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Abstract

Theory and Algorithms for Hidden Markov
Models and Generalized Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in pattern recognition applications,
most notably speech recognition. However, they have been studied primarily on
a practical level, with the HMM matrices as the fundamental objects and without
considering the viewpoint of an observer trying to accurately predict the future output.
This dissertation is a study of the processes represented by HMMs using the concepts
and techniques of stochastic automata derived from the study of dynamical systems and
their complexity. The goal is to understand these processes in the language of stochastic
automata. Along the way, certain ideas of stochastic automata are characterized in a
measure-theoretic manner.

We begin by defining a process to be a stationary measure space of bi-infinite
sequences. We define a process state to be a conditional distribution on the future of a
process which corresponds to the state of knowledge held by an observer who has seen
some or all of the process’s history. This definition is similar in spirit to ideas used in
dynamical systems, and it is a formalization of the notion of a "deterministic state" used
in automata theory. We describe the process states of HMM processes. And we give a
necessary condition for a process to have an HMM representation.

Following [7] and [8], we define Generalized Hidden Markov Models (GHMMs).
These are structurally and operationally the same as HMMs, except that parameters
which are interpreted as probabilities in defining HMMs are allowed to be negative in
GHMMs. We describe necessary and sufficient conditions for two GHMMs (and thus
two HMMs) to represent the same process, and we give a method for finding the smallest
possible GHMM equivalent to a given one.

Going further, we give an algorithm for constructing a GHMM that represents a
process from the probabilities that process assigns to words. We prove that, for every
process, either the algorithm constructs a GHMM that represents the given process or
that no such representation exists. This characterizes the set of process representable
by GHMMs. Finally, we describe an implementation of this algorithm which constructs
GHMMs from sample sequences.
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1 Introduction

This dissertation is about a class of stochastic processes that are usually presented

as having a finite set of states, but which, in another sense, may have an infinite number

of states. These processes are known variously asHidden Markov Models(HMMs),

functions of a Markov Chain, or stochastic finite automata, all of which are essentially

equivalent. HMMs are used most widely and will be used here.

A process in the HMM class can be described as a finite-state Markov Chain with

a memoryless output process which produces symbols in a finite alphabet. This is the

sense in which these processes have finitely many states. However, from the perspective

of an observer who knows the parameters of some representation of the process and is

able to observe the output symbols but not the internal states, things look different. For

some processes there are infinitely many distinct states of such an observer’s knowledge

about the status of the process. This knowledge is defined in terms of conditional

distributions on future symbols. This is the sense in which there can be infinitely many

states. These states are more relevant than the original finite set of states to the study

of the process, since they allow for optimal prediction.

Functions of Markov Chains were the first descriptions of these processes to be

studied, and they were initially studied as mathematical information sources [1]. There

were a handful of papers such as [2] published in the 1950s and early 1960s, which

define HMMs and lay out these theoretical questions. What is the entropy rate for a

function of a Markov Chain? Do these two functions of Markov Chains define the

same process (the identifiability question)? What is the smallest function of a Markov

Chain equivalent to the given one (the minimality question)? This work was done

by researchers with mathematical backgrounds, studying HMMs from a perspective of

probability and information theory.

From the 1970s onward, HMMs have been used for modeling observed patterns,

especially in speech recognition. There are a large number of papers, such as [3–5], that

present HMMs as tools for use on these practical problems. These papers are written

by researchers interested in pattern recognition, often from a viewpoint in engineering

or computer science, and they usually focus on algorithms and on results in practical

situations.
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A new insight in 1987 led to a generalization of HMMs and to resolution of the

identifiability and minimality questions about Hidden Markov Models [6]. These results

appear in a very few papers that treat HMM matrices as objects of linear algebra

without regard to the signs of the transition matrix entries — which have traditionally

been interpreted as probabilities. These papers include [7] and [8], which solve the

identifiability and minimality questions for HMMs by solving them for a generalization

of HMMs known asGeneralized Hidden Markov Models(GHMMs).

In addition to this development of HMMs per se, there is a substantial literature

in computer science dealing with finite state machines. An emerging branch of this

literature deals with stochastic finite automata, and falls under the heading of complex

systems. This body of work, composed of papers such as [9], focuses on intrinsic

processes rather than representations, and looks at stochastic automata as the simplest

systems in which to study how natural systems process information. Because the

definition of a stochastic finite automaton is quite similar to the definition of a Hidden

Markov Model, this work provides an alternative way of looking at HMMs.

This dissertation developed from looking at HMMs from the viewpoint of the work

on stochastic finite automata. This approach led to the material of chapters 2 and 3.

The work in chapters 4 and 5 followed from this and used the generalization of HMMs

mentioned above. The next paragraphs contain brief overviews of these chapters and

are intended to give the reader an idea of what is to come.

The primary objects of chapter 2 areprocessesandprocess states. A process is a

stationary probability measure on the space of bi-infinite sequences of symbols, where a

symbolis an element of a finite set called the alphabet.* Indices into these sequences are

thought of as times, as if the process were a laboratory apparatus that emits a symbol

with every tick of a clock. Thus, negative indices refer to symbols that were emitted in

the past and that may be known, and nonnegative indices refer to symbols that have not

yet been emitted and may not have been internally determined yet. We define a word

to be a finite string of symbols in the alphabet. A process assigns a probability to each

word and is uniquely determined by these probabilities.

*In the stochastic process literature, the term “state” is usually used where we use “symbol”. In papers such as [2,10], this leads
to the somewhat confusing use of “state” to refer to both symbols and presentation states. In this dissertation, the term “state” is
used exclusively to refer to objects which render the future conditionally independent of the past.
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A process state is a conditional distribution over the future — a measure space

of semi-infinite sequences of symbols — induced by conditioning on known historical

information, such as what particular symbols were emitted at the last few ticks of the

clock. The process states are the possible states of knowledge of an observer who wishes

to predict the future symbols with high accuracy. This observer knows the design of

our hypothetical apparatus, but not the current status of its internal components.

The definition of a process state is new in this dissertation, but the underlying idea

is not. It is used, for example, in [11]. What the author has done here is to formalize

this fundamental idea. The definition of a process is, of course, standard.

In chapter 3, we will introduce Hidden Markov Models (HMMs). An HMM consists

of a recurrent finite-state Markov Chain, an alphabet of output symbols, and a distribution

over that alphabet for each transition in the Markov Chain. The states and transitions

of the Markov Chain are hidden from observation so that only the output symbols are

visible. We represent an HMM primarily by a set of matrices
�
T k

	
, one matrixT k

for each symbolk in the alphabet — note that the superscriptk is an index, not an

exponent. Each entryT k
ij is the probability, if the Markov Chain is in statei, of emitting

symbol k and going to statej. An HMM defines a process in a natural way, and so

HMMs provide a convenient way to represent some processes. The states of an HMM’s

underlying Markov Chain are quite different from process states. We will refer to the

Markov Chain’s states aspresentation states.

We compute the process states for a process represented by an HMM in terms of

the presentation. We show that they are represented by probability distributions over

the presentation states or, equivalently, by mixtures of presentation states. We call them

mixed states† and we identify the real role of presentation states. The presentation states

are the things we combine to make mixed states. Essentially, presentation states are

basis vectors for a vector space containing the mixed states, and mixed states represent

the states of knowledge of an observer. In this interpretation, the matricesT k define

linear transformations among these vectors.

Finally, we consider the question of when a process can be represented by an

HMM. We prove that the following condition is necessary: if a process has an HMM

presentation, then the span of the process states — a subspace of the space of conditional

†The termmixed statesis used in the context of HMMs, with an entirely unrelated meaning in [12].
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distributions on the future — is finite-dimensional. This result is a natural consequence of

the fact that the process states of such a process can be represented by linear combinations

of presentation states.

The definition of an HMM given in chapter 3 is one of several equivalent definitions.

Mixed states first appeared in [1], although not with that name. Most of the remaining

material in the chapter has not previously appeared in print, but has undoubtedly been

deduced a number of times before. Stating these results in terms of process states is the

author’s work, as is the question, “What are the process states for a process represented

by an HMM?” and the resulting interpretation of presentation states as basis vectors,

both of which are crucial to this dissertation. The final section of this chapter is entirely

the author’s own.

Chapter 4 introduces a new class of presentations, Generalized Hidden Markov

Models. We represent a GHMM like an HMM, by a matrix for each symbol, but in

a GHMM we do not interpret the entries in these matrices as probabilities. Indeed,

we allow them to be negative or greater than one. We do constrain these entries, and

we constrain them in such a way that the calculations we use with HMMs produce

meaningful results for GHMMs. In this way, a GHMM assigns probabilities to words

and so it defines a process.

We justify this change as follows. For a process represented by an HMM, we

calculate the probabilities of words by simple linear algebra and we represent process

states as vectors in a space generated by the presentation states. But because we restrict

the entries in the matricesT k to be positive, we restrict the class of linear transformations

they can represent and we restrict the set of possible mixed states to a small subset of

the vector space. If we remove this constraint, we can make use of all sensible linear

transformations and we can use any portion of the vector space. This is what we allow

when we use GHMMs.

Two long-standing problems for HMMs can be readily solved in terms of GHMMs,

namely the equivalence question — Do these two HMMs (or GHMMs) represent the

same process? — and the minimization question — How small is the smallest HMM

which is equivalent to a given HMM? These questions were resolved in [7]. The present

work presents a new and relatively clean resolution of these questions that is similar in
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spirit to the work just cited. But it is different in details and includes an important new

construction, the standard presentation.

Chapter 5 contains two significant results. The first is a proof that every process such

that the span of its process states is finite-dimensional can be represented as a GHMM.

We show this by constructing such a representation. This completes a characterization

of the processes representable by GHMMs, the first half of which appears for HMMs

in chapter 3 and is generalized to GHMMs in chapter 4. The complete characterization

is this: a process has a GHMM presentation if and only if the span of its process states

is finite-dimensional.

It is noteworthy that we can actually construct a GHMM presentation for any process

which has one. This construction leads to the second result of chapter 5: a technique

for constructing a GHMM from a sample of the output from a process. This technique,

which we call thereconstruction algorithm, is completely unlike the forward-backward

algorithm, the most widely used technique for constructing HMMs from sample output.

It needs further development, but it has much more solid theoretical footing than the

forward-backward algorithm. Indeed, it may eventually replace the forward-backward

algorithm. The work in this chapter is entirely that of the author.

In the chapter overviews, we introduced a number of concepts that may be unfamiliar

to the reader. We conclude the introduction with an example, to make some of them

clearer and more concrete to the reader. Let us consider the Hidden Markov Model,

depicted in figure 1.1.

A B1|1/2

1|1/2

0|1
Fig. 1.1 First example HMM.

The circlesA andB represent presentation states, the states of the underlying Markov

Chain. The arrows connecting them represent the transitions of the HMM and the labels

indicate the symbol that will be emitted if that transition is taken and the probability

of that transition. For example, the label1|1/2 at the top indicates that the symbol1
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is emitted when this transition is made and that this transition is taken on1=2 of the

occasions when a transition is made from stateA. We represent this same HMM with

the transition matrices

T 0 =

�
0 0

1 0

�
andT 1 =

�
1

2

1

2

0 0

�
: (1.1)

This is not the full description of an HMM that we will give in chapter 3. In particular,

we have not defined an initial state distribution for this HMM.

It should be clear to the reader that each presentation state in our example defines

a distribution on the future symbol sequences. We call this the conditional distribution

on the future given that presentation state.

Now, suppose that we know the transition matrices and can see the output of

this machine, but do not know what presentation state the HMM is in. That is, the

presentation states are hidden from us, whence the termHidden Markov Models. If

the most recent symbol we have seen is a0, then we can deduce that the HMM is in

presentation stateA. But if the most recent symbol we have seen is a1, we cannot deduce

which presentation state the HMM is in. We can, however, infer a distribution over the

presentation states. The HMM is in either stateA or stateB with probability 1=2 each.

And we can deduce a conditional distribution on the future given that the most recent

symbol was a1. If we do this we will find that it is equal to1=2 of the sum of the two

conditional distributions on the future given presentation statesA andB, respectively.

In the terminology of this dissertation, we have now seen two process states. The

first is the conditional distribution on the future given that the most recent symbol was

a 0. This happens to be identical to the conditional distribution on the future given

presentation stateA. The second is the conditional distribution on the future given that

the most recent symbol was a1, which does not correspond to either presentation state.

We can represent the first of these process states by the mixed state(PA = 1; PB = 0), a

distribution over the presentation states which puts all probability on stateA. Likewise,

we represent the second of our process states by the mixed state(PA = 1=2; PB = 1=2),

a distribution which makes each presentation state equally likely.

We begin in chapter 2 with a full definition of processes and process states.
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2 Processes and Process States

In this chapter and the next one, we defineprocesses, the central objects of this

work. We will work with them in two ways, from two different viewpoints. First

we will define processes in the abstract, as probability measures on a sequence space.

Second, more concretely, we will defineHidden Markov Models— partially observed

finite state Markov chains — which we will use to represent processes. In this chapter

we will introduce the first of these viewpoints, and in chapter 3 we will introduce the

second and then bring the two together.

This chapter builds on, and uses the concepts and terminology of, probability theory.

Appendix B contains a few necessary definitions and theorems with which the reader

may be unfamiliar. A presentation of the basics, if needed, may be found in a number

of standard texts, e.g. [13,14].

The reader may find it helpful to keep in mind the following metaphor. A process

may be thought of as a black box on a laboratory bench with a row of lights on it. These

lights are our symbols, and the row of them is our alphabet. There is a flash from one

or another of these lights every second, which we describe as the emission of a symbol.

This box has been running forever, and will continue running forever. We may know

the design of the box, and we may have observed a number of recent symbol emissions,

but we cannot observe the current configuration of the box’s internal parts.

2.1 Sequence Space

In this section, we define and introduce notation for the sets upon which we will

build our probability spaces.

Begin with a finite setX of symbols, which we will call analphabet. Our canonical

choice will beX = f0; 1; . . . ; m� 1g for some natural numberm. Let XZ be the

space of bi-infinite sequences of elements ofX . That is, if x 2 XZ, thenx is a bi-

infinite sequence. . .x
�3x�2x�1x0x1x2x3 . . ., so that for any integert, there is a symbol

xt 2 X . We will think of the indices as denoting measurement times, with negative

indices referring to the past and nonnegative indices indicating the future. Often, we

will assume that the symbols with negative indices are known and the symbols with
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nonnegative indices are unknown. We will want to think of each measurement time as

being either in the past or in the future, so that we will only need to consider our state

of knowledge after one event an before another, and we will not need to consider our

state of knowledge “as a symbol is becoming known”. Thus we will be thinking of time

t = 0 as being in the future. The reader may wish to think of the “present” as a small

negative number, perhaps�1

2
. Because timet = 0 is the smallest future time at which

a symbol is observed, we will refer tox0 as thenext symbol.

In these terms, aword w of length l is an l-tuple of elements ofX , w 2 X l. We

will denote the empty word, of length zero, by�, and the length of the wordw by jwj.

For, example, if0; 1 2 X , j01101j = 5. A subsequences is a structures = (w; (a; b)),

wherew is a word and(a; b) is a pair of times such thatw has lengthb� a+ 1. The

subsequences is said to be aninstanceof the wordw from which it is formed, andw

is said to be thebase wordof the subsequences = (w; (a; b)). s may also be denoted

sasa+1 . . . sb. a and b are called thestart timeand end time, respectively, ofs. The

length of a subsequence is the length of its base word. An instance of�, then, is written

(�; (a; a� 1)). A sequencex is said to contain, ormatch, a subsequences = (w; (a; b))

if, for all t 2 fa; . . . ; bg, st = xt. We will most often refer to thenext word, which is

any subsequences = (w; (a; b)) with start timea = 0, or thehistory suffix, which is any

subsequence with end time negative oneb = �1.

When writing a subsequence which containsx
�1 or x0, we will sometimes use the

decimal point to denote this and to imply the start and end times. For example,1011:

is denotes history suffix(1011; (�4;�1)) and:0110 is denotes next word(0110; (0; 3)).

We will not always be precise about distinguishing words from subsequences, nor about

usingw for words ands for subsequences. Ifw andz are words, thenwz denotes their

concatenation. The set of all words will be denoted byX �; this set contains�.

The setAs of sequences which match a subsequences,

n
x 2 XZjxi = si for all i 2 fa; . . . bg

o
(2.1)

is called thecylinder setdefined bys. If s is an instance of�, The cylinder set defined

by any instance of� is XZ.
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2.2 Processes

Processes are the central objects of this work. The definition of a process is this:

a process is a stationary probability measure on a space of sequences. In this section

we will develop this definition.

A probability measure is a function which assigns probabilities to sets — in this

case, sets of sequences. To what subsets ofXZ will our process assign probabilities?

That is, what is the domain of this function? We need to define this set of subsets of

X
Z, which is called a�-field. Our choiceX is defined to be the�-field generated by

the cylinder sets. That is,X is the smallest collection of subsets ofXZ such that:

1. for every subsequences, As 2 X, and

2. X is closed under complements and countable unions.

The pair
�
XZ;X

�
is the measurable space in which we will be working.

Essentially, a probability measure on
�
XZ;X

�
is something which assigns proba-

bilities to the cylinder sets defined by subsequences. Ifs is a sequence andAs is the

cylinder set of sequences which matchs, we defineP(s) — the probability ofs —

to be the probability of the cylinder setP(As). BecauseP is a probability measure,

P
�
XZ

�
= 1. Recall thatXZ = A�, so we haveP(�) = 1.

As we stated above, we will require our processes to be stationary. Astationary

process is one in which the probability of a subsequence does not depend on its start time.

Stationarity will allow us to disregard the time index when we do not need it explicitly.

In particular, it allows us to define the probability of a word to be the probability of any

instance of it, as we will see shortly. Virtually all the probability measures on sequence

space addressed in this work are stationary, and the exceptions will be identified as such.

The shift mapT on a sequence spaceXZ is a mapT : XZ ! XZ such that for

all x 2 XZ, for all t, (T (x))
t
= xt+1. The shift map “shifts” a sequence over by one;

it moves the time origin.

Definition 2.1.1. A processP is stationaryif for all setsA 2 X, P(T (A)) = P(A).

Note that we do not need to require shift invariance in both directions, as it is

automatic. SinceT is invertible in a space of bi-infinite sequences, letB = T�1(A),

and apply the definition of stationarity toB, and we haveP
�
T�1(A)

�
= P(A).
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Definition 2.1.2. A processP is a stationary probability space
�
X
Z;X;P

�
. That is,P

is a stationary probability measureP on the measurable space
�
X
Z;X
�
.

The author has chosen to work exclusively with stationary processes for convenience

and for reasons which have their roots in the historical development of this work.

However, virtually all of the results in this dissertation are valid with a definition which

does not require processes to be stationary and instead expects a process to have a start

and stop at finite times. Some of the statements made here, and many of the proofs,

require modifications in order to apply under such a definition.

Let w be a word and lets be an instance ofw. If P is stationary, all instances ofw

have the same probability. Thus, we can define the probability ofw to beP(w) = P(s),

so we can think of a processP as a function which assigns probabilities to words. We

will use Wl to denote the set of all words of lengthl with positive measure. This leads

us to two facts, which are trivial consequences of the properties of probability measures.

The first of these is that, because the cylinder set induced by� is defined to be all ofXZ,

P(�) = 1: (2.2)

The second is that, for any wordw and any lengthl � 0,

X

z2Wl

P(wz) =
X

z2Wl

P(zw) = P(w): (2.3)

As it happens, the converse of this pair of facts is true — any function onX
� which

satisfies equations 2.2 and 2.3 defines a process. This will be our primary tool for

showing that a particular object is a stationary process.

In the statement of the theorem B.1.1, we have separatedf from P for clarity.

When we use this theorem , we will not usually mentionf explicitly. Instead, we

will use P in the role whichf serves here, verify equations 2.2 and 2.3, and invoke

the theorem to assert thatP describes a unique process. This renders the distinction

betweenf and P moot.

Theorem B.1.1. Given a mapf : X �
! [0; 1] satisfying

1. f(�) = 1, and

2. For all wordsw 2 X �, f(w) =
P
z2X

f(zw) =
P
z2X

f(wz);
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there is a unique processP =
�
XZ;X;P

�
such that for allw 2 X �, P(w) = f(w).

This theorem follows directly from Kolmogorov’s extension theorem. Proving it is

conceptually simple but requires some rather serpentine logistics. Instead of appearing

here as a interruption of the conceptual development, the proof appears in appendix B.1.

A few examples are in order before we go on. We will call the first of these the

fair coin. This process should be thought of as a bi-infinite sequence of coin flips

being revealed (or flipped) as time passes. HereX = fheads; tailsg, and xt is the

result of the coin flip at timet. Recall that we think of negative times as the past, and

nonnegative times as the future, so that we have seen all the resultsxt for t < 0 and

we have not yet seen anyxt for t � 0. For any wordw of length l, P(w) = 2�l.

The symbols are independent and identically distributed (iid) so the process must be

stationary. Every sequence inXZ is a realization (defined in section 2.3) of the fair coin

process. Although we don’t need theorem B.1.1 to prove that this process exists, we will

verify that equations 2.2 and 2.3 are satisfied. For 2.2,f(�) = 20 = 1. For 2.3, ifw has

lengthl andz 2 X , thenf(wz) = f(zw) = 2�(l+1), so we have2�2�(l+1) = 2l = f(w).

The second of our examples is a strictly periodic process, in which a fixed word

is repeated over and over. In this example, we choose the word10000, and a typical

realization looks like

. . . 00010000100001000010000100 . . . (2.4)

If the phase (i.e. the index associated to a1, taken modulo5) is uniformly distributed,

P is stationary, and we have a process. It is not difficult to see that every word is

assigned a probability of either0 or 1
5
, with the exception of�, 0, 00, and000, which

have probabilities1, 4
5
, 3
5
, and 2

5
, respectively. This is clearly a process — the measure

can be described explicitly. It assigns measure1
5

each to five bi-infinite sequence and

0 to all the others.

2.3 Past and Future

At times, we will need to treat the past and the future separately. In this section

we will introduce a decomposition of a processes underlying probability space
�
XZ;X

�

which will facilitate this.
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Let X+, the future space, be the usual set of semi-infinite sequences of elements

of X ,

X+ =
�
x
+ = x0; x1; . . . j for all i � 0; xi 2 X

	
(2.5)

andX�, the history space, be the set of semi-infinite sequences of elements ofX with

negative indices:

X� =
�
x
� = . . . ; x

�2; x�1j for all i < 0; xi 2 X
	

(2.6)

We will think of a bi-infinite sequencex 2 XZ as an ordered pair of semi-infinite

sequences
�
x
�;x+

�
, wherex� 2 X� and x+ 2 X+. Thus, we can writeXZ as a

product of sets,XZ = X� �X+. We will refer to an elementx� of X� as ahistory,

and an elementx+ of X+ as afuture. Thus a history suffix, which we defined in section

2.1 to be a subsequence with end time�1, is in fact a suffix of a history.

Next, we will define thehistory�-fieldH and thefuture�-fieldF, both of which are

�-fields onXZ and are sub-�-fields ofX. H andF are generated by the cylinder sets

in X� andX+ respectively. That is,H is defined to be the�-field onXZ generated by

all cylinder sets defined by subsequences with negative end times, andF is defined to

be the�-field onXZ generated by all cylinder sets with nonnegative start times. Thus

if s = (w; (a; b)) is a subsequence with end timeb � �1, thenAs — the set of all bi-

infinite sequencesx 2 XZ which matchs — is an event inH. We will refer to elements

of H ashistory events. Intuitively, a history event is a set for which membership depends

only on the history part of a sequence. A similar statement is true forF, and we will

refer to elements ofF as future events.

In addition, we will need to define a series of finite history�-fields

fHljl 2 f0; 1; . . .gg, where Hl is the �-field on XZ generated by all lengthl his-

tory suffixes. (H0 is the trivial �-field on XZ.) An event inHl, then, is the set of

bi-infinite sequencesx which satisfy some in positionsx
�l; . . . ; x�1. As the reader

may readily verify, the finite history�-fields form an increasing sequence. That is,

for all l � 0, Hl � Hl+1. In addition, the union of the finite history�-fields is the

(infinite) history �-field:

1[

l=0

Hl = H: (2.7)
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A realization from a processP is a bi-infinite sequence inXZ which, loosely

speaking, is within the support of the process’ measureP. Formally, the support of

a measure depends on the topology of the measure space, and we have not defined

one. Instead of doing so now, we will define a realization directly. Take a sequence

x 2 XZ, and consider the set of all subsequences whichx contains. If, for each of these

subsequences, the set of sequences which contains it has positive measure, thenx is a

realization ofP. In the same vein, anull word is a word with probability zero; and a

history x� is a null history if it has a suffix that is a null word.

2.4 Histories and States

In the last section, we established our notation and technical framework. The

material in this section has these components, but it also has a conceptual component.

We will defer most of the technical details until the next section. The material in this

section draws on the concepts and terminology of Markov chains. Readers unfamiliar

with Markov chains may wish to peruse section 3.1 at this time.

Consider the following situation from a time series perspective. Suppose we are

watching a sequence of symbols appear as the output of an apparatus. Suppose further

that this apparatus is known to be described by the processP =
�
XZ

;X;P
�
. Given

P and some natural additional information — namely, the most recent few symbols —

what can we predict about the future? In particular, how can we simulate future output

from this apparatus?

We may assume, due to stationarity, that the next symbol will appear at timet = 0.

Then the symbols we know form a subsequencew with stop timeb = �1 — that is,

w is a history suffix. We will make the reasonable assumption thatP(w) > 0. Thenw

induces a conditional distribution onx0, P(x0 = kjw).

Suppose we choose a symbolx0 according to this conditional distribution, and build

a new history suffixz from it andw shifted by one:z
�1 = x0, and zt�1 = wt if t is

betweenw’s start and end times. We now find ourselves in the same situation we started

in, only one time step further along and with a new history suffix. We can repeat this

process as many times as we like and thus (theoretically, at least) generate synthetic data.

In effect, we are using the history suffixes as states of an infinite Markov chain. If

we output each new symbol as we choose it, we can accurately simulate the original
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apparatus. Essentially, we’ve built what’s called a Hidden Markov Model representation

of our process. (A Hidden Markov Model is a partially observed Markov chain — see

chapter 3.) However, because there are infinitely many history suffixes, it has infinitely

many states, and none of these states are recurrent. That is, once a state has been

seen it can never be revisited. This recasting of the process is not useful in the sense

that it doesn’t tell us anything new beyond knowingP, and we have to use all the

history we know in each simulation step. Is there a more concise or informative way

of simulatingP?

Let’s back up, and look at what we can say about distributions on the future space.

Our known history suffixw induces a conditional distributionP(�jw) � P(�jAw) on

the future space(X ;F).

P(�jw) is an example of aconditional future distribution, a distribution on the future

which arises when we condition on a history event. Conditional future distributions

are of substantial importance. The conditional future distribution reflects ourstate of

knowledgeabout possible future observations fromP. It includes all the information

we have about the future — if we know the conditional future distribution induced by

a history suffix, we may as well forget the history suffix itself. This, loosely speaking,

is the sense in whichP(�jw) is a state.

In the next section, we will consider conditional future distributions which arise

when we condition on either a historys or a history suffixx�. Here, however,

we will restrict ourselves to distributions which arise when we condition on history

suffixes. If two history suffixes,y andz, lead to the same conditional future distribution,

P(�jz) = P(�jy), then we will say that they are equivalent, denotedy � z. They provide

the same information about the future. We define theequivalence classCz of a history

suffix z to be the set of all history suffixesy such thaty � z: Cz = fy 2 X �jy � zg

These equivalence classes should be thought of as condensed versions of the past,

in the sense that if we remember only which equivalence classCz a history suffixz

belongs to and we forgetz itself, then we have lost no information about the future.

More formally, suppose we define a random variableS which maps a history suffix to

its equivalence class,S(z) = Cz. For all future wordss, the definition ofCz tells us

that the conditional probabilityP(sjz) is equal to the conditional probabilityP(sjCz).

Then the history suffix and the future are conditionally independent givenS.
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We can now use these equivalence classes to address the problem of simulating

future output. Start with equivalence classCw which contains our known history suffix

w. Cw induces a distribution onx0. As before, we choose a symbolk 2 X according to

this distribution. Next, we choose any history suffixy in Cw — we need not choosew

— and appendk, and shift it over by one to getz = yk, which is again a history suffix.

Fromz, we get back to an equivalence classCz = S(z). Note that any choice ofy 2 Cw

yields the sameCz, because equality of distributions over the entire future space implies

equality of distributions over the subspace of sequences which start with a givenx0.

As before, we have built a Hidden Markov Model presentation of our process. This

time, however, we may have gained by doing so. It is possible for the states — that

is, equivalence classes — to be recurrent. For example, in the fair coin process, all

history suffixes are equivalent, so there is exactly one equivalence class, and it is visited

after every time step. We may have infinitely many states, or we may have only finitely

many, depending on the structure of the set of equivalence classes. Essentially, if we

remember only the current equivalence class, we are keeping only the information from

the past that is relevant to predicting the future. This recasting, as we will see, is

fundamental. These conditional distributions on the future are the basis of the primary

notion of “state” that we will be using. However, because there is more than one kind

of object we will want to call a state, we will refer to the equivalence classes — or

rather, the conditional future distributions they induce — asprocess states.

We can extend this idea to include conditional future distributions induced by

conditioning on an entire history. Whenx� is a history andP
�
�jx�

�
is the conditional

future distribution it induces, we can compareP
�
�jx�

�
to a conditional future distribution

P(�jz) induced by a history suffixz. Considering conditional future distributions induced

by histories introduces some complications, with which we will deal in the next section.

2.5 Process States

In this section, we will go through the preceding development again, rigorously.

Those readers for whom the preceding discussion constitutes an adequate definition are

advised to skim the this section rather than reading it closely.

First, we will develop a rigorous definition ofP(�jw), wherew is a history suffix.

We are only interested in conditioning on non-null history suffixes. Lets
l
= x

�l
. . .x

�1
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and letRl be the set of all non-null lengthl history suffixes,Rl = fsljP(sl) > 0g. Then

R =

1S
l=0

Rl is the set of all non-null history suffixes. Letw be any history suffix not in

R, and letBw 2 H be the history event containing all histories which matchw. For any

future eventA 2 F, we define the conditional probabilityP(Ajw) by Bayes rule. That is,

P(Ajw) =
P(A \ Bw)

P(Bw)
; (2.8)

which we will write as

P(Ajw) =
P(A;w)

P(w)
: (2.9)

Next, we will develop a definition for a conditional future distribution given a

history, P
�
�jx�

�
. We will defineP

�
�jx�

�
in terms of the conditional distributions

P(�jwl), wherewl is taken to be the lengthl suffix of the historyx�. For every word

s, we will define

P
�
sjx�

�
= lim

l!1

P(sjwl): (2.10)

Note that if we let

1A(x) =

�
1 x 2 A

0 otherwise;
(2.11)

P(Ajwl) is the conditional expectationE(1AjHl)(x) for any sequencex which matches

w. Thus the limit in equation 2.10 may be writtenlim
l!1

E(1AjHl), which converges

almost surely toE(1AjH)(x) by theorem B.2.3, which is a martingale convergence

theorem. Thus we have

lim
l!1

P(�jwl) = P
�
�jx�

�
(2.12)

for almost everyx�. This is our definition ofP
�
�jx�

�
.

Our next step is to define the set of histories on which we will condition when

defining process states. We have just shown that this definition gives a well-defined

conditional future distribution for almost all histories, and we will condition only on

those histories.

Let us examine howP
�
�jx�

�
can fail to be well-defined for a given historyx�.

For each of the countably many wordss there may be a set of historiesNs — a set
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of measure zero — on whichlim
l!1

P(sjw
l
) does not converge. For example, ifx� has

a suffix wl with probability zero, then for allm > l, P(wm) = 0, andP
�
sjx�

�
is

ill-defined for all s. The unionN of the Ns is itself a null set. On its complement

X
Z
rN , which is thus a set of full measure,P

�
�jx
�

�
exists. We will callN the set of

bad histories, and we will say that a history isgood if it lies in X
Z
r N .

Now we are ready to define process states.

Definition 2.5.1. A process stateis a conditional future distribution which arises in

conditioning on a non-null history suffix or a good history. That is, a process state is

either a conditional future distributionP(�jw) for somew 2 R or it is a conitional future

distributionP
�
�jx
�

�
for somex� 2 X

�

rN . Thus thesetS of all process statesfor

a given process is

S = fP(�jw)jw 2 Rg [
�
P
�
�jx
�

�
jx
�

2 X
�

rN
	
: (2.13)

In section 2.4, we developed the idea of process states in terms of equivalence

classes of history suffixes. We have now developed a formal definition of process states,

and we have defined a process state to be a conditional future distribution and not an

equivalence class of history suffixes. This does not require changing how we think about

process states, because there is a natural correspondence between equivalence classes as

we described them in section 2.4 and conditional future distributions induced by non-null

history suffixes. Recall that two history suffixes are said to be equivalent if they induce

the same conditional future distribution. Thus every equivalence class has an associated

conditional future distribution. At the same time, every process state is induced by

at least one non-null history suffix or at least one good history. All history suffixes

which induce a given process state are automatically equivalent to each other, as are all

histories which induce a given process state. So every process state has an associated

equivalence class of history suffixes, an equivalence class of histories, or both.

In addition, some of our terminology will refer to process states as if they were

equivalence classes of history suffixes. In particular, we will say that a history or

history suffix is amemberor an elementof the process state which itinduces. In

addition, we define the mapG : X�! S which takes a non-null history to the process

state it induces, asG
�
x
�

�
= P

�
�jx
�

�
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Definition 2.5.2. The inducing set of historiesof a process stateA is the setG�1(A)

of all histories which induceA.

G�1(A) may be empty; this occurs ifA is induced only by history suffixes.

We will want to define a probability toG�1(A). As it happens, we do not know

thatG�1(A)�X+ — which lies inXZ — is measurable. This next result tells us that,

if it does not lie in the�-field H, G�1(A) � X+ differs from a measurable set by a

subset of a set of measure zero. Essentially, this means the we can reasonably assign a

measure to it. From here on, we will do so without comment.

Proposition 2.5.3. For any process stateA, G�1(A) � X+ can be written as the

intersection of a measurable set and a set of full measure.

Proof. In this proof, we will be referring to truncations of both the history and the

future. We will usel for history length andk for future length. Also, the reader is

reminded that the process stateA is a probability distribution on the future space, and

so it makes sense to refer toA(w), the probabilityA assigns to a wordw.

For every natural numberl and wordw, and for every historyx�, define

fwl
�
x
�

�
= E(1Aw jHl)

�
x
�

�
= P(wjx

�l . . .x�1) (2.14)

and

fw
�
x
�

�
= E(1Aw jH)

�
x
�

�
= P

�
wjx�

�
: (2.15)

By B.2.4, we know thatlim
l!1

fw
l

= fw almost surely.fw
l

is a measurable function, and

so its limit fw must be measurable.

If we have two process statesB andC, we will say that they arek-equivalentif, for

all wordsw of length less than or equal tok, B(w) = C(w). LetA be a process state

and letAk(A) be the set of all historiesx� which induce process statesG
�
x
�
�

that are

k-equivalent toA. In other language, that is,

Ak(A) =
�
x
�j for all w with jwj � k; P

�
wjx�

�
= A(w)

	
: (2.16)

That is,

Ak(A) =

\

w: jwj=k

�
x
�jP

�
wjx�

�
= A(w)

	

=

\

w: jwj=k

(fw)
�1

(A(w)):
(2.17)
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fA(w)g is a measurable set andfw is a measurable function, so the inverse image

(fw)�1(A) must be measurable. ThusAk(A) is a finite intersection of measurable set

and must be measurable. Further, if we take

A(A) =
1\

k=1

Ak(A); (2.18)

A(A) is a countable intersection of measurable sets, and so it is measurable.

Now, every history inA(A) \
�
XZ

rN
�

induces the process stateA, and no history

which is not inA(A) inducesA. ThusA(A) \
�
XZ

rN
�
= G�1(A). Note that the

XZ
r N has full measure, so we are done.�

The processes addressed in this section and the previous one output bi-infinite

sequences, but the idea of a process state is no less relevant to processes with finite or

semi-infinite output. The essential idea is that a state is a prediction of, or distribution

on, the future reached by some knowledge of the past.

Before going on to the next section, let us look an example. This process has

elements of both of the examples from the previous section. The alphabet isX = f0; 1g.

We first define a nonstationary probability measureQ on
�
XZ;X

�
, which generates

sequencesy = (. . .y�1y0y1...) 2 XZ such that

1. if t is even,yt = 1, and

2. if t is odd, thenyt is either0 or 1 with probability 1

2
each.

Now, we define the processP =
�
XZ;X;P

�
by P = 1

2
(Q+ T (Q)), whereT is the

shift map. In words, our process consists of alternating1s and coin flips, and the coin

flips are equally likely in either even or odd positions. We will not prove that this is a

process, nor will we do so for the examples in the next section. (In chapter 3, we will

develop a systematic approach to calculating probabilities of words, which will make

it practical to present such proofs). The processP is called theband-merging process

for historical reasons[15].
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DC

1|1/2

0|1/2

1|1

A

B

1|3/41|2/3

0|1/4

0|1/3

E
1|1-p

0|p

Fig. 2.1 Process state graph representation of the band-merging process.A, B, C, D, andE are

the process states.A is the start state (induced by�). The labels on the edges consist

of a symbol followed by a vertical bar and a transition probability. Herep= 1 �

p
2

2
.

Figure 2.1 is a process state graph representation of the band-merging process. The

small circles (A, B, C, D, andE) represent process states. The double circle for state

A indicates that it is the process state induced by�, which is called thestart state. The

process is said to bein a state if the known history or history suffix induces that state.

The edges represent possible transitions between states and the labels are of the form

symbol|transition probability. For instance, the edge from stateA to stateB, labeled

with “1|3/4” indicates that if the process is in stateA, then with probability3
4

it will

emit a 1, after which it will be in stateB.

The band-merging process has five process states. StateA is induced by any history

suffix consisting of an even number of1s, and stateB is induced by any history suffix

consisting of an odd number of1s. StatesC andD correspond to any history or history

suffix ending with a0 followed by an even or odd number of1s, respectively, and state

E is induced only by the history consisting entirely of1s. StateE is an interesting

example of a state which we could ignore because it is irrelevant to the study of the

process — it induced only by a single history which has mass zero — but which is well

defined. Such states are said to beelusive. We will discuss elusive states more in the

next section, after which we will usually ignore them.

2.6 Transient and Recurrent States

In section 2.5, we defined a process state to be a distribution on the future which
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is induced by a finite length history suffix or a semi-infinite history. This means that

there may be some process states which are induced by history suffixes and not by any

histories, some states which are induced by histories and not by history suffixes, and

some states that are induced by histories and history suffixes. In this section we classify

process states by the history objects which induce them.

First, we will define terms for the above distinctions.

Definition 2.6.1. A process state isinfinitely precededif it is induced by at least one

good history.

Definition 2.6.2. A process state isreachableif it is induced by at least one history

suffix w with P(w) > 0.

In addition, we need to define one more property. For a process stateA 2 S,

considerG�1(A), the set of histories which induceA. We know that we can assign this

set a measure, for which we will now use the shorthandP(A) = P
�
G�1(A)

�
, where

P
� is the measure on the history space. That is, if we have seen a historys, P(A) is

the probability thats induces process stateA.

Definition 2.6.3. A process state isrecurrent if P(A) > 0.

The termpositive recurrentis often used for this concept [13]. We have chosen to

use recurrent for brevity and because null recurrence does not happen in the systems

of interest here.

Now, for any process state, we may ask three questions. Is it reachable? Is it

infinitely preceded? And, is it recurrent? There are eight triples of answers, of which

three are impossible and five are observed.

Proposition 2.6.4.

1. Every unreachable process state is infinitely preceded.

2. Every recurrent process state is infinitely preceded.

This proposition asserts that the following three kinds of states do not occur:

• unreachable recurrent states which are not infinitely preceded,

• reachable recurrent states which are not infinitely preceded, and
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• unreachable states which are neither recurrent nor infinitely preceded.

Proof. Statement 1 is automatic from the definition of a process state, since every

process state is induced by at least one history or history suffix. Statement 2 follows

from definitions 2.6.1 and 2.6.3. LetA be a recurrent process state. ThenG�1(A) has

positive measure and thus is nonempty. SinceG�1(A) contains only good histories,

then it contains at least one good history which inducesA. �

Definition 2.6.5. A process state istransient if it is reachable and not recurrent. A

transient state is said to bestrictly transientif it is not infinitely preceded.

Definition 2.6.6. A process state iselusiveif it is unreachable and not recurrent.

Unlike the other kinds of states we have discussed, elusive states can often be

ignored. Whereas every reachable state can be induced by at least one word of

positive probability and a recurrent state can be induced by a set of histories of positive

probability, an elusive state can only be induced by events of zero probability. Thus any

countable set of elusive states can be ignored without changing the process’ probability

measure. We will usually omit elusive states for brevity. However, in some processes

the existence and structure of the elusive states is implied by the recurrent states and

in others the set of all elusive states is uncountable and has positive measure, so we

cannot forget them completely.

Proposition 2.6.4 established that there are five classes of states. This, together

with definitions 2.6.5 and 2.6.6, gives us names for them. Table 2.1 summarizes the

relevant information about each type. In figure 2.2, we have examples of all types except

unreachable recurrent states. In order to present processes which have such states in a

reasonable form, we will need to develope more machinery for presenting processes.
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Process state type Reachable Infinitely
Preceded

Recurrent

Strictly Transient yes no no

Infinitely Preceded
Transient

yes yes no

Reachable Recurrent yes yes yes

Unreachable Recurrent no yes yes

Elusive no yes no

Table 2.1 Summary of process state types.

B C

0|1/2

1|1

1|1/2

A
1|2/3 0|1/3

(a) (b)

F G1|1/2

1|1

0|1/2

D E

1|2/3

1|3/4

0|1/4

0|1/3

H

1|p

1|1-p

Fig. 2.2 Process state graph representations of two processes. (a) The golden mean process. The process stateA

is reachable and neither infinitely preceded nor recurrent. StatesB andC are reachable, infinitely

preceded and recurrent. (b) The even process. Herep = 1 �

p
2

2
. StatesD andE are reachable and

infinitely preceded but not recurrent,F andG are reachable, infinitely preceded and recurrent, andH

is unreachable, infinitely preceded, and not recurrent. For both of these processes, there may be

additional ill-defined states resulting from conditioning on histories in some measure-zero bad set.

2.7 Synchronization

Suppose we are watching the output of the even system, and the history suffix we

have seen contains all1s. This means that our state of knowledge about the future of the

process is described by either process stateD or E. It is possible that another observer,

who has been watching longer, knows more about the future than we do. In contrast, if

the history suffix we have seen contains a0, then this is not the case. An observer may
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have more historical information than we do, but this extra information is irrelevant to

the future. In this case we say that we aresynchronizedto the machine.

Definition 2.7.1. A non-null history suffixw is asynchronizing wordif all good histories

and all non-null history suffixes which end inw induce the same process state.

Proposition 2.7.2. If w is a synchronizing word, thenw induces a reachable recurrent

process state.

Proof. Let A be the process state induced byw. A is induced by a history suffix, so

it is reachable. Note thatw is itself a history suffix that ends inw, soA is the process

state induced by all histories and history suffixes which matchw. Further, we know

thatw is not a null word, and that the set of histories which matches it is a subset of

G�1(A). So we have

P(A) � P(all histories which matchw)

� P(w) > 0:
(2.19)

Thus we conclude thatA is recurrent.�

The converse of Proposition 2.7.2 does not hold. There are process in which

nonsynchronizing words induce recurrent states. Also, some processes have no reachable

recurrent states, and hence no synchronizing words. These processes either have

unreachable recurrent states or have uncountably many elusive states. We will see

examples in section 3.5.


