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Adaptive systems—such as a biological organism gaining survival advantage, an autonomous robot
executing a functional task, or a motor protein transporting intracellular nutrients—must model
the regularities and stochasticity in their environments to take full advantage of thermodynamic
resources. Analogously, but in a purely computational realm, machine learning algorithms estimate
models to capture predictable structure and identify irrelevant noise in training data. This happens
through optimization of performance metrics, such as model likelihood. If physically implemented,
is there a sense in which computational models estimated through machine learning are physically
preferred? We introduce the thermodynamic principle that work production is the most relevant
performance metric for an adaptive physical agent and compare the results to the maximum-likelihood
principle that guides machine learning. Within the class of physical agents that most efficiently
harvest energy from their environment, we demonstrate that an efficient agent’s model explicitly
determines its architecture and how much useful work it harvests from the environment. We then
show that selecting the maximum-work agent for given environmental data corresponds to finding the
maximum-likelihood model. This establishes an equivalence between nonequilibrium thermodynamics
and dynamic learning. In this way, work maximization emerges as an organizing principle that
underlies learning in adaptive thermodynamic systems.
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I. INTRODUCTION

What is the relationship, if any, between abiotic physical
processes and intelligence? Addressed to either living
or artificial systems, this challenge has been taken up
by scientists and philosophers repeatedly over the last
centuries, from the 19" century teleologists [1] and bio-
logical structuralists [2, 3] to cybernetics of the mid-20*"
century [4, 5] and contemporary neuroscience-inspired
debates of the emergence of artificial intelligence in dig-
ital simulations [6]. The challenge remains vital today
[7-10]. A key thread in this colorful and turbulent his-
tory explores issues that lie decidedly at the crossroads of
thermodynamics and communication theory—of physics
and engineering. In particular, what bridges the dynam-
ics of the physical world and its immutable laws and
principles to the purposeful behavior intelligent agents?
The following argues that an essential connector lies in a
new thermodynamic principle: work maximization drives
learning.

Perhaps unintentionally, James Clerk Maxwell laid founda-
tions for a physics of intelligence with what Lord Kelvin
(William Thomson) referred to as “intelligent demons”
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[11]. Maxwell in his 1857 book Theory of Heat argued
that a “very observant” and “neat fingered being” could
subvert the Second Law of Thermodynamics [12]. In
effect, his “finite being” uses its intelligence (Maxwell’s
word) to sort fast from slow molecules, creating a tem-
perature difference that drives a heat engine to do useful
work. The demon presented an apparent paradox because
directly converting disorganized thermal energy to orga-
nized work energy is forbidden by the Second Law. The
cleverness in Maxwell’s paradox turned on equating the
thermodynamic behavior of mechanical systems with the
intelligence in an agent that can accurately measure and
control its environment. This established an operational
equivalence between energetic thermodynamic processes,
on the one hand, and intelligence, on the other.

We will explore the intelligence of physical processes,
substantially updating the setting from the time of Kelvin
and Maxwell, by calling on a wealth of recent results
on the nonequilibrium thermodynamics of information
[13, 14]. In this, we directly equate the operation of
physical agents descended from Maxwell’s demon with
notions of intelligence found in modern machine learning.
While learning is not necessarily the only capability of a
presumed intelligent being, it is certainly a most useful
and interesting feature.

The root of many tasks in machine learning lies in dis-
covering structure from data. The analogous process of
creating models of the world from incomplete informa-
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FIG. 1. Thermodynamic learning generates the maximum-
work producing agent: (Left) Environment (green) behavior
becomes data for agents (red). (Middle) Candidate agents each
have an internal model (inscribed stochastic state-machine)
that captures the environment’s randomness and regularity to
store work energy (e.g., lift a mass against gravity) or to borrow
work energy (e.g., lower the mass). (Right) Thermodynamic
learning searches the candidate population for the best agent—
that producing the maximum work.

tion is essential to adaptive organisms, too, as they must
model their environment to categorize stimuli, predict
threats, leverage opportunities, and generally prosper in a
complex world. Most prosaically, translating training data
into a generative model corresponds to density estimation
[15-17], where the algorithm uses the data to construct a
probability distribution.

This type of model-building at first appears far afield from
more familiar machine learning tasks such as categoriz-
ing pet pictures into cats and dogs or generating a novel
image of a giraffe from a photo travelogue. Nonetheless,
it encompasses them both [18]. Thus, by addressing ther-
modynamic roots of model estimation, we seek a physical
foundation for a wide breadth of machine learning.

To carry out density estimation, machine learning invokes
the principle of maximum-likelihood to guide intelligent
learning. This says, of the possible models consistent
with the training data, an algorithm should select that
with maximum probability of having generated the data.
Our exploration of the physics of learning asks whether a
similar thermodynamic principle guides physical systems
to adapt to their environments.

The modern understanding of Maxwell’s demon no longer
entertains violating the Second Law of Thermodynamics
[19]. In point of fact, the Second Law’s primacy has been
repeatedly affirmed in modern nonequilibrium theory and
experiment. That said, what has emerged is that we
now understand how intelligent (demon-like) physical pro-
cesses can harvest thermal energy as useful work. They
do this by exploiting an information reservoir [19-21]—a

storehouse of information as randomness and correlation.
That reservoir is the demon’s informational environment,
and the mechanism by which the demon measures and con-
trols its environment embodies the demon’s intelligence,
according to modern physics. We will show that this
mechanism is directly linked to the demon’s model of its
environment, which allows us to formalize the connection
to machine learning.

Machine learning estimates different likelihoods of dif-
ferent models given the same data. Analogously, in the
physical setting of information thermodynamics, differ-
ent demons harness different amounts of work from the
same information reservoir. Leveraging this commonality,
Sec. II introduces thermodynamic learning as a physical
process that infers optimal demons from environmental in-
formation. As shown in Fig. 1, thermodynamic learning
selects demons that produce maximum work, parallel-
ing parametric density estimation’s selection of models
with maximum likelihood. Section III establishes back-
ground in density estimation, computational mechanics,
and thermodynamic computing necessary to formalize the
comparison of maximum-work and maximum-likelihood
learning. Our surprising result is that these two prin-
ciples of maximization are the same, when compared
in a common setting. This adds credence to the long-
standing perspective that thermodynamics and statistical
mechanics underlie many of the tools of machine learning
[17, 22-28].

Section IV formally establishes that to construct an intel-
ligent work-harvesting demon, a probabilistic model of its
environment is essential. That is, the demon’s Hamilto-
nian evolution is directly determined by its environmental
model. This comes as a result of discarding demons that
are ineffective at harnessing energy from any input, fo-
cusing only on a refined class of efficient demons that
make the best use of the given data. This leads to the
central result, found in Sec. V, that the demon’s work
production from environmental “training data” increases
linearly with the log-likelihood of the demon’s model of
its environment. Thus, if the thermodynamic training
process selects the maximum-work demon for given data,
it has also selected the maximum-likelihood model for
that same data.

Ultimately, our work demonstrates an equivalence between
the conditions of maximum work and maximum likelihood.
In this way, thermodynamic learning is machine learning
for thermodynamic machines—it is a physical process
that infers models in the same way a machine learning
algorithm does. Thus, work itself can be interpreted as a
thermodynamic performance measure for learning. In this
framing, learning is physical, building on the long-lived
narrative of the thermodynamics of organization, which
we recount in Sec. VI. While it is natural to argue that



learning confers benefits, our result establishes that the
benefit is fundamentally rooted in the physical tradeoff
between energy and information.

II. FRAMEWORK

While demons continue to haunt discussions of physical
intelligence, the notion of a physical process trafficking
in information and energy exchanges need not be limited
to mysterious intelligent beings. Most prosaically, we
are concerned with any physical system that, while in-
teracting with an environment, simultaneously processes
information at some energetic cost or benefit. Avoiding
theological distractions, we refer to these processes as
thermodynamic agents. In truth, any physical system can
be thought of as an agent, but only a limited number
of them are especially useful for or adept at comman-
deering information to convert between various kinds of
thermodynamic resources, such as between heat and work.
Here, we introduce a construction that shows how to find
physical systems that are the most capable of processing
information to affect thermodynamic transformations.
Consider an environment that produces information in
the form of a time series of physical values at regular
time intervals of length 7. We denote the particular state
realized by the environment’s output at time j7 by the
symbol y; € V;. Just as the agent must be instantiated
by a physical system, so too must the environment and
its outputs to the agent. Specifically, J; represents the
state space of the jth output, which is a subsystem of the
environment.

An agent has no access to the internals of its environment
and so treats it as a black box. Thus, the agent can only
access and interact with the environment’s output system
Y; over each time interval ¢ € (j7,(j + 1)7). In other
words, the state y; realized by the environment’s output
is also the agent’s input at time j7r. For instance, the
environment may produce realizations of a two level spin
system ); = {t,]}, which the agent is then tasked to
manipulate through Hamiltonian control.

The aim, then, is to find an agent that produces as much
work as possible using these black-box outputs. To do
so, the agent must come to know something about the
black box’s structure. This is the principle of requisite
complexity [29]—thermodynamic advantage requires that
the agent’s organization match that of its environment.
We implement this by introducing a method for thermody-
namic learning as shown in Fig. 1, that selects a specific
agent from a collection of candidates.

Peeking into the internal mechanism of the black box,
we wait for a time L7, receiving the L symbols yo.;, =
Yoy1 - - -yr—1. This is the agent’s training data, which is

copied as needed to allow a population of candidate agents
to interact with it. As each agent interacts with a copy, it
produces an amount of work, which it stores in the work
reservoir for later use. In Fig. 1, the work reservoir is
illustrated by a hanging mass which raises when positive
work is produced, storing more energy in gravitational
potential energy, and lowers when work production is
negative, expending that same potential energy. However
the work energy is stored, after the agents harvest work
from the training data, the agent that produced the most
work is selected.

Finding the maximum-work agent is “thermodynamic
learning” in the sense that it selects a device based on
measuring its thermodynamic performance—the amount
of work the device extracts. Ultimately, the goal is that
the agent selected by thermodynamic learning continues
to extract work as the environment produces new symbols.
However, we leave analyzing the long-term effectiveness of
thermodynamic learning to the future. Here, we concen-
trate on the condition of maximum-work itself, deriving
and interpreting it.

Section IV begins by describing the general class of phys-
ical agents that can harness work from symbol sequence,
known as information ratchets [30, 31]. While these agents
are sufficiently general to implement virtually any (Tur-
ing) computation, maximizing work production precludes
a wide array of agents. Section IV B then refines our con-
sideration to agents that waste as little work as possible
and, in so doing, vastly narrow the search by thermo-
dynamic learning. For this refined class of agents, we
find that each agent’s operation is exactly determined
by its environment model. This leads to our final result,
that the agent’s work increases linearly with the model’s
log-likelihood.

For clarity, note that thermodynamic learning differs from
physical systems that, evolving in time, dynamically adapt
to their environment [26, 32, 33]. Work maximization as
described here is thermodynamic in its objective, while
these previous approaches to learning are thermodynamic
in their mechanism.

That said, the perspectives are linked. In particular, it
was suggested that physical systems spontaneously de-
crease work absorbed from driving [32]. Note that work
absorbed by the system is opposite the work produced.
And so, as they evolve over time, these physical sys-
tems appear to seek higher work production, paralleling
how thermodynamic learning selects for the highest work
production. And, the synchronization by which a phys-
ical system decreases work absorption is compared to
learning [32]. Reference [33] goes further, comparing the
effectiveness of physical evolution to maximum-likelihood
estimation employing an autoencoder. Notably, it reports
that that form of machine learning performs markedly



better than physical evolution, for the particular system
considered there. By contrast, we show that the advan-
tage of machine learning over thermodynamic learning
does not hold in our framework. Simply speaking, they
are Synonymous.

We compare thermodynamic learning to machine learning
algorithms that use maximum-likelihood to select models
consistent with given data. As Fig. 1 indicates, each
agent has an internal model of its environment; a connec-
tion Sec. IV F formalizes. Each agent’s work production
is then evaluated for the training data. Thus, arriving at
a maximum-work agent also selects that agent’s internal
model as a description of the environment. Moreover
and in contrast with Ref. [33], which compares ther-
modynamic and machine learning methods numerically,
the framework here leads to an analytic derivation of
the equivalence between thermodynamic learning and
maximum-likelihood density estimation.

IIT. PRELIMINARIES

Directly comparing thermodynamic learning and den-
sity estimation requires explicitly demonstrating that
thermodynamically-embedded computing and machine
learning share the framework just laid out. The following
introduces what we need for this: concepts from machine
learning, computational mechanics, and thermodynamic
computing. (Readers preferring fuller detail should refer
to App. A.)

A. Parametric Density Estimation

Parametric estimation determines, from training data,
the parameters 6 of a probability distribution. In the
present setting, 6 parametrizes a family of probabilities
Pr(Y0.00 = Y0:00|© = 0) over sequences (or words) of any
length. Here, Yj..o = YpY7 -+ is the infinite-sequence
random variable, composed of the random variables Y
that each realize the environment’s output y; at time time
j7, and O is the random variable for the model. In other
words, a given model 6 predicts the probability of any
sequence yo.z, of any length L that one might see.

For convenience, we introduce random variables Yje that
define a model:

PT(YEJH:oo) =Pr(Yp.|© =0) .

With training data yq.1,, the likelihood of model 6 is given

by the probability of the data given the model:

L(Oyo.r) = Pr(Yo.L = yo.2.|© = 0)
= PI.(YE)GL = yO:L) .

Parametric density estimation seeks to optimize the likeli-
hood L(0]yo.1) [15, 17, 34]. However, the procedure that
finds maximum-likelihood estimates usually employs the
log-likelihood instead:

L(0lyo.) = lnPr(Yog;L =Yo0:L) (1)

since it is maximized for the same models, but converges
more effectively [35].

B. Computational Mechanics

Given that our data is a time series of arbitrary length
starting with yg, we must choose a model class whose
possible parameters @ = {0} specify a wide range of pos-
sible distributions Pr(Y{_ )—the semi-infinite processes.
e-Machines, a class of finite-state machines introduced
to describe bi-infinite processes Pr(Y?__ ), provide a
systematic means to do this [36]. As described in App.
A these finite-state machines comprise just such a flexi-
ble class of representations; they can describe any semi-
infinite process. This follows from the fact that they are
the minimal sufficient statistic for prediction explicitly
constructed from the process.

A process’s e-machine consists of a set of hidden states
S, a set of output states ), a start state s* € S, and
conditional output-labeled transition matrix Hgy_)m, over
the hidden states:

Higs, = Pr(SjeJrl — 817}/}9 _ y|S]9 _ S) .

02'28, specifies the probability of transitioning to hidden
state s and emitting symbol y given that the machine is
in state s. In other words, the model is fully specified by
the tuple:

0=1{85,,5 {09 }ovesyey} -

As an example, Fig. 2 shows an e-machine that generates
a periodic process with initially uncertain phase.
e-Machines are unifilar, meaning that the current causal
state s; along with the next k£ symbols uniquely deter-
mines the following causal state through the propagator
function:

Sj+k = €(85,Yjijtk) -

This yields a simple expression for the probability of any



FIG. 2. e-Machine generating the phase-uncertain period-2
process: With probability 0.5, an initial transition is made
from the start state s* to state A. From there, it emits the
sequence 1010.... However, with probability 0.5, the start
state transitions to state B and outputs the sequence 0101.. ..

word in terms of the model parameters:

L—-1
6 _ _ (v3)
Pr(Yb:L - yO:L) - H 96(8*,y0:j)H6(8*7y0;j+1) :
=0

In addition to being uniquely determined by the semi-
infinite process, the e-machine uniquely generates that
same process. This means that our model class O is
equivalent to the class of possible distributions over time
series data. Moreover, knowledge of the causal state of
an e-machine at any time step j contains all information
about the future that could be predicted from the past.
In this sense, the causal state is predictive of the pro-
cess. These and other properties have motivated a long
investigation of e-machines, in which the memory cost of
storing the causal states is frequently used as a measure of
process structure. Appendix A gives an extended review.

C. Thermodynamic Computing

Computation is physical—any computation takes place
embedded in a physical system. Here, we refer to substrate
of the physically-embedded computation as the system
of interest (SOI). Its states, denoted Z = {z}, are taken
as the underlying physical system’s information bearing
degrees of freedom [19]. The SOT’s dynamic evolves the
state distribution Pr(Z; = z;), where Z; is the random
variable describing state at time t. Computation over
time interval ¢ € [, 7'] specifies how the dynamic maps
the SOI from the initial time ¢ = 7 to the final time ¢ = 7/.
It consists of two components:

1. An initial distribution over states Pr(Z, = z,) at
time t = 7.

2. Application of a Markov channel M, characterized
by the conditional probability of transitioning to

-

FIG. 3. Thermodynamic computing: The system of interest
Z’s states store information, processing it as they evolve. The
work reservoir, represented as the suspended mass, supplies
work energy W to drive the SOI Hamiltonian along a determin-
istic trajectory Hz(t). Meanwhile, heat energy @ is exchanged
with the thermal reservoir, driving the system toward thermal
equilibrium.

(Work Reservoir)

the final state z,/ given the initial state z,:

Mz.,—)z.,_/ = Pr(ZT' = ZT’|ZT = ZT) .

Together, these specify the SOI's computational elements.
In this, z; is the input to the physical computation, z,/
is the output, and M, _., is the logical architecture.
Figure 3 illustrates a computation’s physical implementa-
tion. SOI Z is coupled to a work reservoir, depicted as
a mass hanging from a string, that controls the system’s
Hamiltonian along a trajectory Hz(t) over the computa-
tion interval ¢ € [r,7'] [37]. This is the basic definition of
a thermodynamic agent: an evolving Hamiltonian driving
a physical system to compute at the cost of work.

In a classical system, this control determines each state’s
energy F(z,t). As a result of the control, changes in
energy due to changes in the Hamiltonian correspond to
work exchanges between the SOI and work reservoir. The
system Z follows a state trajectory z..., over the time
interval ¢t € [7,7'], which we can write:

Zrir! = ZrZr4dt " R/ —dtRT!

where z; is the system state at time t. Here, we de-
composed the trajectory into intervals of duration dt,
taken short enough to yield infinitesimal changes in state
probabilities and the Hamiltonian. The resulting work
production for this trajectory is then the integrated change

in energy due to the Hamiltonian’s time dependence [37]:

’

W, , = —/ dtatE(z,t)L:zt .

Note that while the state trajectory z,.,, mirrors the
time series notation used for the training data yo.;, =
Yoy1 - - - Yr—1, they are different objects and should not be
conflated. On the one hand, the training data series yg.r,
is composed of realizations of L separate subsystems, each
produced at different times j7, j € {0,1,2,--- L—1}. y; is



realized in the subsystem J;, and so it can be manipulated
completely separately from any other element of yo.r
lying outside of );. By contrast, z; depends dynamically
on many other elements in z;..s, all of which lie in the
same system, since the time series z,..» represents state
evolution of the single system Z over time.

While the SOI exchanges work energy with the work
reservoir, as Fig. 3 shows, it exchanges heat @) with
the thermal reservoir. Coupling to a heat reservoir adds
stochasticity to the state trajectory z;.... Since the SOI
computes while coupled to a thermal reservoir at tempera-
ture T, Landauer’s Principle [19] relates a computation’s
logical processing to its energetics. In its contemporary
form, it bounds the average work production (W) by a
term proportional to SOI’s entropy change. Taking the
Shannon entropy H[Z;] = — >, Pr(Z; = z) InPr(Z; = 2)
in natural units, the Second Law of Thermodynamics
implies [14]:

(W) < ksT (H[Zy] — H|Z,]) .

Here, the average (W) is taken over all possible micro-
scopic trajectories. And, the energy landscape is assumed
to be flat at the computation’s start and end, giving no
energetic preference to a particular informational state.

IV. AGENT ENERGETICS

We now construct the theoretical framework for how
agents extract work from time-series data. This involves
breaking down the agent’s actions into manageable elemen-
tary components—where we demonstrate their actions
can be described as repeated application of sequence of
computations. We then introduce tools to analyze work
production within such general computations on finite
data. We highlight the importance of the agent’s model
of the data in determining work production. This model-
dependence emerges by refining the class of agents to
those that execute their computation most efficiently. The
results are finally combined, resulting in a closed-form
expression for agent work production from time-series
data.

A. Agent Architecture

Recall from Sec. II that the basic framework describes a
thermodynamic agent interacting with an environment
at regular time-intervals 7j in state y;. Each y; is drawn
according to a random variable Y;, such that the sequence
Y0.00 = YoY7 ... is a semi-infinite stochastic process. The
agent’s task is to interact with this input string to generate
useful work.

=

"'yj+3|"|yj+2"|yj+1' yj ‘ij—1'|yj—2 - Yj-—ap--+
Inputs Outputs

FIG. 4. Thermodynamic computing by an agent driven by
an input sequence: Information bearing degrees of freedom
of SOI Z in the jth interaction interval split into the di-
rect product of agent states X and the jth input states
Y. Work W and heat @ are defined in the same way as
in Fig. 3, with the SOI’s Hamiltonian control Hxxy, (t)
explicitly decoupled from the environment’s remaining sub-
systems ---Y;—2YV;—1V;+1Vj4+2 - -+, corresponding to future
inputs Vj+1YVj+2 -+ and past outputs - -- V;_2Y;_1.

For example, consider an agent charged with extracting
work from an alternating process—a sequence emitted by
a degenerate two-level system that alternates periodically
between symbols 0 and 1. In isolation each symbol looks
random and has no free energy. Thus, an agent that
interacts with each symbol the same way gains no work.
However, a memoryful agent can adaptively adjust its
behavior, after reading the first symbol, to exactly predict
succeeding symbols and, therefore, extract meaningful
work. This method of harnessing temporal correlations
is implemented by information ratchets [30, 31]. They
combine physical inputs with additional agent memory
states that store the input’s temporal correlations.

As shown in Fig. 4, we describe an agent’s memory via
an ancillary physical system X. The agent then operates
cyclically with duration 7, such that the j** cycle runs
over the time-interval [j7, (j + 1)7). Each cycle involves
two phases:

1. Interaction: Agent memory X couples to and in-
teracts with the j** input system Y; that contains
the 7% input symbol ;. This phase has duration
7/ < 7, meaning the jth interaction phase occurs
over the time-interval [j7, j7 + 7'). At the end, the
agent decouples from the system );, passing its new
state y; to the environment as output or exhaust.

2. Rest: During time interval [j7 + 7/, (j + 1)7), the
agent’s memory X sits idle, waiting for the next
input YV;41.

In this way, the agent transforms a series of inputs yo.r,
into a series of outputs vy, .

In each cycle, all nontrivial thermodynamics occur in the
interaction phase, during which the SOI consists of the
joint agent-input system: i.e., Z = X ® V;, as shown in



Fig. 4. While the other subsystems ---);_»Y;_1 and
Yj+1Yj42 -+ may be physically instantiated somewhere
else in the environment, they do not participate in the
interaction, since they are energetically decoupled from
the agent in this phase. Paralleling the computation
shown in Fig. 3, Hamiltonian control over the joint space
Hxxy,(t) results in a transformation of the agent’s SOI
that also requires the exchange of work and heat.

This interaction phase updates SOI states according to a
Markov transition matrix M shown in Fig. 5:

Moy ory =Pr(Xj 1 =2"Y] =/ |X;=2,Y;=y) , (2)

where X; and X, are the random variables for the states
of the agent’s memory X before and after the jth inter-
action interval, and Y; and Yj’ are the random variables
for the system Y; before and after the same interaction
interval, realizing the input and output, respectively.

As Sec. III C described, M is the logical architecture of the
physical computation that transforms the agent’s memory
and input simultaneously. It is the central element in
the agent’s procedure for transforming inputs yo.;, into
associated outputs y.;. The key observation is that M
captures all of the agent’s internal logic. The logic does
not change from cycle to cycle. However, the presence of
persistent internal memory between cycles implies that the
agent’s behavior adapts to past inputs and outputs. This
motivates us to define M as the agent architecture since
it determines how an agent stores information temporally.
As we will show, M is one of two essential elements in
determining the work an agent produces from a time
series.

Note that prior related efforts to address agent ener-
getics focused on ensemble-average work production [29-
31, 38-42]. In contrast, here we relate work production
to parametric density estimation—which involves each
agent being given a specific data string yo.r, for training.
To address this case, the following determines the work
production for single-shot short input strings.

B. Energetics of Computational Maps

The agent architecture M specifies a physical computation
as described in Sec. III C and therefore has a minimum
energy cost determined by Landauer’s bound. However,
this is a bound on the average work production, which
depends explicitly on the distribution of inputs. We need
to determine, instead, the work produced from a single
input y;. To find this we return to the general case of
SOI Z undergoing a thermodynamic computation M.

A physical operation takes the SOI from state z, at time 7
to state z,+ at time 7. This specifies a computational map

My ary =Pr(Y] =y, Xj11 = 2'|V; =y, X; = x)
Interaction

Couple Decouple

'
'
' :
'
'
'
H
. ' .
Environment H Environment
'
'
'

Next Symbol

FIG. 5. Agent interacting with an environment via repeated
symbol exchanges: A) At time j7 agent memory X; begins
interacting with input symbol Y;. Transitioning from A) to B),
agent memory and interaction symbol jointly evolve according
to the Markov channel M,,_,,/,,. This results in B)—the
updated states of agent memory X ;41 and interaction symbol
Y] at time j7 + 7'. Transitioning from B) to C), the agent
memory decouples from the interaction symbol, emitting its
new state to the environment. Then, transitioning from C)
to D), the agent retains its memory state X;+1 and the en-
vironment emits the next interaction symbol Y;;. Finally,
transitioning from D) to A), the agent restarts the cycle by
coupling to the next input symbol.

zr — z; that ignores intermediate states in the SOI state
trajectory, as all information relevant to the computation’s
logical operation lies in the input and output. Thus,
our attention turns to the question: What is the work
production of a computational map z, — z,, performed
by the computation M at temperature T'?

To determine this, we first prove a useful relation between
the entropy and work production for a particular state
trajectory z;.,/. Specifically, let W),  and ¥, , de-
note the work and total entropy production along this
trajectory, respectively. Meanwhile, let E(z;,t) denote
the system energy when it is in state z; at time ¢t. Now,
consider the pointwise nonequilibrium free energy:

d(z,t) = E(24,t) + kT InPr(Z; = z) . (3)

More familiarly, note that its time-averaged quantity is
the nonequilibrium free energy [43]:

Fred = <¢(Z’t)>Pr(Zt=Z) :



We can then show that the entropy production 3 can be
expressed:

_VV\Z , + Cb(zﬂ T) - ¢(ZT/7TI)

B, = e T @

This follows by noting that the total entropy produced
from thermodynamic control is the sum of the entropy
change in the system [44]:

Pr(Z, = z;)

ASZ =kl
ST o

and that of the thermal reservoir:

reservoir _ @2z
ASIET = T

Equation (4) follows by summing up these contributions
to the total entropy production ¥ = Agreservoir 4 AGZ
and noting that the SOI’s change in energy obeys the
First Law of Thermodynamics AEZ = —W — Q.

Since only the SOIs initial and final states matter to the
logical operation of the computational map, we take a
statistical average of all trajectories beginning in z, and
ending in z,/. This results in the work production:
Z Wie

V[/\z,.,z 4 Pl" Z”""” = Z'lr:'r/|ZT»Z'r’) 3 (5)

for the computational map z, — z,,. This determines
how much energy is stored in the work reservoir on average
when a computation results in this particular input-output
pair.

Similarly, taking the same average of the entropy produc-
tion shown in Eq. (4), conditioned on inputs and outputs,

gives:

T <E|z7,z.,_/> = _<VV\Z.,,ZT/> + ¢(27'77-) -
= _<VV\Z.,,ZT/> - A¢|27,z.,_/ .

(JS(ZT/, T/),

This suggestively relates computational-mapping work
and the change in pointwise nonequilibrium free energy
¢(z,1).

This relation between work and free energy simplifies
for thermodynamically-efficient computations. In such
scenarios, the average total entropy production over all
trajectories vanishes. Appendix B shows that zero average
entropy production, combined with the Crooks fluctuation
theorem [45, 46], implies that entropy production along
any individual trajectory z,..» produces zero entropy:
¥).,.., = 0. This is expected from linear response [47].
Thus, substituting zero entropy production into Eq.
(4), we arrive at our result: work production for
thermodynamically-efficient computations is the change

in pointwise nonequilibrium free energy:
V[/f::ﬂ = _A¢|ZT127/ :
Substituting Eq. (3) then gives:

(ZT = Z'r)

wet = _AEz 4+ kgTln ——L — T/
\z.,_:.,_/ zZ + B Pr(ZT/ — ZT/) b

where AEz = E(z,,7")—E(z;, 7). This is what we would
expect in quasistatic computations, where the system
energies E(z,t) are varied slowly enough that the system
Z remains in equilibrium for the duration. We should
note, though, that it is possible to implement efficient
computations rapidly and out of equilibrium [48].

This also holds if we average over intermediate states of
the SOI’s state trajectory, yielding the work production
of a computational map:

eff _ Pr(Z; = 2;)
<W|> ABz + ksl om0 (0)
The energy required to perform efficient computing is
independent of intermediate properties. It depends only
on the probability and energy of initial and final states.
This measures the energetic gains from a single data
realization as it transforms during a computation, as

opposed to the ensemble average.

C. Energetics of Estimates

Thermodynamic learning concerns agents that maximize
work production from their input data. As such, we
now restrict our attention to agents that harness all
available nonequilibrium free energy in the form of work
(W) = —AF™9, These mazimum-work agents zero out
the average entropy production (X) = —(W) — AFmed
and the work production of a computational map satisfies
Eq. (6). From here on out, when we refer to efficient
agents we refer to those that maximize work production
from the available change in nonequilibrium free energy.
SOI state probabilities feature centrally in the expression
for nonequilibrium free energy and, thus, for the work
production of efficient agents. However, the actual input
distribution Pr(Z;) may vary while the agent, defined
by its Hamiltonian Hz(t) over the computation inter-
val, remains fixed. Moreover, since the work production
<W‘ZT . /> of a computational map explicitly conditions
on the initial and final SOI state, this work cannot explic-
itly depend on the input distribution. At first blush, this
is a contradiction: work that simultaneously does and
does not depend on the input distribution.

This is resolved once one recognizes the role that estimates



play in thermodynamics. As indicated in Fig. 1, we claim
that an agent has an estimated model of its environment
that it uses to predict the SOI. This model is, in one form
or another, encoded in the evolving Hamiltonian H z(t)
that determines both the agent’s energetic interactions
and its logical architecture. If an agent’s estimated model
of SOI Z is encoded as parameters 6, then the agent
estimates that the SOI state z at time ¢ has probability:

Pr(Z¢ = 2) = Pr(Z; = %|© = 0) .

The physical relevance of the estimated distribution comes
from insisting that the agent dissipates as little work as
possible from a SOI whose distribution matches its own
estimate. In essence, the initial estimated distribution
Pr(Z%) must be one of the distributions that minimizes
the average entropy production [49]:

Pr(Z%) € arg min(X [Pr(Z,)]).
Pr(Z;)

Estimated probabilities Pr(Z?) at later times t > 7 are de-
termined by updating the initial estimate via the stochas-
tic dynamics that result from the Hamiltonian Hz(t)
interacting with the thermal bath.

Thus, since an efficient agent produces zero entropy when
the SOI follows the minimum dissipation distribution
Pr(Z?), the work it produces from a computational map
is:

Pr(Z% = z,)

wo = —AFz+kpTln—-r— "7/ 7
< |ZT,ZT/> z + B n PI‘(Z_?/ — ZT’) ( )

In this, we replaced the superscript “eff” with “0” to
emphasize that the agent is designed to be thermody-
namically efficient for that particular estimated model.
Specifying the estimated model is essential, since mises-
timating the input distribution leads to dissipation and
entropy production [49, 50]. Returning to thermodynamic
learning, this is how the model 8 factors into the ratchet’s
operation: estimated distributions explicitly determine
the work production of computational maps.

Appendix C gives a concrete quasistatic mechanism for
implementing any computation M and achieving the
work given by Eq. (7). This directly demonstrates how
the model @ is built into the evolving energy landscape
Hz(t) that implements M. The model 6 determines the
initial and final change in state energies: AE(z,7) =
—kpInPr(Z% = 2) and AE(2,7') = kgInPr(Z¢, = 2).
This quasistatic protocol operates and produces the same
work for a particular input-output pair regardless of the
actual input distribution.

Since we focus on the energetic benefits derived from
information itself rather than those from changing energy

levels, the example implementations we use also start and
end with the same flat energy landscape. Restricting to
such information-driven agents, we consider cases where
AFEz =0, whereby:

Pr(Z% = z,)

w =kgTln ————~ . 8
< |z7,z.,_/> B n PI‘(ZE, _ ZT/) ( )

This provides a direct relationship between the work pro-
duction (VV‘ZT . ,) from particular data realizations and
the model 6 that the agent uses, via the estimates Pr(Z?)

provided by that model. This is an essential step in
determining a model through thermodynamic learning.

D. Thermally Efficient Agents

With the work production of a maximally-efficient compu-
tational map established, we are poised to determine the
work production for thermodynamically-efficient agents.
Specifically, consider an agent parameterized by its logical
architecture M and model parameters 6. As described
by the agent architecture in Sec. IV A, the agent uses
its memory X; to map inputs Y; to outputs Yj’ and to
update its memory to X;;;. In stochastic mapping the
SOI Z = X x ); the model parameter § provides an
estimate of the distribution over the current initial state
(X](’, Yje) as well as the final state (X](’H, Yj’e). Assuming
the agent’s logical architecture M is executed optimally,
direct application of Eq. (8) then says that the expected
work production of the computational map x;y; — ijrly;
is:
Pr(XJ‘»9 = :Z:,on =y)
131P(XJ(?+1 = x’,Yj/e =y)
(9)

In this, the estimated final distribution comes from the

> = kgTln

0
<Wj’wjyjﬂwj+1y§

logical architecture updating the initial distribution:
0 '0
Pr(Xj, =2"Y;" =y
= Pr(X! =2,Y] = y) Muyrary -
T,y

Equation (9)’s expression for work establishes that all
functional aspects (logical operation and energetics) of
an efficient agent are determined by two factors:

1. The logical architecture M that specifies how the
agent manipulates inputs and updates its own mem-
ory.

2. The estimated input distribution Pr(X?,Y/f) for
which the agents’ execution of M is optimized to
minimize dissipation.



Thus, we define a thermally-efficient agent by the ordered
pair {M,Pr(X?,Y/)}.

So defined, we can calculate the work produced when
such agents act on a particular input sequence yg.r,. This
is done by first considering the work production of a
particular sequence of agent memory states xo.r+1 and

10

outputs .,

6 _ 6
<VV\?J0:L»?J6:L»10:L+1> - z :<Wj,$jyj‘>$j+1y_;->

T Pr(Xf=g;, Y =y;)

=kgTln s ; :
jH Pr(XY  =2;41,Y;"=y})
Then, to obtain the average work produced from a par-
ticular input sequence yg.,, we average over all possible
hidden-state sequences and z.r+1 and output sequences

/ .
Yo.L*

<[/V“;0:L> =keT Y Pr(Ygy =vhr Xort1 = zo41|Yor = yo.r) <W|3,0:L)y61@0:“1> (10)

T0:L+1,Y. 1,

= kpT Z

iCo:L+17’y6:L k=0

L-1

This gives the average energy harvested by an agent that
transduces inputs .7, according to the logical architec-
ture M, given that it is designed to be as efficient as
possible when its model § matches the environment.

On its own, Eq. (10)’s work production is a deeply in-
teresting quantity. In point of fact, since our agents are
stochastic Turing machines [51], this is the work pro-
duction for any general form of computation that maps
inputs to output distributions Pr(Yy.; |Yo. = yo.r) [52].
Thus, Eq. (10) determines the possible work benefit for
universal thermodynamic computing.

Given this general expression for work production, one
might conclude that the next step for thermodynamic
learning is to search for the agent tuple {M, Pr(XJ‘?, Yje)}
that maximizes the work production. However, this strat-
egy comes with two issues. First, it requires a wider
search than necessary. Second, it does not draw a direct
connection to the underlying model 6. Recall that we
are considering e-machine models 6 of the input sequence
that give the probability estimate Pr(Y{, = yo.1) for any
L.

We address both of these issues by refining the search
space to agents whose anticipated inputs Pr(X]‘?’7 Yje) are
explicitly determined by their initial state distribution

Pr(Xo = ) H M,

P =g, Y =)

In I |
kY —Tht1,Y), 0 _ 9 _ 0\
k =6 Pr(X xj_,_l,Yj = yj)

j+1

[
Pr(X{§) and estimated input process Pr(Y{_):
PI‘(XJH = Ij,Y}a = yj)
= Z Pr(Xg = ) PT(YE)Q:J‘+1 = Yo:j+1)

Z0:5,Y0:5 7%:_7»
Jj—1

X H Zwﬂak,yk—WCkJrhy;C :
k=0

We use this estimate for the initial state in Eq. (10),
since it is maximally efficient, dissipating as little as
possible if the agent architecture M receives the input
distribution Pr(Y{ ). As a result of its efficiency, the
resulting computation performed by the agent produces
the maximum possible work, given its logical architecture.
This simplifies our search for maximum-work agents by
directly tying the estimated inputs to the model 6. How-
ever, it still leaves one piece of the agent undefined: its
logical architecture M. Fortunately, as we discuss now,
the thermodynamics of modularity further simplifies the
search.

E. Thermodynamics of Modularity

An agent transduces inputs to outputs through a se-
ries of modular operations. The Hamiltonian Hxxy, (f)
that governs the evolution of the jth operation is de-
coupled from the other elements of the time series
Yox Y1+ Vj—1 X Vjp1 X ---. As aresult of this modular



computational architecture, the correlations lost between
the agent and the rest of the information reservoir are
irreversibly dissipated, producing entropy. This is an
energetic cost associated directly with the agent’s logical
architecture, known as the modularity dissipation [53].
It sets a minimum for the work dissipated in a complex
computation composed of many elementary steps.
To continue our pursuit of maximum-work, we must design
the agent’s logical architecture to minimize dissipated
work. Past analysis of agents that harness energy from a
pattern Pr(Y.o) showed that the modularity dissipation
is only minimized when the agent’s states are predictive
of the pattern [53]. This means that to maximize work
extracted, an agent’s state must contain all information
about the past relevant to the future Pr(Y;;1..]|X;) =
Pr(Y;41.0|Y0.;). That is, for maximal work extraction
agent states must be sufficient statistics for predicting the
future.
Moreover, the e-machines introduced in Sec. IIIB are
constructed with hidden states S; that are a minimal
predictor of their output process. This is why they are
referred to as causal states. And so, the e-machine is
a minimal sufficient statistic for prediction. Transitions
among causal states trigger outputs according to:
95:5 = Pr(Y = y7Sj+1 = /|Sge = S) )
which is the probability that an e-machine in internal state
s transitions to s’ and emits output y. e-Machines have
the additional property that they are unifilar, meaning
that the next causal state s’ is uniquely determined by the
current state s and output y via the propagator function
s’ =e(s,y).
In short, to produce maximum work agent memory must
store at least the causal states of the environment’s own
e-machine. Appendix D describes how the logical archi-
tecture of the maximum-work minimum-memory agent
is determined by its estimated e-machine model 6 of its
inputs. The agent states are chosen to be the same as the
causal states X = S, and they update according to the
propagator function e:

L X
il
(1)

This guarantees that the agent’s internal states follow
the causal states of its estimated input process Pr(Y{ ).

Surcwas i S0 OV #0,

M,
y—x'y’ .
0z 4, Otherwise.

In turn, it prevents the agent from dissipating temporal
correlations within that process.

11
F. Agent—Model Equivalence

In the pursuit of maximum work, we refined the structure
of candidate agents considerably, limiting consideration
to those that minimize the modularity dissipation. As a
result, they store the predictive states of their estimated
input and their logical architecture is explicitly deter-
mined by an e-machine model. Moreover, to be efficient,
the candidate agent should begin in the e-machine’s start
state s* such that the model 6 uniquely determines the
second piece of an efficient agent. This is the estimated
initial distribution over its memory state and input:

S0 s* I | gsk—>sk+1 .

Conversely, maximum-work agents, characterized by their
logical architecture and anticipated input distributions
{M, Pr(X;-), ng)}, also specify the e-machine’s model of
their estimated distribution:

PI‘(Y—je:yjane:‘Sj): Z

Y0:5,50:5,55+1

s—s’ T

= Pr(
= Pr(

- y|SG - 5)68' ,€(s,y)
= y|X9 = 8)| V[ Msy—sry - (12)

Through the e-machine, the agent also specifies its esti-
mated input process. In this way, we arrive at a class of
agents that are uniquely determined by their environment
model.

Figure 6 explicitly lays this out. It presents an agent that
estimates a period-2 process with uncertain phase, such
that Pr(Y{, = 0101---) = Pr(Y{, = 1010---) = 0.5.
The middle column shows the e-machine that is uniquely
determined for that process, characterized by the model
parameters 95 "¢~ The right column shows the unique
minimal agent that harnesses as much work as possible
from that process. All three, (i) the estimated process, (ii)
the estimated e-machine model, and (iii) the maximum-
work agent are equivalent. And, they can be determined
from one another. This holds true for any estimated input
process Pr(Y{ ).

Under the equivalence of model 6 and agent operation,
when we monitor the agent’s thermodynamic performance
through its work production, we also measure the predic-
tive performance of its underlying model.

This completes the thermodynamic learning framework
laid out in Fig. 1. There, the model an agent holds affects
its interaction with the symbol sequence yg.;, and, ulti-
mately, its work production. And so, from this point
forward, when discussing an estimated process or an
e-machine that generates that guess, we are also describ-
ing the unique thermodynamic agent designed to pro-
duce maximal work from the estimated process. We can
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FIG. 6. Equivalence of estimated input process Pr(Y{so = 4o:00), e-machine 6, and the agent that efficiently harnesses the input
process asymptotically, using logical architecture M,,_,,,» = Pr(X;41 = 2’,Y; 41 = ¢'|X; = 2,Y; = y) and estimated input
distribution Pr(Xf =z, Yje = y). Determining one determines the others.

now turn to explore how such agents’ work production
ties to their underlying models. A direct comparison to
log-likelihood parametric-density estimation can now be
drawn.

V. WORK-LIKELIHOOD CORRESPONDENCE
FOR AGENT DESIGN

We are now ready to return to our core objective—
exploring work production as a performance measure
for a model estimated from a time series yo.r,. In com-
parison to the expression for general computing in Eq.
(10), using efficiently-designed predictive agents leads to
a much simpler expression for work production:

<W\§/O:L > =kpT (0 Pr(Yy, =yo..)+ LI |V]) . (13)

The mechanism behind this vast simplification arises from
unifilarity—a property of prediction machines that guar-
antees a single state trajectory on zg.;, for each input
string yo.,. The details of the derivation are outlined in
Appendix E.

This expression directly captures the relationship between
work production and the agent’s underlying model of the
data. To see this, we recast it in the language of machine
learning. Consider yo.r, as training data in parametric den-
sity estimation. We are then tasked to construct a model
of this data. Each candidate model is parameterized by
0, which results in an estimated process Y. Observe
then that Pr(Y, =yo.1) is simply the probability that
the candidate model will output yo.r,. Therefore, the

log-likelihood £(8|yo.1,) of parametric estimation coincides
with InPr(Y{, = yo.1.), and we can write:

<W|9yO:L> = kBTE(G‘yO:L) + kgTLIn |y| . (14)

One concludes that work production is maximized pre-
cisely when the log-likelihood £(0|yo.r) is maximized.
Thus, the criterion for creating a good model of an en-
vironment is the same as that for extracting mazimal
work.

This link is made concrete via the simple example pre-
sented in App. F. It goes through an explicit description of
the Hamiltonian control required to implement a memory-
less agent that harvests work from a sequence of up spins
1 and down spins | that compose the time series yo.7,. The
agent’s internal memoryless model results in Eq. (14)’s
work production. And, we find that the maximum-work
agent has learned about the input sequence. Specifically,
the agent learns the frequency of spins 1 and |, confirm-
ing the basic principle of maximum-work thermodynamic
learning. However, the learning presented in App. F
precludes the possibility of learning temporal structure
in the spin sequence, since the agents and their internal
models have no memory [29]. To learn about the tempo-
ral correlations within the sequence, one must use agents
with multiple memory states. We leave thermodynamic
learning among memoryful agents for later investigation.
Stepping back, we see the relationship between machine
learning and information thermodynamics more clearly.
In parametric density estimation we have:

1. Data yo.1, that provides a window into a black box.



2. A model 0 of the black box that determines an
estimated distribution over the data Pr(Yy,).

3. A performance measure for the model of the data,
given by the log-likelihood £(6|yo.,) = InPr(Y{, =
Yo:L)-

The parallel in thermodynamic learning is exact, with:

1. Data yo.z, physically stored in systems )y X Vi X
... Y11 output from the black box.

2. An agent {M,Pr(X? Y/)} that is entirely deter-
mined by the model 6.

3. The agent’s thermodynamic performance, given by
its work production <VV@0:L>, increases linearly
with the log-likelihood £(8yo.L).

In this way, we see that thermodynamic learning through
work maximization is equivalent to parametric density
estimation.

Intuitively, the natural world is replete with complex
learning systems—an observation seemingly at odds with
Thermodynamics and its Second Law which dictates that
order inevitably decays into disorder. However, our results
are tantamount to a contravening physical principle that
drives the emergence of order through learning: work
maximization. We showed, in point of fact, that work
maximization and learning are equivalent processes. At a
larger remove, this hints of general physical principles of
emergent organization.

VI. SEARCHING FOR PRINCIPLES OF
ORGANIZATION

Introducing an equivalence of mazximum work production
and optimal learning comes at a late stage of a long line
of inquiry into what kinds of thermodynamic constraints
and laws govern the emergence of organization and, for
that matter, biological life. So, let’s historically place the
seemingly-new principle. In fact, it enters a crowded field.
Within statistical physics the paradigmatic principle of
organization was found by Kirchhoff [54]: in electrical
networks current distributes itself so as to dissipate the
least possible heat for the given applied voltages. Gen-
eralizations, for equilibrium states, are then found in
Gibbs’ variational principle for entropy for heterogeneous
equilibrium [55], Maxwell’s principles of minimum-heat
[56, pp. 407-408], and Onsager’s minimizing the “rate of
dissipation” [57].

Close to equilibrium, Prigogine introduced minimum en-
tropy production [58], identifying dissipative structures
whose maintenance requires energy [59]. However, far
from equilibrium the guiding principles can be quite the
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opposite. And so, the effort continues today, for example,
with recent applications of nonequilibrium thermodynam-
ics to pattern formation in chemical reactions [60]. That
said, statistical physics misses at least two, related, but
key components: dynamics of and information in thermal
states.

Dynamical systems theory takes a decidedly mechanis-
tic approach to the emergence of organization, analyzing
the geometric structures in a system’s state space that
amplify fluctuations and eventually attenuate them into
macroscopic behaviors and patterns. This was eventu-
ally articulated by pattern formation theory [61-63]. A
canonical example is fluid turbulence [64]—a dynamical
explanation for its complex organizations occupied much
of the 70s and 80s. Landau’s original theory of incommen-
surate oscillations was superseded by the mathematical
discovery in the 1950s of chaotic attractors [65, 66]. This
approach, too, falls short of leading to a principle of emer-
gent organization. Patterns emerge, but what exactly are
they and what complex behavior do they exhibit?
Answers to this challenge came from a decidedly differ-
ent direction—Shannon’s theory of noisy communication
channels and his measures of information [67, 68], ap-
propriately extended [69]. While adding an important
new perspective—that organized systems store and trans-
mit information—this, also, did not go far enough as it
side-stepped the content and meaning of information [70].
In-roads to these appeared in the theory of computation
inaugurated by Turing [71]. The most direct and ambi-
tious approach to the role of information in organization,
though, appeared in Wiener’s cybernetics [4, 72]. While
it eloquently laid out the goals to which principles should
strive, it ultimately never harnessed the mathematical
foundations and calculational tools needed. Likely, the
earliest overt connection between statistical mechanics
and information, though, appeared with Jaynes’ Max-
imum Entropy [73] and Minimum Entropy Production
Principles [74].

So, what is new today is the synthesis of statistical physics,
dynamics, and information. This, finally, allows one to
answer the question, How do physical systems store and
process information? The answer is that they intrinsically
compute [36]. With this, one can extract from behavior a
system’s information processing, even going so far as to
discover the effective equations of motion [75-78]. One
can now frame questions about how a physical system
reacts to, controls, and adapts to its environment.

All such systems, however, are embedded in the physical
world and require resources to operate. More to the point,
what energetic resources underlie computation? Initiated
by Brillouin [79] and Landauer and Bennett [19, 80], to-
day there is a nascent physics of information [14, 81].
Resource constraints on computing by thermodynamic



systems are now expressed in a suite of new principles. For
example, the principle of requisite complexity [29] dictates
that maximally-efficient interactions require an agent’s
internal organization match the environment’s organiza-
tion. And, thermodynamic resource costs arise from the
modularity of an agent’s architecture [53]. Pushing the
search for organization further, the preceding established
the thermodynamics of how a system learns, suggesting
the possibility of adaptive organization.

To fully appreciate organization in natural processes,
though, one must also address dynamics of agent popula-
tions, first on the time scale of agent life cycles and second
on the scale of many generations. In fact, tracking the
complexity of individuals reveals that selection pressures
spontaneously emerge in purely-replicating populations
[82] and replication itself necessarily dissipates energy
[83].

As these pieces assembled, a picture has come into focus.
Intelligent, adaptive systems learn to harness resources
from their environment, expending energy to live and
reproduce. Taken altogether, the historical perspective
suggests we are moving close to realizing Wiener’s cyber-
netics [4].

VII. CONCLUSION

We introduced thermodynamic machine learning—a phys-
ical process that trains intelligent agents by maximizing
work production from complex environmental stimuli sup-
plied as time-series data. This involved constructing a
framework to describe thermodynamics of computation at
the single-shot level, enabling us to evaluate the work an
agent can produce from individual data realizations. Key
to the framework is its generality—applicable to agents
exhibiting arbitrary adaptive input-output behavior and
implemented within any physical substrate.

In the pursuit of maximum work, we refined this general
class of agents to those that are best able to harness
work from temporally-correlated inputs. We found that
the performance of such maximum-work agents increases
proportionally to the log-likelihood of the model they
use for predicting their environment. As a consequence,
our results show that thermodynamic learning exactly
mimics parametric density estimation in machine learning.
Thus, work is a thermodynamic performance measure
for physically-embedded learning. This result further
solidifies the connections between agency, intelligence,
and the thermodynamics of information—hinting that
energy harvesting and learning may be two sides of the
same coin.

These connections suggest a number of exciting future
directions. From the technological perspective, they

14

hint at a natural method for designing intelligent en-
ergy harvesters—establishing that our present tools of
machine learning can be directly mapped to automated
design of efficient information ratchets and pattern en-
gines [29, 42, 84]. Meanwhile, recent results indicate
that quantum systems can generate complex adaptive
behaviors using fewer resources than classical counter-
parts [85-87]. Does this suggest there are new classes of
quantum-enhanced energy harvesters and learners?
Ultimately, energy is an essential currency for life. This
highlights the question, To what extent is work opti-
mization a natural tendency of driven physical systems?
Indeed, recent results indicate physical systems evolve to
increase work production [32, 33], opening a fascinating
possibility. Could the equivalence between work produc-
tion and learning then indicate that the universe itself
naturally learns? The fact that complex intelligent life
emerged from the lifeless soup of the universe might be
considered a continuing miracle: a string of unfathomable
statistical anomalies strung together over eons. It would
certainly be extraordinary if this evolution then has a
physical basis—hidden laws of thermodynamic organiza-
tion that guide the universe to create entities capable of
extracting maximal work.
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Appendix A: Extended Background

Developing the principle of maximum work production
and calling out the physical benefits of an agent modeling
its environment drew heavily from the areas of computa-
tional mechanics, nonequilibrium thermodynamics, and
machine learning. Due to the variety of topics addressed,
the following provides a more detailed notational and
conceptual summary. This should aid the development
be more self-contained, hopefully providing a common
language across the areas and a foundation for further
exploration. While we make suggestive comparisons by
viewing foundations of each area side-by-side, it may be
most appropriate for readers already familiar with them
and concerned with novel results to skip, using the review
to clarify unfamiliar notation.

1. Machine Learning and Generative Models

Thermodynamically, what is a good model of the data
with which an agent interacts? Denote the data’s state
space as Z = {z}. If we have many copies of Z, all initially
prepared in the same way, then as we observe successive
realizations Z = {zg, 21, -+ ,2n} from an ensemble, the
frequency of an observed state z approaches the actual
probability distribution Pr(Z = z), where Z is the random
variable that realizes states z € Z. However, with only
a finite number N of realizations, the best that can be
done is to characterize the environment with an estimated
distribution Pr(Z? = z). Estimating models that agree
with finite data is the domain of statistical inference and
machine learning of generative models [15, 34, 88].

At first blush, estimating a probability distribution ap-
pears distinct from familiar machine learning challenges,
such as image classification and and the inverse prob-
lem of artificially generating exemplar images from given
data. However, both classification and prediction can
be achieved through a form of unsupervised learning
[18]. For instance, if the system is a joint variable
over both the pixel images and the corresponding label
Z = pixels x {cat,dog}, then our estimated distribution
Pr(Z% = 2) gives both a means of choosing a label for an
image Pr(label’ = cat|pixels’ = image) and a means of
choosing an image for a label Pr(pixels’ = image|label’ =
cat).

A generative model is specified by a set of parameters ¢
from which the model produces the estimated distribution
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Pr(Z% = 2) = Pr(Z = 2/© = 6). The procedure of
arriving at this estimated model is parametric density
estimation [15, 88]. However, we take the random variable
79 for the estimated distribution to denote the model for
notational and conceptual convenience.

The Shannon entropy [68]:

H[Z]= =) Pr(Z=2z)InPr(Z = 2)

measures uncertainty in nats, a “natural” unit for thermo-
dynamic entropies. The Shannon entropy easily extends
to joint probabilities and all information measures that
come from their composition (conditional and mutual
informations). For instance, if the environment is com-
posed of two correlated subcomponents Z = X x ), the
probability and entropy are expressed:

Pr(Z=2)=Pr(X =2,Y =y)
#Pr(X =2)Pr(Y =Y) and
H[Z] = H[X,Y]
# H[X] + H[Y],

respectively.

While there are many other ways to create parametric
models f—from polynomial functions with a small number
of parameters to neural networks with thousands [15]—
the goal is to match as well as possible the estimated
distribution Pr(Z%) to the actual distribution Pr(Z2).
One measure of success in this is the probability that the
model generated the data—the likelihood. The likelihood
of the model 0 given a data point z is the same as the
likelihood of Z%:

L(0]z) =Pr(Z = 2|6 = 0)
=Pr(Z% = 2)
= L(Z2°%z) .
Given a set Z = {z1,29,-+-,2n} of training data and

assuming independent samples, then the likelihood of the
model is the product:

N
(22 =] £2%=) .

i=1

(A1)

This is a commonly used performance measure in machine
learning, where algorithms search for models with maxi-
mum likelihood [15]. However, it is common to use the
log-likelihood instead, which is maximized for the same



models:

(A2)

If the model Z% were specified by a neural network, the
log-likelihood could be determined through stochastic gra-
dient descent back-propagation [34, 89], for instance. The
intention is that the procedure will converge on a network
model that produces the data with high probability.

2. Thermodynamics of Information

Learning from data translates information in an environ-
ment into a useful model. What makes that model useful?
In a physical setting, recalling from Landauer that “infor-
mation is physical” [90], the usefulness one can extract
from thermodynamic processes is work. Figure 3 shows a
basic implementation for physical computation. Such an
information-storing physical system Z = {z}, in contact
with a thermal reservoir, can execute useful computations
by drawing energy from a work reservoir. Energy flowing
from the system Z into the thermal reservoir is positive
heat Q. When energy flows from the system Z to the
work reservoir, it is positive work W production. Work
production quantifies the amount of energy that is stored
in the work reservoir available for later use. And so, in this
telling, it represents a natural and physically-motivated
measure of thermodynamic performance. In the frame-
work for thermodynamic computation of Fig. 3, work is
extracted via controlling the system’s Hamiltonian.
Specifically, the system’s informational states are con-
trolled via a time-dependent Hamiltonian—energy E(z,t)
of state z at time ¢t. For state trajectory z,.. =
ZrZrydt " Zr—dtZ Over time interval ¢ € [r,7'], the re-
sulting work extracted by Hamiltonian control is the
temporally-integrated change in energy [37]:

W, , = —/ dt@tE(z,t)|Z:Zt .

Heat Q. , = E(z7,7) — E(27/,7") — W),__, flows into
the thermal reservoir, increasing its entropy:
C2|Z ’

ASrcscrvoir — TiT

[ T (AS)

where the thermal reservoir is at temperature 7. The
Second Law of Thermodynamics states that, on average,
any processing on the informational states can only yield
nonnegative entropy production of the universe (reservoir
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and system Z):

<E> _ <Asreservoir> 4 <ASZ>
>0. (A4)

This constrains the energetic cost of computations per-

formed within the system Z.

A computation over time interval ¢ € [7,7'] has two com-

ponents:

1. An initial distribution over states Pr(Z, = z;),
where Z; is the random variable of system Z at
time t.

2. A Markov channel that transforms it, specified by
the conditional probability of the final state z./
given the initial input z,:

Mz,-—>zT/ = Pr(ZT’ = ZT’|ZT = ZT) .

This specifies, in turn, the final distribution Pr(Z,, = z./)
that allows direct calculation of the system-entropy change
[44]:

Pr(Z; = z,;)

=kpln — " — 70
kB . PI"(ZT/ = ZT/)

ASlf.,

Adding this to the information reservoir’s entropy change
yields the entropy production of the universe. This can
also be expressed in terms of the work production:

— reservoir Z
Dz, = DS HASE

_VV\ZT:T/ + (b(ZTa T) - ¢(ZT’7 Tl)
T .

Here, ¢(z,t) = E(z,t)+kpT In Pr(Z; = z) is the pointwise
nonequilibrium free energy, which becomes the nonequi-
librium free energy when averaged: (¢(z,t))pr(z,—=») =
Frea(t) [43].
Note that the entropy production is also proportional to
the additional work that could have been extracted if
the computation was efficient. This is referred to as the
dissipated work:

Wldlss

ZriZot

=T, .., - (A5)
Turning back to the Second Law of Thermodynamics, we
see that the average work extracted is bounded by the
change in nonequilibrium free energy:

(W) > Fr4(7") = F™%(7) .

When the system starts and ends as an information reser-
voir, with equal energies for all states E(z,7) = E(z/, ')
[37], this reduces to Landauer’s familiar principle for era-



sure [19]—work production must not exceed the change
in state uncertainty:

(W)Y < kpT(H[Z+] — H|Z;]) ,
where H[Z;] = =), .z Pr(Z; = 2)InPr(Z; = z) is the
Shannon entropy of the system at time ¢ measured in

nats. This is the starting point for determining the work
production that agents can extract from data.

3. Computational Mechanics

When describing thermodynamics and machine learning,
data was taken from the state space Z all at once. How-
ever, what if we consider a state space composed of L
identical components Z = VL that are received in se-
quence. Our model of the time series yg.;, of realizations
is described by an estimated distribution Pr(Y 'L =Yo:L)-
However, for L large enough, this object becomes impossi-
ble to store, due to the exponential increase in the number
of sequences. Fortunately, there are ways to generally
characterize an arbitrarily long time-series distribution
using a finite model.

a. Generative Machines

A hidden Markov model (HMM) is described by a set of
hidden states S, a set of output states ), a conditional
output-labeled matrix that gives the transition probabili-
ties between the states:

Giy_{s, = Pr(So_H =4 Y‘9 = y|59 =3)
for all j, and a start state s* € S. (Generally, one also
specifies an initial state distribution, with selecting a
start state being a special case.) We label the transition
probabilities with the model parameter 6, since these are
the actual parameters that must be stored to generate
probabilities of time series. For instance, Fig. 2 shows an
HMM that generates a periodic process with uncertain
phase Edges between hidden states s and s’ are labeled
Y 95_)5,, where y is the output symbol and 9§y_>s, is the
probability of emitting that symbol on that transition.
If {QSJ_)S } is the model for the estimated input Pr(Y? =
Yo.1), then the probability of any word is calculated by
taking the product of transition matrices and summing
over internal states:

Pr(Y$, = yo.r)

Z Oso,s° H egihﬂsﬁl :

S0:L+1

Beyond generating length-L symbol strings, these HMMs
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generate distributions over semi-infinite strings Pr(Yy, =
Yo:00)- As such, they allow us to anticipate more than
just the first L symbols from the same source. Once we
have a model § = {(Oiy_)m,, s,8",y)}s,s,y from our training
data yo.1,, we can calculate probabilities of longer words
Pr(YY,, = y}.;,) and, thus, the probability of symbols
following the training data Pr(YY., = v;../ YL = vo.r)-
Distributions over semi-infinite strings Pr(Y{, = 40.00)
are similar to processes, which are distributions over bi-
infinite strings Pr(Y?_ .. = ¥_oc:00). While not insisting
on stationarity, and so allowing for flexibility in using
subwords of length L, we can mirror computational me-
chanics’ construction of unifilar HMMSs from time series,
where the hidden states Sf are minimal sufficient statis-
tics of the past Y, about the future Y [91]. In other
words, the hidden states are perfect predictors.

Given a semi-infinite process Pr(Y{., = 9o.00), We con-
struct a minimal predictor through a causal equivalence
relation yo.r, ~ yp.; that says two histories yo.x and y;;
are members of the same equivalence class if and only if
they have the same semi-infinite future distribution:
Pr(Yk o0 = Y0

Pr(Yeoo yO ooD/O] |Y0k*y0 k) .

J y(/)j)

An equivalence class of histories is a causal state. Causal
states also induce a map €(-) from histories yo.x to states
S5t

si = {Y0.51v0:k ~ Y05}
= e(yo:x) -

This guarantees that a causal state is a sufficient statistic
of the past about the future, such that we can track it as
a perfect predictor:

Pr(YlfooD/Oek = yO:k) = Pr(Ykeoo|SZ = e(yO:k)) .

In fact, the causal states are minimal sufficient statistics.
Constructing causal states reveals a number of proper-
ties of stochastic processes and models. One of these is
unifilarity, which means that if the current causal state
sk = €(yo:x) is followed by any sequence yy.;, then the
resulting causal state s = €(yo.x) is uniquely determined.
And, we can expand our use of the e function to include
updating a causal state:

55 = €(Sk, Yr:j)

= {yé;z|3 Yo:k D sk = €(yo:x) and yé;z ~ yo:j} .

This is the set of histories y;,; that predict the same future
as a history yo.; which leads to causal state s, via the
initial sequence yg.; and then follows with the sequence

Yk:j5-



Unifilarity is key to deducing several useful properties of
the HMM 92_)>§,, which we will refer to as a nonstationary
e-machine. First, unifilarity implies that for any causal
state s followed by a symbol y, there is a unique next state
s' = e(s,y), meaning that the symbol-labeled transition
matrix can be written:
(¥) )
95—)5’ - 93—>€ (s y)(ss €(sy)

Moreover, the e-machine’s form is uniquely determined
from the semi-infinite process:

o Pr(

s—s’ T

= y|59 - 5)58 €(8,y)

where the conditional probability is determined from the
process:
0 __ 0 _
Pr(Y; = y|S; = e(yoi)) = Pr(Y;

*yD/OJ yOJ) .

Once constructed, the e-machine allows us to reconstruct
word probabilities via the simple product:

L—-1
6 _ _ (v3)
Pr(Yb:L - yO:L) - H 95(5*>90:j)4’€(3*7y0:j+1) ’
=0

where yg.o denotes the null word, taking a causal state to
itself under the causal update €(s, yo.0) = s.

Allowing for arbitrarily-many causal states, our class of
models (nonstationary e-machines) is so general that it
can represent any semi-infinite process and, thus, any
distribution over sequences Y¥. One concludes that com-
putational mechanics provides an ideal class of generative
models to fit to data yg... Bayesian structural inference
implements just this [92].

In these ways, computational mechanics already had
solved (and several decades prior) the unsupervised learn-
ing challenge recently posed by Ref. [93] to create an
“Al Physicist”: a machine that learns regularities in time
series to make predictions of the future from the past [94].

b.  Input-Output Machines

This way one constructs a predictive HMM that generates
a desired semi-infinite process Pr(Y{; = yo.1). The gen-
eralization to e-transducers allows for an input as well as
an output process—a transformation between processes
[52]. The transducer at the ith time step is described by
transitions among the hidden states X; — X1, that are
conditioned on the input Y;, emitting the output Y;:

M(y ly) _

z—x’ T

Pr(Y/ =y, Xip =2'lYVi=y, Xi =) .

18

101 - 10@@ ‘Doo 1.0

FIG. 7. The delay channel e-transducer: The last input symbol
is stored in its memory (states). If the last symbol was 1, then
the corresponding transitions, labeled 3|1 : 1.0, update the
hidden state to A. Then, all outputs from A are symbol
1. Similarly, input 0 leads to state B, whose corresponding
outputs are all 0. In this way, the delay channel outputs the
previous input symbol.

0[1:1.0

1)0: 1.0

e-Transducer state-transition diagrams label the edges

of transitions between hidden states y'|y : MY, As
Fig. 7 shows this is to be read as the probability M iy_J;’,)

of output 3’ and next hidden state z’ given input y and
current hidden state x.

These devices are memoryful channels, with their memory
encoded in the hidden states X;. They implement a
wide variety of functional operations. Figure 7 shows
the delay channel. With sufficient memory, though, an
e-transducer can implement a universal Turing machine
[61]. Moreover, if the input and output alphabets are
the same, then they represent the form of a physical
information ratchet, which have energetic requirements
that arise from the thermodynamics of their operation
[30, 31]. Since these physically-implementable information
processors are so general in their ability to compute, they
represent a very broad class of physical agents. As such,
we use the framework of information ratchets to explore
the functionality of agents that process information as a
fuel.

Appendix B: Proof of Zero Entropy Production of
Trajectories

Perfectly-efficient agents dissipate zero work and generate
zero entropy (X) = 0. The Crooks fluctuation theorem
and other detailed fluctuation theorems say that entropy
production is proportional to the log-ratio of probabilities
[45, 46]:

where pp (%), ) is the probability of the entropy pro-
duction under the protocol that controls the ratchet and
pr(—2|z, ) is the probability of minus that same entropy
production if the control protocol is reversed. Thus, the
average entropy production is proportional to the relative



entropy between these two distributions [68]:

pF(Elz,:T/)
pR(_E|ZT:T/)

=keDkr(pr(Z.__)ler(=%1_ ) .

<E> = kp Z PF(E\ZT:T/) In

If the control is thermodynamically efficient, this relative
entropy vanishes [95], implying the necessary and suffi-
cient condition that pp(X) = pr(—X). This then implies
that all paths produce zero entropy:

, =0.

|z

T

Entropy fluctuations vanish as the entropy production
goes to zero.

Appendix C: Thermodynamically Efficient Markov
Channels

Given a physical system Z = {z}, a computation on its
states is given by a Markov channel M,_,,, = Pr(Z, =
Z'|Z; = z) and an input distribution Pr(Z, = z). The
following describes a quasistatic thermodynamic control
that implements this computation efficiently if the input
distribution matches the estimated distribution Pr(Z% =
z). This means that the work production is equal to the
change in pointwise nonequilibrium free energy:

(WE..,) = bz 7) = 6(zr.7) (1)
B Pr(Z% = z.)
7AEZ+I€BT1H7PI‘(Z£ ZZT) .

Note that, while Pr(Z? = 2) is the input distribution
for which the computation is efficient, it is possible that
other input distributions Pr(Z, = z) yield zero entropy
production as well. They are only required to minimize
D 1(Z:||12]) — Drr(Z7]|Z2) = 0 [49].

The physical setting that we take for thermodynamic con-
trol is overdamped Brownian motion with a controllable
energy landscape. This is described by detailed-balanced
rate equations. However, if our physical state-space is lim-
ited to Z, then not all channels can be implemented with
continuous-time rate equations [48]. Fortunately, this can
be circumvented by additional ancillary or hidden states
[48, 96]. And so, to implement any possible channel, we
add an ancillary copy of our original system Z’, such that
our entire physical system is Zipta = Z X 2.
Prescriptions have been given that efficiently imple-
ment any computation, specified by a Markov channel
M. ., =Pr(Zy = 2:|Z; = z;), using quasistatic ma-
nipulation of the Z’s energy levels and an ancillary copy
Z' [42, 53]. However, these did not determine the work
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production for individual computational maps z, — 2.
during the computation interval (7, 7’).

The following implements an analogous form of quasistatic
computation that allows us to easily calculate the energy
associated with implementing the computation M, . ,,
assuming the subsystem Z started in z, and ends in
zr. Due to detailed balance, the rate equation dynamics
over the computational system and its ancillary copy
Ziotal = Z X Z' are partially specified by the energy
E(z,2',t) of system state z and ancillary state 2’ at time
t. This also uniquely specifies the equilibrium distribution:
e—E(z,z',t)/kBT

’
eq _ eq _ 1y
Pr(Z" =22 =2) = S e EGFD/ksT
2,2

The normalization constant Y. _, e~ F(=2"0/ksT jg the
partition function that determines the equilibrium free
energy:

Fi(t) = —kgTIn Z o~ E(z% ) /knT

z,2!

The equilibrium free energy adds to the system energy. It
is constant over the states:

E(z,2,t) = FOUt) — kgTnPr(Z5 = 2, Z,°0 = 2') .

We leverage the relationship between energy and equi-
librium probability to design a protocol that achieves
the work production given by Eq. (C2) for a Markov
channel M. The estimated distribution over the whole
space assumes that the initial distribution of the ancillary
variable is uncorrelated and uniformly distributed:

Pr(Z?)

T

2]

Pr(Z!, 7)) =

Assuming the default energy landscape is constant initially
and finally—F(z,2',7) = E(z,2',7") = £&—the maximally
efficient protocol over the interval 1, 7'] decomposes into
five epochs, see Fig. 8:

. Quench: [r, 7],

. Quasistatically evolve: (7,7],

. Swap: (71, 72],

. Quasistatically evolve: (73,7’), and
. Reset: [7—,7].

T W N =

For all protocol epochs, except for Epoch 3 during which
the two subsystems are swapped, Z is held fixed while
the ancillary system Z’ follows the local equilibrium dis-
tribution. Let’s detail these in turn.

1. Quench: Instantaneously quench the energy from
E(z,2',7) =& to E(z,2',77) = kgTIn(|Z|/ Pr(Z; = 2))
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FIG. 8. Quasistatic agent implementing the Markov chain
M, _,.: in the system Z over the time interval [7, 7'] using
ancillary copy Z’ in five steps: Epoch 1: Energy landscape is
instantaneously brought into equilibrium with the distribution
over the joint system. Epoch 2: Probability flows in the
ancillary system Z’ as the energy landscape quasistatically
changes to make the conditional probability distribution in
Z' reflect the Markov channel Pr(Z;, = 2'|Z;, = z) = M,_, ..
Epoch 3: Systems Z and Z’ are swapped. Epoch 4: Ancillary
system quasistatically reset to the uniform distribution. Epoch
5: Energy landscape instantaneously reset to uniform.

over the infinitesimal time interval [r, 77| such that, if the
distribution was as we expect, it would be in equilibrium
Pr(Z24, Z24) = Pr(Z2)/| 2.
If the system started in z,, then the associated work
produced is opposite the energy change:

<W9,1

|z 27

> =E(z,2,7) — E(2,,2',77)

Pr(Z% = z,)
=&+ kpTln—2r 2
2]

<VV£’1Z ,> denotes that the work is produced in Epoch

1, conditioned on the estimated distributions Zf and Zf,,
and initial and final states z, and z,.. Note that we also
condition on Z? = 2./, since work production in this
phase is unaffected by the computation’s end state.
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2. Quasistatically evolve: Quasistatically evolve the en-
ergy landscape over a third of total time interval (7, 7]
such that the joint system remains in equilibrium and the
ancillary system Z’ is determined by the Markov channel
M applied to the system Z:
Pr(Z;, =272, =2 )=Pr(Z; = 2)M,
E(z,2,m) = —kgTInPr(Z¢ = 2)M. .. .

Also, hold the energy barriers between states in Z high,
preventing probability flow between states and preserving
the distribution Pr(Z;) = Pr(Z;) for all ¢ € (1, 71].
Given that the system started in Z, = z,, the work

production during this epoch corresponds to the average
change in energy:

0,2
<W|z.,.,z,r/ >

T1
=— g / dtPr(Z] =2, Zy = 2|Z, = 2.)0E(2,7,t) .
o+

2,2’
As the system Z remains in z, over the interval:
Pr(Z, =22y =21Z; = 2:) =Pr(Z, = 2'| Zy = 2)6, .
and the work production simplifies to:
0,2
<W|z7.,zT/ >
T1
__ Z/ At Pr(Z = 2|7 = 2)0E (2, 1) |
2/ ‘I'+
We can express the energy in terms of the estimated
equilibrium probability distribution:
E(zr,2',t) = —=kgTInPr(Z, = 2'|Z; = 2.) Pr(Z! = z,) .

And, since the distribution over the system Z is fixed
during this interval:

Pr(Z = 2'|Z; = z;) Pr(Z0 = z,)
=Pr(Z, =2|Z = z;)Pr(Z2% = z;) .

Plugging these into the expression for the work produc-
tion, we find that the evolution happens without energy



exchange:
(wiez...)
- _kBT/: dt;Pr(Zt’ = 2| Zs = ;)
x O InPr(Z, =22 = 2,) Pr(Zf =2z;)
_kBT/: dt;Pr(Zt’ =27 = z;)

Pr(Z% = 2,)0,Pr(Z] = 2| Z; = 2,)
Pr(Z; = 2/|Zy = 2;) Pr(Z8 = 2,)

T1
—kgT dt OPr(Z, =27 = 2,
o [t ez == =)

+

—kBT/ dt Oy ZPr(Z; =27 = z;)

= —kBT/ dt 0;1
T+

=0.

After this state, at time 77 the resulting joint distribution
over the ancillary and primary system matches the desired
computation:

Pr(Z;, =272, =2)=Pr(Z; =2)M.,.. . (C2)
3. Swap: Over time interval (71, 72|, efficiently swap the
two systems Z <+ 2’, such that Pr(Z,, = 2,2, =2') =
Pr(Z,, =2',Z,, = z) and E(z,2',71) = E(¢', 2,72). This
operation requires zero work as well, as it is reversible,
regardless of where the system starts or ends:

(wie.,) =0

Such an efficient swap operation has been demonstrated
in finite time [48]. The resulting joint distribution over
the ancillary and primary system matches a flip of the
desired computation:

Pr(Z;,, =27, =2)=Pr(Z, =2 )M.._,. .

4. Quasistatically evolve: Over time interval (ro,7’),

quasistatically evolve the energy landscape from:
E(z,2, 1) = —kgTInPr(Z% = 2 )M.._,.

to

, L Pr(Z28 = 2" YM,i_,,
E(z,2,7 ") = —kgTl 2z Pl T|Z|Z )My

Pr(Z¢ = z)
|Z|

= —kBTln
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We keep the primary system Z fixed as in Epoch 2. And,
as in Epoch 2, there is zero work production:

<W|Z’T4’ZT,> =0.

The result is that the primary system is in the desired
final distribution:

Pr(Zy =z2)=» Pr(Z, =2 )M.,.
Zl

having undergone a mapping from its original state at
time 7, while the ancillary system has returned to an
uncorrelated uniform distribution.

5. Reset: Finally, over time interval [ ~,7'] instanta-
neously change the energy to the default flat landscape
E(z,2',7") = &. Given that the system ends in state z,/,
the associated work production is:

(WP, ) = B 2,7 )~ Bl 2 7)
Pr(Z% = z./)

= —¢— kTl
12|

The net work production given the initial state z, and
final state z,/ is then:

5
<W|927,z1./> = Z: <W|ng,27/>

Pr(Z% = z,)

N
BEPNZY = )

Thus, when we average over all possible inputs and out-
puts and the estimated an actual distributions are the
same ZY = Z,, we see that this protocol achieves the
thermodynamic Landauer’s bound:

(W)= Z Pr(Z; =27, Zr1 =2) <VV\9277ZT’>

ZryZ 1

= kT W 2(H[Z,/] — H[Z,]) .

One concludes that this is a thermodynamically-efficient
method for computing any Markov channel.

Appendix D: Designing Agents

To design a predictive thermodynamic agent, its hidden
states must match the states of the e-machine at every
time step X; = Sf. To do this, the agent states and
causal states occupy the same space X = S, and the
transitions within the agent M are directly drawn from



causal equivalence relation:

1
sz%r’y/ = m X {

The factor 1/|)| maximizes work production by mapping
to uniform outputs.

The second term on the right is the probability of the
next agent state given the current input and current
hidden state Pr(X;11 = 2'|Y; =y, X; = ). The top case
02/ e(xyy) Gives the probability that the next causal state

Sat el I 30 09 #0,
0y otherwise .

is 5%, | = 2/ given that the current causal state is SY =
and output of the e-machine is Y; = y. This is contingent
on the probability of seeing y given causal state x being
nonzero. If it is, then the transitions among the agent’s
hidden states match the transitions of the e-machine’s
causal states.

In this way, if yo.7, is a sequence that could be produced
by the e-machine, we have designed the agent to stay
synchronized to the causal state of the input X; = S?, so
that the ratchet is predictive of the process Pr(Y{_ ) and
produces maximal work by fully randomizing the outputs:

1
! /
Pr(Y =3l = 57 -
It can be the case that the e-machine cannot produce y
from the causal state x. This corresponds to a disallowed
g(cy—)m = 0. In these cases, we ar-
bitrarily choose the next state to be the same ¢, ;. There
are many possible choices, though—such as resetting to

transition of our model 6

the start state sx. However, it is physically irrelevant,
since these transitions correspond zero estimated proba-
bility and, thus, to infinite work dissipation, drowning out
all other details of the model. However, this particular
choice for when y cannot be generated from the causal
state x preserves unifilarity and allows the agent to wait
in its current state until it receives an input that it can
accept.

Modulo disallowed, infinitely-dissipative transitions, we
now have a direct mapping between our estimated in-
put process Pr(Y{, ) and its e-machine 6 to the logical
architecture M of a maximum work-producing agent.
As yet, this does not fully specify agent behavior, since
it leaves out the estimated input distribution Pr(Y? =
y,Xf = z). This distribution must match the actual
distribution Pr(Y; = y, X; = x) for the agent to be lo-
cally efficient, not accounting for temporal correlations.
Fortunately, since agent states are designed to match the
e-machine’s causal states, we know that the agent state
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distribution matches the causal-state distribution and
inputs:

Pr(Y? =y, X! = s5;) =Pr(Y? = y;, 8¢ = 5,) ,

if the ratchet is driven by the estimated input. The joint
distribution over causal states and inputs is also deter-
mined by the e-machine, since the construction assumes
starting in the state so = s*. To start, note that the joint
probability trajectory distribution is given by:

0 _ 0o _
Pr(Ygiip1 = Yoiit1, Soiqo = S0:i42)

%
- (v5)
- 650,8* H QSiJ—)Si+1 .
j=0

Summing over the variables besides Y,/ and S?, we obtain
an expression for the estimated agent distribution in terms
of just the e-machine’s HMM:

Pr(Y/ =y, X{ =si) = >

Y0:i,50:i,Si+1

i
(y5)
0o, H 05580 -
Jj=0

Thus, an agent {M,Pr(X?,Y,?)} designed to be globally
efficient for the estimated input process Pr(Yy;) can
be derived from the estimated input process through its

: (v)
e-machine 6.7 .

Appendix E: Work Production of Optimal
Transducers

The work production of an arbitrary transducer M driven
by an input yo.7, can be difficult to calculate, as shown in
Eq. (10). However, when the transducer is designed to
harness an input process with e-machine 7', such that:

1
Mwy—m/y/ = m X {

the work production simplifies. To see this, we express
Eq. (10) in terms of the estimated distribution Pr(Y{,),
ratchet M, and input yo.r, assuming that the word yg.,
can be produced from every initial hidden state with
nonzero probability Pr(Y{; = yo..|So = so) Pr(Xo =
s0) # 0, which guarantees that >, Gg(f’iul £ 0. If
this constraint is not satisfied, the agent will dissipate
infinite work, as it implies Pr(X¢ = z;,,Y? = 2;) = 0
for some i. Thus, we use the expression Myy_ury =
0z e(z,y)/|Y| in the work production:

Sur ey 1 Y 0,0 #0,
0y €lse,
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(wh,.)

=kpT ) Pr(Xo =)

T0:L+15Y. 1,

L 1M Iﬁ Pr(Xezch,Y-ezyz)
Pr

zj.yi—= a1,y 0 _
’ (X1+1 =Tit1,Y] yz)

=

&
L

L 1 pr X" z, Y =)
= kgT Pr(Xo = a) [ —2loiw) L
Z IV 1;[ Pr(X? = zip1)/|V|

<.
Il
o

’
Zo:L+1,Yg.1,

L—1 L—1 L-1 Pr(X9 — )
= kTl Y|+ kT 37 Pr(Xo = 20) [] bpsrctasm (1“ [ Prr = lx? = =) + o [ 5755 >> |
1 i=0 i+1 — L

TO:L+1 j=0

Note that H = 0 Oz 41,e(z;,y;) vanishes unless each element of the hidden state trajectory z; corresponds to the resulting
state of the e-machine when the initial state z( is driven by the first ¢ inputs yo.;, which is e(xo, yo.;). The fact that
the agent is driven into a unique state is guaranteed by the e-machine’s unifilarity. Thus, we rewrite:

L—1 L
H 5f.7+176($_jvyj) = H 673.7’75(107?40:1‘) :
7=0 j=1

This engenders a simplification of the work production:

L L—-1
Pr(Y? = y;| X! = z;) Pr(X? = ;)
6 _ _ i 4 4
<I/V‘y0:L> =kgTIn|Y| + kgT Z Pr(Xo = o) H 6acj,e(x0,yo:_7') In H : Pr(X 1= = Tit1) Z
TO:L+1 j=1 i=0 ’
L—-1
= kT |V + kT Pr(Xo =zo)In [ Pr(Y = il X! = e(0,90.1))
xo 1=0
PI‘(Xg = .’[7())

+ksT Y Pr(Xo = o) In

Zo

Pr(XY = e(z0,yo.1))

(

where yg.0 denotes the null input, which leaves the state includes the log-likelihood of the finite input:

fixed under the e-map €(xo, yo.0) = 2o.

This brings us to an easily calculable work production, <I/V‘ZO:L>

especially when the system is initialized in the start state 1

s*. Recognizing that if we initiate the e-machine in its _ kBTZ(SzO,s* In H Pr(Y? =y Y2, = yo.)

start state s*, such that Pr(Xo = z9) = 04+, then -

Xo = Sy is predictive. By extension, every following S

agent state is predictive and equivalent to the causal state + ksTLIn|Y| + ksT Z Oz, In Pr(Xx? _;c(;,(sx )
X; = 5; yielding: o L = 0. Y0-

= kpT(InPr(YY, = yo.r) + LIn|Y|

Pr(Y; = yi| Xi = €(s%, yo.1)) = Pr(Y; = yi]Si = e(s", y0.:)) ~InPr(XY = e(s*,y0.))) -

= Pr(Ys = 4ilYoi = yo:i) -

The first log(-) in the last line is the log-likelihood of the

Thus, the work production simplifies a sum of terms that model generating yo.r,—a common performance measure
for machine learning algorithms. If an input has zero
probability this leads to —oo work production, and all
other features are drowned out by the log-likelihood term.
Thus, the additional terms that come into play when the
input probability vanishes become physically irrelevant:
the agent is characterized by the e-machine. From a ma-



chine learning perspective, the model is also characterized
by the e-machine ‘9:(;24—13/ for the process Pr(Y{, ). The
additional term kgT'L1n |Y| is the work production that
comes from exhausting fully randomized outputs and does
not change depending on the underlying model.
The final term —kpT InPr(X? = €(s*,y0.1))) does di-
rectly depend on the model. Pr(X¢ = x) is the distribu-
tion over agent states X at time L7 if the agent is driven
by the estimated input distribution YOQ: 1~ This component
of the work production is larger, on average, for agents
with high state uncertainty, since this leads, on-average,
to smaller values of Pr(X?). This contribution to the
work production comes from the state space expanding
from the start state s* to the larger (recurrent) subset
of agent states, and so it provides additional work. This
indicates that we are neglecting the cost of resetting to
the start state while harnessing the energetic benefit of
starting in it.
If the machine is designed to efficiently harness inputs
again after it operates on one string, it must be reset
to the start state s*. This can be implemented with an
efficient channel that anticipates the input distribution
Pr(X{ = ), outputs the distribution Pr(X?_ , = z) =
0,5+, and so costs:

Wli’giset = kgTInPr(X? = e(s*,y0.1)) -
Thus, when we add the cost of resetting the agent to the
start state at X 41, the work production is dominated
by the log-likelihood:

<VV‘€JO:L>:I€BT(IHPI‘(Y0€:L:yO:L)+L1n ). (E2)

Appendix F: Training Simple Agents

We now outline a case study of thermodynamic learning
that is experimentally implementable using a controllable
two-level system. We first introduce a straightforward
method to implement the simplest possible efficient agent.
Second, we show that this physical process achieves the
general maximum-likelihood result arrived at in the main
development. Last, we find the agent selected by ther-
modynamic learning along with its corresponding model.
As expected, we find that this maximum-work producing
agent learns its environment’s predictive features.

1. Efficient Computational Trajectories

The simplest possible information ratchets have only a
single internal state A and receive binary data y; from
a series of two-level systems ); = {1,]}. These agents’
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FIG. 9. Memoryless model of binary data consisting of a single
state A and the probability of outputting a 1 and a |, denoted
OQL 4 and Hfjl 4> Tespectively.

internal models correspond to memoryless e-machine s,
as shown in Fig. 9. The model’s parameters are the
probabilities of emitting 1 and |, denoted QSL 4 and
HSL 4 respectively.

Our first step is to design an efficient computation that
maps an input distribution Pr(Z;;) to an output dis-
tribution Pr(Z;;,,/) over the jth interaction interval
[j7,47 + 7']. The agent corresponds to the Hamiltonian
evolution Hz(t) = Hxxy,(t) over the joint space of the
agent memory and jth input symbol. The resulting en-
ergy landscape E(z,t) is entirely specified by the energy
of the two input states F(A x 1,t) and E(A x |, ).
Appropriately designing this energy landscape allows us
to implement the efficient computation shown in Fig.
10. The thermodynamic evolution there instantaneously
quenches the energy landscape into equilibrium with the
estimated distribution at the beginning of the interaction
interval Pr(Z }97)7 then quasistatically evolves the system in
equilibrium to the estimated final distribution Pr(ZY_, ),
and, finally, quenches back to the default energy landscape.
In Fig. 10, the system undergoes a cycle, starting and
ending with the same flat energy landscape, such that
AFEz = 0. This cycle evolves the distribution over the
joint states Ax 1 and Ax | from Pr(Z% = {Ax ?
,Ax |}) ={0.8,0.2} to Pr(ZfT+T, ={Ax 1 Ax|}) =
{0.4,0.6}. Note that this strategy can be used to evolve
between any initial and final distributions.

We control the transformation over time interval ¢ €
(j7,j7+7") such that the time scale of equilibration in the
system of interest is much shorter than the interval length
7'. This slow-moving quasistatic control means that the
states are in equilibrium with the energy landscape over
the interval. In this case, the state distribution becomes
the Boltzmann distribution:

Pr(Z; = z) = eF  O=B0)/keT
To minimize dissipation for the estimated distribution,
the state distribution must be the estimated distribution

Pr(Z; = z) = Pr(Z¢ = z). And so, we set the two-level-
system energies to be in equilibrium with the estimates:

E(z,t) = —kgTInPr(Z? = 2) .



0
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Quench
Wiaxt(J7) E E Wyaxy(37)
= kpTn(0.8) * ' = kT In(0.2)
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E):t=gr+71
Energy
0.6
0.4
0
Ax 1t Ax|

Wiaxs (G +7")
= —kpTIn(0.4)

VV\Axl(jT + 7—/)

PO
E = —kpTn(0.6)

Quench
Energy 0.4 0.6

s -
—kpTn(0.6)-} - AX T

—kpT'In(0.2) -f - - ...;
Ax| T
—kpT1n(0.8) |- - -m—- e e w e e e "'ﬁ‘
| A x T | T
B):t=j 7+

C)rjrt<t<jr+7~

Quasistatic

FIG. 10. Joint two-level system Z = X x J; = {A x 1, A x |} undergoing perfectly-efficient computation when it receives its
estimated input through a series of operations. The computation occurs over the time interval ¢ € (j7,j7 + 7). At panel A)
t = j7 and the system has a default flat energy landscape energy E(z,j7) = E(x X y, j7) = 0. However, it is out of equilibrium,
since it is in the distribution Pr(Z%, = {Ax 1, Ax |}) = {0.8,0.2}. The first operation is a quench, which instantaneously
sets the energies be in equilibrium with the initial distribution, as shown in panel B). The associated energy change is work.
Then, a quasistatic operation slowly evolves the system in equilibrium, through panel C), to the final desired distribution

pr(Z¢

irarr = {AX 1,Ax |}) = {0.4,0.6}, shown in panel D). This requires no work. Then, the final operation is another

quench, in which the energies are reset to the default energy landscape E(z,j7 + 7') = 0, leaving the system as shown in panel
E). Again, the change in energy corresponds to work invested through control. The total work production for a particular
computational mapping A x y — A x ¢’ is given by the work from the initial quench W4, (j7) plus the work from the final

quench Wiax, (j7 + 7).

The resulting process produces zero work:

unasist atic __

j'r+7"
—/‘ dt» Pr(Z{ = 2)0,E(z,1)

and maps Pr(Z%,) to Pr(ZJQTJrT,) without dissipation.

With the quasistatic transformation producing zero work,
the total work produced from the initial joint state z X y
is exactly opposite the change in energy during the initial

quench:
E(r xy,j7) — E(x x y,57") = kgT1n Pr(ZfT =1z Xy)

minus the change in energy of the final joint state z’ x g’
during the final quench:

E@ xy,jtr+77) = E@@ xy,jt+7)
= —kpgTIn Pr(ZJQT_H, =2 xy).

The two-level system’s state is fixed during the instanta-
neous energy changes. Thus, if the joint state follows the
computational mapping x x y — 2’ X ' the work produc-
tion is, as expected, directly connected to the estimated
distributions:

Pr(ZfT =1z Xy)

Pr(ZJQTJFT

(Wiasyarxy ) = ksTln (F1)

,=a' xy)
Recall from Sec. IV A that the ratchet system variable
ZJ‘?T =X J‘?’ X ng splits into the random variable X? for
the jth agent memory state and the jth input Yf. Sim-

ilarly, 22, = X%, x Y;? splits into the (j + 1)th
agent memory state Xfﬂ and jth output Yje. This

work production achieves the efficient limit for a model 6

(<V[/‘1Xy’xlxy/> = <V[/&Xy7z,xy,>) described in Eq. (8).

Appendix C generalized the thermodynamic operation
above to any computation M, . ,. While it requires
an ancillary copy of the system Z to execute the con-
ditional dependencies in the computation, it is concep-



tually identical in that it uses a sequence of quenching,
evolving quasistatically, and then quenching again. This
appendix extends the strategies outlined in Refs. [42, 53]
to computational-mapping work calculations.

2. Efficient Information Ratchets

With the method for efficiently mapping inputs to outputs
in hand, we can design a series of such computations to
implement a simple information ratchet that produces
work from a series yo.r,. As prescribed in Eq. (11) of Sec.
V, to produce the most work from estimated model 6, the
agent’s logical architecture should randomly map every
state to all others:

1

NZ1

M:cy%m/y/ -

)

N |

since there is only one causal state A. In conjunction with
Eq. (12), we find that the estimated joint distribution
of the agent and interaction symbol at the start of the
interaction is equivalent to the parameters of the model:

Pr(Z]QT =z Xy = Pr(Xf = x7Yje =)
— 0 _ 0 _ 0 __
= Pr(Y; = y|Xj = A)Pr(X] = A)
:9(y)
A—A >

where we again used the fact that A is the only causal state.
In turn, the estimated distribution after the interaction
is:

Pr(Z¢ . =a'xy)= ZPr(XJQ =,Y] = y)Moyary
y

Thus, assuming the agent has model 6 built-in, then Eq.
(F1) determines that the work production for mapping
A X y to output A X y' for a particular symbol y is:

(Wiaxy,axy) = kaT (ln2 + lnGS’LA) .

Since A is the only memory state and work does not de-
pend on the output symbol ¢/, the average work produced
from an input y is:

(W) = (Wiaxy,axy') - (F2)

With the work production expressed for a single input y;,
we can now consider how much work our designed agent
harvests from the training data yg.;,. Summing the work
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production of each input yields a simple expression in
terms of the model 6:

L—-1

Z <W|ZJJ>

=0

L—-1

- JZ:(:) kT (2 +16%),)

<W|yo:L> =

L—-1
= kgT [ Ln2+1n J] 6%7),

Jj=0

Due to the single causal state, the product within the log-
arithm simplifies to the probability of the word given the
model Hf;ol Hfj’izA =Pr(YY, = vo.). So, the resulting

work production depends on the familiar log-likelihood:

<W|y0:L> = kT (L In2+ €(9|yOL))

_ 4
- <W|Z/0:L> )

again, achieving efficient work production, as expected.

3. Maximizing Work for Memoryless Models

Leveraging the explicit construction for efficient informa-
tion ratchets, we can search for the agent that maximizes
work from the input string yo.r,. To infer a model through
work maximization, we label the frequency of 1 states in
this sequence with f(1) and the frequency of | with f({).
The corresponding log-likelihood of the model is:

£(0]yo...) = In (95&,4) Ls() (9,(4& A) L)

=Lf(1)In (QEL&A) +Lf(1)In (Q%LA) :

Thus, for the corresponding agent, the work production
is:

<W\§m> = kpT¢(0yo..) + kTLIn?2

— kpTL (1n2+ FHmeY  +f()n e&LA) :

Selecting from all possible memoryless agents, the model
parameters # maximizing work production are given by
the frequency of symbols in the input: f(1) = 9&& 4 and

fQh) = 91(4“ 4- The resulting work production is:

(W, ) =ksTL(n2 ~ HD)

where H[f(1)] is the Shannon entropy of binary variable
Y with Pr(Y =1) = f(1) measured in nats.
This simple example of learning statistical bias serves to



explicitly lay out the stages of thermodynamic machine
learning. The class of models is too simple, though, to
illustrate the full power of the new learning method. That
said, it does confirm that thermodynamic work maximiza-
tion leads to useful models of data in the simplest case.
As one would expect, the simple agent found by thermody-
namic machine learning discovers the frequency of zeros in
the input and, thus, it learns about its environment. The
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corresponding work production is the same as energetic
gain of randomizing L bits distributed according to the
frequency f(1).

However, this neglects the substantial thermodynamic
benefits possible with temporally-correlated environments
[38]. To illustrate how to extract this additional energy,
a sequel designs and analyzes memoryful agents.
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