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Abstract

There is no general closed form expression for the entropy rate of a hidden Markov process.

However, the finite length block estimates h(t) often converge to the true entropy rate h quite

rapidly. We establish exponential bounds on the rate of convergence of the block estimates for fi-

nite hidden Markov models under several different conditions, including exactness, unifilarity, and a

flag-state condition. In the case of unifilar hidden Markov models, we also give exponential bounds

on the L1 and a.s. decay of the state uncertainty Ut.
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1 Introduction

Hidden Markov models (HMMs) are generalizations of Markov chains in which the underlying

Markov state sequence (St) is observed through a noisy or lossy channel, leading to a (typically)

non-Markovian output process (Xt). They were first introduced in the 50s as abstract mathematical

models [1–3], but have since been applied quite successfully in a number of contexts for modeling,

such as speech recognition [4–7] and bioinformatics [8–12].

One of the earliest major questions in the study of HMMs [3] was to determine the entropy rate

of the output process:

h = lim
t→∞

H(Xt|X1, ..., Xt−1)

= lim
t→∞

H(X0|X−(t−1), ..., X−1)

Unlike for Markov chains, this actually turns out to be quite difficult for HMMs. Even in the finite

case no general closed form expression is known, and it is widely believed that no such formula

exists. A nice integral expression was provided in [3], but it is with respect to an invariant density

that is not directly computable.

In practice, the entropy rate h is instead often approximated simply by the finite length block

estimates:

h(t) = H(Xt|X1, ..., Xt−1)

= H(X0|X−(t−1), ..., X−1)

Thus, it is important to know about the rate of convergence of these estimates to ensure the quality

of the approximation.

Moreover, even in cases where the entropy rate can be calculated exactly, such as for unifilar

HMMs, the rate of convergence of the block estimates is still important for estimating other quan-

tities such as the excess entropy [13], and for making finite data predictions. The entropy rate h

is the observer’s average uncertainty in prediction of the next output symbol X0 after seeing the

entire infinite past X−1
−∞ = ..., X−2, X−1. However, for an observer wishing to make predictions
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from a finite observation sequence X−1
−t = X−t, ..., X−1 the speed at which the block estimates h(t)

approach the entropy rate is also critical.

In the case of finite HMMs, where the internal state set S and output alphabet X are both

finite, the block estimates h(t) generally converge quite quickly, often exponentially. For instance,

in [14] and [15] exponential bounds for the convergence rate are given for state-emitting HMMs

with strictly positive transition probabilities in the underlying Markov chain. Also, in [16] expo-

nential convergence is established using results from [17] (for both state-emitting and edge-emitting

HMMs), with the assumption of strictly positive symbol emission probabilities and an aperiodic

underlying Markov chain. However, without any positivity assumptions things become somewhat

more complicated, and the proof methods used in these works do not carry through directly. Some-

what weaker conditions are assumed in (parts of) [18], but they still require the output process

(Xt) to have full support, and, in general, we are not aware of any result that the block estimates

h(t) must converge exponentially for all finite HMMs.

The main objective of this dissertation is to establish exponential bounds on the convergence rate

of the block estimates h(t) for finite HMMs under alternative and weaker assumptions. In particular,

we will consider three distinct conditions: exactness, unifiliarity, and a flag-state condition. Formal

definitions will be given in Section 2 after introducing the requisite notation, but we summarize

the concepts below:

• A HMM M is exactly synchronizeable or simply exact if it has some finite synchronizing word

w such that an observer knows the current state of the HMM with certainty after seeing the

output w.

• A HMM M is unifilar if the current state and next output symbol completely determine the

next state.

• A HMM M is a flag-state HMM if each state i has some flag word w such that all states that

can generate w may transition to i upon emitting w.

None of these conditions require positivity of the underlying state transition matrix or symbol

emission probabilities, nor do they require the output process (Xt) to have full support. Moreover,

the flag-state condition, when translated from the edge-emitting HMMs we focus on to state-

emitting HMMs as in Appendix C, is strictly weaker than either (a) positivity of the state transition
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matrix or (b) aperiodicity of the Markov chain and positive emission probabilities. In fact, it is

quite a weak condition, which we believe should in some sense “usually” hold, as will be described

in Appendix B. The other two conditions are substantially stronger, but are relatively natural

assumptions to make. Exactness or similar properties have been considered by several other authors

as in [3,16,19,20] and unifilarity is one of the key defining features of the ε-machine representation

of a process [21,22], which is a natural minimal predictive model.

The organization of the remainder of the dissertation is as follows:

• In Section 2 we establish notation and give formal definitions for our objects of study.

• In Section 3 we give some general information theoretic inequalities and estimates for Markov

chains, which will be necessary for our proofs in later sections. We also introduce the block

model Mn for a HMM M , which will be a key tool in the analysis in Sections 5 and 6.

• In Section 4 we establish results for exact HMMs. In particular, we present a construction

known as the possibility machine that allows us to compute:

P(NSY Nt) = P(Xt−1
0 does not contain a sync word)

and its rate of decay. We then prove a simple inequality, which shows that the entropy rate

estimates h(t) converge to h at least as fast as P(NSY Nt) converges to 0, thus establishing

an upper bound on the rate of convergence for the estimates h(t).

• In Section 5 we establish results for unifilar HMMs, including exponential convergence of the

entropy rate block estimates h(t), as well as exponential convergence of the state uncertainty

Ut under the additional assumption of probabilistically distinguishable states. The proof

methods are based on a construction known as the follower model.

• In Section 6 we establish bounds on convergence of the entropy rate estimates h(t) for flag-

state HMMs. The proof methods are based on the coupling techniques used in [14], but are

somewhat more involved because of our weaker assumption.

• Finally, in Section 7 we summarize our results and give some concluding remarks.
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2 Definitions and Notation

In this section we introduce the formal framework for our results. Definitions are provided for our

various objects of study, and notation for the remainder of the work is established.

2.1 General

The set of real numbers is denoted by R, the set of integers by Z, the set of nonnegative integers by

Z+, and the set of positive integers, or natural numbers, by N. The cardinality of a set A is denoted

|A|, and the length of a word (string) w is denoted in a similar fashion by |w|. X ∗ denotes the set of

all finite words over an alphabet X , including the empty word λ. For a sequence (an) and integers

n ≤ m, amn denotes the finite subsequence an, an+1, ..., am. This notation is also extended in the

natural way to the case n = −∞ or m =∞. If n > m, amn denotes the empty string. For a finite set

A and i ∈ A, ei = (0, ..., 1, ...0) denotes the standard basis vector in R|A| with a 1 in the position of

index i and 0s elsewhere. Frequently, the vector ei will be interpreted as a probability measure on

the set A, which places unit mass on the point i. In general, we will often not distinguish explicitly

between probability vectors1 and probability measures on finite sets.

2.2 Probability and Stochastic Processes

Generally, we will denote random variables by upper case English letters and their realizations with

the corresponding lower case letters. The term random variable is used in a slightly generalized

sense, in that not all random variables we consider will be real-valued. However, random variables

that are not real-valued will usually be discrete, so they could be considered integer-valued by a

relabeling of symbols.

If X is a random variable defined on a probability space with measure P then its distribution

will be denoted by P(X). Similarly, if X and Y are two random variables on a common space with

measure P and P(Y = y) > 0, then P(X|Y = y) denotes the conditional distribution of X on the

event Y = y. When the random variable Y is clear from context this may sometimes be abbreviated

simply by P(X|y). Analogously, when clear from context, we may abbreviate P(X = x) as P(x) and

P(X = x|Y = y) as P(x|y), for discrete random variables X,Y . By convention, we take P(x|y) = 0

for all x, if P(y) = 0.

1By a probability vector we mean a vector with nonnegative entries that sum to 1.
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By a stochastic process, or simply a process, we will always mean a discrete time process,

P = (Xt)t∈Z or P = (Xt)t∈Z+ , over a finite alphabet X . In the former case we refer to the process

P as two-sided, and in the latter as one-sided. Frequently, we will consider the case of multiple

processes (Xt) over a given alphabet X , and in this case we associate a process P with its law P.

2.2.1 Word Probabilities and the Process Language

If P = (Xt) is a stationary process with law P then we denote the stationary word probability for

a word w ∈ X ∗ by P(w):

P(w) ≡ P(X
|w|−1
0 = w) = P(X

t+|w|−1
t = w)

and for a set of words A, all of some fixed length n, we define P(A) as the stationary probability of

the set A:

P(A) ≡
∑

w∈A
P(w) = P(X

|w|−1
0 ∈ A)

Also, we denote the set of allowable words or process language by L(P) and the set of length-n

allowable words by Ln(P):

L(P) ≡ {w ∈ X ∗ : P(w) > 0}

Ln(P) ≡ {w ∈ L(P) : |w| = n}

L∞(P), L+
∞(P), and L−∞(P) denote, respectively, the set of allowable biinfinite sequences, allowable

infinite futures, and allowable infinite pasts:

L∞(P) ≡ {x∞−∞ : xmn ∈ L(P), for each n ≤ m}

L+
∞(P) ≡ {x∞0 : xmn ∈ L(P), for each 0 ≤ n ≤ m}

L−∞(P) ≡ {x−1
−∞ : xmn ∈ L(P), for each n ≤ m ≤ −1}

If the process P is clear from context, we may sometimes abbreviate L(P) and Ln(P) simply as L

and Ln.
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2.2.2 Conditional Word Probabilities

If P = (Xt) is a stationary process over an alphabet X and w, v ∈ X ∗ are two words with P(v) > 0,

then P(w|v) denotes the conditional probability that the word v is followed by the word w:

P(w|v) ≡ P(X
|w|−1
0 = w|X−1

−|v| = v)

= P(X
|w|−1
−v = vw)/P(X−1

−|v| = v)

= P(vw)/P(v)

For a word v with P(v) = 0, we also define by convention:

P(w|v) ≡ 0 , for all w

Conditioning on infinite pasts x−1
−∞ instead of finite pasts v = x−1

−t is slightly more subtle because

the probability of each infinite past x−1
−∞ is normally zero, but it may be accomplished by taking

limits of finite length conditionals. Formally, we define for each past x−1
−∞ ∈ X−N and word w ∈ X ∗:

P(w|x−1
−∞) ≡





limt→∞ P(w|x−1
−t ) , if x−1

−∞ is regular

0 , else (by convention)
(1)

where a past x−1
−∞ is said to be regular if:

1. x−1
−∞ ∈ L−∞(P), and

2. limt→∞ P(w|x−1
−t ) exists, for each w ∈ X ∗.

It follows from the martingale convergence theorem that a.e. past x−1
−∞ is regular, so the definition

(1) is meaningful in the limiting sense for a.e. past.

Remark. It can also be shown that, for any word w, the function P(w|·) : X−N → R defines a

version of the formal conditional probability P(X
|w|−1
0 = w|X−1

−∞). That is, for any subset A of

infinite pasts x−1
−∞, which is measurable with respect to the σ-algebra generated by finite cylinder
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sets, we have:

P
(
X
|w|−1
0 = w , X−1

−∞ ∈ A
)

=

∫

A
P(w|x−1

−∞)dP(x−1
−∞)

However, this fact will not be necessary for later developments.

2.3 Information Theory

We review below some basic definitions from discrete information theory, which will be necessary

for formulating our results. For a more comprehensive overview the reader is referred to [23].

Throughout this section, and the remainder of the dissertation, we adopt the following standard

information theoretic conventions for logarithms (of any base):

0 · log(0) ≡ lim
ξ→0+

ξ · log(ξ) = 0

0 · log(1/0) ≡ lim
ξ→0+

ξ · log(1/ξ) = 0

log(1/0) ≡ lim
ξ→0+

log(1/ξ) =∞

Note that with these conventions the functions ξ log(ξ) and ξ log(1/ξ) are both continuous on [0, 1].

2.3.1 Entropy and Related Measures

Definition 1. The entropy H(P) of a probability measure P on a finite set X is:

H(P) ≡ −
∑

x∈X
P(x) log2 P(x)

The entropy of a discrete random variable X distributed according to the measure P is:

H(X) ≡ H(P)

Definition 2. Let X,Y be discrete random variables taking values in finite alphabets X ,Y, and let

P(X,Y ) be their joint distribution. Then the joint entropy H(X,Y ) is:

7



H(X,Y ) ≡ −
∑

x∈X ,y∈Y
P(x, y) log2 P(x, y)

and the conditional entropy H(X|Y ) is:

H(X|Y ) ≡
∑

y∈Y
P(y) ·H(X|Y = y)

= −
∑

y∈Y
P(y) ·

∑

x∈X
P(x|y) log2 P(x|y)

Similarly, for discrete random variables X1, ..., Xn with joint distribution P(X1, ..., Xn) = P(Xn
1 ) the

joint entropy H(X1, ..., Xn) = H(Xn
1 ) and conditional entropy H(Xn|X1, ..., Xn−1) = H(Xn|Xn−1

1 )

are defined as:

H(Xn
1 ) ≡ −

∑

xn1

P(xn1 ) log2 P(xn1 ) , and

H(Xn|Xn−1
1 ) ≡ −

∑

xn−1
1

P(xn−1
1 ) ·H(Xn|Xn−1

1 = xn−1
1 ) .

Definition 3. The relative entropy or Kullback-Leibler divergence D(P||P′) between two probability

measures P and P′ on a finite set X is defined as:

D(P||P′) ≡
∑

x∈X
P(x) log2

(
P(x)

P′(x)

)

Intuitively, the entropy H(X) may be thought of as the uncertainty in predicting X or, equiv-

alently, the amount of information obtained by observing X. The joint entropy H(X,Y ) is the

uncertainty in predicting the pair (X,Y ), and the conditional entropy H(X|Y ) is the (average)

uncertainty in predicting X given knowledge of Y . Similarly, the joint entropy H(Xn
1 ) is the un-

certainty in predicting the n-tuple of random variables (X1, ..., Xn), and the conditional entropy

H(Xn|Xn−1
1 ) is the (average) uncertainty in predicting Xn given knowledge of X1, ..., Xn−1. The

Kullback-Leibler divergence D(P||P′) may be thought of as a distance measure between the two

probability distributions P and P′, but it is not a true metric; it is not symmetric and does not

obey the triangle inequality.
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We summarize below some basic but important properties of these information theoretic quan-

tities, which will be useful in our proofs later on. For proofs of the properties themselves the reader

is referred to [23].

1. 0 ≤ D(P||P′) ≤ ∞.

2. 0 ≤ H(X) ≤ log2 |X |.

3. 0 ≤ H(X|Y ) ≤ H(X) and 0 ≤ H(X|Y,Z) ≤ H(X|Y ).

4. 0 ≤ H(X,Y ) ≤ H(X) +H(Y ). More generally, 0 ≤ H(Xn
1 ) ≤∑n

t=1H(Xt).

5. The joint entropy is symmetric in X and Y , but the conditional entropy (in general) is not:

H(X,Y ) = H(Y,X), but H(X|Y ) 6= H(Y |X). Similar statements hold with X replaced by

Xn and Y replaced with Xn−1
1 .

6. H(X,Y ) = H(Y )+H(X|Y ) = H(X)+H(Y |X). More generally, H(Xn
1 ) =

∑n
t=1H(Xt|Xt−1

1 ).

7. Special Cases: H(X) = 0 if and only if P(x) = 1 for some x ∈ X , and H(X) = log2 |X | if and

only if P(X) is the uniform distribution on X . H(X|Y ) = H(X) if and only if X and Y are

independent. Similarly, H(X,Y ) = H(X) + H(Y ) if and only if X and Y are independent.

D(P||P′) = 0 if and only if P = P′.

8. H(P) is a continuous and concave function of the measure P.

2.3.2 The Entropy Rate and its Block Estimates

Definition 4. For a stationary process (Xt) the entropy rate h is the (averaged) asymptotic un-

certainty in prediction of the next symbol given observation of all previous symbols:

h ≡ lim
t→∞

H(Xt|Xt−1
1 )

Existence of the limit is a consequence of property 3 above, which ensures that the sequence of

block estimates:

h(t) ≡ H(Xt|Xt−1
1 ) = H(X0|X−1

−t+1)
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is monotonically decreasing and, thus, must converge to some limiting value h ≥ 0. However, the

rate at which these estimates converge depends very much on the particular process. In the remain-

der of this dissertation, we will be interested primarily in establishing conditions for exponential

convergence in hidden Markov processes and bounds on the rate of convergence:

α = lim sup
t→∞

{h(t)− h}1/t

The following lemma gives two simple alternative expressions for the entropy rate h. Both are

conceptually nice equivalences, but will also be technically useful later in establishing bounds on

the rate of convergence of the block estimates h(t) for various types of HMMs.

Lemma 1. For a stationary process (Xt)t∈Z :

h = lim
t→∞

H(Xt
1)/t (2)

and:

h =

∫
H(X0|x−1

−∞)dP(x−1
−∞) (3)

where:

H(X0|x−1
−∞) ≡




−∑x P(x|x−1

−∞) log2 P(x|x−1
−∞) , if x−1

−∞ is regular

0 , else (by convention)

Proof. (2) follows from the decomposition of property 6:

H(Xt
1) =

t∑

τ=1

H(Xτ |Xτ−1
1 ) =

t∑

τ=1

h(τ)

and the fact that the block estimates h(τ) limit to h, by definition.

(3) follows from the dominated convergence theorem. For every regular past x−1
−∞, H(X0|x−1

−t )→

10



H(X0|x−1
−∞), and H(X0|x−1

−t ) is bounded by log2 |X |, for all t. Thus:

h ≡ lim
t→∞

h(t)

= lim
t→∞

H(X0|X−1
−t )

= lim
t→∞

∑

w∈Lt

H(X0|X−1
−t = w) · P(w)

= lim
t→∞

∑

w∈Lt

∫

Zw

H(X0|x−1
−t )dP(x−1

−∞)

= lim
t→∞

∫
H(X0|x−1

−t )dP(x−1
−∞)

=

∫
H(X0|x−1

−∞)dP(x−1
−∞)

where Zw is the set of regular pasts x−1
−∞ such that x−1

−|w| = w.

2.4 Markov Chains

We will consider here only finite-state Markov chains, because our results are only for finite HMMs.

We review below the basic definition and some important properties. For a more thorough intro-

duction the reader is referred to reference [24].

1 21
2

1
4

1
2

3
4

1

T =

(
1/2 1/2
3/4 1/4

)

Figure 1: A 2 state Markov model. The graphical representation is presented on the left and the
transition matrix T on the right. The state set is S = {1, 2}.

Definition 5. A (finite) Markov model is a pair (S, T ) where:

• S is a finite set of states.

• T is an |S| × |S| stochastic2 transition matrix.

2I.e., nonnegative entries and all rows sum to 1.
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Visually, a Markov model can be depicted as a directed graph with labeled edges, as in Figure

1. The vertices are the states and, for each pair of states i, j with Tij > 0, there is a directed edge

from i to j labeled with the transition probability Tij . From the current state St the next state

St+1 is determined by selecting an outgoing edge from St according to these probabilities.

More formally, for a fixed state i ∈ S the Markov process or Markov chain generated by the

Markov model (S, T ) from initial state i is the random state sequence (St)t∈Z+ with distribution

Pi defined by the relations:





Pi(S0 = i) = 1

Pi(St+1 = k|St = j, St−1
0 = st−1

0 ) = Tjk , t ≥ 0, j, k ∈ S, st−1
0 ∈ St

By linearity this definition may be extended to an arbitrary initial state distribution ρ. That is,

the Markov process generated by the model (S, T ) from an initial state distribution ρ is the state

sequence (St)t∈Z+ with distribution Pρ defined by:

Pρ(·) =
∑

i

ρi · Pi(·)

By induction on t, it can easily be shown that the distribution of the random variable St

according to the measure Pρ may be calculated simply by applying the tth power of the transition

matrix T to the initial distribution ρ:

Pρ(St) = ρT t , t ≥ 0

2.4.1 Transience, Recurrence, and Irreducibility

For a Markov model (S, T ), state j is said to be accessible from state i if there exists a path in the

associated graph from i to j or, equivalently, if T tij > 0 for some t ≥ 0. A state i is said to transient

if there exists some other state j, such that j is accessible from i, but i is not accessible from j. If

a state is not transient it is said to be recurrent. If each state j is accessible from each other state

i the Markov model is said to be irreducible. In this case, of course, all states are recurrent.

Moreover, for any irreducible Markov model (S, T ) it can be shown that:

1. There is a unique stationary distribution π satisfying π = πT ,

12



2. πi > 0, for each i ∈ S, and

3. The Markov chain (St)t∈Z+ generated by the model (S, T ) with S0 chosen according to π is

a stationary and ergodic process.

In the following, many of the Markov models we consider will be irreducible and, in this case, we

will denote the (unique) stationary measure on state sequences (St)t∈Z+ simply by P:

P(·) ≡ Pπ(·)

2.4.2 Periodicity and Aperiodicity

The period p of an irreducible Markov model (S, T ) is the greatest common divisor of the lengths

of all loops in the associated graph:

p ≡ gcd{n : T nii > 0, for some i ∈ S}

This terminology is motivated by the following fact: For a chain of period p the state set S can

always be partitioned into p disjoint and non-empty state equivalence classes E0, ..., Ep−1 such that

all states in class Ek can transition only to states in class E(k+1 mod p). Thus, the flow on equivalence

classes is periodic:

... E0, ..., Ep−1, E0, ..., Ep−1, E0, ..., Ep−1 ...

If p = 1 the Markov model (S, T ), or the associated Markov chain it generates, is said to be

aperiodic. In this case, there is always exponential convergence to the stationary distribution π

from any initial distribution ρ. That is:

‖Pρ(St)− π‖1 = ‖ρT t − π‖1 ≤ Kαt , t ∈ N

for some constants K > 0 and 0 < α < 1 that depend on the model (S, T ), but not on t or the

initial distribution ρ.

However, if p > 1 then convergence to the stationary distribution from all initial conditions is

13



impossible. Any initial distribution with support only on states in class Ek can have support only

on states in class E(k+t mod p) at time t.

2.4.3 Multi-Step Chains

For a Markov model (S, T ) the associated n-step model (S,B) is the Markov model with state set

S and transition matrix B defined by:

Bij = T nij

If the original model (S, T ) is irreducible, then the n-step model (S,B) is also irreducible for all n

relatively prime to the period p of the original model. However, if n is not relatively prime to p

then the n-step model can never be irreducible.

In the special case n = p, the n-step model (S,B) has exactly p disjoint irreducible components,

corresponding to the equivalences classes E0, ..., Ep−1. That is, the graph associated to the n-

step model has p disjoint strongly connected components with state sets E0, ..., Ep−1, and for each

equivalence class Ek the |Ek| × |Ek| matrix Bk defined by:

(Bk)ij = Bij , i, j ∈ Ek

is stochastic.

Moreover, in this case, the irreducible Markov model (Ek,Bk) associated to each equivalence

class Ek is aperiodic. This fact can be quite useful in translating results for aperiodic chains to

chains of general period, as we will do below in Section 3 with large deviation bounds.

2.5 Hidden Markov Models

As noted above, we will consider only the case of finite hidden Markov models where both the

internal set of states S and set of output symbols X are finite. There are two primary types:

state-emitting and edge-emitting. The state-emitting variety is perhaps the simpler of the two, and

also the more commonly studied. However, our results will be derived in the edge-emitting setting,

because some of the conditions we study are more natural in this context. For a translation of the

main theorems to the state-emitting setting, the reader is referred to Appendix C.
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1 21
2 |a

1
2 |b

1|b

1

T (a) =

(
1/2 0
0 0

)

T (b) =

(
0 1/2
1 0

)

Figure 2: A 2 state HMM known as the Even Machine. The HMM has internal states S = {1, 2}
and output alphabet X = {a, b}. The process it generates is called the Even Process [25] because
there are always an even number of b’s between consecutive a’s. The graphical representation is
presented on the left, with the corresponding transition matrices on the right. In the graphical

representation edges are labeled p|x for the transition probability p = T (x)
ij and symbol x.

Definition 6. A (finite, edge-emitting) hidden Markov model is a 3-tuple (S,X , {T (x)}) where:

• S is a finite set of states.

• X is a finite alphabet of output symbols.

• T (x), x ∈ X are |S| × |S| sub-stochastic3 symbol-labeled transition matrices whose sum T is

stochastic.

Like Markov models, a hidden Markov model (HMM) can be depicted visually as a directed

graph with labeled edges, as in Figure 2. The vertices are the states, and for each i, j, x with

T (x)
ij > 0 there is directed edge from i to j labeled with the symbol x and transition probability

T (x)
ij . The sum of the probabilities on all outgoing edges from each state is 1. The operation of

the HMM is as follows: From the current state St the HMM picks an outgoing edge Et according

to their probabilities, generates the symbol Xt labeling this edge, and then follows the edge to the

next state St+1.

More formally, for an initial state i we have measure Pi on joint state-symbol sequences

(St, Xt)t∈Z+ defined by:





Pi(S0 = i) = 1

Pi(St+1 = k,Xt = x|St = j, St−1
0 = st−1

0 , Xt−1
0 = xt−1

0 ) = T (x)
jk ,

for all j, k ∈ S, x ∈ X , t ≥ 0, and (st−1
0 , xt−1

0 ) ∈ St ×X t
(4)

3I.e., nonnegative entries and row sums less than or equal to 1.
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If the initial state is chosen according to a distribution ρ rather than as a fixed state i we have,

as for Markov chains, measure Pρ defined by linearity:

Pρ(·) =
∑

i

ρi · Pi(·) (5)

From these definitions it follows, of course, that the state sequence (St)t∈Z+ is a Markov chain

with transition matrix T =
∑

x T (x). However, we will be interested not only in the state sequence

(St), but also (in fact primarily) in the associated sequence of output symbols (Xt), which is not

generally Markovian. The idea is that an observer of the HMM may directly observer this sequence

of outputs, but not the hidden internal states.

2.5.1 Basic Assumptions

To avoid some trivial, but exceptional, cases, in the remainder of this dissertation we will always

make the following two assumptions for any HMM:

1. Each symbol x ∈ X can actually be generated with positive probability. That is, for each

x ∈ X , T (x)
ij > 0 for some i, j ∈ S. If this is not the case, one can restrict the alphabet to

X/{x}.

2. The state set S and output alphabet X both always have cardinality at least 2. If this is not

the case, all stated results are essentially trivial, but some of the definitions and constructions

used in the proofs may be ambiguous or undefined.

These assumptions will no longer be stated explicitly, but are henceforth intended as part of our

definition of HMM.

2.5.2 Inherited Properties and Stationary Measures

A HMM M = (S,X , {T (x)}) is said to be, respectively, irreducible or aperiodic if the underlying

Markov model (S, T ) is irreducible or aperiodic. Similarly state j of a HMM is said to be accessible

from state i if j is accessible from i in the underlying Markov model, and j is said to be transient

(respectively recurrent) if j is transient (respectively recurrent) in the underlying Markov model.
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For an irreducible HMM, we denote by P the (unique) stationary, ergodic measure on joint

state-symbol sequences (St, Xt)t∈Z+ given by choosing S0 according to the stationary distribution

π for the underlying Markov chain:

P(·) ≡ Pπ(·)

By stationarity, we may uniquely extend this one-sided, stationary measure P to a two-sided (sta-

tionary) measure on bi-infinite state-symbol sequences (St, Xt)t∈Z. From the two-sided measure P

we may then define two-sided measures Pi and Pρ by:

Pi(·) = P(·|S0 = i) and Pρ(·) =
∑

i

ρi · Pi(·)

consistent with the corresponding one-sided measures Pi and Pρ defined above by (4) and (5). In

the following development most HMMs we consider will be irreducible, and in this case we will

use P, Pi, and Pρ to refer to both one-sided measures and the corresponding two-sided measures

interchangeably.

If not otherwise specified, we will assume random variables for an irreducible HMM are dis-

tributed according to the stationary measure P. So, for example, an expression like H(St|Xt−1
0 )

represents the conditional entropy in the state St given the output sequence Xt−1
0 when the distri-

bution over joint sequences (St, Xt)t∈Z is given by the measure P. The entropy rate h and block

estimate h(t) of an irreducible hidden Markov model are, by definition, the entropy rate and block

estimate of its stationary output process P = (Xt)t∈Z.

2.5.3 Additional Notation

In Section 2.5.4, below, we will define several other important properties of HMMs, which do

not have real analogs for ordinary Markov models. Before doing so, however, we introduce some

notation here that will be needed for many of the definitions or later in our proofs. Throughout

M = (S,X , {T (x)}) is assumed to be a fixed HMM.

1. We denote the minimum nonzero transition probability of the HMM M by pmin and the
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maximum transition probability by pmax:

pmin ≡ min{T (x)
ij : T (x)

ij > 0} and pmax ≡ max{T (x)
ij }

In the case M is irreducible, we denote also by rmin and rmax the minimum and maximum

ratios of the stationary state probabilities:

rmin ≡ min
i,j

πi/πj and rmax ≡ max
i,j

πi/πj

2. For a word w ∈ X ∗, we denote by Pi(w) the probability of generating w starting in state i,

and by Pρ(w) the probability of generating w with the initial state chosen according to the

distribution ρ:

Pi(w) ≡ Pi(X
|w|−1
0 = w) and Pρ(w) ≡ Pρ(X

|w|−1
0 = w)

In the case M is irreducible, P(w) is the probability of the word w for the stationary output

process of the HMM (Xt)t∈Z:

P(w) ≡ Pπ(w)

Also, for a set of words A of some fixed length n:

Pi(A) ≡
∑

w∈A
Pi(w) , Pρ(A) ≡

∑

w∈A
Pρ(w) , and P(A) ≡

∑

w∈A
P(w)

3. For a state i ∈ S, L(i), Ln(i), and L+
∞(i) are, respectively, the language, length-n restriction,

and set of allowable infinite futures of state i:

L(i) ≡ {w ∈ X ∗ : Pi(w) > 0}

Ln(i) ≡ {w ∈ L(i) : |w| = n}

L+
∞(i) ≡ {x∞0 : xt0 ∈ L(i), for all t ≥ 0}
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Also, L(M), Ln(M), and L+
∞(M) are the language, length-n restriction, and set of allowable

infinite futures of the HMM M :

L(M) ≡
⋃

i

L(i) , Ln(M) ≡
⋃

i

Ln(i) , L+
∞(M) ≡

⋃

i

L+
∞(i)

4. For i ∈ S and w ∈ X ∗, δi(w) is the set of states j, which state i can transition to upon

emitting the word w:

δi(w) ≡ {j ∈ S : Pi(X
|w|−1
0 = w, S|w| = j) > 0} (6)

Also, for A ⊆ S:

δA(w) ≡
⋃

i∈A
δi(w) (7)

5. Finally, for a word w ∈ X ∗, φi(w) is the distribution over the current state induced by

observing w from initial state i and φρ(w) is the distribution induced by observing w with

the initial state chosen according to ρ:

φi(w) ≡ Pi(S|w||X |w|−1
0 = w)

φρ(w) ≡ Pρ(S|w||X |w|−1
0 = w)

In the case M is irreducible, φ(w) is the distribution over the current state induced by

observing w with initial state chosen according to the stationary distribution π:

φ(w) ≡ φπ(w)

In this case, we also denote the uncertainty in the induced distribution φ(w) by u(w), and

the uncertainty in the induced distribution φ(Xt−1
0 ) or state uncertainty at time t by Ut. The

expected state uncertainty, E(Ut), is the expected value of the random variable Ut with respect
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to the stationary measure π.

u(w) ≡ H(φ(w))

Ut ≡ H(φ(Xt−1
0 )) = u(Xt−1

0 )

E(Ut) ≡ Eπ(Ut) =
∑

w∈Lt(M)

P(w)u(w)

Note that with the conventions introduced in Section 2.2 φi(w), φρ(w), and φ(w) are each the

null distribution consisting of all zeros if, respectively, Pi(w) = 0, Pρ(w) = 0, or P(w) = 0.

Thus, with our conventions for logarithms, u(w) = −∑i∈S φ(w)i log2(φ(w)i) = 0, for any

word w 6∈ L(M) (where φ(w)i is the ith component of the probability vector φ(w)).

2.5.4 Additional Properties

With the requisite notation established, we now proceed to the definitions of some key HMM

properties, including exactness, unifilarity, and the flag-state property, which will be the focus of

Sections 4, 5, and 6, respectively. Properties are listed below, followed by several comments about

relations between them, testability, commonality, and so forth.

Properties

• A HMM M = (S,X , {T (x)}) is unifilar if for each state i and symbol x there is at most 1

outgoing edge from state i labeled with symbol x in the associated graph:

|δi(x)| ≤ 1 , for each i ∈ S, x ∈ X

• A word w ∈ L(M) is a synchronizing word or sync word for a HMM M if the observer knows

the state of the HMM with certainty after seeing w:

δS(w) = {j} , for some j ∈ S

A HMM is exactly synchronizeable or simply exact if it has some finite synchronizing word

w. That is, if it is possible for an observer to synchronize exactly to the state of the HMM

after observing a finite sequence of outputs.
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• A word w ∈ L(M) is a flag word for state j of a HMM M if each state i that can generate

the word w may transition to state j on w:

j ∈ δi(w) , for all i with Pi(w) > 0

This implies, in particular, that the observer always believes state j is possible as the current

state of the HMM after seeing w, regardless of all previous output:

j ∈ δS(vw) , for all v with vw ∈ L(M)

Thus, we think of the word w as signaling or flagging to the observer that state j is possible.

If a state j has some flag word w, then we say it is a flag state. If each state j of a HMM

M is a flag state, then we say M is a flag-state HMM (or FS HMM ). If each state j has a

length-1 flag word (or flag symbol) we say M is FS1.

• States i, j of a HMM M are said to be probabilistically distinguishable (or PD) if there is

some word w ∈ X ∗ with:

Pi(w) 6= Pj(w)

If each pair of distinct state i, j is PD then we say that the M is a PD HMM or that M has

probabilistically distinguishable states. If for each pair of distinct states i, j there is a symbol

x ∈ X (length-1 word) such that:

Pi(x) 6= Pj(x)

then we say that the HMM is PD1.

• States i, j of a HMM M are said to be incompatible if there exists some length n ∈ N such

that the sets of allowed words of length n that can be generated from the two states i and j
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(and hence the sets of allowed words of any length m > n) have no overlap:

Ln(i) ∩ Ln(j) = ∅

• States i, j of a HMM M are said to be path-mergeable if there exists some state k and word

w ∈ X ∗ such that both i and j can transition to k on w:

k ∈ δi(w) ∩ δj(w)

Comments

1. All of these properties are explicitly testable for a given HMM M . Unifilarity is immediate.

Exactness can be tested using the possibility machine construction given in Section 4. Tests

for the other properties are given in Appendix A.

2. In Appendix B we will show that an irreducible HMM is a flag-state HMM if every distinct

pair of states i, j is either path-mergeable or incompatible. This implies, as will be discussed

there further, that the flag-state condition is quite weak, and should in some sense “usually”

be satisfied.

The proofs given below for flag-state HMMs are not as conceptually appealing as those for

either exact or unifilar HMMs, and the bounds on convergence of the entropy rate estimates

h(t) will usually not be as good for flag-state HMMs as for the other cases, either. Never-

theless, the results for flag-state models are important, because they are the most generally

applicable.

3. In our earlier works [26, 27] the term ε-machine was used for a (finite) unifilar, PD HMM.

More generally, ε-machines are minimal unifilar presentations of stationary processes whose

states consist of equivalence classes of infinite pasts x−1
−∞ with same conditional probability

distribution over the random future X∞0 [21, 22]. In the finite case the definition given

in [26, 27] is equivalent to the more general definition in terms of equivalences classes of

pasts. However, the state set of an ε-machine is not always finite even if the process alphabet

X is, and the process alphabet X need not be finite either for the ε-machine presentation to

be well defined.
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In later sections of this dissertation we will not appeal directly to this representation of

a stationary process in terms of equivalence classes of pasts x−1
−∞ or use the term ε-machine

explicitly. Nevertheless, it is worth noting that much of our interest in unifilar HMMs is

motivated by the ε-machine construction, and that this is one of the main reasons we feel

that unifilarity is a natural property to study.

It is also worth noting that, while we will not present it this way because it is simpler not

to, the proof technique for bounding convergence of the entropy rate estimates in exact HMMs

was inspired by the ε-machine representation. Indeed for a (finite) exact HMM the ε-machine

always has (at most) a countable set of states, and any word w that is synchronizing for the

original HMM M is also synchronizing for the ε-machine of the stationary output process

P = (Xt)t∈Z generated by M . This fact can be used to show that for a (finite) exact HMM,

h(t+1)−h ≤ P(NSY Nt)·log2 |X |, for all t, where NSY Nt is the set of words w ∈ Lt(M) that

do not contain any synchronizing subword. The same bound will be established by alternate

and more direct means in Section 4, but the realization first came about by considering the

ε-machine representation.

4. The following are a number of immediate relations and implications concerning the various

properties and definitions. None of them are at all difficult to prove, but they are worth

stating explicitly, because otherwise they may not occur to the reader to consider. In our

proofs in later sections these implications will frequently be used implicitly without direct

reference.

(i) If w is a synchronizing word for a HMM M , then so is vw for any word v with vw ∈ L(M).

(ii) If M is unifilar then extensions of synchronizing words are also synchronizing words.

That is, wv is a sync word for any sync word w and word v with wv ∈ L(M).

(iii) If w is a flag word for a state j, then so is vw for any word v with vw ∈ L(M).

(iv) If w is a flag word for a state j and v ∈ L(j), then wv is flag word for each state i ∈ δj(v).

(v) It follows from (i) that for an exact, irreducible HMM M there is some sync word

wi ∈ L(i) for each state i. In particular, if w ∈ L(j) is a sync word for some state j,

then for each i the word wi = viw ∈ L(i) is a sync word, where vi is any word such that
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j ∈ δi(vi). Existence of the vis is, of course, guaranteed by irreducibility.

(vi) It follows from (iv) that if some state j of an irreducible HMM M has a flag word w,

then each state i also has some flag word wi. In particular, for each i, wi = wvi is a flag

word for state i, where vi is any word such that i ∈ δj(vi). Thus, an irreducible HMM

is a flag-state HMM if it has any state j with a flag word.

(vii) For an exact, irreducible HMM M any sync word w will eventually be generated in a.e.

infinite output sequence x∞0 . Thus, by (i), for P a.e. x∞0 ∈ L+
∞(M) there exists some

finite time t ∈ N such that xt0 is sync word. If the HMM M is also unifilar then, by (ii),

we know that, in addition, for any such output sequence x∞0 , xτ0 is a sync word for all

τ ≥ t.

(viii) The sync word definition is equivalent to the following: w ∈ L(M) is a sync word if

there is some state j ∈ S such that:

δi(w) = {j} , for all i with Pi(w) > 0 (8)

On the other hand, by definition, w ∈ L(M) is flag word for a state j if:

j ∈ δi(w) , for all i with Pi(w) > 0 (9)

Thus, being a sync word is a strictly stronger property than being a flag word. After

seeing a sync word w the observer knows the HMM must be in some given state j,

regardless of previous output, whereas after seeing a flag word w the observer knows

that state j is always possible, regardless of previous output, but other states may be

possible as well. Of course, this means that exactness is a strictly stronger property than

the flag-state property, so our results for flag-state HMMs also hold for exact HMMs.

However, in the specific case of exact HMMs the bounds we obtain will be much better.

(ix) For a unifilar HMM, |δi(w)| ≤ 1 for each state i and word w. Thus, in light of (8) and

(9), a flag word for a unifilar HMM is necessarily a sync word. So a unifilar, flag-state

HMM is necessarily exact.
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2.6 A Remark on Additional Notation in Later Sections

All notation introduced above in Section 2 will be used consistently throughout this dissertation.

However, the reader should note that additional notation introduced later in Sections 4, 5, and 6

for various constructions involving exact, unifilar, and flag-state HMMs is taken to be internal to

those sections and not to transfer between. Indeed, the same symbols will be used to represent

different objects in Sections 4, 5, and 6.
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3 Preliminaries

In this section we prove some important information theoretic inequalities and lemmas on large

deviations and hitting times for Markov chains, which will be useful in the following sections for

establishing bounds on convergence of the entropy rate block estimates h(t). We also introduce

the block model Mn of a HMM M , which will be useful in establishing convergence of the entropy

estimates and related quantities for unifilar and flag-state HMMs. Several of the results presented

here are probably well known, but we were not generally able to find references for them except

where explicitly stated. So, proofs are given for completeness when references are not.

3.1 Information Theoretic Inequalities

We present two inequalities relating the difference in entropies of two distributions, |H(µ)−H(ν)|,

to their difference in total variational norm, ‖µ − ν‖TV ≡ 1
2‖µ − ν‖1. The first is a lower bound

and the second an upper bound.

Lemma 2. Let µ = (µ1, ..., µN ) be a probability measure on the finite set {1, ..., N}. Let kmax =

argmax µk (with lowest index k in case of a tie) and let ν = ekmax. If ‖µ−ν‖TV ≡ ε ≤ min{1
e ,

1
2N−1 }

then:

H(µ) = |H(µ)−H(ν)| ≥ ε

Proof. In the case ε = 0 the inequality is trivial; both sides are 0. Thus, let us assume ε > 0,

which implies, of course, that N ≥ 2. In this case, since
∑

k 6=kmax
µk = ε > 0, there must be some

k 6= kmax with µk ≥ ε/(N − 1). So we have:

H(µ) =
∑

j

−µj log2 µj ≥ −µk log2 µk ≥ −
(

ε

N − 1

)
log2

(
ε

N − 1

)
(10)

The last inequality follows from the fact that f(x) = −x log2(x) is increasing on the interval [0, 1/e]

and ε
N−1 ≤ µk ≤ ε ≤ 1/e. The claim follows from (10) since for all 0 < ε ≤ 1

2N−1 :

−
(

ε

N − 1

)
log2

(
ε

N − 1

)
=

(
ε

N − 1

)
log2

(
N − 1

ε

)
≥
(

ε

N − 1

)
log2

(
1

ε

)
≥ ε
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Lemma 3. Let µ = (µ1, ..., µN ) and ν = (ν1, ..., νN ) be two probability measures on the finite set

{1, ..., N}. If ‖µ− ν‖TV ≡ ε ≤ 1/e then:

|H(µ)−H(ν)| ≤ Nε log2(1/ε)

Proof. If ‖µ− ν‖TV = ε then:

|µk − νk| ≤ ε, for all k

Thus:

|H(µ)−H(ν)| =
∣∣∣∣∣
∑

k

νk log2(νk)− µk log2(µk)

∣∣∣∣∣

≤
∑

k

|νk log2(νk)− µk log2(µk)|

≤ N · max
ε′∈[0,ε]

max
x∈[0,1−ε′]

|(x+ ε′) log2(x+ ε′)− x log2(x)|

= N · max
ε′∈[0,ε]

ε′ log2(1/ε′)

= N · ε log2(1/ε)

The last two equalities, for 0 ≤ ε′ ≤ ε ≤ 1/e, may be verified using single variable calculus

techniques for maximization.

3.2 Large Deviation and Hitting Times Estimates for Markov Chains

We present two large deviation estimates for irreducible Markov chains, and also an important

lemma on hitting times in Markov chains (Lemma 6). The primary large deviation estimate for

irreducible, aperiodic chains (Lemma 4) is given, essentially, in reference [28]. The subsequent

lemma presented here is simply an asymptotic extension dropping the aperiodicity hypothesis.

Lemma 4. Let (S, T ) be an irreducible, aperiodic Markov model with stationary distribution π,

and let (St)t∈Z+ be the associated Markov chain it generates. Also, let f : S → R, let Yt = f(St),
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and let Y avg
t = 1

t

∑t−1
n=0 Yn. Then for any initial state i ∈ S and ε > 0 :

Pi(Y avg
t − Eπ(f) ≥ ε) ≤ exp

(
−

(tε− 4 · mq ‖f‖∞)2

8t · m2

q2
‖f‖2∞

)
, for t sufficiently large (11)

where ‖f‖∞ ≡ maxi∈S |f(i)| is the sup norm of f , Eπ(f) ≡∑i∈S πif(i) is the expected value of f

with respect to the stationary measure π, and m ∈ N, 0 < q < 1 are any constants such that there

exists a probability distribution ρ on S satisfying:

Pi(Sm ∈ ·) ≥ q · ρ(·) , for each i ∈ S (12)

Remark. Note that since Pi(St = j) → πj, as t → ∞, for any irreducible, aperiodic Markov

chain there is always some such triple ρ, q,m satisfying (12). In particular, if we take ρ = ej and

q = πj/2, then there must be some m such that (12) is satisfied. The bound (11), however, holds

for any m, q, ρ satisfying (12). To obtain an ideal bound on the large deviation rate for a given

Markov chain one may attempt to maximize over possible m, q.

Proof. A very similar statement is given in reference [28] for Markov chains on a general state space

with some m, q, ρ satisfying the condition (12). However, there is a slight error in the proof4. When

this error is corrected the bound changes from the one presented in [28] to the one given above

(11).

Lemma 5. Let (S, T ) be an irreducible Markov model of period p ≥ 1, let (S,B) be the associated

p-step model defined in Section 2.4.3, and let (Ek,Bk) be the (irreducible, aperiodic) restriction of

the model (S,B) to states in the kth periodic equivalence class Ek:

(Bk)ij = Bij , i, j ∈ Ek
4In the proof the authors state (in our notation) that:

|Ei{Yt − Eπ(f)}| ≤ ‖f‖∞ · (1− q)bt/mc , for each i ∈ S, t ∈ N

where Ei(·) ≡ E(·|S0 = i). This should instead be:

|Ei{Yt − Eπ(f)}| ≤ 2‖f‖∞ · (1− q)bt/mc , for each i ∈ S, t ∈ N
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Also, as in the previous lemma, let f : S → R and define Yt = f(St), Y
avg
t = 1

t

∑t−1
n=0 Yn, and

Eπ(f) =
∑

i πif(i), where π is the stationary distribution for the original model (S, T ). Then, for

each i ∈ S and ε > 0 :

lim sup
t→∞

Pi(|Y avg
t − Eπ(f)| ≥ ε)1/t ≤ β

where β = β(ε) ∈ (0, 1) is defined by:

β ≡ max
0≤k≤p−1

β
1/p
k

with βk = βk(ε) ∈ (0, 1) given by:

βk ≡ exp

(
− ε2q2

k

8m2
k‖f‖2∞

)

Here mk, qk are the values of m, q satisfying the relation (12) for the (irreducible, aperiodic) Markov

model (Ek,Bk).

Proof. If we define g = −f and Zt = g(St), then ‖g‖∞ = ‖f‖∞ and:

Pi(|Y avg
t − Eπ(f)| ≥ ε) = Pi(Y avg

t − Eπ(f) ≥ ε) + Pi(Y avg
t − Eπ(f) ≤ −ε)

= Pi(Y avg
t − Eπ(f) ≥ ε) + Pi(Zavgt − Eπ(g) ≥ ε)

Thus, it suffices to show that the one sided bound:

lim sup
t→∞

Pi(Y avg
t − Eπ(f) ≥ ε)1/t ≤ β

holds for any f with a given infinity norm.

In the case p = 1 this follows directly from the previous lemma. For p > 1 it can be proved by

considering length-p blocks. Let us define:

Y avg
k,t ≡

1

t

tp−1∑

n=0

1{Sn ∈ Ek} · f(Sn)
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as the empirical average of f evaluated at the first t states from equivalence class Ek in the length

tp state sequence Stp−1
0 and let:

Eπk(f) ≡
∑

i∈Ek

πki · f(i)

be the expected value of f with respect to the normalized stationary measure πk on states in

equivalence class Ek given by πki = p · πi, i ∈ Ek. Then:

Pi(Y avg
tp − Eπ(f) ≥ ε) ≤ Pi(∃k : Y avg

k,t − Eπk(f) ≥ ε)

≤
p−1∑

k=0

Pi(Y avg
k,t − Eπk(f) ≥ ε)

≤ p ·max
k

Pi(Y avg
k,t − Eπk(f) ≥ ε)

or, equivalently:

Pi(Y avg
τ − Eπ(f) ≥ ε) ≤ p ·max

k
Pi(Y avg

k,t − Eπk(f) ≥ ε)

for any τ = tp, t ∈ N. If τ is not an integer multiple of p things are slightly more complicated.

However, since S is finite, f is bounded. So, we still have:

Pi(Y avg
τ − Eπ(f) ≥ ε) ≤ Pi(∃k : Y avg

k,t − Eπk(f) ≥ ε′)

≤ p ·max
k

Pi(Y avg
k,t − Eπk(f) ≥ ε′) (13)

for any ε′ < ε and all sufficiently large τ , where t = bτ/pc.

For any β′ > maxk βk(ε
′)1/p we know by the previous lemma that the quantity on the right

hand side of (13) is bounded above by (β′)τ , for all sufficiently large τ . Since each βk = βk(ε
′) is a

continuous function of ε′, β′ can be chosen arbitrarily close to β by taking ε′ arbitrarily close to ε.

Therefore:

lim sup
τ→∞

Pi(Y avg
τ − Eπ(f) ≥ ε)1/τ ≤ β

as required.
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To state the final lemma on hitting times we need to introduce some terminology.

• If i, j ∈ S and B is a subset of S we say j is accessible from i without passing through B if

there exists a state sequence st0, t ≥ 0 such that s0 = i, st = j, Pi(St0 = st0) > 0, and sn 6∈ B

for each 0 ≤ n ≤ t.

• If j ∈ S and A and B are subsets of S we say that j is accessible from A without passing

through B, if there exists i ∈ A such that j is accessible from i without passing through B.

• If i ∈ S and A is a subset of S we say A is accessible from i if there exists j ∈ A such that j

is accessible from i.

Lemma 6. Let (S, T ) be a Markov model, not necessarily irreducible. Let A and B be disjoint

non-empty subsets of S, and let S̃ ⊂ S/B be the set of states that are accessible from A without

passing through B. Define T̃ to be the |S̃| × |S̃| substochastic matrix, which is the restriction of the

original matrix T to the states in S̃:

T̃ij = Tij , i, j ∈ S̃

Also, let α be the spectral radius of T̃ , and let T be the first hitting time for the set B:

T ≡ inf{t : St ∈ B}

Then:

1. For any initial distribution ρ on S with support A 5:

lim
t→∞

Pρ(T > t)1/t = α

2. For any A′ ⊂ A and initial distribution ρ with support A′:

lim sup
t→∞

Pρ(T > t)1/t ≤ α

5That is, ρi > 0 if and only if i ∈ A.
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3. If B is accessible from each i ∈ S̃ then:

α < 1

Remark. Note, in particular, that if A is the set of transient states of a Markov model and B is

the set of recurrent states then S̃ = A, and α < 1 by part 3 of the lemma, since some recurrent

state must be accessible from each transient state. Moreover, in this case, we have by part 2 of the

lemma that for each transient state i:

lim sup
t→∞

Pi(T > t)1/t ≤ α

where T is the hitting time for the set of recurrent states B. This is probably, in general, the most

useful application of this lemma for Markov chains, and it is the way the lemma will be applied in

Section 5 below. However, in Section 4 we will need to use it in the more general form as stated

above.

Proof of 1. By mutual induction on t it is easily seen that for each t ∈ N:

(i) Pρ(St = j|T > t) =
(ρ̃T̃ t)j
‖ρ̃T̃ t‖1

, for each j ∈ S̃, and

(ii) Pρ(T > t) = ‖ρ̃T̃ t‖1,

where ρ̃ is the distribution on S̃ defined by ρ̃i = ρi, i ∈ S̃. Thus, we must show that:

lim
t→∞
‖ρ̃T̃ t‖1/t1 = α

Now, of course, we have:

lim
t→∞
‖T̃ t‖1/t1 = α

where:

‖T̃ t‖1 ≡ max{‖vT̃ t‖1 : ‖v‖1 = 1}
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is the operator norm of T̃ t with respect to ‖ · ‖1 on vectors. So, the upper bound is immediate:

lim sup
t→∞

‖ρ̃T̃ t‖1/t1 ≤ lim sup
t→∞

‖T̃ t‖1/t1 = α

To prove the lower bound let us a fix a normalized eigenvector v of T̃ whose associated eigenvalue

a is of maximum modulus. That is:

vT̃ = av , ‖v‖1 = 1 , and |a| = α

Also, let u be the vector defined by ui = |vi|, i ∈ S̃. Then, since T̃ t has nonnegative entries, we

have by the triangle inequality:

‖uT̃ t‖1 ≥ ‖vT̃ t‖1 = ‖at · v‖1 = |a|t · ‖v‖1 = αt

and since T̃ t and u both have nonnegative entries:

‖uT̃ t‖1 =
∑

i∈S̃

ui‖eiT̃ t‖1

Therefore, since each ui ≤ 1, we know that for each t ∈ N there is some j = j(t) ∈ S̃ with:

‖ej T̃ t‖1 ≥ αt/|S̃|

Now, by assumption, the distribution ρ̃ has support A and each state j ∈ S̃ is accessible from

A without passing through B. So, for each j ∈ S̃ there must be some mj ∈ N such that:

(
ρ̃T̃ mj

)
j
≡ pj > 0

Let:

p ≡ min
j∈S̃

pj and m ≡ max
j∈S̃

mj
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Then for any t > m we have:

‖ρ̃T̃ t‖1
(a)
= ‖ρ̃T̃ mj T̃ t−mj‖1
(b)

≥
∥∥∥
(

(ρ̃T̃ mj )j ej
)
T̃ t−mj

∥∥∥
1

= ‖pjej T̃ t−mj‖1
(c)

≥ pj · ‖ej T̃ t−mj T̃ mj‖1

≥ p · ‖ej T̃ t‖1
(d)

≥ p ·
(
αt/|S̃|

)
(14)

where j = j(t). The decomposition in Step (a) is possible since t > m ≥ mj . The inequality in Step

(b) holds since all vectors and matrices on both sides of the inequality have nonnegative entries.

The inequality in Step (c) holds because T̃ is substochastic, so ‖T̃ ‖1, and hence ‖T̃ mj‖1, are both

at most 1. Finally, the inequality in Step (d) holds because of our choice j = j(t).

Since p and |S̃| are both positive constants independent of t it follows from the inequality (14)

that:

lim inf
t→∞

‖ρ̃T̃ t‖1/t1 ≥ α

which proves the claim.

Proof of 2. As in the previous case, it is easily seen by induction on t that:

Pρ(T > t) = ‖ρ̃T̃ t‖1 , for each t ∈ N

where ρ̃ is the distribution on S̃ defined by ρ̃i = ρi, i ∈ S̃. Thus:

lim sup
t→∞

Pρ(T > t)1/t = lim sup
t→∞

‖ρ̃T̃ t‖1/t1 ≤ lim sup
t→∞

‖T̃ t‖1/t1 = α
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Proof of 3. If ρ is any distribution with support A, then by part 1 of this lemma:

lim
t→∞

Pρ(T > t)1/t = α (15)

On the other hand, for any such distribution ρ:

Pρ
(
T > |S̃| · t

)
=

t∏

n=1

Pρ
(
T > |S̃| · n

∣∣∣ T > |S̃| · (n− 1)
)

≤
t∏

n=1

max
i∈S̃

Pi(T > |S̃|)

= qt (16)

for all t ∈ N, where q ≡ max
i∈S̃ Pi(T > |S̃|). Together (15) and (16) imply:

α ≤ q1/|S̃|

The claim follows since q < 1 if B is accessible from each state i ∈ S̃. (Any state i ∈ S̃ that can

reach B must be able to do so by a path of length at most |S̃| steps.)

3.3 Block Models

Definition 7. Let M = (S,X , {T (x)}) be an irreducible HMM. The n-block model (or simply

block model) Mn is the HMM (S,W, {B(w)}) where W = Ln(M) is the set of length-n allowable

words for M and the block transition matrices B(w) are defined by:

B(w) ≡
n−1∏

t=0

T (xt) , w = xn−1
0 ∈ Ln(M)

Note that the state transition matrix B ≡ ∑w∈W B(w) for the block model is the same state

transition matrix B as for the n-step Markov model (S,B) defined in Section 2.4.3, and that for

each i, j ∈ S and w ∈ Ln(M), B(w)
ij = Pi(Xn−1

0 = w, Sn = j). Also, note that in the case n = 1, the

block model M1 is simply the original HMM M .

An example of this construction is presented below in Figure 3.
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Original HMM M

1 21
2 |a

1
2 |b

1|b

Block Model M2

1 21
4 |aa , 1

2 |bb 1
2 |bb

1
4 |ab

1
2 |ba

1

Figure 3: The block model construction M2 for the Even Machine M of Figure 2.

The following lemma states some of the basic properties of block models. Properties 1 and 3

are immediate from the definition. Property 2 follows from the Chinese remainder theorem.

Lemma 7. Let M = (S,X , {T (x)}) be an irreducible HMM, and let Mn = (S,W, {B(w)}) be the

corresponding n-block model.

1. The stationary distribution π for M is also stationary for Mn, i.e. π = πB.

2. If n is relatively prime to p = per(M), then Mn is also irreducible. Thus, in this case, π is

the unique stationary distribution for Mn.

3. For any initial distribution ρ on S, wt−1
0 ∈ Wt, and bt0 ∈ St+1:

Pnρ (W t−1
0 = wt−1

0 , Bt
0 = bt0) = Pρ(Xnt−1

0 = wt−1
0 and Snτ = bτ , τ = 0, 1, ..., t)

where Bt and Wt are, respectively, the state and output symbol random variables for the block

model at time t, and Pnρ is the distribution of these random variables when the initial state

B0 of the block model Mn is chosen according to the distribution ρ.

Property 3 is the primary reason for introducing block models. Since the joint process (Bt,Wt)

generated by the block model Mn is simply a scaled version of the joint process (St, Xt) of the

original HMM M , generated over length-n blocks of output symbols, questions about the original

HMM may often be addressed by studying the block model rather than the original HMM directly.

This is useful since the block model may have nicer (or stronger) properties than the original HMM,

which simplify the analysis. In particular:
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(i) If M is an irreducible, PD HMM and `, n ∈ N are defined by:

` ≡ max
i 6=j

min{m : Pi(Xm−1
0 ) 6= Pj(Xm−1

0 )}

n ≡ min{m ≥ ` : m is relatively prime to p = per(M)} (17)

then the block model Mn is an irreducible, PD1 HMM.

(ii) If M is an irreducible, FS HMM and `, n ∈ N are defined by:

` ≡ max
j∈S

|wj | , where wj is the flag word for state j

n ≡ min{m ≥ ` : m is relatively prime to p = per(M)} (18)

then the block model Mn is an irreducible, FS1 HMM (by point (iii) in Section 2.5.4).

Of course, the block model also always retains most essential properties. In particular:

• If M is exact, then so is Mn for any n ∈ N.

• If M is uniflar, then so is Mn for any n ∈ N.

The following lemma relates the speed of convergence of the entropy rate estimates and the

decay of the expected state uncertainty for the block model to that of the original model. It will

be essential for our proofs in Sections 5 and 6 below.

Lemma 8. Let M = (S,X , {T (x)}) be an irreducible HMM with associated block model Mn =

(S,W, {B(w)}), for some n ≥ 2 and relatively prime to per(M). Let (St, Xt)t∈Z and (Bt,Wt)t∈Z

be, respectively, the stationary joint state-symbol processes for M and Mn. Also, let h, h(t), and

Ut = H(φ(Xt−1
0 )) be the entropy rate, length-t entropy rate estimate, and state uncertainty at time

t for the original HMM M , and let g, g(t), and Vt = H(φ(W t−1
0 )) be the entropy rate, length-t

entropy rate estimate, and state uncertainty at time t for the block model Mn. Then:

1. g = nh

2. lim supt→∞(h(t)− h)1/t =
[
lim supt→∞(g(t)− g)1/t

]1/n

3. lim supt→∞ E(Ut)
1/t =

[
lim supt→∞ E(Vt)

1/t
]1/n
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Proof. The proofs of all three claims are based on applications of part 3 of Lemma 7. We will

denote all such applications by (*).

The proof of Point 1 is a direct computation:

g = lim
t→∞

H(W t−1
0 )

t

(∗)
= lim

t→∞

H(Xnt−1
0 )

t
= lim

t→∞

H(Xnt−1
0 )

nt
· n = nh

Point 3 follows from the relation:

E(Unt)
(∗)
= E(Vt)

and the fact that:

E(Ut) = H(St|Xt−1
0 ) = H(S0|X−1

−t )

is monotonically decreasing. Point 2 follows from the relation:

g(t+ 1)− g = H(Wt|W t−1
0 )− nh

(∗)
= H(X

n(t+1)−1
nt |Xnt−1

0 )− nh

=

n(t+1)−1∑

τ=nt

H(Xτ |Xτ−1
0 )− nh

=

n(t+1)−1∑

τ=nt

(h(τ + 1)− h)

and the fact that:

h(t) = H(Xt|Xt−1
1 ) = H(X0|X−1

−(t−1))

is monotonically decreasing.
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4 Results for Exact HMMs

In this section we prove an exponential upper bound for the speed of convergence of the entropy rate

estimates h(t) in exact HMMs. This is an extension of our earlier work with Crutchfield [26], wherein

similar methods were used to derive an analogous result, but under the additional assumption of

unifilarity.

Throughout this section we will denote by SY Nt the set of length-t words in the process language

L(M) containing a synchronizing word, and by NSY Nt the set of length-t words in the process

language that do not contain a synchronizing word:

SY Nt ≡ {w ∈ Lt(M) : some subword of w is a sync word for M}

NSY Nt ≡ {w ∈ Lt(M) : no subword of w is a sync word for M}

The basic structure of the arguments is as follows:

• First, we introduce an auxilliary HMM known as the possibility machine, which allows us to

easily compute the probability P(NSY Nt) that the first t output symbols do not contain a

synchronizing word and how it scales.

• Then, we prove an upper bound on the differences h(t+ 1)−h in terms of P(NSY Nt), which

guarantees that the error in the block estimates h(t) decays to 0 at least as fast as P(NSY Nt).

In some simple examples where the speed of convergence of h(t) can actually be computed

analytically6 we know that P(NSY Nt) and the differences h(t)−h, in fact, decay at the same rate,

so our upper bound on the rate of convergence of the block estimates h(t) is tight.We believe this

will often be the case, though we are not usually able to compute the actual speed of convergence

of the estimates h(t) by other means to verify this claim7.

6For instance, the Even Machine of Figure 2 and Random Random XOR Machine [30].
7And, indeed, one can construct examples where the true speed of convergence is strictly faster than our upper

bound by taking some non-zero transition probabilities very close to zero.
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4.1 The Possibility Machine

Original HMM M

1

23

1|a

1
3 |a , 1

6 |b

1
2 |a

1
4 |b

3
4 |a

Possibility Machine Mposs

1, 123 2, 123 3, 123

3, 13 3, 23 1, 13 2, 23

1, 1

2, 23, 3

1|a

1
2 |a 1

3 |a
3
4 |a

1
6 |b 1

4 |b

3
4 |a

3
4 |a

1
4 |b 1|a

1
2 |a

1
4 |b

1
3 |a , 1

6 |b

1
2 |a

1
3 |a

1|a

1
6 |b

1
4 |b

3
4 |a

1

Figure 4: The possibility machine construction for an exact, 3 state, 2 symbol HMM. In the
possibility machine initial states are colored blue and sync states are colored red. All other states
are white. States names have also been abbreviated. So, for example, the state (1, {1, 2, 3}) is
denoted simply by 1, 123.

Definition 8. For a HMM M = (S,X , {T (x)}) the extended possibility machine Mposs is the

HMM (R,X , {Q(x)}) where:

• R = {(i, A) : i ∈ S, A is a subset of S}

• The transition matrices Q(x)
are defined by:

Q(x)
(i,A)(j,B) = T (x)

ij · 1{δA(x) = B}
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A state (i, A) ∈ R is said to be a sync state if A = {i} and an initial state if A = S. The possibility

machine Mposs is the restriction of Mposs to its initial states and other states accessible from them.

More precisely, Mposs = (R,X , {Q(x)}) where:

• R = {r ∈ R : r is initial or is accessible from some initial state r′}

• The transition matrices Q(x) are defined by:

Q(x)
rr′ = Q(x)

rr′ , r, r
′ ∈ R

An example of this construction is given in Figure 4. We will denote the output sequence of the

possibility machine by (Yt)t∈Z+ and its internal state sequence as (Rt)t∈Z+ = (Tt, Pt)t∈Z+ , where

Tt ∈ S and Pt is a subset of S. The interpretation is as follows:

• Yt is the tth output symbol of the original HMM M .

• Tt is the true state of the HMM M at time t.

• Pt is the set of states that the observer believes it is possible for the HMM M to be in after

observing the output Y t−1
0 .

Initially, all states are possible to the observer (S0 ∼ π), so the initial states of the possibility

machine are those of the form (i,S). On the other hand, the observer becomes synchronized when

the only possible state is the true state, so the sync states are those of the form (i, {i}).

The following lemma justifies and formalizes this interpretation.

Lemma 9. Let M = (S,X , {T (x)}) be an irreducible HMM with stationary distribution π. Let

Mposs = (R,X , {Q(x)}) be the associated possibility machine, and let µ be the distribution on its

state set R defined by:

µ(i,A) =





πi, , if A = S

0 , else

Then the distribution over joint sequences (Tt, Yt)t∈Z+ with the initial possibility machine state

R0 chosen according to µ is the same as the stationary distribution over state-symbol sequences
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(St, Xt)t∈Z+ for the original HMM M given by choosing S0 according to π:

Ppossµ (T∞0 , Y∞0 ) = Pπ(S∞0 , X∞0 ) ≡ P(S∞0 , X∞0 ) (19)

Moreover, if R0 ∼ µ then (with probability 1):

δS(Y t−1
0 ) = Pt , for each t ∈ N (20)

In particular, Y t−1
0 is a synchronizing word for M if and only if the set of possible states Pt consists

only of the true state Tt
8. Or, equivalently, if and only if Rt is a sync state.

Y t−1
0 is a sync word ⇐⇒ Pt = {Tt} ⇐⇒ Rt is a sync state

Remark. Note, in particular, that this lemma implies the original HMM M is exact (has sync

words) if and only if the possibility machine Mposs has sync states. So, the possibility machine

construction is a way of testing a HMM for exactness.

Proof of (20). For any w = xt−1
0 ∈ X ∗ it is easily seen (by induction on t) that:

δS(w) = St

where the sets S0, ...,St are defined by the relations:

S0 = S and Sn+1 = δSn(xn) , n = 0, ..., t− 1

The claim follows from this fact, since the initial set of possible states P0 is always S if R0 is chosen

according to µ, and by construction of the possibility machine:

Pn+1 = δPn(Yn)

8Note that by the first claim (19), we must have Tt ∈ δT0(Y t−1
0 ). Thus, by the second claim (20), Tt ∈ Pt =

δS(Y t−1
0 ), so it is impossible that the output sequence Y t−1

0 synchronizes an observer of the original HMM M to any
state other than the Tt.
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Proof of (19). We show by induction on t that:

Ppossµ (T t0 = st0, Y
t−1

0 = xt−1
0 ) = P(St0 = st0, X

t−1
0 = xt−1

0 )

for all t ≥ 0 and st0 ∈ St+1, xt−1
0 ∈ X t.

Basis Step - Show for t = 0.

For each so ∈ S we have:

Ppossµ (T0 = s0) = µ(so,S) = πso = P(S0 = so)

Inductive Step - Assume for t, and show for t+ 1.

If P(St0 = st0, X
t−1
0 = xt−1

0 ) = Ppossµ (T t0 = st0, Y
t−1

0 = xt−1
0 ) = 0, then clearly also P(St+1

0 =

st+1
0 , Xt

0 = xt0) = Ppossµ (T t+1
0 = st+1

0 , Y t
0 = xt0) = 0. Thus, let us assume P(St0 = st0, X

t−1
0 = xt−1

0 ) =

Ppossµ (T t0 = st0, Y
t−1

0 = xt−1
0 ) > 0. In this case, we may condition on the event {T t0 = st0, Y

t−1
0 =

xt−1
0 }, and we find:

Ppossµ (Tt+1 = st+1, Yt = xt|T t0 = st0, Y
t−1

0 = xt−1
0 )

(∗)
= Ppossµ (Tt+1 = st+1, Yt = xt|T t0 = st0, Y

t−1
0 = xt−1

0 , Pt = A)

= Ppossµ (Tt+1 = st+1, Yt = xt|Rt = (st, A))

=
∑

B⊆S
Ppossµ (Rt+1 = (st+1, B), Yt = xt|Rt = (st, A))

=
∑

B⊆S
T (xt)
stst+1

· 1{δA(xt) = B}

= T (xt)
stst+1

= P(St+1 = st+1, Xt = xt|St0 = st0, X
t−1
0 = xt−1

0 ) (21)

where A ≡ δS(xt−1
0 ) and (*) follows from the relation (20) proved above, which guarantees that

Pt = A with probability 1 on the event {T t0 = st0, Y
t−1

0 = xt−1
0 }. Combining (21) with the inductive

43



hypothesis yields:

Ppossµ (T t+1
0 = st+1

0 , Y t
0 = xt0)

= Ppossµ (T t0 = st0, Y
t−1

0 = xt−1
0 ) · Ppossµ (Tt+1 = st+1, Yt = xt|T t0 = st0, Y

t−1
0 = xt−1

0 )

= P(St0 = st0, X
t−1
0 = xt−1

0 ) · P(St+1 = st+1, Xt = xt|St0 = st0, X
t−1
0 = xt−1

0 )

= P(St+1
0 = st+1

0 , Xt
0 = xt0)

proving the claim.

4.2 Scaling of P(NSY Nt)

Combining Lemma 9 with Lemma 6 we now obtain the scaling rate of P(NSY Nt).

Proposition 1. Let M = (S,X , {T (x)}) be an exact, irreducible HMM with associated possibility

machine Mposs = (R,X , {Q(x)}). Let R̃ ⊂ R be the set of possibility machine states, which are

accessible from the set of initial states without passing through the set of sync states (See Section

3.2 for definitions). Finally, let Q̃ be the restriction of the state transition matrix Q =
∑

xQ(x) for

Mposs to the state set R̃:

Q̃rr′ = Qrr′ , r, r′ ∈ R̃

Then:

lim
t→∞

P(NSY Nt)
1/t = α

where 0 ≤ α < 1 is the spectral radius of Q̃.

Proof. By Lemma 9 we know that if R0 ∼ µ then:

(i) The distribution of the output sequence Y t−1
0 for the possibility machine is the same as the

distribution of the output sequence Xt−1
0 for the original HMM M (with S0 ∼ π).

(ii) Y t−1
0 is a sync word if and only if Rt is a sync state.
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Thus:

P(NSY Nt) = P(Xt−1
0 6∈ SY Nt)

= P(Xn−1
0 is not a sync word, for all 1 ≤ n ≤ t)

(i)
= Ppossµ (Y n−1

0 is not a sync word, for all 1 ≤ n ≤ t)
(ii)
= Ppossµ (Rn is not a sync state, for all 1 ≤ n ≤ t)

= Ppossµ (T > t)

where T ≡ inf{t : Rt is a sync state} is the first hitting time for the set of sync states.

Therefore, by part 1 of Lemma 6, we have:

lim
t→∞

P(NSY Nt)
1/t = α

Moreover, by part 3 of this same lemma, we know α must be less than 1, since some sync state is

accessible from each r ∈ R̃. In particular, since M is exact, we know that for each i ∈ S there is

some word wi ∈ L(i), which synchronizes the observer to some state ji ∈ S. So, for any possibility

machine state r = (i, A), δpossr (wi) is the singleton set consisting of the sync state (ji, {ji}).9

Remark. Looking at the proof of Lemma 6 it is clear that for any finite t we have the exact formula:

P(NSY Nt) = Ppossµ (T > t) = ‖µ̃Q̃t‖1

where µ̃ is the distribution on R̃ defined by µ̃r = µr, r ∈ R̃. For estimates with finite and relatively

small t, so that the computation of µ̃Q̃t is not too computationally intensive, this may be more

useful than the asymptotic scaling rate α.

The following upper bound on the decay of the expected state uncertainty E(Ut) in an exact,

unifilar HMM is a simple consequence of Proposition 1. It is far easier to prove than analogous

results derived in Section 5 for nonexact, unifilar HMMs.

9This follows from the more general statement δposs(i,A)(w) = {(j, δA(w)) : j ∈ δi(w)}, which is easily proved by
induction on the length of w.
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Proposition 2. For an exact, unifilar, irreducible HMM M :

lim sup
t→∞

E(Ut)
1/t ≤ α

where 0 ≤ α < 1 is the spectral radius of the matrix Q̃, as defined in Proposition 1.

Proof. If M is unifilar then extensions of synchronizing words are also synchronizing words so:

w ∈ SY Nt =⇒ w is a sync word =⇒ u(w) = 0

Thus:

E(Ut) =
∑

w∈Lt(M)

P(w)u(w) ≤ P(NSY Nt) · log2 |S|

The claim follows since:

lim
t→∞

P(NSY Nt)
1/t = α

by Proposition 1.

4.3 Sync Bound on Convergence of the Entropy Rate Estimates

Using the results of the previous section for the decay of P(NSY Nt) we now obtain an upper

bound on the speed of convergence of the entropy rate block estimates h(t). The key estimate is

Lemma 11 below, which shows that the difference h(t+1)−h is upper bounded by a constant times

P(NSY Nt). Before proceeding to prove this estimate, however, we will first need to introduce one

simple additional lemma concerning conditioning on infinite pasts, which contain synchronizing

words.

Lemma 10. Let M = (S,X , {T (x)}) be an exact, irreducible HMM, and let w be a sync word for

M . If x−1
−∞ is a regular past with x−m−n = w for some 1 ≤ m ≤ n then:

H(X0|x−1
−t ) = H(X0|x−1

−∞) , for all t ≥ n

46



Proof. Assume that w synchronizes the observer to state i. Then, for any t ≥ n:

P(S−m+1 = i|X−1
−t = x−1

−t ) = P(S−m+1 = i|X−m−n = x−m−n ) = 1

So, for each t ≥ n and x ∈ X :

P(x|x−1
−t ) ≡ P(X0 = x|X−1

−t = x−1
−t )

= P(X0 = x|X−1
−t = x−1

−t , S−m+1 = i)

= P(X0 = x|X−1
−m+1 = x−1

−m+1, S−m+1 = i) (22)

Since the right hand side of (22) is a constant independent of t, we know that for each x:

P(x|x−1
−∞) ≡ lim

t→∞
P(x|x−1

−t )

= P(x|x−1
−t ) , for each t ≥ n

Thus, for each t ≥ n we have:

H(X0|x−1
−∞) ≡ −

∑

x

P(x|x−1
−∞) log2 P(x|x−1

−∞)

= −
∑

x

P(x|x−1
−t ) log2 P(x|x−1

−t )

= H(X0|x−1
−t )

Lemma 11. For an exact, irreducible HMM M = (S,X , {T (x)}) :

h(t+ 1)− h ≤ P(NSY Nt) · log2 |X | , for all t ∈ N

Proof. Let Zw be the set of regular infinite pasts x−1
−∞ terminating in the word w:

Zw ≡ {x−1
−∞ : x−1

−∞ is regular and x−1
−|w| = w}
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Then, for any fixed t ∈ N:

h(t+ 1) ≡ H(Xt+1|Xt
1)

= H(X0|X−1
−t )

=
∑

w∈Lt(M)

H(X0|X−1
−t = w) · P(w)

=
∑

w∈Lt(M)

∫

Zw

H(X0|x−1
−t )dP(x−1

−∞)

Thus, using the integral formula for the entropy rate (3) and the previous lemma we have:

h(t+ 1)− h =
∑

w∈Lt(M)

∫

Zw

H(X0|x−1
−t )dP(x−1

−∞)−
∫
H(X0|x−1

−∞)dP(x−1
−∞)

=
∑

w∈Lt(M)

∫

Zw

H(X0|x−1
−t )dP(x−1

−∞)−
∑

w∈Lt(M)

∫

Zw

H(X0|x−1
−∞)dP(x−1

−∞)

=





∑
w∈NSY Nt

∫
Zw

(
H(X0|x−1

−t )−H(X0|x−1
−∞)

)
dP(x−1

−∞) +

∑
w∈SY Nt

∫
Zw

(
H(X0|x−1

−t )−H(X0|x−1
−∞)

)
dP(x−1

−∞)

≤
∑

w∈NSY Nt

P(w) · log2 |X | +
∑

w∈SY Nt

P(w) · 0

= P(NSY Nt) · log2 |X |

Theorem 1. For an exact, irreducible HMM M :

lim sup
t→∞

{h(t)− h}1/t ≤ α

where 0 ≤ α < 1 is the spectral radius of the matrix Q̃, as defined in Proposition 1.

Proof. This follows immediately from the decay rate of P(NSY Nt) given in Proposition 1 and

Lemma 11.
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5 Results for Unifilar HMMs

In this section we establish exponential bounds on the pointwise and L1 decay of the state uncer-

tainty Ut for PD, unifilar HMMs. Then, as a consequence of the L1 bounds, we derive exponential

bounds on the speed of convergence of the entropy rate block estimates h(t), for general unifilar

HMMs, by a means of a PD reduction.

In many places we will assume, also, that the HMM is nonexact, so we do not have to treat the

exact case separately where the analysis is slightly different. In the case of an exact, unifilar HMM

the pointwise decay rate of Ut is simply α = 0, since P a.e. x∞0 contains a sync word. Also, in this

case, we have already exponential bounds on the L1 decay of state uncertainty and convergence of

the entropy estimates given by Proposition 2 and Theorem 1. These bounds are at least as strong

as what we would obtain using the alternate methods for unifilar HMMs given below.

Similar statements about exponential decay of the state uncertainty Ut and exponential con-

vergence of the entropy estimates h(t), for nonexact, unifilar HMMs were given in our earlier work

with Crutchfield [27]. However, the methods of proof presented here are quite different and, we

feel, intuitively somewhat nicer. The new proof methods also give the pointwise decay rate of Ut

exactly, which the old methods do not.

The central idea behind the proofs is the construction of an auxiliary HMM known as the

follower model. The basic concept was originally suggested to us by Morris [31], though the details

are somewhat more involved than they may have initially appeared at the time, because the follower

model is not always irreducible (even ignoring trivial or non-accessible components).

5.1 The Follower Model

For a unifilar HMM M = (S,X , {T (x)}) we define the extended state set S and transition function

δi(w), i ∈ S, w ∈ X ∗ by:

S ≡ S ∪ {d}

and:

δi(w) ≡





j , if i ∈ S and δi(w) = {j}

d , if i ∈ S and δi(w) = ∅

d , if i = d

(23)
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Figure 5: The follower model construction for a 4 state, 2 symbol, unifilar HMM. In the follower
model parentheses have been omitted from the state labels. So, for example, the state (2, 3) is
denoted simply by 2, 3.

where δi(w) is the standard HMM transition function given by (6). By unifilarity, for any i ∈ S

and w ∈ X ∗, δi(w) is always either ∅ or {j}, for some j ∈ S. Thus, δi(w) is always well defined.

We will refer to d as the dead state. The meaning of this terminology will become clear in the

discussion below.

Definition 9. Let M = (S,X , {T (x)}) be an irreducible, unifilar HMM. The corresponding follower

model Mfoll is the unifilar HMM (S × S,X , {Q(x)}) with transition matrices Q(x) defined by:

Q(x)

(i,i)(j,j)
= T (x)

ij · 1{δi(x)=j} , i, j ∈ S and i, j ∈ S
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An example of this construction is presented in Figure 5. We will denote the output sequence

of the follower model Mfoll as (Yt)t∈Z+ and its internal state sequence as (Rt, Rt)t∈Z+ , Rt ∈ S and

Rt ∈ S. The distribution of these random variables with initial state (R0, R0) = (i, i) is denoted

by Pfoll
(i,i)

.

Rt is thought of as the leader state at time t and Rt as the follower state. The next output

symbol Yt and next leader state Rt+1 are selected from the current leader state Rt in the normal

way. Then, the next follower state Rt+1 is determined simply by following the outgoing edge in the

original HMM M from state Rt labeled with symbol Yt. If there is no such edge, then Rt transitions

to the dead state d. The dead state also transitions to itself on all output symbols. Thus, once the

follower path dies, it remains dead for all future time.

Formally, we will adopt the convention:

Pd(w) ≡ 0 , w ∈ X ∗

for word probabilities from the dead state, so that for each i ∈ S and w, v ∈ X ∗:

Pi(wv) = Pi(w) · Pδi(w)(v)

The following lemma (applying this convention) is a direct consequence of the follower model

construction and, indeed, the primary reason for introducing it.

Lemma 12. If M is an irreducible, uniflar HMM with associated follower model Mfoll then:

1. For each (i, i) ∈ S × S the distribution over output sequences Y∞0 from state (i, i) for Mfoll

is the same as the distribution over output sequences X∞0 from state i for M :

Pfoll
(i,i)

(Y∞0 ) = Pi(X∞0 )

2. For each initial state (i, i) ∈ S × S and t ∈ N the following all hold with probability 1 with
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respect to the measure Pfoll
(i,i)

10:

δi(Y
t−1

0 ) = Rt

δi(Y
t−1

0 ) = Rt

Pi(Y t−1
0 ) =

t−1∏

n=0

PRn(Yn)

Pi(Y
t−1

0 ) =

t−1∏

n=0

PRn(Yn)

Note, in particular, that point 2 implies that for each 1 ≤ τ ≤ t− 1:

Pi(Y t−1
0 ) = Pi(Y τ−1

0 ) · PRτ (Y t−1
τ ) , and

Pi(Y
t−1

0 ) = Pi(Y
τ−1

0 ) · PRτ (Y t−1
τ ) .

5.1.1 Recurrent Decomposition

In general, the follower model is not irreducible. However, the associated graph always has a finite

number of recurrent, strongly components11 Ck, k ∈ K, and each of these components itself defines

an irreducible (unifilar) HMM Mk
foll. We will say a component Ck, or the associated HMM Mk

foll,

is trivial if either:

(a) i = i, for some (i, i) in Ck, or

(b) i = d, for some (i, i) in Ck

and nontrivial otherwise. Also, we will denote by R the set of all recurrent states for the follower

HMM Mfoll:

R ≡
⋃

k∈K

⋃

(i,i)∈Ck

(i, i)

10Here, Pi(Y t−1
0 ) is the random variable (defined on the follower HMM space) such that Pi(Y t−1

0 ) = Pi(xt−1
0 ) on the

event that the follower HMM output sequence Y t−1
0 is equal to the symbol sequence xt−1

0 ∈ X t. Similarly, PRn(Yn)
is the random variable such that PRn(Yn) = Pj(x) on the event {Rn = j, Yn = x}. Pi(Y

t−1
0 ) and PRn

(Yn) are defined

analogously. δi(Y
t−1
0 ) is the S-valued random variable such that δi(Y

t−1
0 ) = δi(x

t−1
0 ) on the event Y t−1

0 = xt−1
0 , and

δi(Y
t−1
0 ) is the S-valued random variable such that δi(Y

t−1
0 ) = δi(x

t−1
0 ) on the event Y t−1

0 = xt−1
0 .

11A strongly connected component C of a directed graph G is said to be recurrent if there are no outgoing edges
from vertices in C to vertices not in C.
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An example of this recurrent decomposition is presented below in Figure 6.
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Figure 6: The recurrent decomposition for the follower model Mfoll given in Figure 5. There are
3 recurrent components: The dead component colored in red, the matched component colored in
green, and one nontrivial component colored in blue.

The following are some important properties of the recurrent decomposition, which are illus-

trated by the example above, but true more generally. All of them are direct consequences of the

follower model construction and irreducibility of the original HMM M .

(i) There are always exactly two trivial components for Mfoll: the dead component Cd consisting

of all states of the form (i, d) such that i ∈ S and the matched component Cm consisting of

all states of the form (i, i) such that i ∈ S.
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(ii) There may or may not also be nontrivial recurrent components. Indeed, there are nontrivial

components if and only if M is nonexact.

(iii) If there are nontrivial components, then for each nontrivial component Ck and state (i, i) ∈ Ck,

Pi(x) > 0 for any symbol x with Pi(x) > 0. (Otherwise, (i, i) would transition to some state

in the dead component on symbol x.)

(iv) If there are nontrivial components, then for each nontrivial component Ck and state i ∈ S

there exists some i ∈ S (possibly more than 1) such that (i, i) ∈ Ck. (Indeed, if (j, j) ∈ Ck
for some nontrivial Ck and w is any word with δj(w) = i, then the follower model state (j, j)

transitions to (i, i) ∈ Ck on w, where i = δj(w).)

Also, note that, by Lemma 12, the following equivalences always hold with probability 1 with

respect to the measure Pfoll
(i,i)

, for each initial state (i, i) ∈ S × S:

δi(Y
t−1

0 ) = δi(Y
t−1

0 )⇐⇒ (Rt, Rt) ∈ Cm

Pi(Y
t−1

0 ) = 0⇐⇒ (Rt, Rt) ∈ Cd

5.1.2 Follower Edge Chain

Since Mfoll is unifilar each edge z of Mfoll can be represented (uniquely) as a 3-tuple z = (i, i, x),

where (i, i) ∈ S × S and x is a symbol with Pi(x) > 0. z = (i, i, x) is the outgoing edge from state

(i, i) labeled with symbol x.

We will denote the edge set of Mfoll as Z and its edge sequence by (Zt)t∈Z+ :

Zt ≡ (Rt, Rt, Yt)

Also, we will denote the edge set of a component HMM Mk
foll by Zk and the stationary distribution

for the irreducible edge chain (Zt) associated to the component HMM Mk
foll by µk:

µk
(i,i,x)

= νk
(i,i)
· Pi(x) , for z = (i, i, x) ∈ Zk

where νk is the stationary state distribution of Mk
foll.
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5.2 A Useful Lemma

We give below a simple, but useful, lemma for the difference between the induced distributions

φ(xt−1
0 ) and φi(x

t−1
0 ) in a unifilar HMM. The lemma and its corollaries will be used in Sections 5.3

and 5.4 for establishing bounds on the decay rate of the state uncertainty Ut.

Lemma 13. Let M = (S,X , {T (x)}) be an irreducible, unifilar HMM. Then for each i ∈ S and

xt−1
0 ∈ L(i):

‖φ(xt−1
0 )− φi(xt−1

0 )‖TV =
∑

j∈Sci (xt−1
0 )

πj · Pj(xt−1
0 )

P(xt−1
0 )

=

∑
j∈Sci (xt−1

0 ) πj · Pj(xt−1
0 )

∑
j∈S πj · Pj(xt−1

0 )

where:

Si(xt−1
0 ) ≡ {j ∈ S : δj(x

t−1
0 ) = δi(x

t−1
0 )} and Sci (xt−1

0 ) ≡ S/Si(xt−1
0 )

Proof. By the law of total probability:

φ(xt−1
0 ) ≡ P(St|Xt−1

0 = xt−1
0 )

=
∑

j∈S
P(S0 = j|Xt−1

0 = xt−1
0 ) · P(St|S0 = j,Xt−1

0 = xt−1
0 )

=
∑

j∈S

P(S0 = j,Xt−1
0 = xt−1

0 )

P(Xt−1
0 = xt−1

0 )
· φj(xt−1

0 )

=
∑

j∈S

πj · Pj(xt−1
0 )

P(xt−1
0 )

· φj(xt−1
0 )

=
∑

j∈Si(xt−1
0 )

πj · Pj(xt−1
0 )

P(xt−1
0 )

· φi(xt−1
0 ) +

∑

j∈Sci (xt−1
0 )

πj · Pj(xt−1
0 )

P(xt−1
0 )

· φj(xt−1
0 )

The claim follows since, by unifilarity, the two distributions φi(x
t−1
0 ) and φj(x

t−1
0 ) can have no

common support if they are not equal (i.e., if j ∈ Sci (xt−1
0 )).

Corollary (1). For each i ∈ S and xt−1
0 ∈ L(i) :

‖φ(xt−1
0 )− φi(xt−1

0 )‖TV ≤ (|S| − 1|) · rmax · max
j∈Sci (xt−1

0 )

Pj(xt−1
0 )

Pi(xt−1
0 )

(24)
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Proof. Since |Sci (xt−1
0 )| ≤ |S| − 1 we have:

‖φ(xt−1
0 )− φi(xt−1

0 )‖TV =

∑
j∈Sci (xt−1

0 ) πj · Pj(xt−1
0 )

∑
j∈S πj · Pj(xt−1

0 )

≤
∑

j∈Sci (xt−1
0 ) πj · Pj(xt−1

0 )

πi · Pi(xt−1
0 )

≤ (|S| − 1) · rmax · max
j∈Sci (xt−1

0 )

Pj(xt−1
0 )

Pi(xt−1
0 )

Corollary (2). For each i ∈ S and x∞0 ∈ L+
∞(i) :

(
pmin

pmax

)
· ‖φ(xt0)− φi(xt0)‖TV ≤ ‖φ(xt+1

0 )− φi(xt+1
0 )‖TV ≤

(
pmax

pmin

)
· ‖φ(xt0)− φi(xt0)‖TV (25)

for all sufficiently large t.

Proof. For given i ∈ S and x∞0 ∈ L+
∞(i) let:

A ≡ {j ∈ S : x∞0 ∈ L+
∞(j)}

B ≡ {j ∈ A : δj(x
t
0) 6= δi(x

t
0), for any t}

Also, let t0 ≥ 0 be defined by:

t0 ≡ min{t : Pj(xt0) = 0,∀j 6∈ A and δj(x
t
0) = δi(x

t
0),∀j ∈ A/B}

Then, by the lemma, we have for each t ≥ t0:

‖φ(xt0)− φi(xt0)‖TV =

∑
j∈Sci (xt0) πj · Pj(xt0)
∑

j∈S πj · Pj(xt0)
=

∑
j∈B πjPj(xt0)∑
j∈A πjPj(xt0)

Therefore, since Pj(xt+1
0 ) = Pj(xt0) · Pδj(xt0)(xt+1) satisfies:

pmin · Pj(xt0) ≤ Pj(xt+1
0 ) ≤ pmax · Pj(xt0) , for each j ∈ A, t ≥ 0

56



we have for all t ≥ t0 that:

‖φ(xt+1
0 )− φi(xt+1

0 )‖TV =

∑
j∈B πjPj(x

t+1
0 )

∑
j∈A πjPj(x

t+1
0 )

≤
∑

j∈B πj(pmax · Pj(xt0))∑
j∈A πj(pmin · Pj(xt0))

=

(
pmax

pmin

)
·
∑

j∈B πjPj(xt0)∑
j∈A πjPj(xt0)

=

(
pmax

pmin

)
· ‖φ(xt0)− φi(xt0)‖TV

and:

‖φ(xt+1
0 )− φi(xt+1

0 )‖TV =

∑
j∈B πjPj(x

t+1
0 )

∑
j∈A πjPj(x

t+1
0 )

≥
∑

j∈B πj(pmin · Pj(xt0))∑
j∈A πj(pmax · Pj(xt0))

=

(
pmin

pmax

)
·
∑

j∈B πjPj(xt0)∑
j∈A πjPj(xt0)

=

(
pmin

pmax

)
· ‖φ(xt0)− φi(xt0)‖TV

5.3 Pointwise Decay of the State Uncertatinty Ut under PD1 Assumption

Throughout Section 5.3 we assume that M = (S,X , {T (x)}) is a nonexact, PD1, irreducible, unifilar

HMM with associated follower HMM Mfoll, and for each i, j ∈ S we define Di,j ∈ (0,∞] by:

Di,j ≡ D(Pi(X0)||Pj(X0))
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Also, for each nontrivial component Ck of Mfoll we define the constants 0 < γk <∞ and 0 < ηk < 1

by12:

γk ≡
∑

(i,i)∈Ck

νk
(i,i)
·Di,i and ηk ≡ 2−γk

Finally, we define 0 < α < 1 by:

α ≡ max{ηk : Ck is nontrivial} (26)

and the index k∗ by:

k∗ ≡ argmax{ηk : Ck is nontrivial}

chosen arbitrarily among maximizing k in the case of a tie.

We will show below in Proposition 3 that the state uncertainty Ut for the HMM M a.s. decays

at exponential rate α. Before doing so, however, we will need to establish a few lemmas. The first

characterizes the asymptotic behavior from the nontrivial recurrent components of the follower

model, and the second characterizes the pointwise decay rate of the difference between the induced

distributions φ(Xt−1
0 ) and φi(X

t−1
0 ).

Lemma 14. For each nontrivial component Ck of Mfoll and state (i, i) ∈ Ck:

lim
t→∞

(
Pi(Y

t−1
0 )

Pi(Y t−1
0 )

)1/t

= ηk , Pfoll
(i,i)

a.s.

Proof. Let f : Zk → R be defined by13:

f(j, j, x) ≡ log2

(
Pj(x)

Pj(x)

)

12Note that γk <∞ for each nontrivial Ck, since Di,i <∞ for each nontrivial Ck and (i, i) ∈ Ck by point (iii) above
on the recurrent decomposition of Mfoll.

13Note that since Ck is nontrivial, Pj(x) > 0 for each edge z = (j, j, x) ∈ Zk. Thus, f(z) is finite for each z ∈ Zk.
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Then, by Lemma 12, we know that for each t ∈ N:

log2

(
Pi(Y t−1

0 )

Pi(Y
t−1

0 )

)
= log2

(∏t−1
n=0 PRn(Yn)∏t−1
n=0 PRn(Yn)

)

=
t−1∑

n=0

log2

(
PRn(Yn)

PRn(Yn)

)

=
t−1∑

n=0

f(Zn)

if the initial follower model state is (R0, R0) = (i, i). Thus, by the strong law for Markov chains [24,

Theorem 4.16] we have that Pfoll
(i,i)

a.s. :

lim
t→∞

1

t
log2

(
Pi(Y t−1

0 )

Pi(Y
t−1

0 )

)
= Eµk(f)

≡
∑

(j,j,x)∈Zk

µk
(j,j,x)

· f(j, j, x)

=
∑

(j,j,x)∈Zk

(
νk

(j,j)
· Pj(x)

)
· log2

(
Pj(x)

Pj(x)

)

=
∑

(j,j)∈Ck

νk
(j,j)
·Dj,j

= γk

The claim follows since limt→∞
1
t log2

(
Pi(Y t−1

0 )

Pi(Y
t−1
0 )

)
= γk implies:

lim
t→∞

(
Pi(Y

t−1
0 )

Pi(Y t−1
0 )

)1/t

= 2−γk = ηk

Lemma 15. For each state i ∈ S:

lim
t→∞
‖φ(Xt−1

0 )− φi(Xt−1
0 )‖1/tTV = α , Pi a.s.
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Proof. For each i, j ∈ S the hitting time for the recurrent state set R:

T ≡ inf{t ≥ 0 : (Rt, Rt) ∈ R}

is a.s. finite with respect to the measure Pfoll(i,j), and once a recurrent component is hit we can

characterize the asymptotic behavior by Lemmas 12 and 14.

In particular, if (R0, R0) = (i, j) and (RT , RT ) ∈ Ck, for some nontrivial Ck, then:

lim
t→∞

(
Pj(Y t−1

0 )

Pi(Y t−1
0 )

)1/t

= lim
t→∞

(
Pj(Y T−1

0 )

Pi(Y T−1
0 )

·
PRT (Y t−1

T )

PRT (Y t−1
T )

)1/t

= ηk

with probability 1. On the other hand, if (R0, R0) = (i, j) and (RT , RT ) ∈ Cd then:

Pj(Y t−1
0 ) =

Pj(Y t−1
0 )

Pi(Y t−1
0 )

= 0 , for all t ≥ T

and if (R0, R0) = (i, j) and (RT , RT ) ∈ Cm then:

δj(Y
t−1

0 ) = δi(Y
t−1

0 ) , for all t ≥ T

Thus, for each i, j ∈ S, we know that with probability 1 with respect to the measure Pfoll(i,j)

either:

(a) limt→∞

(
Pj(Y t−1

0 )

Pi(Y t−1
0 )

)1/t

≤ α, or

(b) δj(Y
t−1

0 ) = δi(Y
t−1

0 ), for all sufficiently large t.

Since there are only finitely many states j ∈ S and Pi(X∞0 ) = Pfoll(i,j)(Y
∞

0 ) for each i, j ∈ S (by

Lemma 12) it follows that:

Pi(G1
i ) = 1 , for each i ∈ S

where G1
i is the set of symbol sequences x∞0 ∈ L+

∞(i) such that for each state j ∈ S either:

(a’) limt→∞

(
Pj(xt−1

0 )

Pi(xt−1
0 )

)1/t

≤ α, or

(b’) δj(x
t−1
0 ) = δi(x

t−1
0 ), for all sufficiently large t.
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Now, by point (iv) for the recurrent decomposition, we know that for each i ∈ S there exists

some ji ∈ S such that (i, ji) ∈ Ck∗ . And, by Lemma 14, we have:

lim
t→∞

(
Pji(Y

t−1
0 )

Pi(Y t−1
0 )

)1/t

= ηk∗ = α , Pfolli,ji
a.s.

Thus, since Pi(X∞0 ) = Pfoll(i,ji)
(Y∞0 ), we know:

Pi(G2
i ) = 1 , for each i ∈ S

where:

G2
i ≡

{
x∞0 ∈ L+

∞(i) : lim
t→∞

(
Pji(x

t−1
0 )

Pi(xt−1
0 )

)1/t

= α

}

Therefore, for each i, the set of “good” symbol sequences Gi ≡ G1
i ∩ G2

i is a probability 1 set

with respect to the measure Pi. The claim follows from Lemma 13, which implies:

lim
t→∞
‖φ(xt−1

0 )− φi(xt−1
0 )‖1/tTV = α , for each x∞0 ∈ Gi

Proposition 3. The state uncertainty Ut a.s. decays at exponential rate α:

lim
t→∞

U
1/t
t = α , P a.s.

Proof. By unifilarity, we know that for each i ∈ S, xt−1
0 ∈ L(i) the distribution φi(x

t−1
0 ) has support

only a single state δi(x
t−1
0 ). Thus, H(φi(x

t−1
0 )) = 0 and we may express the state uncertainty

u(xt−1
0 ) as:

u(xt−1
0 ) ≡ H(φ(xt−1

0 )) = |H(φ(xt−1
0 ))−H(φi(x

t−1
0 ))|

Using this relation and the norm bounds for entropy differences given by Lemmas 2 and 3, it follows
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from the previous lemma that:

lim
t→∞

u(xt−1
0 )1/t = lim

t→∞
‖φ(xt−1

0 )− φi(xt−1
0 )‖1/tTV = α , for Pi a.e. x∞0

The claim follows since P =
∑

i πiPi is a weighted average of the Pi measures.

5.4 L1 Decay of the State Uncertatinty Ut under PD1 Assumption

Throughout Section 5.4 we assume that M = (S,X , {T (x)}) is a nonexact, PD1, irreducible, unifilar

HMM with associated follower HMM Mfoll and define the constants γk > 0 as in the previous

section. Our goal is to establish bounds on the L1 rate of decay of the state uncertainty Ut, as

opposed to the pointwise (almost sure) decay rate analyzed above. The proofs rely heavily on

the follower model construction, as in the pointwise case, but also use the large deviation and

absorption time results for Markov chains discussed in Section 3.2. Before proceeding, however,

we must first define a number of constants that will be used in the proofs and introduce some

additional notation.

Let f : Z → R ∪ {∞} be defined by:

f(i, i, x) ≡ log2

(
Pi(x)

Pi(x)

)

For each nontrivial component Ck, let εk ≡ γk/2 and take βk ∈ (0, 1) to be the constant β(εk) given

by Lemma 5 for deviations in the empirical average of f evaluated on the irreducible, Markov edge

sequence (Zt) of the component Ck 14, so that:

lim sup
t→∞

Pfoll
(i,i)

(∣∣∣∣∣
1

t

t−1∑

n=0

f(Zn)− Eµk(f)

∣∣∣∣∣ ≥ εk
)1/t

≤ βk

for each (i, i) ∈ Ck.

We define the constants α1, α2, α3, α4, α5, b1 ∈ (0, 1) and b2 > 0 as follows:

• α1 ≡ 2−(γmin/2) where γmin ≡ min{γk : Ck is nontrivial}.

• α2 ≡ (1 + α1)/2.

14Note that for each nontrivial Ck and (i, i, x) ∈ Zk, f(i, i, x) <∞ by point (iii) above for the recurrent decompo-
sition. So, f restricted to Zk is always a real-valued map and Lemma 5 may be applied.
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• α′3 is the spectral radius of Q̃, where Q̃ is the restriction of the transition matrix Q for the

follower HMM Mfoll to the transient states (S × S)/R. In the case there are no transient

states, α′3 ≡ 0. 15

• α′4 ≡ max{βk : Ck is nontrivial}.

• α3 and α4 are taken as any values such that α3 ∈ (α′3, 1) and α4 ∈ (α′4, 1).

• b1 ≡ ln(α2 · pmin
pmax

)/ ln(α1 · pmin
pmax

) (where pmin, pmax are the values for M).

• b2 ≡ (|S| − 1) · rmax · pmax

pmin
· 1
α1

(where rmax, pmin, pmax are the values for M).

• α′5 ≡ max{α1−b1
3 , αb14 }.

• α5 is taken as any value such that α5 ∈ (α′5, 1).

Also, we define the following events for each t ∈ N and nontrivial Ck:

• At ≡ {(Rt, Rt) ∈ R}

• Bk,t ≡
{∣∣∣1t

∑t−1
n=0 f(Zn)− Eµk(f)

∣∣∣ < εk

}

• C1,t ≡ {Rτ = Rτ}

• C2,t ≡
{

PRτ (Y t−1
τ )

PRτ (Y t−1
τ )

≤ αt−τ1

}

• Ct ≡ Aτ ∩ (C1,t ∪ C2,t)

where τ = τ(t) is defined by:

τ ≡ d(1− b1)te

We will show below in Proposition 4 that the expected state uncertainty E(Ut) decays expo-

nentially at rate α or faster, where 0 < α < 1 is defined by:

α ≡ max{α2, (α
′
3)1−b1 ,

(
α′4
)b1} (27)

First, though, we will need to introduce a few lemmas.

15Note that α′3 is always strictly less than 1 by Lemma 6, since some recurrent state (j, j) ∈ R is accessible from
each (i, i) ∈ (S × S)/R.
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Lemma 16. For each (i, i) ∈ S × S :

Pfoll
(i,i)

(Cct ) ≤ αt5 , for all sufficiently large t

Proof. Note that:

1. For each (i, i) ∈ S × S:

Pfoll
(i,i)

(Act) ≤ αt3 , for all sufficiently large t

by Lemma 6, since α3 > α′3.

2. For each nontrivial Ck and (j, j) ∈ Ck:

Pfoll
(j,j)

(Bc
k,t) ≤ αt4 , for all sufficiently large t

since α4 > α′4 ≥ βk.

3. If (R0, R0) = (j, j) for some (j, j) ∈ Ck, Ck nontrivial, then on the event Bk,t we have:

∣∣∣∣∣
1

t

t−1∑

n=0

f(Zn)− Eµk(f)

∣∣∣∣∣ < εk = γk/2

(a)
=⇒ 1

t

t−1∑

n=0

f(Zn) > γk/2 ≥ γmin/2

=⇒ 1

t
log2

(∏t−1
n=0 PRn(Yn)∏t−1
n=0 PRn(Yn)

)
=

1

t

t−1∑

n=0

log2

(
PRn(Yn)

PRn(Yn)

)
> γmin/2

(b)
=⇒ 1

t
log2

(
Pj(Y t−1

0 )

Pj(Y
t−1

0 )

)
> γmin/2

=⇒
Pj(Y

t−1
0 )

Pj(Y t−1
0 )

<
(

2−(γmin/2)
)t

= αt1

Here (a) follows from the fact that Eµk(f) = γk and (b) from Lemma 12.

Now, if Aτ occurs Ct can only fail to occur if (Rτ , Rτ ) lies in some nontrivial recurrent component

Ck and
PRτ (Y t−1

τ )

PRτ (Y t−1
τ )

> αt−τ1 . Thus, by Points 2 and 3 above, we know that for each initial state
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(i, i) ∈ S × S and all sufficiently large t:

Pfoll
(i,i)

(Cct |Aτ ) ≤ max
nontrivial Ck

max
(j,j)∈C′k

Pfoll
(i,i)

(
PRτ (Y t−1

τ )

PRτ (Y t−1
τ )

> αt−τ1

∣∣∣∣∣ (Rτ , Rτ ) = (j, j)

)

≤ max
nontrivial Ck

max
(j,j)∈Ck

Pfoll
(j,j)

(
Pj(Y

t−τ−1
0 )

Pj(Y t−τ−1
0 )

> αt−τ1

)

≤ max
nontrivial Ck

max
(j,j)∈Ck

Pfoll
(j,j)

(
Bc
k,(t−τ)

)

≤ αt−τ4 (28)

where C′k ≡
{

(j, j) ∈ Ck : Pfoll
(i,i)

(
(Rτ , Rτ ) = (j, j)

)
> 0
}

. Combining the bound (28) with Point 1

above we find that for each (i, i) ∈ S × S and all sufficiently large t:

Pfoll
(i,i)

(Cct ) = Pfoll
(i,i)

(Acτ ) + Pfoll
(i,i)

(Aτ ) · Pfoll
(i,i)

(Ccτ |Aτ )

≤ Pfoll
(i,i)

(Acτ ) + Pfoll
(i,i)

(Ccτ |Aτ )

≤ ατ3 + αt−τ4

≤ α(1−b1)t
3 +

1

α4
· αb1t4

≤ αt5

Lemma 17. If the initial follower model state is (R0, R0) = (i, i), then on the event C2,t :

Pi(Y
t−1

0 )

Pi(Y t−1
0 )

≤ pmax

pmin
· 1

α1
· αt2

Proof. If (R0, R0) = (i, i), then on the event C2,t we have by Lemma 12:

Pi(Y
t−1

0 )

Pi(Y t−1
0 )

=
Pi(Y

τ−1
0 )

Pi(Y τ−1
0 )

·
PRτ (Y t−1

τ )

PRτ (Y t−1
τ )

≤
(
pmax

pmin

)τ
· αt−τ1

≤
(
pmax

pmin

)(1−b1)t+1

· αb1t−1
1

=
pmax

pmin
· 1

α1
· αt2
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Proposition 4. The expected state uncertainty decays exponentially with:

lim sup
t→∞

E(Ut)
1/t ≤ α

Proof. Since Mfoll is unifilar the follower model state sequence (Rt0, R
t
0), and hence the occurrence

of all relevant events up to time t, are completely determined by the initial state (R0, R0) and the

symbol sequence Y t−1
0 . For fixed (i, i) ∈ S × S, let us define C ′

(i,i),t
as the set of symbol sequences

yt−1
0 ∈ Lt(i) such that for initial state (R0, R0) = (i, i) the event Ct occurs when Y t−1

0 ∈ C ′
(i,i),t

:

C ′
(i,i),t

≡ {yt−1
0 ∈ Lt(i) : if (R0, R0) = (i, i) and Y t−1

0 = yt−1
0 , then Ct occurs}

Also, for each i ∈ S let:

C ′i,t =
⋂

j∈S
C ′(i,j),t

Then, since Ct always occurs from the initial state (R0, R0) = (i, i), we know by Lemmas 12

and 16 that for all sufficiently large t:

Pi
(
(C ′i,t)

c
)
≤
∑

j 6=i
Pi
(

(C ′(i,j),t)
c
)

=
∑

j 6=i
Pfoll(i,j) (Cct ) ≤ (|S| − 1)αt5 (29)

Now, fix yt−1
0 ∈ C ′i,t. Then, for each j ∈ Sci (yt−1

0 ), we know by unifilarity that δi(y
τ−1
0 ) 6= δj(y

τ−1
0 ).

So, C1,t cannot occur when (R0, R0) = (i, j), Y t−1
0 = yt−1

0 . Instead, C2,t must occur when

(R0, R0) = (i, j), Y t−1
0 = yt−1

0 . Thus, by Lemma 17, we have for any such j ∈ Sci (yt−1
0 ) that:

Pj(yt−1
0 )

Pi(yt−1
0 )

≤ pmax

pmin
· 1

α1
· αt2

Applying the bound (24) yields:

‖φ(yt−1
0 )− φi(yt−1

0 )‖TV ≤ (|S| − 1) · rmax ·
(
pmax

pmin
· 1

α1
· αt2
)

= b2α
t
2
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Therefore, assuming t is sufficiently large that b2α
t
2 ≤ 1/e, the entropy u(yt−1

0 ) may be bounded as

follows using Lemma 3:

u(yt−1
0 ) =

∣∣H(φ(yt−1
0 ))−H(φi(y

t−1
0 ))

∣∣ ≤ |S| · b2αt2 · log2

(
1

b2αt2

)
(30)

Using the relations (29) and (30) it follows that for all sufficient large t:

E(Ut) =
∑

w∈Lt(M)

P(w)u(w)

=
∑

i

πi
∑

w∈Lt(M)

Pi(w)u(w)

≤ max
i





∑

w∈Lt(M)

Pi(w)u(w)





= max
i




∑

w∈C′i,t

Pi(w)u(w) +
∑

w∈(C′i,t)
c

Pi(w)u(w)





≤ max
i

{
Pi(C ′i,t) ·

(
|S|b2αt2 log2

(
1

b2αt2

))
+ Pi((C ′i,t)c) · log2 |S|

}

≤ 1 ·
(
|S|b2αt2 log2

(
1

b2αt2

))
+ (|S| − 1)αt5 · log2 |S|

and, hence, that:

lim sup
t→∞

E(Ut)
1/t ≤ α′ ≡ max{α2, α5}

The claim follows since α′ can be chosen arbitrarily close to α by taking α3, α4, and α5 arbitrarily

close to α′3, α′4, and α′5, respectively.

5.5 Decay of the State Uncertainty Ut under PD Assumption

Throughout Section 5.5 we assume that M = (S,X , {T (x)}) is a nonexact, PD, irreducible, unifilar

HMM, and define Mn as the nonexact, PD1, irreducible, unifilar HMM with n ∈ N given by (17).

As we will show below, the results of the previous sections for the decay of the state uncertainty in

the PD1 block model can easily be extended to the PD HMM M .

Lemma 18. Let 0 < α < 1 be the constant defined by (26) for the block model Mn. Then for each
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state i ∈ S:

lim
t→∞
‖φ(Xt−1

0 )− φi(Xt−1
0 )‖1/tTV = α1/n , Pi a.s.

Proof. By Lemma 7 and Lemma 15 (applied to the block model) we have:

lim
t→∞
‖φ(Xnt−1

0 )− φi(Xnt−1
0 )‖1/(nt)TV =

(
lim
t→∞
‖φ(Xnt−1

0 )− φi(Xnt−1
0 )‖1/tTV

)1/n
= α1/n , Pi a.s.

The claim follows from this fact and the inequalities (25), which ensure that for each x∞0 ∈ L+
∞(i):

(
pmin

pmax

)n−1

· ‖φ(xt0)− φi(xt0)‖TV ≤ ‖φ(xt+m0 )− φi(xt+m0 )‖TV ≤
(
pmax

pmin

)n−1

· ‖φ(xt0)− φi(xt0)‖TV

for all sufficiently large t and 1 ≤ m ≤ n− 1.

Proposition 5. Let 0 < α < 1 be the constant defined by (26) for the block model Mn. Then the

state uncertainty Ut for M a.s. decays at exponential rate α1/n:

lim
t→∞

U
1/t
t = α1/n , P a.s.

Proof. The proof of this proposition from Lemma 18 is identical to the proof of Proposition 3 from

Lemma 15.

Proposition 6. Let 0 < α < 1 be the constant defined by (27) for the block model Mn. Then the

expected state uncertainty for M decays exponentially with:

lim sup
t→∞

E(Ut)
1/t ≤ α1/n

Proof. This follows immediately from Proposition 4 (applied to the block model) and Lemma 8.

5.6 The Entropy Rate and Convergence of the Block Estimates

In general, there is no simple closed form expression for the entropy rate of a HMM. However, in

the case of unifilar HMMs a simple formula does exist, as given by the following proposition.
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Proposition 7. For an irreducible, unifilar HMM M :

h = H(X0|S0) =
∑

i

πihi (31)

where hi ≡ H(X0|S0 = i) is the uncertainty in the next symbol to be generated from state i.

Proof. We establish the bounds from above and below separately. Both are direct computations

using:

(a) Unifilarity of the HMM M , which implies H(Xt|S0, X
t−1
0 ) = H(Xt|St), ∀t ∈ N, and

(b) Stationarity of the joint process (St, Xt)t∈Z, which implies H(Xt|St) = H(X0|S0), ∀t ∈ N.

Upper bound :

h = lim
t→∞

H(Xt−1
0 )

t

≤ lim
t→∞

H(S0, X
t−1
0 )

t

= lim
t→∞

H(S0) +
∑t−1

τ=0H(Xτ |S0, X
τ−1
0 )

t

(a)
= lim

t→∞

H(S0) +
∑t−1

τ=0H(Xτ |Sτ )

t
(b)
= lim

t→∞

H(S0) +H(X0|S0) · t
t

= H(X0|S0)

Lower bound :

h = lim
t→∞

H(Xt−1
0 )

t

≥ lim
t→∞

H(Xt−1
0 |S0)

t

= lim
t→∞

∑t−1
τ=0H(Xτ |S0, X

τ−1
0 )

t

(a)
= lim

t→∞

∑t−1
τ=0H(Xτ |Sτ )

t
(b)
= lim

t→∞

H(X0|S0) · t
t

= H(X0|S0)
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This uniflar entropy rate formula (31) was originally given in the seminal information theory

paper [32], though the method of proof was somewhat different. The proof given above, which we

find somewhat cleaner, is adapted from a proof of the analogous result for state-emitting HMMs

in [33].

Of course, in light of this formula, there is no need to worry about the convergence rate of

estimates h(t) if one is only interested in trying to get a good approximation of the true entropy

rate h. Nevertheless, we still find the rate of convergence of the estimates an interesting question

itself for other reasons, as discussed in the introduction.

The following upper bound on the error in the estimates h(t) is a simple consequence of the

entropy rate formula.

Lemma 19. For an irreducible, unifilar HMM M :

h(t+ 1)− h ≤ E(Ut) , for each t ∈ N

Proof. Applying the entropy rate formula (31) and stationarity we have:

h(t+ 1) = H(Xt|Xt−1
0 )

≤ H(Xt, St|Xt−1
0 )

= H(St|Xt−1
0 ) +H(Xt|St, Xt−1

0 )

= H(St|Xt−1
0 ) +H(Xt|St)

= H(St|Xt−1
0 ) +H(X0|S0)

= E(Ut) + h

Thus:

h(t+ 1)− h ≤ E(Ut)
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Now, for unifilar HMMs with probabilistically distinguishable states we know that the expected

state uncertainty decays exponentially fast by Proposition 6. So, by this lemma, the block estimates

h(t) must also converge exponentially fast in this case.

For unifilar HMMs without probabilistically distinguishable states, the expected state uncer-

tainty may not limit to 0 (at any rate). But, as detailed in the following lemma, such a model M

can always be converted to an equivalent unifilar HHM M̃ with probabilistically distinguishable

states, by collapsing together all states with the same probability distribution over future output.

Lemma 20. Let M = (S,X , {T (x)}) be an irreducible, unifilar HMM, and let ∼ be the equivalence

relation on S of equality of future measures:

i ∼ j ⇐⇒ Pi(X∞0 ) = Pj(X∞0 )

Let S̃ be the set of equivalence classes under the relation ∼ and, for i ∈ S, let [i] denote the

equivalence class of state i. Also, for [i] ∈ S̃, w ∈ X ∗ define P̃[i](w) and δ̃[i](w) by:

P̃[i](w) ≡ Pi(w)

δ̃[i](w) ≡





[j], if P̃[i](w) > 0 and δi(w) = j

[d], if P̃[i](w) = 0

where [d] 6∈ S̃ is a new formal symbol representing the dead state equivalence class.

Then, the HMM M̃ = (S̃,X , {T̃ (x)}) with transition matrices T̃ (x) defined by:

T̃ (x)
[i][j] ≡ P̃[i](x) · 1{δ̃[i](x) = [j]}

is irreducible, unifilar, and has probabilistically distinguishable states. Moreover, its stationary

output process (X̃t) is equal in distribution to the stationary output process (Xt) for the original

HMM M .

Before proceeding to the proof of the lemma itself a few comments are in order concerning well

definedness of the model M̃ .

1. For each i′ ∈ [i], w ∈ X ∗ we have by definition Pi(w) = Pi′(w). Thus, P̃[i](w) is well defined

and independent of the representative i′ ∈ [i].
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2. For each i′ ∈ [i], v ∈ X ∗, and w ∈ X ∗ with P̃[i](w) > 0 we have by unifilarity of M :

Pi(wv) = Pi(w) · Pj(v) and Pi′(wv) = Pi′(w) · Pj′(v)

where j = δi(w) and j′ = δi′(w). Since, Pi(wv) = Pi′(wv) by definition, and Pi(w) =

Pi′(w) > 0, it follows that Pj(v) = Pj′(v). Since this holds for all v ∈ X ∗ it follows that j and

j′ are in the same equivalence class. Thus, the transition function δ̃[i](w) is well defined and

independent of the representative i′ ∈ [i].

3. Combining points 1 and 2 shows that the transition matrices T̃ (x) are well defined. Thus, to

verify M̃ is a well defined HMM we need only show that the overall state transition matrix

T̃ =
∑

x T̃ (x) is stochastic. This a direct computation:

∑

[j]∈S̃

T̃[i][j] =
∑

x

∑

[j]∈S̃

T̃ (x)
[i][j] =

∑

x

P̃[i](x) =
∑

x

Pi(x) = 1

Proof (of lemma). Given that the transition function δ̃[i](w) is well defined (and single valued), as

shown above, unifilarity is immediate from the construction. Also, irreducibility follows directly

from the definition:

δ̃[i](w) = [j]⇐⇒ δi(w) = j , w ∈ X ∗, i ∈ S, j ∈ S ∪ {d} (32)

and the fact that the original HMM M is irreducible.

To show that M̃ has probabilistically distinguishable states note that by unifilarity and the

relation (32), we have for any i ∈ S, w = xt−1
0 ∈ X ∗:

Pi(w) =
t−1∏

τ=0

Psτ (xτ ) =
t−1∏

τ=0

P̃[sτ ](xτ ) = P̃[i](w) (33)

where the state sequence st−1
0 ∈ St is defined by the relations:

s0 = i , sτ = δsτ−1(xτ−1), τ = 1, ..., t− 1
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and P̃[d](x) ≡ Pd(x) = 0, for all x ∈ X . Therefore, no two distinct equivalence classes [i], [j] ∈ S̃ can

have the same probability distribution over future output X̃∞0 , because this would imply that the

states i and j ofM also have the same probability distribution over future outputX∞0 (contradicting

the fact that [i] and [j] are distinct equivalence classes).

Finally, equality of the stationary output processes (Xt) and (X̃t) for the two HMMs M and

M̃ follows from the relation (33) and the fact that the stationary distribution π̃ for M̃ is:

π̃[i] =
∑

i′∈[i]

πi′

which is easily verified by direct computation.

An example of the M̃ construction is presented below in Figure 7.

Original HMM M

1

2

3

4

5

6

1
2 |a
1
2 |b

1
3 |a

1
3 |b

1
3 |c

1
3 |a

1
3 |b

1
3 |c

1|c

1|c
1|c

PD HMM �M

[1] [2] [4]

1
2 |a , 1

2 |b

1
3 |a

1
3 |b , 1

3 |c

1|c

1

Figure 7: The M̃ construction for a unifilar HMM M . The HMM M has 6 states, S =
{1, 2, 3, 4, 5, 6}, which reduce to 3 equivalence classes under the relation ∼: [1] = {1}, [2] = {2, 3},
and [4] = {4, 5, 6}. In the figure states in [1] are colored red, states in [2] are colored green, and
states in [4] are colored blue.

Applying the M̃ construction, we now state our main theorem for uniflar HMMs.

Theorem 2. Let M be a nonexact, irreducible, unifilar HMM, and let M̃ be the corresponding

equivalent unifilar HMM with probabilistically distinguishable states given by Lemma 20. Assume

that M̃ is also nonexact. Let 0 < α < 1 and n ∈ N be defined as in Proposition 6 for the PD model
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M̃ . Then:

lim sup
t→∞

{h(t)− h}1/t ≤ α1/n

Proof. Since the stationary process (X̃t) generated by M̃ has the same distribution as the stationary

process (Xt) generated by M we have:

h̃ = h and h̃(t) = h(t), t ∈ N

where h̃ and h̃(t) are, respectively, the entropy rate and length-t block estimate for M̃ . The claim

follows immediately from this fact, the statement of Proposition 6:

lim sup
t→∞

E(Ũt)
1/t ≤ α1/n

and the bound of Lemma 19:

h̃(t+ 1)− h̃ ≤ E(Ũt)

Remarks

1. In Appendix A we give an algorithm to determine all pairs of probabilistically distinguishable

states for a unifilar HMM M . Thus, construction of the reduced HMM M̃ is always possible

in practice, not just in theory.

2. Theorem 2 explicitly assumes that the HMM M , as well as the reduced HMM M̃ , are nonex-

act. However, for an exact, unifilar HMM (M or M̃) one may apply Theorem 1 for a bound

on the convergence rate of the estimates h(t). This bound, using the exactness property,

is at least as strong as what could be obtained using the follower model construction and

unifilarity.
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6 Results for Flag-State HMMs

In this section we establish exponential bounds on the speed of convergence of the entropy rate block

estimates h(t) for flag-state HMMs. The basic method of proof is based on the coupling technique

used in [14] to prove similar bounds for state-emitting HMMs with strictly positive transition

probabilities in the underlying Markov chain. However, the details are substantially more involved

because our assumption is somewhat weaker than the strict positivity assumed in [14]16.

Initially, we will establish our bounds under an FS1 assumption in Section 6.2, and then later

translate them to the general FS case in Section 6.3, by passing to a block model presentation.

First, however, it will be necessary to introduce two auxiliary probability spaces that will be used

in the proofs17 (in addition to the standard space (Ω,F ,P) for the HMM M , generated by the

random variables (St, Xt)t∈Z ).

6.1 Auxiliary Spaces

Throughout Section 6.1 we assume that M = (S,X , {T (x)}) is an FS1, irreducible HMM and denote

the flag symbol for state k by yk. We define two important auxiliary probability spaces that will

be useful for the proofs in Section 6.2 below: The pair chain coupling space and the reverse time

generation space.

6.1.1 The Pair Chain Coupling Space (Ω̂, F̂ , P̂)

For fixed states k, k̂ ∈ S and a symbol sequence xt0 ∈ X t+1 (t ∈ N) such that Pk(xt0),P
k̂
(xt0) > 0

the pair chain coupling space (Ω̂, F̂ , P̂) is defined as follows:

• Ω̂ = {(rt+1
0 , r̂t+1

0 ) : rτ , r̂τ ∈ S for 0 ≤ τ ≤ t + 1} is the set of length-(t + 2) state sequence

pairs.

• F̂ is the discrete σ-algebra on Ω̂ (i.e. all subsets of Ω̂ are measurable).

16Technically, the assumptions in [14] are not directly comparable to ours, as so far stated, since we consider edge-
emitting HMMs, whereas [14] dealt with the state-emitting variety. However, in Appendix C we give a translation of
the flag-state condition to the case of state-emitting HMMs, which facilitates more direct comparison and shows our
assumptions are substantially weaker than those used in [14].

17In Sections 4 and 5 a similar approach was taken, implicitly, with the possibility machine and follower model,
each of which had their own associated probability space and probability measure. However, it will be helpful now
to be more explicit about the underlying probability spaces, especially for the reverse time generation space.
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• The measure P̂ on state sequence pairs (rt+1
0 , r̂t+1

0 ) ∈ Ω̂ is the pull back measure of the

time-inhomogeneous Markov chain (Rτ , R̂τ )t+1
τ=0 with initial distribution

P̂(R0 = k, R̂0 = k̂) = 1

and transition probabilities

P̂(Rτ+1 = j, R̂τ+1 = ĵ|Rτ = i, R̂τ = î)

=





P(Sτ+1 = j|Sτ = i,Xt
τ = xtτ ) · P(Sτ+1 = ĵ|Sτ = î, Xt

τ = xtτ ), if i 6= î

P(Sτ+1 = j|Sτ = i,Xt
τ = xtτ ), if i = î and j = ĵ

0, if i = î and j 6= ĵ

for 0 ≤ τ ≤ t.

By marginalizing it follows that the state sequences (Rτ ) and (R̂τ ) are each individually (time-

inhomogeneuos) Markov chains with transition probabilities

P̂(Rτ+1 = j|Rτ = i) = P(Sτ+1 = j|Sτ = i,Xt
τ = xtτ ), and

P̂(R̂τ+1 = ĵ|R̂τ = î) = P(Sτ+1 = ĵ|Sτ = î, Xt
τ = xtτ ).

Hence:

P̂(Rt+1
0 = rt+1

0 ) = P(St+1
0 = rt+1

0 |S0 = k,Xt
0 = xt0), and

P̂(R̂t+1
0 = r̂t+1

0 ) = P(St+1
0 = r̂t+1

0 |S0 = k̂, Xt
0 = xt0).

So, we have the following coupling bound:

‖φk(xt0)− φ
k̂
(xt0)‖TV ≡ ‖Pk(St+1|Xt

0 = xt0)− P
k̂
(St+1|Xt

0 = xt0)‖TV

≤ P̂(Rt+1 6= R̂t+1) (34)

This bound is the primary reason for introducing the pair chain coupling space.
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6.1.2 The Reverse Time Generation Space (Ω̃, F̃ , P̃)

Fix a state k ∈ S, and assume without loss of generality (up to relabeling) that the output alphabet

is X = {1, 2, ..., |X |} with yk = 1. We construct the reverse time generation space (Ω̃, F̃ , P̃) and

random variables (X̃t)t∈−N for state k as follows.

• (Ũn)n∈N and (Ṽn)n∈N are i.i.d. sequences of uniform([0, 1]) random variables independent of

one another.

• (Ω̃, F̃ , P̃) is the canonical probability space generated by the sequences (Ũn) and (Ṽn).

• On this space (Ω̃, F̃ , P̃) the random partitions P̃t, t ∈ −N of the interval [0, 1] and random

variables X̃t, t ∈ −N are defined inductively as follows:

1. P̃−1 = {Ĩx−1 : x ∈ X} where each Ĩx−1 is an interval of length P(X−1 = x), and the

intervals are consecutively placed on [0, 1] and closed at the right endpoint18. X̃−1 is

defined by X̃−1 = x⇔ Ũ1 ∈ Ĩx−1.

2. Conditioned on X̃−1
t+1 = x−1

t+1, for t ≤ −2, P̃t = {Ĩxt : x ∈ X} where the Ĩxt ’s are intervals

of length P(Xt = x|X−1
t+1 = x−1

t+1) placed consecutively on [0, 1] and closed at the right

endpoint and:

– If t+ 1 = T̃ kn for some n ∈ N, then X̃t is defined by X̃t = x⇔ Ṽn ∈ Ĩxt .

– Otherwise, X̃t is defined by X̃t = x⇔ Ũ−t ∈ Ĩxt .

Here, the random stopping times T̃ kn , n ∈ N are defined by:

– T̃ k1 = max{t ≤ −1 : Pk(X̃−1
t ) ≥ Pj(X̃−1

t ) , for each j ∈ S}

– T̃ k2 = max{t < T̃ k1 : Pk(X̃−1
t ) ≥ Pj(X̃−1

t ) , for each j ∈ S}

– T̃ k3 = max{t < T̃ k2 : Pk(X̃−1
t ) ≥ Pj(X̃−1

t ) , for each j ∈ S}
...

If there is no such t for some n ≥ 1, then T̃ kn ≡ −∞ and T̃ km ≡ −∞ for all m > n.

18For example, if P(X−1 = 1) = 1/2, P(X−1 = 2) = 1/3, and P(X−1 = 3) = 1/6 then Ĩ1−1 = [0, 1/2], Ĩ2−1 =

(1/2, 5/6], and Ĩ3−1 = (5/6, 1].
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By induction on the length of w it is easily seen that P̃
(
X̃−1
−|w| = w

)
= P

(
X−1
−|w| = w

)
for any

word w ∈ X ∗. Hence:

P̃(X̃−1
−∞) = P(X−1

−∞) (35)

Of course, this is a somewhat unnecessarily complicated way of generating the output process of

the HMM M in reverse time. However, the explicit and relatively simple nature of the underlying

space (Ω̃, F̃ , P̃) will be useful. In particular, large deviation estimates for the i.i.d. sequences (Ũn)

and (Ṽn) generating the space can be translated to large deviation estimates for the sequence (X̃t),

which would be more difficult to do directly on the sequence (Xt).

6.2 Bounds for FS1 Models

Throughout Section 6.2 we assume M = (S,X , {T (x)}) is an irreducible, FS1 HMM and denote

the flag symbol for state j by yj . Also, we define the quantities pj , qj , p∗, q∗ ∈ (0, 1] by:

pj ≡ P(X0 = yj |S1 = j) and p∗ ≡ min
j
pj

qj ≡ min
i∈S(yj)

Pi(S1 = j|X0 = yj) and q∗ ≡ min
j
qj

where:

S(w) ≡ {i ∈ S : w ∈ L(i)} , w ∈ X ∗

Our goal is to establish an exponential bound on the speed of convergence of the entropy rate

block estimates h(t). The basic steps of the arguments are as follows:

(i) Using large deviation estimates on the (Ω̃, F̃ , P̃) space we show that there exists a set of

“good” length-(t+ 1) sequences Gt of combined probability 1−O(exponentially small), such

that for each xt0 ∈ Gt there is some state k with Nk(x
t
0) ≥ ηt. Here η > 0 is a constant

(depending on the HMM, but not on t) and:

Nk(x
t
0) ≡

∣∣{0 ≤ τ ≤ t− 1 : xτ = yk, and Pk(xtτ+1) ≥ Pj(xtτ+1) for all j}
∣∣ (36)
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(ii) Using a coupling argument similar to the one used in [14] we show that ‖φk(xt0)− φ
k̂
(xt0)‖TV

is exponentially small for any sequence xt0 ∈ Gt and states k, k̂ ∈ S(xt0).

(iii) Using (ii) we show that the difference H(Xt+1|Xt
0 = xt0)−H(Xt+1|Xt

0 = xt0, S0) is exponen-

tially small for any xt0 ∈ Gt.

(iv) Using (iii) and the fact that P(Gct) is exponentially small we show that the differenceH(Xt+1|Xt
0)−

H(Xt+1|Xt
0, S0) is exponentially small.

(v) Finally, using (iv) and the fact that H(Xt+1|Xt
0, S0) ≤ h, for all t, we conclude that the

differences h(t)− h must be exponentially small.

6.2.1 Large Deviation Estimates for the Space (Ω̃, F̃ , P̃)

Let the random variables Z̃n, n ∈ N and Z̃avgn , n ∈ N on (Ω̃, F̃ , P̃) be defined by:

Z̃n ≡





1, if Ṽn ≤ p∗rmin/|S|

0, otherwise

and:

Z̃avgn ≡ 1

n

n∑

m=1

Z̃m

Also, define the random fractions F̃ kn , n ∈ N by:

F̃ kn ≡




−1, if T̃ kn = −∞

c/n, if T̃ kn > −∞ where c = |{t ≤ −1 : t = T̃ km for some 1 ≤ m ≤ n and X̃t−1 = yk}|

Lemma 21. P̃
(
Z̃avgn ≤ p∗rmin

2|S|

)
≤ αn1 , where α1 ≡ exp

(
−p2∗r

2
min

2|S|2

)
< 1.

Proof. The Z̃n are i.i.d. with 0 ≤ Z̃n ≤ 1 and E(Z̃n) = p∗rmin

|S| . Thus, applying Hoeffding’s inequality
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to the i.i.d. sequence Z̃n yields:

P̃
(
Z̃avgn ≤ p∗rmin

2|S|

)
= P̃

(
Z̃avgn − p∗rmin

|S| ≤ −
p∗rmin

2|S|

)

≤ exp



−2
(
p∗rmin

2|S|

)2

(1− 0)2
· n




= αn1

Lemma 22. If w ∈ Lt(M) is a word such that Pk(w) ≥ Pj(w), for all j, then:

(i) P(S−t = k|X−1
−t = w) ≥ rmin · P(S−t = j|X−1

−t = w) , for all j

(ii) P(S−t = k|X−1
−t = w) ≥ rmin/|S|

Proof. By Bayes’ theorem:

Pk(w) ≥ Pj(w)

=⇒ P(S−t = k|X−1
−t = w) · P(X−1

−t = w)

P(S−t = k)
≥ P(S−t = j|X−1

−t = w) · P(X−1
−t = w)

P(S−t = j)

=⇒ P(S−t = k|X−1
−t = w) ≥ P(S−t = k)

P(S−t = j)
· P(S−t = j|X−1

−t = w) ≥ rmin · P(S−t = j|X−1
−t = w)

This proves (i), and (ii) follows.

Lemma 23. If T̃ km > −∞ and Z̃m = 1, then X̃
T̃km−1

= yk.

Proof. Note that for any t ≤ −1 the event {T̃ km = t} depends only on X̃−1
t . Define:

W k
m ≡ {x−1

t ∈ L(M) : t ≤ −1, and X̃−1
t = x−1

t =⇒ T̃ km = t}
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Then for any x−1
t ∈W k

m we have by Lemma 22:

P(Xt−1 = yk|X−1
t = x−1

t ) ≥ P(St = k|X−1
t = x−1

t ) · P(Xt−1 = yk|St = k)

≥ rmin

|S| · p∗

But:

Z̃m = 1 =⇒ Ṽm ≤
p∗rmin

|S|

Thus:

X̃−1
t = x−1

t and Z̃m = 1 =⇒ Ṽm ∈ [0,P(Xt−1 = yk|X−1
t = x−1

t )] = Ĩykt−1

=⇒ X̃t−1 = yk

Since this holds for any x−1
t ∈W k

m the claim follows.

Lemma 24. If T̃ kn > −∞ and Z̃avgn > p∗rmin

2|S| , then F̃ kn >
p∗rmin

2|S| .

Proof. Assume T̃ kn > −∞. Then, by Lemma 23, X̃
T̃km−1

= yk for each m ∈ {1, ..., n} with Z̃m = 1.

So:

F̃ kn =
1

n

∣∣∣{1 ≤ m ≤ n : X̃
T̃km−1

= yk}
∣∣∣

≥ 1

n

∣∣∣{1 ≤ m ≤ n : Z̃m = 1}
∣∣∣

= Z̃avgn

Hence:

T̃ kn > −∞ and Z̃avgn >
p∗rmin

2|S| =⇒ F̃ kn >
p∗rmin

2|S|

Lemma 25. P̃
({
T̃ kn > −∞ and F̃ kn ≤ p∗rmin

2|S|

})
≤ αn1 .
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Proof. By Lemmas 21 and 24 we have:

P̃
({

T̃ kn > −∞ and F̃ kn ≤
p∗rmin

2|S|

})
≤ P̃

({
T̃ kn > −∞ and Z̃avgn ≤ p∗rmin

2|S|

})

≤ P̃
({

Z̃avgn ≤ p∗rmin

2|S|

})

≤ αn1

6.2.2 Bound from Below on P(Gt)

The random variables T̃ kn and F̃ kn on (Ω̃, F̃ , P̃) depend only on the symbol sequence (X̃t)t∈−N:

T̃ kn = T̃ kn (X̃−1
−∞) and F̃ kn = F̃ kn (X̃−1

−∞). As such, we may define corresponding random variables

T kn and F kn for the standard HMM probability space (Ω,F ,P), depending on (Xt)t∈−N. Since

the distribution of (X̃t)t∈−N is the same as that of (Xt)t∈−N we have, necessarily, equality in

distribution between these derived random variables: (T̃ kn )n∈N
d.
= (T kn )n∈N and (F̃ kn )n∈N

d.
= (F kn )n∈N.

This equivalence will be quite useful in the following development.

Before proceeding, however, we first need to introduce some more notation and terminology.

We say x−1
−∞ is a tail extension of the word w if x−1

−|w| = w. We define the constant η = p∗rmin

2|S|2 and,

for t ∈ N, we define nt = dt/|S|e and Nk(x
t
0) as in (36). Finally, we define the following sets:

Akn ≡
{
x−1
−∞ ∈ L−∞(P) : T kn (x−1

−∞) > −∞ and F kn (x−1
−∞) ≤ p∗rmin

2|S|

}
, k ∈ S and n ∈ N

Bn ≡
{
x−1
−∞ ∈ L−∞(P) : F kn (x−1

−∞) >
p∗rmin

2|S| for each k with T kn (x−1
−∞) > −∞

}
, n ∈ N

Ct ≡
{
x−1
−∞ ∈ L−∞(P) : there exists k with T knt(x

−1
−∞) ≥ −t and F knt(x

−1
−∞) >

p∗rmin

2|S|

}
, t ∈ N

C ′t ≡
{
x−1
−t−1 ∈ Lt+1(P) : tail extensions of x−1

−t−1 are in Ct
}
, t ∈ N

Gt ≡
{
xt0 ∈ Lt+1(P) : there exists k with Nk(x

t
0) ≥ ηt

}
, t ∈ N

where P = (Xt)t∈Z is the stationary output process for M .

Note that C ′t and Gt may both be considered simply as sets of length-(t+ 1) words w. For C ′t

there is the added interpretation of the words as length-(t + 1) past sequences, and for Gt there
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is the added interpretation of the words as length-(t + 1) future sequences. However, C ′t and Gt

are both well defined simply as sets of words. As such, we may reasonably ask questions about

when one set is contained in another and the probability of these sets as the combined (stationary)

probability of all words in the sets.

Lemma 26. For any n ∈ N :

(i) P(Akn) ≤ αn1 , for each k

(ii) P(Bn) ≥ 1− |S|αn1

Proof. (i) Follows from (35) and Lemma 25. (ii) follows from (i) and the fact that the complement

of the set Bn is Bc
n =

⋃
k A

k
n. (Note: Complement here means complement with respect to the set

of sequences L−∞(P), i.e. Bn ∪Bc
n = L−∞(P). The combined probability of all other sequences is 0,

so they can be ignored.)

Lemma 27. Ct ⊇ Bnt.

Proof. For any x−1
−∞ ∈ L−∞(P) there is some k such that T knt(x

−1
−∞) ≥ −t. And, for any x−1

−∞ ∈ Bnt
with T knt(x

−1
−∞) ≥ −t > −∞, we have F knt(x

−1
−∞) > p∗rmin

2|S| , which implies x−1
−∞ ∈ Ct.

Lemma 28. Gt ⊇ C ′t.

Proof. Let w ∈ C ′t. Then there exists k such that:

T knt(x
−1
−∞) ≥ −t and F knt(x

−1
−∞) >

p∗rmin

2|S|

for any tail extension x−1
−∞ of w in L−∞(P). It follows that:

Nk(w) > nt ·
p∗rmin

2|S| ≥
(
p∗rmin

2|S|2
)
t = ηt

which implies w ∈ Gt.

Lemma 29. For any t ∈ N, P(Gt) ≥ 1− |S|αt2, where α2 ≡ α1/|S|
1 < 1.
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Proof. By Lemmas 26, 27, and 28 we have:

P(Gt) ≥ P(C ′t) = P(Ct) ≥ P(Bnt) ≥ 1− |S|αnt1 ≥ 1− |S|αt2

6.2.3 Pair Chain Coupling Bound

Assume now, without loss of generality, that the state set is S = {1, 2, ..., |S|}, and for xt0 ∈ Gt let

the index l(xt0) and time set Γ(xt0) be defined by:

l ≡ min{k : Nk(x
t
0) ≥ ηt}

Γ ≡ {0 ≤ τ ≤ t− 1 : xτ = yl, and Pl(xtτ+1) ≥ Pj(xtτ+1) for all j}

Lemma 30. For any xt0 ∈ Gt, τ ∈ Γ(xt0), and i ∈ S(xtτ ) :

P(Sτ+1 = l|Sτ = i,Xt
τ = xtτ ) ≥ q∗

Proof. Let xt0 ∈ Gt and τ ∈ Γ(xt0). Then, for any i ∈ S(xtτ ) we must have have:

P(Sτ = i,Xτ = yl) = P(Sτ = i,Xτ = xτ ) > 0

and:

P(Xt
τ+1 = xtτ+1|Sτ = i,Xτ = yl) ≤ P(Xt

τ+1 = xtτ+1|Sτ+1 = l)

Thus:

P(Sτ+1 = l|Sτ = i,Xt
τ = xtτ )

=
P(Sτ+1 = l, Sτ = i,Xτ = yl, X

t
τ+1 = xtτ+1)

P(Sτ = i,Xτ = yl, X
t
τ+1 = xtτ+1)

=
P(Sτ = i,Xτ = yl) · P(Sτ+1 = l|Sτ = i,Xτ = yl) · P(Xt

τ+1 = xtτ+1|Sτ+1 = l)

P(Sτ = i,Xτ = yl) · P(Xt
τ+1 = xtτ+1|Sτ = i,Xτ = yl)

≥ P(Sτ+1 = l|Sτ = i,Xτ = yl)

≥ q∗
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Lemma 31. For any xt0 ∈ Gt and states k, k̂ ∈ S(xt0) :

‖φk(xt0)− φ
k̂
(xt0)‖TV ≤ αt3

where α3 ≡ (1− q2
∗)
η < 1.

Proof. Applying the pair chain coupling bound (34) we have:

‖φk(xt0)− φ
k̂
(xt0)‖TV ≤ P̂(Rt+1 6= R̂t+1)

=
t∏

τ=0

P̂
(
Rτ+1 6= R̂τ+1|Rτ 6= R̂τ

)

≤
∏

τ∈Γ(xt0)

P̂
(
Rτ+1 6= R̂τ+1|Rτ 6= R̂τ

)

≤
∏

τ∈Γ(xt0)

max
i,̂i∈S(xtτ ),i 6=î

P̂
(
Rτ+1 6= R̂τ+1|Rτ = i, R̂τ = î

)

≤
∏

τ∈Γ(xt0)

max
i,̂i∈S(xtτ ),i 6=î

(
1− P̂

(
Rτ+1 = R̂τ+1 = l|Rτ = i, R̂τ = î

))

(a)

≤
∏

τ∈Γ(xt0)

(1− q2
∗)

(b)

≤ (1− q2
∗)
ηt

= αt3

Here (a) follows from Lemma 30 and (b) from the fact that |Γ(xt0)| ≥ ηt. (Note: We have assumed

in the proof that P̂(Rτ 6= R̂τ ) > 0, for all 0 ≤ τ ≤ t. If this is not the case, then the conclusion

follows trivially since P̂(Rt+1 6= R̂t+1) = 0.)

6.2.4 Convergence of the Entropy Rate Estimates

Lemma 32. For any two probability distributions µ, ν on S :

‖Pµ(X0)− Pν(X0)‖TV ≤ ‖µ− ν‖TV
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Proof. It is equivalent to prove the statement for 1-norms. In this case we have:

‖Pµ(X0)− Pν(X0)‖1 =

∥∥∥∥∥
∑

k

µk · Pk(X0)−
∑

k

νk · Pk(X0)

∥∥∥∥∥
1

≤
∑

k

|µk − νk| · ‖Pk(X0)‖1

= ‖µ− ν‖1

Lemma 33. Let t0 = t0(α3) ≡ dlogα3
(1/e)e. Then for each t ≥ t0 and xt0 ∈ Gt :

H(Xt+1|Xt
0 = xt0)−H(Xt+1|S0, X

t
0 = xt0) ≤ |X | · αt3 · log2(1/αt3)

Proof. Fix xt0 ∈ Gt with t ≥ t0. Then for each k ∈ S(xt0) we have by Lemmas 31 and 32:

‖Pk(Xt+1|Xt
0 = xt0)− P(Xt+1|Xt

0 = xt0)‖TV

≤ ‖Pk(St+1|Xt
0 = xt0)− P(St+1|Xt

0 = xt0)‖TV

≤ max
k̂∈S(xt0)

‖Pk(St+1|Xt
0 = xt0)− P

k̂
(St+1|Xt

0 = xt0)‖TV

= max
k̂∈S(xt0)

‖φk(xt0)− φ
k̂
(xt0)‖TV

≤ αt3

Thus, by Lemma 3:

H(Xt+1|Xt
0 = xt0)−H(Xt+1|Xt

0 = xt0, S0 = k) ≤ |X | · αt3 · log2(1/αt3)

for all k ∈ S(xt0), since t ≥ t0. The claim follows since:

H(Xt+1|Xt
0 = xt0)−H(Xt+1|S0, X

t
0 = xt0)

=
∑

k∈S(xt0)

P(S0 = k|Xt
0 = xt0) ·

(
H(Xt+1|Xt

0 = xt0)−H(Xt+1|Xt
0 = xt0, S0 = k)

)
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Theorem 3. The entropy rate block estimates h(t) converge exponentially with:

lim sup
t→∞

{h(t)− h}1/t ≤ α

where α ≡ max{α2, α3}.

Proof. For any t ∈ N:

h = lim
τ→∞

H(X0|X−1
−τ )

≥ lim
τ→∞

H(X0|X−1
−τ , S−(t+1))

= H(X0|X−1
−(t+1), S−(t+1))

= H(Xt+1|Xt
0, S0)

Thus, using Lemmas 29 and 33, the difference h(t + 2) − h may be bounded as follows for all

t ≥ t0 = t0(α3):

h(t+ 2)− h = H(Xt+1|Xt
0)− h

≤ H(Xt+1|Xt
0)−H(Xt+1|Xt

0, S0)

=
∑

xt0∈Lt+1(M)

P(xt0) ·
[
H(Xt+1|Xt

0 = xt0)−H(Xt+1|Xt
0 = xt0, S0)

]

≤ P(Gt) ·
(
|X | · αt3 · log2(1/αt3)

)
+ P(Gct) · log2 |X |

≤ 1 ·
(
|X | · αt3 · log2(1/αt3)

)
+ |S|αt2 · log2 |X |

The claim follows directly from this inequality.

6.3 Bounds for General FS Models

The following theorem gives an upper bound on the rate of convergence of the entropy rate estimates

h(t) for a FS HMM M . It is an immediate consequence of Theorem 3 and Lemma 8.
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Theorem 4. Let M be an irreducible, FS HMM, and let Mn be the irreducible, FS1 block model

with n ∈ N given by (18). Also, let the constant α < 1 be defined as in Theorem 3 for the FS1 block

model Mn. Then the entropy rate estimates h(t) for the HMM M converge exponentially with:

lim sup
t→∞

{h(t)− h}1/t ≤ α1/n
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7 Conclusion

There is, in general, no closed form expression for the entropy rate of a hidden Makov model.

However, the entropy rate h can often be well approximated by the finite length block estimates

h(t), and the speed of convergence of these estimates is of independent interest as well, even in

cases where the entropy rate can be calculated analytically, such as for unifilar HMMs.

In particular, the rate of convergence of the estimates h(t) is important for numerical approx-

imations of the excess entropy [13] and for an observer making predictions from finite data. It is

also closely related to the rate at which the HMM “forgets its initial distribution”, a problem that

has been investigated extensively [17, 34–39], though primarily in the case of an R or Rn valued

output sequence (Xt) and often with a more general state space S as well.

In the finite case, it is well known that the estimates h(t) converge exponentially for state-

emitting HMMs if the underlying Markov chain has strictly positive transition probabilities [14].

Similarly, in [16] exponential convergence is demonstrated for finite HMMs (both state-emitting and

edge-emitting) with the assumption of strictly positive symbol emission probabilities and an aperi-

odic underlying Markov chain. However, no exponential bounds have been previously established

for the rate of convergence of the block estimates in all finite HMMs. The weakest previously used

assumptions come from [18], but these still require the output process (Xt) to have full support.

We have demonstrated, here, exponential convergence not for all finite HMMs, but under a

number of alternative assumptions that do not require positivity of either the state transition

matrix or symbol emission probabilities and also do not require the output process to have full

support. The first two conditions we studied, exactness and unifilarity, are fairly strong, but we

believe, as discussed in the introduction, that they are natural assumptions to make and interesting

cases to consider. The flag-state condition is not as natural, but it is the most widely applicable,

and, when translated to state emitting HMMs, is strictly weaker than either of the positivity

assumptions used in [14] and [16]. These ideas will be discussed further and made more precise in

Appendices B and C, respectively.

Remark. The aperiodicity assumption in [16] is not essential. Exponential convergence for aperi-

odic HMMs with positive symbol emission probabilities could be used to show exponential convergence

for all HMMs with positive symbol emission probabilities. Similarly, exponential convergence will

still hold for a HMM that is “flag-state up to periodicity”.

89



Appendices

A Property Testing

In this section we provide tests for several important HMM properties, including the flag-state

property, and whether a given pair of states (i, j) is (a) path-mergeable, (b) incompatible, or (c)

probabilistically distinguishable, in the case that the HMM is unifilar. Throughout, δi(w) denotes

the unifilar HMM transition function defined by (23), and for a HMM M = (S,X , {T (x)}) and

states i, j ∈ S we denote the minimum path-merge length, minimum incompatibility length, and

minimum probabilistically distinguishing length, respectively, by `1ij , `
2
ij , and `3ij :

`1ij ≡ inf{n : ∃w ∈ Ln(M) and k ∈ S with k ∈ δi(w) ∩ δj(w)} (`1ij ≡ ∞, if no such n)

`2ij ≡ inf{n : Ln(i) ∩ Ln(j) = ∅} (`2ij ≡ ∞, if no such n)

`3ij ≡ inf{n : Pi(Xn−1
0 ) 6= Pj(Xn−1

0 )} (`3ij ≡ ∞, if no such n)

Note that, by definition, a state pair (i, j) is path-mergeable if and only if `1ij <∞. Similarly, the

pair (i, j) is incompatible if and only if `2i,j <∞ and probabilistically distinguishable if and only if

`3i,j <∞.

Testing if `∗i,j = 1 (* = 1, 2, or 3) for any state pair (i, j) can be done directly by examining

the 1 symbol transition probabilities T (x)
ik , T (x)

jk for each x ∈ X , k ∈ S. If `∗i,j 6= 1 then determining

if `∗ij = n for some 1 < n <∞ is more difficult, but it can be accomplished using modified versions

of the standard table filling algorithm for deterministic finite automata (DFAs) [40], as presented

below.

Algorithm 1. Determine Path-Mergeable State Pairs for HMM M = (S,X , {T (x)})

Initialization Step

• Create a table with boxes for each pair of distinct states (i, j).

Initially all boxes are unmarked.

• Then, for each pair (i, j) check if `1ij = 1. If so, mark box for pair (i, j).

Inductive Step
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• If for some i, j, x there exist states i′ ∈ δi(x), j′ ∈ δj(x) such that the box for pair (i′, j′) is

already marked, then mark the box for pair (i, j).

• Repeat until no more boxes can be marked this way.

Algorithm 2. Determine Incompatible State Pairs for HMM M = (S,X , {T (x)})

Initialization Step

• Create a table with boxes for each pair of distinct states (i, j).

Initially all boxes are unmarked.

• Then, for each pair (i, j) check if `2ij = 1. If so, mark box for pair (i, j).

Inductive Step

• If there exist states i, j such that for each x ∈ X and i′ ∈ δi(x), j′ ∈ δj(x) the box for pair

(i′, j′) is already marked, then mark the box for pair (i, j).

• Repeat until no more boxes can be marked this way.

Algorithm 3. Determine Probabilistically Distinguishable State Pairs for Unifilar HMM M =

(S,X , {T (x)})

Initialization Step

• Create a table with boxes for each pair of distinct states (i, j).

Initially all boxes are unmarked.

• Then, for each pair (i, j) check if `3ij = 1. If so, mark box for pair (i, j).

Inductive Step

• If for some i, j, x the box for pair (δi(x), δj(x)) is already marked, then mark the box for pair

(i, j).

• Repeat until no more boxes can be marked this way.
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By induction on n, it can be shown that for each n ∈ N all state pairs (i, j) with `1ij = n end up

with marked boxes under Algorithm 1. Thus, all path-mergeable state pairs (i, j), i.e. pairs with

`1ij <∞, end up with marked boxes under this algorithm. On the other hand, a box never becomes

marked under Algorithm 1 unless the pair (i, j) is path-mergeable. Thus, under Algorithm 1 the

box for pair (i, j) ends up marked if and only if the pair (i, j) is path-mergeble.

Similarly, one can show, by induction, that under Algorithm 2 a pair (i, j) ends up with a

marked box if and only if the pair (i, j) is incompatible, and under Algorithm 3 (operating on

a unifilar HMM) that a pair (i, j) ends up with a marked box if and only if the pair (i, j) is

probabilistically distinguishable. Thus, these three algorithms provide ways to determine all the

state pair properties of interest.

In light of Proposition 8 in Appendix B we also now have the following one way test to see if a

given (irreducible) HMM is a flag-state HMM:

1. Determine all path-mergeable state pairs with Algorithm 1.

2. Determine all incompatible state pairs with Algorithm 2.

3. If each state pair (i, j) satisfies at least one of these two properties, then the HMM is a

flag-state HMM. If not, the test is inconclusive.

The three algorithms presented above, and thus the flag-state one way test, are all “reasonably

fast”, at least if the inductions in the second step are carried out in an efficient manner. For example,

as described in [40] for the DFA table filling algorithm, with small modifications as necessary. In

particular, the running times are all polynomial in the number of states and symbols.

However, the one way flag-state test is not definitive in the negative direction, and we are

unaware of a similar modification of the DFA table filling algorithm that gives a definitive answer

for whether a given HMM is flag-state or not. Instead, we present below an auxiliary construction,

which we call simply the flag-state test machine, that allows one to test definitively if a given HMM

is a flag-state HMM. Unfortunately, though, the machine Mtest itself can be very large, even if the

original HMM is reasonably sized. In particular, its state set R has 2(|S|2) states, where S is the

state set of the original HMM M . In general, not all states of Mtest will be accessible, and it is only

necessary to construct the restricted graph consisting of accessible states. Nevertheless, there still

may be very many accessible states, so the construction and analysis may take quite some time.
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Definition 10. For an irreducible HMM M = (S,X , {T (x)}) the flag-state test machine Mtest is

the unifilar HMM (R,X , {Q(x)}) with state set:

R ≡ {r = (A1, ..., A|S|) : An is a subset of S, for each n = 1, ..., |S|}

and unifilar transition function:

δ
test
r (w) ≡ (δA1(w), ..., δA|S|(w))

where δA(w) is the standard transition function for the original HMM M given by (7). Transition

probabilities are, by convention19, taken to be uniform over all outgoing edges from each state:

Q(x)
rr′ ≡

1

|X | · 1
{
δ
test
r (x) = r′

}

For notational convenience, let us assume that the state set of M is S = {1, ..., |S|}. Also, let:

r0 ≡ ({1}, ..., {|S|})

and, for w ∈ X ∗, let r = r(w) be defined by:

r = (A1, ..., A|S|) ≡ δ
test
r0 (w) = (δi(w), ..., δ|S|(w))

Then w is a flag word for state k if and only if:

(a) For each i ∈ S, either k ∈ Ai or Ai = ∅, and

(b) There exists some i ∈ S with Ai 6= ∅.

Thus, state k has a flag word if and only if there is some r = (A1, ..., A|S|) ∈ R that is accessible

from r0 and satisfies (a) and (b). To test if M is a flag-state HMM one can, therefore, restrict the

graph of Mtest to r0 and those states accessible from r0, and then for each k ∈ S examine all states

r in the restricted graph to make sure there is some r that satisfies (a) and (b). If for each k ∈ S

there is some such r then the HMM is a flag-state HMM, otherwise it is not. In fact, as noted

19Transition probabilities of the allowed transitions are unimportant. It is only the topology of the test machine
Mtest that is relevant for deciding if M is a flag-state HMM.
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previously in Section 2.5.4, if any state k has a flag word w then all of them do (by irreducibility).

Thus, if suffices to check that there is some r satisfying (a) and (b) for a single state k ∈ S.

Of course, once it is determined that the HMM is a flag-state HMM, it is also easy to determine

flag words for it in order to apply the bounds given in Section 6. For a state r satisfying (a) and

(b) for a given k, if we take any path in the graph from r0 to r and let w be the word defined by

this path then w is a flag word for k. Generally, better bounds will tend to result from shorter

paths, but finding an ideal path may also require some searching.

An example of the Mtest construction is presented below in Figure 8.

Original HMM M

1

23

1
2 |b

1
2 |a

1
3 |a

2
3 |b

1
4 |a

3
4 |a

Flag-State Test Machine Mtest

1, 2, 3 1, 3, 12 1, 12, 13 1, 13, 12

2, 2, ∅ 2, ∅, 2 ∅, ∅, ∅ 2, 2, 2

3, 3, ∅ 3, ∅, 3 3, 3, 3

12, 12, ∅ 12, ∅, 12 12, 12, 12

13, 13, ∅ 13, ∅, 13 13, 13, 13

a a
a

a

b b
b

b

b b b

a
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Figure 8: The flag-state test machine construction for a 3 state, 2 symbol HMM. In the test machine
Mtest state names have been abbreviated by dropping the outer parentheses, set brackets, and
commas between elements of each set. Thus, for example, the state ({1}, {1, 2}, {1, 3}) is denoted
simply by 1, 12, 13, and the state ({1, 3}, {1, 3}, ∅) is denoted 13, 13, ∅. Also, transition probabilities
have been omitted from the edge labels of the test machine, because they are irrelevant, and the
graph of the test machine has been restricted to the state r0 and other states accessible from it,
since these are all that matter for determining if M is a flag-state HMM. For ease of recognition,
r0 is colored in green, and each state r satisfying conditions (a) and (b) for some k ∈ S is colored
in blue, while all other states are colored white. Since there are indeed blue states in this restricted
graph of Mtest we know that M is a flag-state HMM.
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B Weakness of the Flag-State Condition

Proposition 8 below states than an irreducible HMM M is a flag-state HMM if each pair of distinct

states i, j is either path-mergeable or incompatible. This is not a necessary condition for a HMM

to be flag-state, but it is a fairly weak sufficient condition.

In particular, if the number of symbols m and states n are both large (or even if the number

of states n is large and the alphabet is binary, m = 2) and a HMM topology is selected uniformly

at random from all topologies with n states and m symbols, then with high probability the HMM

will have a significant degree of branching or non-unifilarity. That is, most states will have at least

one symbol upon which they can transition to many (i.e. ≈ n/2) other states. If this is the case,

then most state pairs should be path-mergeable. The most likely way for a given state pair i, j to

not be path-mergeable (at least if m is small) is that i and j have no common output symbol, or

possibly a common output symbol but no common words of some short length. If this is the case,

though, the state pair i, j is incompatible. Thus, when n is large (and especially when n and m are

both large) with high probability each pair i, j should be either path-mergeable or incompatible.

Proposition 8. If M = (S,X , {T (x)}) is an irreducible HMM and each pair of distinct states

i, j ∈ S is either path-mergeable or incompatible, then M is a flag-state HMM.

Proof. We will explicitly construct a word v∗, which is a flag word for some state i∗. As noted

previously, irreducibility then implies that the HMM M is indeed a flag-state HMM.

To construct the word v∗ we need to introduce a little notation. If a pair of states i, j is

path-mergeable we denote by wij and kij the special word w and state k in the definition of path-

mergeability, so that kij ∈ δi(wij) ∩ δj(wij). Also, for a state i we denote by M(i) the set of all

states that are path-mergeable with i. Finally, for notational convenience, we assume, without loss

of generality, that the state set is S = {1, 2, ..., |S|} and the alphabet is X = {1, 2, ..., |X |}.

v∗ is then defined inductively by the following algorithm:

(i) t := 0, v0 := λ (the empty word), i0 := 1, R := S/{1}

(ii) While R 6= ∅ do:

kt := min{k : k ∈ R}

If δkt(vt) ∩M(it) 6= ∅:
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jt := min{j : j ∈ δkt(vt) ∩M(it)}

wt := witjt

vt+1 := vtwt

it+1 := kitjt

Else:

wt := min{x : Pit(x) > 0}

vt+1 := vtwt

it+1 := min{i : i ∈ δit(wt)}

R := R/ ({k : it+1 ∈ δk(vt+1)} ∪ {k : Pk(vt+1) = 0})

t := t+ 1

(iii) v∗ := vt, i
∗ := it

If δkt(vt) ∩ M(it) = ∅ then, by assumption, each j ∈ δkt(vt) is incompatible with it. So,

in this case, we will always have Pkt(vt+1) = 0 with our choice of wt. On the other hand, if

δkt(vt) ∩M(it) 6= ∅, then by our choice of wt we will always have it+1 ∈ δkt(vt+1). Thus, the state

kt is always removed from the set R in each iteration of the loop, so the algorithm must terminate

after a finite number of steps.

Now, let us assume that the loop terminates at time t with word v∗ = w0w1...wt−1 and state

i∗ = it. Then, by the construction, we have i0 = 1 and iτ+1 ∈ δiτ (wτ ) for each τ = 0, 1, ..., t − 1,

which implies i∗ ∈ δ1(v∗), and, hence, that v∗ ∈ L(M).

Further, since each state k 6= 1 must be removed from the listR before the algorithm terminates,

we know that for each k 6= 1 one of the following must hold:

1. iτ+1 ∈ δk(vτ+1), for some 0 ≤ τ ≤ t− 1, which implies i∗ ∈ δk(v∗).

2. Pk(vτ+1) = 0, for some 0 ≤ τ ≤ t− 1, which implies Pk(v∗) = 0.

It follows that v∗ is a flag word for state i∗.
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C State-Emitting vs. Edge-Emitting HMMs

In this section we show how the results derived in this dissertation for edge-emitting HMMs apply

to the more commonly used state-emitting HMMs. We begin in Sections C.1 and C.2 with the

state-emitting definition and standard model type equivalence. Then in Section C.3 we show how

our edge-emitting results translate to the state-emitting case.

C.1 State-Emitting Definition

Definition 11. A (finite) state-emitting hidden Markov model is a 4-tuple (S,X , T ,O) where:

• S is a finite set of states.

• X is a finite alphabet of output symbols.

• T is an |S| × |S| stochastic state transition matrix: Tij = P(St+1 = j|St = i).

• O is an |S| × |X | stochastic observation matrix20: Oix = P(Xt = x|St = i).

The state sequence (St) for the state-emitting HMM (S,X , T ,O) is a Markov chain with transi-

tion matrix T , and the output sequence (Xt) has conditional distribution defined by the observation

matrix O. More precisely, for each initial state i ∈ S we have measure Pi on joint state-symbol

sequences (St, Xt)t∈Z+ defined by:

Pi(St0 = st0) = 1{s0 = i} ·
t−1∏

n=0

Tsnsn+1

Pi(Xt
0 = xt0|St0 = st0) =

t∏

n=0

Osnxn

If the HMM (S,X , T ,O) is irreducible, then we denote by P the (unique) stationary measure

on joint sequences (St, Xt)t∈Z+ given by choosing the initial state S0 according to the stationary

distribution π for the underlying Markov model (S, T ): P(·) ≡ Pπ(·) ≡∑i πiPi(·).
20In much of the early literature [1–3,14], as well as some of the more recent [15], it is assumed that the observation

matrix O is deterministic: Oix = 1{f(i) = x}, for some observation function f : S → X . Such HMMs are sometimes
referred to as functional HMMs. However, we will not distinguish them as such explicitly here. It can be shown that
functional HMMs are equivalent to general state-emitting HMMs in the same way that edge-emitting HMMs are, as
discussed below in Section C.2.
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C.2 Equivalence of Model Types

Though they are different objects, state-emitting and edge-emitting HMMs are equivalent in the

following sense: Given an irreducible HMM M of either of these types there exists an irreducible

HMM M ′ of the other type such that the stationary output processes (Xt) for the two HMMs M

and M ′ are equal in distribution. Thus, if one is only concerned with questions about the observable

output process, such as the convergence of the entropy rate block estimates h(t), then either the

state-emitting or edge-emitting model may be used.

We recall below the standard model type conversions.

1. State-Emitting to Edge-Emitting - If M = (S,X , T ,O) then M ′ = (S,X , {T ′(x)}), where

T
′(x)
ij = TijOjx.

2. Edge-Emitting to State-Emitting - If M = (S,X , {T (x)}) then M ′ = (S ′,X , T ′,O′), where

S ′ = {(i, x) :
∑

j T
(x)
ij > 0}, T ′(i,x)(j,y) =

(
T (x)
ij /

∑
k T

(x)
ik

)
·
(∑

k T
(y)
jk

)
, and O′(i,x)y = 1{x = y}.

C.3 Translation of Results

For a state-emitting HMM M = (S,X , T ,O) let δi(w) be defined, as for edge-emitting HMMs, as

the set of states j, which the HMM M can transition to upon emitting w if it starts in state i 21:

δi(w) ≡ {j ∈ S : Pi(X
|w|
1 = w,S|w| = j) > 0} (37)

Also, for A ⊆ S let:

δA(w) ≡
⋃

i∈S
δi(w)

As for edge-emitting HMMs, we say that a state-emitting HMM M = (S,X , T ,O) is:

• unifilar if |δi(x)| ≤ 1, for each i ∈ S, x ∈ X .

• exact if there exists some synchronizing word w and state j ∈ S, such that δS(w) = {j}.
21In the edge-emitting case we had instead δi(w) = {j ∈ S : Pi(X |w|−1

0 = w,S|w| = j) > 0}, but this is because of
the offset that comes from using edge-emitting HMMs where the symbol Xt is generated on the transition from state
St to state St+1, rather than being emitted directly from state St, as for state-emitting HMMs.
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• a flag-state HMM if for each state k there is some flag word w ∈ L(M) such that k ∈ δi(w),

for all i with δi(w) 6= ∅.

The following lemma shows that these three properties are preserved under the state-emitting

to edge-emitting conversion.

Lemma 34. Let M = (S,X , T ,O) be an irreducible, state-emitting HMM, and let M ′ = (S,X , {T ′(x)})

be the corresponding, irreducible, edge-emitting HMM defined as in the previous section with T
′(x)
ij =

TijOjx. Then:

1. M is unifilar if and only if M ′ is unifilar.

2. M is exact if and only if M ′ is exact.

3. M is a flag-state HMM if and only if M ′ is a flag-state HMM.

Proof. By induction on t it is easily seen that for each t ∈ N, xt1 ∈ X t, and st0 ∈ St+1:

Pi(St0 = st0, X
t
1 = xt1) = P′i(St0 = st0, X

t−1
0 = xt1)

where Pi and P′i are, respectively, the measures on state-symbol sequences (St, Xt)t∈Z+ for M and

M ′ with initial state S0 = i. This implies that the transition function δi(w) for M defined by (37)

is the same as the transition function δ′i(w) for M ′ defined by (6):

δi(w) = δ′i(w) , for each i ∈ S, w ∈ X ∗

All three claims follow immediately from the equivalence of transition functions.

Thus, although some of these properties may be slightly less natural in the state-emitting case

(particularly unifilarity), they all do have well defined analogs, and a state-emitting HMM has one

of these properties if and only if the corresponding edge-emitting HMM has the same property. Of

course, in practice, if one wants bound on convergence of the entropy rate estimates h(t) for the

output process of an irreducible, state-emitting HMM M it is possible to:

1. Convert it to the corresponding edge-emitting HMM M ′.

99



2. Test M ′ for the various properties (exactness, unifilarity, flag-state property) as described

previously.

3. Apply the bounds established for edge-emitting HMMs with whatever property(s) (if any)

M ′ satisfies.

And, none of this requires any direct knowledge of the properties of the original state-emitting

HMM M .

However, to compare conditions on state-emitting HMMs to the conditions studied here for edge-

emitting HMMs the model type independent nature of the properties is important. In particular,

observe that, on the one hand:

1. If the underlying transition matrix T for a state-emitting HMM M = (S,X , T ,O) has strictly

positive entries, as is often assumed, then for each state j and symbol x with Ojx > 0:

j ∈ δi(x) , for each i ∈ S

Thus, such a HMM is a flag-state HMM.

2. If a state-emitting HMM M = (S,X , T ,O) is aperiodic and the observation matrix O has all

positive entries, then for any word w ∈ X n and state j ∈ S:

j ∈ δi(w) , for each i ∈ S

where:

n ≡ min{m : T mij > 0, for all i, j ∈ S} <∞ (by aperiodicity)

Hence, such a HMM is also a flag-state HMM.

On the other hand, it is easy to construct state-emitting, flag-state HMMs (or state-emitting unifilar

or state-emitting exact HMMs) for which neither the underlying transition matrix T or observation

matrix O has all positive entries. So, our exponential decay bounds on the error in the estimates

h(t) are more widely applicable than many of those established previously, if sometimes not as

strong.
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