set of local fu-
tures in spacetime. The latter can be either topological
(sets) or statistical (predictive distributions).

Motivated by the causal restrictions of local interac-
tions, past lightcones in spacetime are the natural choice
for local pasts when building local presentations. For-
mally, the past lightcone L™ of a site (r,t) in spacetime
is the set of all field values xJ, at previous times (t' < t)
that could influence x} through local interactions:

L™ (r,t) = {XQ/ st <tand|r' —r[<c(t—t)}, (6)

where ¢ is the finite speed of information propagation
in the system. We include the present field value xj in
(r,t)’s past lightcone, but not in its local future.

Due to the richness and complication of multidimen-
sional shift spaces, the following explores only topological
spacetime patterns. Paralleling the one-dimensional de-
velopment, local presentations of topological spacetime
patterns are defined through the local analog of the fu-
ture equivalence relations:

L7 ~pLT

i ;= Fy)=FLy), (7)

where F(L;) = {Local futures co-occurring with L; }.
We define co-occurring local futures more precisely
shortly, as there are alternatives.

Relation (7)’s equivalence classes determine the inter-
nal states for a local spacetime presentation. The gen-
eralization of symbol-labeled transitions between the in-

ternal states is constructed in terms of spatial [o%(x)]} =

x;T* and temporal [o,(x)]; = x},, shift operators.
(Note that all space-time shift operators commute.) For
a past lightcone L™ (r,t) at spacetime site (r,t), let
0% (L (r,t)) denote the action of the shift operator on all
of the field values in L™ (r,¢). That is, an entire lightcone
is shifted analogously to an individual spacetime site.
The right spatial transition fringe is defined as the set
difference between L™ (r,¢) and o' (L™ (r,t)). This is the
generalization of the “symbol” emitted during a right-
wards move in one spatial dimension. Similarly, the left
spatial transition fringe is defined as the set difference be-
tween L™ (r,t) and o~ (L™ (r,t)), and the forward tempo-
ral transition fringe is the set difference between L™ (r, t)
and oy (L™ (r,t)) [53, Fig. 4]. For simplicity we consider
spacetime fields with one spatial dimension, but the gen-
eralization to higher dimensions is straightforward.
Time and space transition fringes form the appro-
priate alphabet to define local spacetime presentations
(2, A, M), with E the set of past lightcone equiva-
lence classes, A the set of space and time transition
fringe, and M the fringe-labeled state transitions [53].
Briefly, a site (r,t) in spacetime has an associated in-
ternal state &(r,t) that is the equivalence class of the
past lightcone L™(r,t). Consider the neighboring site
(r+1,t), which similarly has an associated internal state
&(r+1,t) = [L™(r+ 1,t)]p. The right transition fringe
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FIG. 2. Fringes induced by spacetime shifts: Co-occurring depth-4 past lightcone L™ (ro,to) (red) and depth-4 spacetime
patches resulting from concatenations of (a) left transition fringes Vi(ro,to) (blue), (b) right transition fringes V,(ro,to) (blue),
(c) forward transition fringes Vi(ro,to) (blue), and (d) unions of left, right, and forward transition fringes V' (ro,to0) (blue).
Arrows indicate the direction(s) in which local spacetime patches may be generated with successive concatenations to the seed

past lightcone L™ (7o, to).

provides the missing information to construct L™ (r+1, t)
from L~ (r,t). Therefore, £(r,t) plus a right transition
fringe uniquely determines {(r+1,t). That is, such local
presentations are unifilar, and therefore have the req-
uisite structure of predictive presentations. Recall that
predictive models are also generative.

Generating words is rather straightforward for machine
presentations in one dimension, markedly less so for lo-
cal spacetime presentations. The fringe-labeled transi-
tions establish local spacetime presentations (=, .4, M)
as local generative spacetime models. Local spacetime
patches, local “words”, are generated via concatenation

of transition fringe “symbols”. Denote concatenations of
right spatial fringes generally as V., to signify the partic-
ular shape of the resulting spacetime patches. Similarly,
let V; be the spacetime patches resulting from concate-
nations of left spatial fringes and V; the patches from
forward temporal fringes.

Note that spacetime patches are more than merely col-
lections of values from spacetime sites. The configuration
and space-time relation among the values matter. This is
why we refer to their shape. The V,. patches are a distinct
form of local spacetime words apart from V; and V;. Only
patches of the same shape may be concatenated together
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FIG. 3. Co-occurring past (L™) and future (L™) lightcones at
a spacetime site (ro,to) in 14+1 dimensions with ¢ = 1.

to extend patches.

Let V be the spacetime patches resulting from the union
of forward, left, and right transition fringes. Let depth
denote the number of single-fringe symbols concatenated
together in a particular spacetime patch word. See Fig. 2.

Concatenating fringes into local spacetime patches has
the same semigroup algebra structure as in the one-
dimensional setting. Similarly, the semigroup algebra is
captured by the local presentations through the action of
the fringe-labeled transitions M, analogous to the one-
dimensional presentations P(X’). We now examine pos-
sible choices of local futures and the algebraic properties
of the induced local presentations.

B. The Shape of Local Futures

Recall that Relation (7) did not specify local futures
when defining local presentations. The future sets F(L™)
of past lightcones there were intentionally left ambiguous
to allow for possible alternatives—alternatives that arise
to address several subtleties of spacetime shifts.

Prior work assumed that the natural choice for a local
future is a future lightcone Lt [13, 53, 54]. The latter is
defined as all field values at subsequent times that could
possibly be influenced from the given spacetime site x}
through the local interactions:

Lt (rt) = {xf,/ st >tand [P —r[ <c(t' —t)} . (8)

Co-occurring past (L7) and future (L*) lightcones at
spacetime point (rg,to) are depicted in Fig. 3 fora 1+ 1
dimensional spacetime field with ¢ = 1. Local presen-
tations constructed as equivalence classes of past light-
cones that have the same future set of future lightcones
are known as local causal states.

Interestingly, the benefit of local causal-state models
derives from generalized symmetries [13, 14, 54]. How-
ever, this is a spacetime symmetry distinct from the
semigroup algebra of fringe concatenations. While we
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describe these spacetime symmetries in more detail be-
low, we first demonstrate that such symmetries are at
odds with the semigroup algebra of fringe concatena-
tions for local causal states. That is, while employing
lightcones as local futures allows one to discover useful
spacetime symmetries, the resulting local machine pre-
sentation (2,4, M) is not a faithful generator of the
underlying spacetime shift space. Even though all lo-
cal presentations possess the unifilarity property of pre-
dictive models, the more basic generative ability falls
short unless the appropriate local futures are used. We
again emphasize that phenomena in higher dimensions
are complicated—sometimes in counterintuitive ways, as
the following demonstrates.

Elementary cellular automata (ECA)—see App. C—
produce spacetime shift spaces with nontrivial patterns
and structure in their spacetime fields; e.g., domains, par-
ticles, and particle interactions [55-57]. In addition, their
one-dimensional fully-discrete spatial lattices are shift
spaces and so provide a link between one-dimensional
shifts and 1 4+ 1 dimensional shifts of their spacetime
fields.

Following convention, denote the mapping from a past
lightcone to its equivalence class or, equivalently, to its
associated local (causal) state & -, as ¢(L7) = [L7|p =
&.-. Crucially, this provides a local pointwise mapping
over any spacetime field x. Each site (r,t) has a unique
past lightcone L™ that is then mapped to its local state
via €(L7). We use this pointwise mapping to trans-
form a spacetime field x to an associated local-state field
S = €(x) that shares the same coordinate geometry as
x. Each site S! in the local state field S is the local state
S! =& = ¢(L7) that is the image under the e-map of
the past lightcone L™ at the spacetime point xj.

An example spacetime field x from ECA Rule 90 is
shown in Fig. 4 consisting of black (z] = 1) and white
(x§ = 0) squares. The associated local causal-state field
S is shown as the overlaid colored letters, using lightcones
as local futures. In the case of Rule 90, there is a single
local causal state, labeled as A—all past lightcones are
future-lightcone equivalent.

This is consistent with prior findings [13, 54] that con-
nect the local causal states with the canonical machine
presentations of one-dimensional sofic shifts that repre-
sent invariant sets of spatial configurations for the ECA.
The full 2-shift is invariant under Rule 90, meaning there
are no forbidden words in the one-dimensional spatial
configurations generated by Rule 90. All binary strings
have pre-images under the global dynamic ® of Rule 90.
Recall that the canonical machine presentation of full
shifts consists of a single internal state and, hence, we ex-
pect the single local causal-state for the spacetime fields
produced by Rule 90.

Even though there are no forbidden words in Rule
90’s one-dimensional spatial configurations, there cer-
tainly are forbidden patches in its spacetime fields. In
particular, note that the ECA’s local update rule ¢ cor-
responds to a spacetime patch in the shape of a depth-1
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FIG. 4. ECA Rule 90 spacetime field depicted as white (0) and black (1) squares. The corresponding local causal-state field is
overlaid with colored letters; simply the single causal state A. Three sample right-transition fringes for past lightcone depth-2

are highlighted in colored (orange, green, purple) boxes.

past lightcone—the present spacetime site together with
its local neighborhood one time-step in the past. There-
fore, any spacetime patch of the same shape that is in-
consistent with local update rule ¢ is forbidden in the
spacetime shift space of the ECA’s spacetime fields. For
example, the following patch is allowed by Rule 90, since
$90(010) = 0:

O =

Therefore:

010

1
1
is a forbidden spacetime patch in Rule 90’s spacetime
shift space.

From ECA Rule 90’s single local causal-state it is easy
to see that the local causal-state machine presentation
is not a consistent spacetime generator. Since there is
only one state, A, all fringe-labeled transitions occur from
state A back to itself. Thus, all fringe symbols that occur
may be concatenated together to form spacetime patches.
Figure 4 highlights three right-transition fringes. If they
are concatenated in order of orange, green, magenta (left
to right) they form the depth-3 V,. patch:

010
011

This patch contains the spacetime word given above that
is forbidden in Rule 90’s spacetime shift. In fact, the
other word of the same shape in this patch is also forbid-
den by Rule 90:

110
0 )

since ¢gp(110) = 1.

Concatenations of left and forward fringes produce, re-
spectively, V; and V; spacetime patches that similarly
contain words forbidden by Rule 90’s spacetime shift
space, as shown numerically in a supplementary Jupyter
Notebook [58]. Similar results for another ECA shift
space, the domain of Rule 18 discussed in more detail
below, are also given in a supplementary Jupyter Note-
book [59]. Empirically, we have found that local causal
state presentations are generically not faithful generative
models of their CA spacetime shift spaces.

Comparing Fig. 3 with the V; patch shapes in Fig. 2,
there is little to no overlap between the “futures” (light-
cones in this case) used to define the equivalence classes
of past lightcones and the spacetime patches generated
from fringe-labeled transitions between the equivalence
classes. Therefore, it is not surprising that local pre-
sentations created with future lightcones are not faithful
generators of their spacetime shifts.

In one dimension, there is only one “future” that al-
ways follows from the past. When translating forward,
what once was a future becomes part of the past. This



is not necessarily the case for local pasts and futures in
spacetime. The predictive ability of unifilar models fol-
lows from this succession of futures becoming pasts, when
combined with future equivalence. As we now see, future
equivalence without the successional relation between lo-
cal pasts and futures yields models that, while unifilar,
are not consistent spacetime generators.

Constructively, this insight points the way to creating
local presentations that are faithful generators. As the
future lightcones do not play a role in generating local
spacetime patches, they should not be used to define past
lightcone equivalence in Relation (7). Rather, we should
use spacetime patch shapes—denote them V,—that are
to be generated as our notion of a local future for defin-
ing future equivalence in Relation (7). Local causal states
are defined using the future sets with future lightcones
F(L;) = {L" co-occurring with L; }. We can alterna-
tively define local machine presentations whose internal
states are defined as equivalence classes from Relation
(7) using F(L; ) = {V; co-occurring with L, }.

Indeed, as demonstrated computationally in the sup-
plementary Jupyter Notebook Ref. [58], using V,. shapes
with F(L;) = {V, co-occurring with L; } yields a local
machine presentation that is a faithful generator of V,
spacetime patches. However, this presentation is not a
faithful generator of V; or V, spacetime patches. Sim-
ilar to the use of future lightcones, local presentations
can only generate faithful spacetime patches in the shape
used to define F(L7). Therefore, as also demonstrated
in Ref. [58], using V; to define F'(L™) results in local pre-
sentations that faithfully generate V;, but not V, nor V.
Similar for V;.

This motivates the definition of V in Fig. 2 (d) as the
union of V.., V;, and V;. Local presentations defined us-
ing F(L;) = {V co-occurring with L; } are faithful gen-
erators of spacetime patches in all directions emanating
from a seed past lightcone. As the resulting presentations
are also unifilar, additionally they are consistent predic-
tive models of local spacetime patches. These V presen-
tations can thus be seen as the most natural general-
ization of the predictive canonical machine presentations
P(X) for one-dimensional sofic shifts. Moreover, they
possess the same semigroup algebra of “symbol” (fringe)
concatenation that allows the generation and prediction
of arbitrarily-long “words”—arbitrarily large spacetime
patches.

That said, as the following now details, local causal-
state presentations that use future lightcones to define
F(L™) possess interesting and useful generalized space-
time symmetries that are lost when using V presentations.

C. Generalized Spacetime Symmetries

Recall from above that machine transitions in one-
dimension determine the structural relations among in-
ternal states and that they are driven by the shift op-
erator. We just saw that the analogous fringe-labeled
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transition structure in spacetime is similarly related to
spacetime shift operators through the definition of the
fringes. However, the spacetime shift operators provide
structural algebraic relations among local states indepen-
dent of fringe symbols and their concatenated spacetime
words. This is due to the local pointwise e-map and the
resulting shared coordinate geometry between spacetime
fields x and corresponding local state fields S = e(x).

To see this, consider two space-adjacent sites in a
spacetime field, x} and x{ ™' = o'x}. Under the e-map,
this produces & = S and &; = SIt = o', As past
lightcones are defined solely in terms of spacetime dis-
tances, they are equivariant under spacetime isometries.
In the present setting these are translations.

For example, if a spacetime field x has ezact time and
space translation symmetries o,x = x and o°x = Xx,
for some s and 7, then the corresponding local state
field S = €(x) shares these symmetries: 0,8 = S and
0%S = S. This is because the spacetime shift opera-
tors act equivalently on lightcones, so that o°L; = L,
and o,L7 = L. Therefore, €(c°L;) = €(L;) and
E(UTL;) = ¢(L;). Note that this argument is indepen-
dent of which local future shape is used, as they all define
a local e-map on past lightcones.

When future lightcones specifically are used as local fu-
tures, we previously showed (i) there are spacetime fields
x that do not have translation symmetries, but (ii) the
associated local causal state field S = e(x) does [13, 54].
These are the spacetime generalizations of partial and
hidden symmetries; cf. Fig. 1.

For the cellular automata examples in Refs. [13, 54]
and shown here in Fig. 5, generalized symmetries—exact,
partial, and hidden—in the spacetime fields are generated
by the evolution of invariant one-dimensional sofic shifts
(spatial configurations) under the CA dynamic. Such
spacetime regions are known as domains [55-57]. In-
terestingly, exact symmetry domains are generated from
the evolution of exact symmetry sofic shifts. Moreover,
stochastic partial symmetry domains are generated from
stochastic partial symmetry sofic shifts and hidden sym-
metry domains from hidden symmetry shifts. Examples
of each of these cases are shown in Fig. 5 as the gen-
eralizations of the one-dimensional cases in Fig 1. Ap-
pendix D displays the presentations P(X’) for each sofic
shift X used to generate the fields in Fig. 5.

Exact symmetries are straightforward, as just de-
scribed. There is a finite s and 7 such that for every
site (r,t) in spacetime we have that o,x] = x] and
0°x; = Xj;. Due to the shared coordinate geometry
and isometry equivariance of past lightcones, this applies
for the local causal state field as well: 0,5 = & and
0°S] = S7. The exact symmetry field shown in Fig. 5 (a)
is a sample of the domain of ECA Rule 54. As can be
seen, both the spacetime fields and corresponding local
state fields have a period-4 translation symmetry in both
time and space.

For partial symmetries, some, but not all, of the space-
time coordinates return to themselves after fixed trans-
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FIG. 5. Spacetime pattern classes: Spacetime fields x (above) and corresponding local causal state fields S = €(x) (below) for
(a) an exact symmetry (ECA Rule 54 domain), (b) a partial symmetry (ECA Rule 18 domain), (c) a hidden symmetry (ECA
Rule 22 domain), and (d) a general pattern (ECA Rule 54 evolving random initial configuration).
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FIG. 6. Spacetime fields x shown in Fig. 5 (above) and corresponding V state fields S = ¢(x) (below) for (a) an exact symmetry,
(b) a partial symmetry, (c) a hidden symmetry, and (d) a general pattern.



lation, just as in one dimension. For example, there are
some sites (r*,t*) such that x| " = o*xI* = xI7, but
this does not hold for all (r,¢). As in one-dimension,
a special case of partial symmetries are stochastic sym-
metries that become symmetric after a wildcard substitu-
tion. For example, consider a 141 dimensional spacetime
field with A = {0, 1} such that it has a checkerboard lay-
out with Os on the black squares and wildcards (either
0 or 1) on the white squares. The partial (stochastic)
symmetry example shown in Fig. 5 (b) is ECA Rule
18’s domain, which is a strict subset (subshift) of the
0-wildcard checkerboard shift space. We examine these
two spacetime shift spaces in more detail below.

Unlike in one-dimension, hidden symmetries in higher
dimensions correspond to exact symmetries in the lo-
cal causal-state field for spacetime fields that themselves
have no symmetries, exact or partial. The hidden sym-
metry spacetime fields in Figs. 5 (¢) and 6 (c) are samples
of ECA Rule 22’s domain and their structure is mani-
festly harder to detect from visual inspection.

What is most important to note here is that the observ-
able field x does not have any space or time translation
symmetries, exact or partial. The corresponding local
causal-state field S = €(x) (shown in Fig. 5), though,
does have symmetries that are period-4 in both time and
space. Essentially, there are motifs that appear in x—
such as, the black “triangles” that occur with a local
period-4 structure (e.g., 1110 in space and 1100 in time).
However, in contrast to a stochastic symmetry field, there
is no global symmetry that captures how these stochastic
motifs occur. The global hidden symmetry is more com-
plicated than can be revealed by simple wildcard substi-
tutions. It is uncovered, though, by the local causal-state
field. This structure, and its relation to the local causal
states, is thoroughly detailed in Ref. [54].

A general spacetime pattern then is one for which the
local causal-state field does not exhibit spacetime sym-
metries. There is still an algebraic relation among the
local states from the spacetime shift operators, but they
do not correspond to spacetime symmetries.

Note that the example in Fig. 5 (d) has regions that
are locally symmetric in both x and §. However, this
symmetry is globally broken by localized defects or co-
herent structures [13]. Figure 5 (d) is produced from
from ECA Rule 54 evolving a random initial configura-
tion. The local symmetry regions are instances Rule 54’s
domain—the exact symmetry field shown in Fig. 5 (a).

We emphasize that, with the exception of exact sym-
metries, these generalized spacetime symmetries are em-
pirically observed only with local causal-state presenta-
tions that employ future lightcone shapes. For example,
the corresponding local state fields of presentations using
V local futures is shown in Fig. 6 with the same space-
time fields as Fig. 5. As expected, the exact symmetry
case also has space-time translation symmetries in the
local state field in (a). However, there are no space-time
symmetries present in the local state fields for partial
(b) or hidden (c) symmetry spacetime fields when V local
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futures are employed.

Altogether these observations portray a somewhat un-
satisfactory scenario. On the one hand, lightcone local
futures and the resulting local causal-state models pro-
duce insightful and predictive generalized symmetries in
spacetime. Moreover, these clearly connect to the one-
dimensional sofic shifts of CA spatial configurations, as
demonstrated in Refs. [13, 54]. However, we just demon-
strated that local causal-state models are unfaithful gen-
erators of their underlying CA shift spaces.

On the other hand, we also showed how to create faith-
ful local generators using V future shapes. These presen-
tations thus appear to be the most natural local general-
ization of the canonical machine presentations in one di-
mension. In this case, though, the useful spacetime gen-
eralized symmetries are lost with these generative mod-
els.

Let us now examine in more detail the trade-offs be-
tween these two local presentations by diving deeper into
the case of stochastic symmetries.

IV. CASE STUDY: STOCHASTIC
SYMMETRIES

The partial (stochastic) symmetry spacetime fields in
Figs. 5 (b) and 6 (b) are generated from ECA Rule 18
evolving a string from its domain’s invariant sofic shift.
Appendix D shows that these are points in the stochastic
symmetry sofic shift with the form 0-%, where ¥ is a
wildcard that can be either 0 or 1.

It is easy to see from Rule 18’s lookup table ¢ that the
wildcard locations oscillate each time step between even-
and odd-indexed lattice sites. Thus, the spacetime field
can be interpreted as a checkerboard pattern of fixed 0s
and wildcards ¥ = {0, 1}; giving the checkerboard pat-
tern seen in the local causal-state field shown in Fig. 5
(b). In this way, the two local causal states can be in-
terpreted as a “fixed” 0 state and a wildcard state. The
local states of the V machine presentation, though, do
not occur in a checkerboard pattern in Fig. 6 (b). And
so, they clearly cannot be assigned such semantic labels.

While the fixed-0 and wildcard semantic labels are ap-
pealing for the two local causal states, they are also mis-
leading. For a given spatial configuration, the fixed-0
and wildcard semantics are appropriate, as it describes
the (invariant) one-dimensional sofic shift of the spatial
configurations. However, it is again easy to see from the
Rule 18 lookup table that the wildcard semantics can no
longer be assigned to the full spacetime field. Specifi-
cally, in spacetime the local update rule ¢,g forbids cer-
tain spacetime patches of the form:

X 0 X
b

Therefore, the spacetime shift space of Rule 18’s domain
is a proper subset (subshift) of the 0-% checkerboard shift



space for which all realizations of the above spacetime
patch are allowed.

Figure 7 demonstrates that both the local causal states
and the V machine presentation local states reveal a
checkerboard symmetry for spacetime fields in the 0-X
shift space. In this case, both types of local states cer-
tainly do carry the semantics of fixed-0 and wildcard X
in spacetime.

What does this say then about Rule 18’s domain in
the context of the alternative local-state presentations in
Figs. 5 (b) and 6 (b)?

First, it is interesting and not entirely clear why the
choice of lightcone local futures produces local causal
states that carry the strictly-spatial semantics of fixed-
0 and wildcard 3. Especially so, when we know the
wildcard semantics do not hold in spacetime. Whatever
the reason, it is key to interpreting spacetime patterns
through the local causal-state fields, including identifying
coherent structures as locally-broken generalized symme-
tries in spacetime [13].

Second, this implies that the V machine presentation
states are a more nuanced representation of the spacetime
pattern of Rule 18’s domain. From above, we know the
non-fixed-0 sites cannot be strictly interpreted as wild-
cards in spacetime. However, we can interpret these as
contextually-constrained wildcards. From the 0-% patch
above, the outcome of the bottom X is constrained by ¢1g
and the outcomes of the preceding ¥s. Propagating these
constraints through space and time clearly becomes com-
plicated very quickly. However, this is a more appropri-
ate semantic interpretation of Rule 18’s domain. And so,
this seems to be to what the V machine states correspond.
As shown in a supplementary Jupyter Notebook [60], the
local state field displayed in Fig. 6 (b) is reconstructed
from past lightcones of depth-8 and Vs of depth-3. This
produces 767 local V states to (approximately) capture
the spacetime pattern of Rule 18’s domain. This is in
contrast to the three local causal states reconstructed
with the same past and future depths. (For finite-depth
past lightcones, there is a third “indeterminate” state for
the all-0 past lightcone.)

Note that the fixed-0 semantics still holds in spacetime
and that this is not captured by the V presentation states.
Given that V machine presentations are constructed to be
faithful local generators of their spacetime shift spaces,
it seems there is a similar spacetime contextuality to the
fixed-0 sites that is necessary for faithful local generation.
The spacetime contextuality present in the V presentation
states is absent in the local causal states. And, it is the
latter that reveals the spacetime symmetries observed in
Fig. 5.

Taken all together, the spacetime patterns of partial
and hidden symmetry ECA spacetime shift spaces are ex-
ceedingly complicated. Local causal-state presentations
constructed from future lightcones and the V machine
presentations capture different aspects of these patterns.
One the one hand, V machine presentations are faithful
generators and predictors of the spacetime patterns and
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so capture the patterns in a more direct connection with
the one-dimensional case. However, local causal states
capture generalized spacetime symmetries that, in the
case of ECA domain shift spaces, closely connect with
the (evolution of) the one-dimensional shift spaces of the
invariant spatial configurations that, in turn, possess the
corresponding generalized symmetries.

V. CONCLUSIONS

Building on Refs. [43] and [18)’s foundations, there
is a growing body of results that use machine presen-
tations defined from future or predictive equivalence to
discover inherent, often hidden, pattern and structure.
This includes pattern and structure in disordered crys-
tals [61], thermodynamic environments [62], atmospheric
turbulence [63], bacteria behavior [64], controlled quan-
tum processes [65], and more.

The first half of the preceding development synthesized
the arguments for sofic shifts and their machine presenta-
tions as mathematical formulations of pattern and struc-
ture. In particular, the manner in which they generalize
the perfect regularity of exact symmetries and the asso-
ciated group algebra has been rigorously clarified. It also
connected to recent results on sofic measures and their re-
lation to stochastic e-machine presentations of statistical
patterns supported on sofic shifts.

The development’s second half overviewed the lo-
cal approach to spacetime machine presentations. We
showed that the standard local causal-state approach
that uses lightcones as local futures reveals useful gen-
eralized spacetime symmetries. However, this comes at
a cost: it does not lead to faithful generative models of
the underlying shift space. This motivated introducing
an alternative local presentation model using spacetime
V shapes as local futures. We showed that these presen-
tations are faithful generative models and that they do
not possess the same generalized spacetime symmetries
of the local causal states. The seeming mutual-exclusion
of multiple local presentations is emblematic of the dif-
ficulty of high-dimensional shift spaces. The novel con-
structions given here—in particular the generative local
presentations using V futures—may provide new paths
of inquiry for investigating the organization of these rich
and challenging spaces.

One advantage of the nongenerative approach using lo-
cal predictive equivalence over future lightcones is that
it does not rely on a finite alphabet for labeled tran-
sitions to provide the algebraic structure among local
causal states. Thus, local causal states are well-defined
and can be algorithmically approximated for continuum
field theories. For example, they have been used to ex-
tract coherent structures in complex fluid flows [14]. The
results presented here provide a theoretical underpinning
and a “physics of organization” behind these unsuper-
vised physics-informed machine learning algorithms.

Supporting Python code and supplementary Jupyter
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FIG. 7. Sample field from 0-Wildcard shift space in black (1) and white (0) squares with (a) local causal states and (b) V
presentation local states (b) overlaid. In both cases, the local states can be assigned fixed-0 and wildcard semantics. And so,
they are labeled F and W, respectively. The local causal states in (a) have an additional “indeterminate” state assigned to the
all-0 past lightcone, labeled as X; see, for example, the field at r = 60 and ¢ = 34).



Notebooks can be found at https://github.com/
adamrupe/ca_patterns.
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Appendix A: Examples and Constructions

To clarify the development and build intuition about
patterns, as we use the term, the following works through
several examples in detail. Specifically, we show explic-
itly how to construct a semigroup G for exact and gen-
eralized symmetries, how to construct a semiautomaton
presenting G (and thus X'), and how this general semiau-
tomaton simplifies to the future cover, whose irreducible
component is the minimal presentation P(X).

1. Exact Symmetry Shifts

The simplest class of exact symmetry strings to char-
acterize as sofic shifts are the k-clock shifts for which
A= {0,1,....,(k—1)} and b = 01---(k — 1). For
example, points in the 3-clock shift are of the form
-+-012012012012 - - - with b = 012. Intuitively, this is the
simplest case since each a € A fully specifies the period of
the translation symmetry. Recall that this corresponds
to the internal states of P(X’), which are the equivalence
classes [-]p. For k-clock sequences each internal state (ex-
cluding the forbidden state), and thus equivalence class,
is represented by a generator a € A. This fully specifies
X since there are no transient states. Each a € A is syn-
chronizing. In terms of the defining semigroup of X' for
k-clock shift, G is consists solely of A plus the absorbing
element e. The 3-clock shift is given by G = {0,1,2, ¢}
with 01 = 1, 12 = 2, 20 = 0, 02 = 12 = 22 = ¢, and
02=10=21=ce.

For more general exact symmetry shifts there are addi-
tional elements in G beyond the generators AU{e}. And,
the future cover will have transient states; i.e., there are
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additional equivalence class [-|p beyond those in the min-
imal presentation P(X). To illustrate, consider the shift
X with b = 001 and points of the form ---001001001 - - -.

A simple construction of a finite G for an exact sym-
metry shift X is as follows. Start by constructing
the asymptotic recurrent component of the presenting
semiautomaton—this is P(X). We already showed the
states of P(X) are the equivalence classes [b]r, [bbi]F,
[bb1b2]F, and so on. These equivalence classes can gener-
ally be represented by the allowed words of length p — 1
so that concatenation with a generator gives a (shift of)
the tiling block b. This represents shifts of windows of
length p — 1 on points z € X.

For our example with b = 001, these words are 00,
01, and 10. The word 11 is not included because it is
forbidden in X, and so 11 = 12 = e in G. If our p —
1 window is on 00 in X', then a unit shift reveals the
generator 1 and the window now shows 01. This gives
the production rule 00 -1 = 001 = 01 in G. In the
semiautomaton presentation there are states £gp = [00] 7
and &y = [01]p with M1(§00) = &o1- If we again shift
the window on 01, we reveal the generator 0 and the
window now shows 10, giving the production rule 010 =
10. To complete the cycle we have 100 = 00, giving the
finite closure for G. The rest of the elements in G can
be filled in with the free semigroup: e.g., 0-1 = 01.
Therefore, we can give a finite G for our example as G =
{0,1,€,00,01, 10} with production rules 001 = 01,010 =
10,100 = 00 and 12 = 03 = 101 = e. The semiautomaton
presentation for this G is shown in Fig. 8 (a). Teal colored
states are transient, orange is the absorbing forbidden
state &, and black states are the recurrent component
(excluding &.). Again, self-loops on &, are omitted for
visual clarity.

While this straightforward construct always produces a
finite semigroup G for a given exact symmetry shift X', it
is not necessarily a minimal semigroup. (Or, equivalently,
not a minimal presenting semiautomaton.) The future
cover equivalence relation exploits additional structure
in X to give a minimal description and may thus reduce
and simplify the straightforward G and its presenting au-
tomaton. The k-clock shifts are the extreme example,
since we only need the generators as the elements of G
since each a € A is synchronizing. In the b = 001 ex-
ample, while 0 is not synchronizing, 1 is. Applying the
future cover equivalence relations exploits this to simplify
G and its presenting semiautomaton. From visual inspec-
tion of Fig. 8 (a)’s semiautomaton we see that £ and £p;
are equivalent, since their transitions lead to the same
states with the same labeled edges. Applying the future
cover equivalence relation gives the future cover, with its
reduced semiautomaton presentation shown in Fig. 8 (b).
The simplified semigroup G of the future cover is given
as G = {0,1,¢e,00,10} with 01 = 1 and 100 = 00, and
the same production rules for forbidden words.

Since we designed our straightforward construction
around the asymptotic cycle of the translation symme-
try, the recurrent components in both cases are isomor-
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FIG. 8. Semiautomaton presentations for straightforward semigroup construction (a) and its simplification under the future

cover equivalence relation (b).

phic and represent the canonical presentation P(X’) that
captures the symmetry algebra.

2. General Pattern: the Even Shift

To contrast with exact symmetry shifts, we now go
through the well-studied Even Shift [29, 31]. Recall
that the Even Shift is the set of sequences that have
even-length blocks of 1s bounded by 0s. Thus, it is
defined by the set of irreducible forbidden words F =
{010,01%0,0150,...}. Since F is not finite, the Even
Shift is not of finite type—it is strictly sofic. However,
since it is sofic it can still be finitely defined in terms
of a finite semigroup G. Following Ref. [31] we use
G =1{0,1,e,01,10,11,101} with production rules 02 = 0,
12 =1, 012 = 120 = 0 and 010 = e.

The production rule 010 = e represents the shortest
forbidden word and the other rules allow for all the other
forbidden rules to reduce to 010. For example, we use
13 = 1 to reduce 01110 to 010 which then maps to the
absorbing element e. We can see that while there is a
countably-infinite number of forbidden words in the Even
Shift, there is structure in these forbidden words that can
be captured in a finite semigroup G.

As with our explicit symmetry example b = 001, the
presenting semiautomaton for the Even Process using the
G above is not minimal. Shown in Fig. 9, we see that
there are two recurrent components P4(X) and Pp(X).
While these components correspond to different elements
in G, we can see that they are again isomorphic and
so collapse together under ~p. The resulting recurrent
component is the canonical machine presentation P(X),

o)y )
()

FIG. 9. Presenting semiautomaton for the Even Shift using
G ={0,1,e,01,10,11,101} and 0> = 0, 1* = 1, 01® = 1?0 =
0, 010 = e. The two components Pa(X) and Pr(X) are
isomorphic and thus collapse together under ~r. The recur-
rent component is the canonical machine presentation P(X),
shown in Fig. 1 (c).

PA(X

shown in Fig. 1 (c).

Though we discussed and described three forms of pre-
senting semiautomata, we want to emphasize the impor-
tance of the canonical presentation P(X) as the mathe-
matical representation of pattern as generalized symme-
try. There may be many semigroups G that describe a
given sofic shift X', and so there are many different semi-
automata that can present X'. However, for irreducible



sofic shifts the recurrent components of all such G will be
isomorphic [31], which is why the future cover is guaran-
teed to have a single recurrent component. Therefore the
future cover is a unique representation of the structure
of X. Patterns and the symmetries they generalize are
asymptotic properties and so the transients of the future
cover are not of interest for our current purposes. This
is why the canonical presentation P(X)—the recurrent
component of the future cover—is the unique mathemat-
ical representation of patterns.

Recall that the symmetry group of a translation sym-
metry is captured by the canonical presentation, whose
semiautomaton is a circle graph, neglecting the absorbing
state and its transitions. Similarly, we can see the canon-
ical presentation of the Even Shift captures the essential
details of the pattern. From inspecting its edge-labeled
graph, shown in Fig. 1 (c), we can see that an arbitrary
number of Os are allowed from state £4, but once a 1
occurs it must be followed by another 1, ensuring the
pattern of an even number of 1s bounded by 0s. This
also highlights the partial regularity that motivated our
definition of patterns. Starting in state {4 there is a coin
flip, either 0 or 1 may occur. If it is a 0, repeat. How-
ever, if it is a 1, there is now additional regularity and
structure that enforces another 1 to follow.

Appendix B: Distinct Statistical Patterns Supported
on the Same Sofic Shift Topological Pattern

The following illustrates how statistical patterns, in the
form of sofic measures, are additional structure on top
of topological patterns. In particular, there can be com-
plex statistical structure supported on simple topological
structure. The topological pattern in this example is the
full-2 shift—the set of all binary strings. As described
above, the full-2 shift represents a “null” pattern, in the
sense that there is no predictability leveraged from know-
ing the pattern. This is captured quantitatively by the
single-state canonical machine presentation P(X). Its
memory—the log of the number of states—is zero.

The simplest statistical patterns supported on the full-
2 shift is given by assigning IID single-symbol probabili-
ties, e.g., Pr(1) = 0.3 and Pr(0) = 0.7. The simplicity of
this statistical pattern is also captured by a single-state
e-machine, where the above probabilities are assigned to
the correspond transitions from the state back to itself
on the given symbol. In this example it is easy to see the
statistical pattern is supported on the full-2 shift. Simply
remove the probabilities from the single-state transitions
and the single-state canonical machine presentation of
the full-2 shift is recovered. Since the e-machine (statis-
tical) and canonical machine presentation (topological)
have the same number of the states, the statistical and
topological patterns they capture can be thought of as
comparable.

However, consider the e-machine shown in Fig. 10. Its
two states signify a more complex statistical pattern with
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FIG. 10. Two state stochastic e-machine presentation for a
statistical pattern supported on the full-2 shift.

nonzero memory. From the machine diagram, we can see
that the single-symbol probabilities depend on which of
the two internal causal states A and B the process is in.
For example, the probability of seeing a 1 is 0.75 if in
causal state A and 0.25 if in B. Note also that the sym-
bol 0 always leads to causal state A and 1 always leads
to B. Thus, single symbols are synchronizing in this ex-
ample. This stochastic process is an order-1 Markov pro-
cess. The simple one-state case above is an IID (order-0
Markov) process, by contrast.

It is perhaps clear from Fig. 10’s machine diagram that
this statistical pattern is supported on the full-2 shift,
since both symbols have positive probability from each
of the two states. However, it is instructive to show this
using the symbol-labeled transition matrices. Recall that
T}: gives the probability of transitioning from state &; to
&; on the symbol a € A. For Fig. 10’s e-machine we have:

o (025 00
= (0.75 0.0> !

1_ (0.0 0.75
= (0.0 0.25)
where state A is given index 1 and B is index 2, so that
Tt is the probability of transitioning from A to B.
Matrix representations M of the topological transi-

tion maps are given by setting non-zero elements of T
to unity. In this example, we have:

o (10
w=(1)
, (01
- 2.

Recall that M, = 1 signifies a transition from internal
state 7 to state j is allowed on the symbol @ and M =0
is a forbidden transition that produces a forbidden word.

To see that these topological transitions correspond
to the full-2 shift, note that the action of M® on both
internal states yields the same output state, for both M°
and M*. That is, for both states, call them also A = (1 0)
and B = (0 1), a transition on a 0 goes to state A and a
transition on a 1 goes to B. For example:

o (] ) =ao.

and

and
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FIG. 11. Four-state stochastic e-machine presentation for a
statistical pattern supported on the full-2 shift.

and

(10)(} 8)(10).

Thus, as described above, the two states are topologi-
cally equivalent A ~r B and so reduce to the single-state
canonical machine presentation of the full-2 shift.

Finally, as shown in Fig. 11 this construction of
probabilistically-distinct causal states supported on the
full-2 shift can be extended to e-machine with a larger
number of states. Clearly, the construction can be ex-
tended indefinitely with an arbitrary number of causal
states & such that Pr(0[¢;) = p and Pr(1]&) = 1 — p,
since there can be uncountably-many p. This shows that
there can be arbitrarily complex statistical patterns sup-
ported on simple topological patterns.

Appendix C: Cellular automata

A one-dimensional cellular automaton or CA (A*, ®)
consists of a spatial lattice £ = Z whose sites take values
from a finite alphabet A. A CA state x € A” is the
configuration of all site values " € A on the lattice.
(For states x, subscripts denote time; superscripts sites.)
CA states evolve in discrete time steps according to the
global evolution ® : AZ — X C A%, where:

Ti41 = q)(l't) .

® is implemented through parallel, synchronous applica-
tion of a local update rule ¢ that evolves individual sites
x} based on their radius R neighborhoods n(z") =

{«" : |r—7+'| < R}:
rp = o(n(ay))

Stacking the states in a CA orbit zg; =
{xo,21,...,2¢—1} in time-order produces a spacetime
field x,., € A®Z. Visualizing CA orbits as spacetime
fields reveals the fascinating patterns and localized struc-
tures that CAs produce and how the patterns and struc-
tures evolve and interact over time.

23
1. Elementary cellular automata

The parameters (A, R) define a CA class. One simple
but nontrivial class is that of the so-called elementary
cellular automata (ECAs) [66] with a binary local alpha-
bet A = {0,1} and radius R = 1 local-interaction neigh-
borhood n(x}) = z} 'af2; ™. Due to their definitional
simplicity and wide study, we mostly explore ECAs in
our examples.

A local update rule ¢ is generally specified through a
lookup table that enumerates all possible neighborhood
configurations 7 and their outputs ¢(n). The lookup ta-
ble for ECAs is given as:

n_ |0y = o)
111 Or
110 O¢
101 Os
100 Oy )
011 O3
010 O-
001 0O,
000 Op

where each output O, = ¢(n) € A and the 7s are
listed in lexicographical order. There are 28 = 256 pos-
sible ECA lookup tables, as specified by the possible
strings of output bits: 07;0505040302010y. A spe-
cific ECA lookup table is often referred to as an ECA
rule with a rule number given as the binary integer
0706050403020100 € [0,255]. For example, ECA 172’s
lookup table has output bit string 10101100.

The nt'-order lookup table ¢™ maps the radius n - R
neighborhood of a site to that site’s value n time steps
in the future. Said another way, a spacetime site xf, , is
completely determined by the radius n - R neighborhood
n time-steps in the past according to:

Ty = 0" (0" (27)) -

The depth-n past lightcone is the collection of all ¢¢ for
1 < ¢ < n, plus the present site value itself (i.e., “depth-
077).

Appendix D: ECA Domain Sofic Shifts

The generalization of invariant sets from low-
dimensional dynamical systems to high-dimensional cel-
lular automata are known as domains [55-57]. These
are sets of spatial configurations that are invariant un-
der the global CA dynamic ®. Spatial configurations of
one-dimensional cellular automata are strings of symbols
from an alphabet A. And, thus, shift spaces are nat-
ural choices for sets of spatial configurations. In fact,
the Curtis-Hedlund-Lyndon theorem shows that a CA’s
dynamic—a sliding-block code—naturally induces shift-
invariance in the set of images under ® [67]. Said another
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FIG. 12. Presenting semiautomaton for the domain of ECA
Rule 54.

\/

0

FIG. 13. Presenting semiautomaton for the domain of ECA
Rule 18.

way, the dynamic of a CA on a shift space maps to a shift
space.

For a CA @, a domain A = {A1,As,...,A,} is a set
of irreducible sofic shifts such that ®(A;) € A. That
is, if = is a spatial configuration that is a point in one
of the sofic shifts A, € A, then the image ®(z) is also
a point in one of the sofic shifts in A. As irreducible
sofic shifts, domains may possess patterns that are exact
symmetries, partial symmetries, hidden symmetries, or
general patterns with no symmetries. Empirically, the
spacetime fields produced from the evolution of ECA do-
mains possess the same type of pattern as their invariant
sofic shifts. The generalized spacetime symmetries are
revealed by the local causal states, as shown above in
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Fig. 5. Here, we provide the machine presentations for
the domain sofic shifts used in each case.

The exact symmetry spacetime field is given by the
evolution of ECA Rule 54’s domain, whose machine pre-
sentation is shown in Fig. 12. As can be seen, there are
two phase A4 and Ap that are cycled between under
®5,4. Each phase has an exact symmetry, with A4 tiled
by blocks of 0001 and A p tiled by blocks of 1110. As seen

0 h 990
@\9»@ "o W+ O+—0O

FIG. 14. Presenting semiautomaton for the domain of ECA
Rule 22.

in Fig. 5 (a), this creates an exact symmetry spacetime
field that is period-4 in both time and space.

The partial symmetry spacetime field possesses a
stochastic symmetry and is given by the evolution of ECA
Rule 18’s domain. Its machine presentation is shown in
Fig. 13. This is a single stochastic symmetry sofic shift
with a period-2 tiling of 03, where again ¥ is a wildcard
that can be either 0 or 1. Spacetime fields generated by
the domain of Rule 18, as shown in Fig. 5 (b), form a sub-
shift of the 0-X checkerboard spacetime shift space. Both
are discussed in detail above in the stochastic symmetry
Case Study of Section IV.

Finally, the hidden symmetry spacetime field in Fig. 5
(c) is generated by the hidden symmetry domain sofic
shift of ECA Rule 22. The presenting automaton is
shown in Fig. 14. Like Rule 54’s domain, the domain
of ECA Rule 22 comes in two phases. As can be seen,
phase A 4 is actually a stochastic symmetry, as each state
in P(A4) returns to itself after four translations. How-
ever, this is not the case for phase Ag, which is a hidden
symmetry sofic shift. This is because only states F and
G of P(Ap) return to themselves after four translations.
As drawn, one can imagine “folding” P(Apg) up onto it-
self to create a period-4 symmetry in the states. Said
another way, one can think of a “length-3 wildcard” that
produces either three Os or three 1s. The Ap sofic shift
is then given by tilings of this length-3 wildcard followed
by a fixed 0. This is the nature of hidden symmetries.
Blocks of three 0s and three 1s are forced to occur, fol-
lowed by a fixed 0, but the sequence of these blocks is
not constrained. For example, the string of all Os and
the string of all 1s are both in Apg.
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