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Appendix A Notation

Processes

X Alphabet (set of symbols), canonicafg, 1,...,m — 1}.

xZ The set of bi-infinite sequences of symbolsin

X—, at The history and future sequence spaces, which are sets of
semi-infinite sequences.

X A bi-infinite sequence, that is, an element.bf.

x~, xt Semi-infinite history and future sequences, which are elements of
X~ andX'T respectively.

X; ith element in sequence, x™, or x~.

X The set of all (finite-length) words of symbols ..

w, s Words inX'™* or subsequences, especially history suffixes, which
are subsequences with end timé, or next words, which are
subsequences with end time

|w] The length of a word or subsequence

Ay The set of (bi-infinite) sequences which match the weord

X The o-field on.YZ generated by the cylinder sets.

F The futurecs-field, subset o¥.

H The historys-field, subset ofX.

P A probability distribution on measureable spdce?, X).

P A process, which is a measure spdce?, X, P) in which P is
stationary.

N The set of bad histories, on which we do not condition.

R The set of non-null history suffixes — that is, the set of words
with positive probability — on which conditioning is well defined.

P(-|s) The conditional distribution on the future induced by a werdf
s € R, P(-]s) is a reachable process state.

P(-x7) The conditional distribution on the future induced by a history
x~. If s ¢ A/, P(:|x7) is an infinitely preceded process state.

A A process state, which is a conditional distribution on the future

induced by conditioning on a history, a history suffix, or both.
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Hidden Markov Models

.
V]

s

P
2,9

Tk

ij

o
(V.4 7%}, 7)

Set of presentation states or Markov chain states.
The size — that is, number of elements —16f

The initial distribution of a Markov chain or an HMM, which we
always take to be stationary.

The transition matrix of a Markov ChaifV, P, r).
Indices which refer to specific presentation states.
An index which refers to a symbol in the alphabiét

A joint matrix of a Hidden Markov Model, also sometimes
referred to as a transition matrix. Note that the supersérigtan
index, not an exponent.

An entry in a joint matrix: if the HMM is in the presentation
stater, Ti’} is the probability that the HMM will make a transition
to presentation state and emit the symbat.

For any wordw = wy . ..wy, T is the product/™ 7" . .. T,

A Hidden Markov Model. The of matrice§7'*} contains one
matrix for each symbok € X'.

The output matrix for an HMM which emits symbols from states
rather than from transitions. Such an HMM may be converted to
joint matrix form by assigning’}; = P;; Bjy..

A column vector containing alls. Size is implied by context.

The normalization operator: if is a row vector,N(v) is v
multiplied by a scalar so that its entries sumlto

The mixed state induced by a history suffix R or a history
x~ € N. Fors, we havey(s) = N(x1%).

Mixed states of an HMM, which are row vectors satisfying
pl =1.

The space of all signed measures on the future.

The span of the reachable process states, which is a subspace of
W.
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Generalized Hidden Markov Models

M Conjugation matrix, which is an invertible unit-sum matrix.

H, F History and future vector spaces, which are spaces of row and
column vectors.

Kr The subspace off consisting of all vectors which are sent to zero
by multiplication on the right by every vector iA.

Ky The subspace af consisting of all vectors which are sent to zero
by multiplication on the left by every vector iH.

H A matrix, the rows of which are mixed states and form a basis for
H/Kr.

F A matrix, the columns of which have the fori¥T and form a
basis forF/Ky.

w, S History and future wordlists. The rows &f are the mixed states

induced by the words iV, and the columns of" are the vectors
71 for the wordss € .

BF A joint matrix for the standard presentatioR* solves
HT*F = B*HF .
vy The initial vector of the standard presentatiansolves

rl'=~HF.
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Reconstruction

qi The:th word in a fixed ordering oft’™*.

P TheN x N matrix with entriesP;; = P(q;|q¢;).

P The |W'| x |S’| truncation of P containing those rows and

columns which correspond to words in the large wordlitsand
S’ respectively.

7(s]w) The frequency-count estimate Bf s|w) estimated from sample
data.

P A [W'| x |S’| approximation toP estimated from sample data.

r(w) The row of P which corresponds to the word.

c(s) The column of which corresponds to the word

r'(w) The sub-row ofr(w) containing only those columns
corresponding to words i

d(s) The sub-column of(s) containing only those rows corresponding
to words int.

G The submatrix off containing those rows and columns which

correspond to words in the wordlists and S respectively.GG is
normally chosen to be invertible.

ol The [W| x |S| matrix with entriesC}; = P(ks;|w;).

Bk A joint matrix of the reconstructed presentation, given by
Bk — CkG—l
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Appendix B Selected Probability Theory

This appendix outlines selected elements of probability theory that are used in this
dissertation. For a thorough presentation of this material, see any text on the subject,
for example [14,13].

B.1 Kolmogorov's Extension Theorem and Process Existence

The purpose of this section is to prove the following theorem, which is our tool for
showing that processes exist.

Theorem B.1.1. Given a mapf : X* — [0, 1] statisfying

1. f(A) =1, and

2. For all wordsw € X*, f(w) = > flzw) = >, f(wz),
zeX ZEX

there is a unique (stationary) proceBs= (X2, X,P) such that for allw € X*,
P(w) = f(w).

This result is derived from Kolmogorov’s extension theorem, which appears in the
literature in several forms. None of the forms the author has seen, however, can be
transformed into the form we need without an unreasonable amount of manipulation,
thus this section. We will us®” and RN to refer to the Boreb-fields onR™ and
RN, respectively.

Theorem B.1.2. (Kolmogorov's Extension Theorenf13 p. 428]) Suppose that
we are given probability measurgs on (R", R") that are consistent; that is,

pnt1((a1, b1] X ..o X (ap, an] X R) = pu((a1, b1] X ... X (an, ay)). (B.1)
Then there is a unique probability measi#eon (RN, RN) with
P(z|z € (a;,b),1 <i < n) = pp((a1,b1] X ... x (ay, by])- (B.2)

There are three diferences between the probability medstiteR™N, P) shown to
exist by Kolmogorov's Extension Theorem and a stationary pro(:é’s?s, X,P). We
will need to surmount all three to prove theorem B.1.1. Fiét,is a product of copies
of the real numbers and? is a product of copies of the finite discrete sét We will
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deal with this by an injective map: X' — R. Second, and most troublesome, elements
of RN are semi-infinite sequences and elementstéfare bi-infinite sequences. Our
trick for working around this difficulty makes use of a bijective mapN — 7, and
involves considering the integers in the or@et, —1,2,—2..... This has an unfortunate
effect on the readability of the proofs. La®, need not be stationary nor does it need
to satisfy any similar condition. We will use Kolmogorov’s Extension Theorem to show
that P exists, and then prove separately that it is stationary.

Before we begin, we will introduce several functions and some notation. First, we
defineg to be any injective map : X — R. It will not matter what the images of
particular symbolse € X' are, as long as they are different.

Second, we define the bijective map N — Z mentioned above by

n/2 n even
hn) = {(1 —n)/2 n odd (83)

Its inverse is given by

2 >0
-1 . Y Y
W y) = { 1—2y y<0. (B4)

In effect, ~ alternately returns positive and negative integers. It maps3,4,5 to
0,1,—1,2,—2 respectively, anch=! maps—2, —1,0,1,2 to 5,3,1,2,4 in that order.
Several more functions are defined in termsfof J(n) is a set-valued function
J(n)={y € Z|h~'(y) < n}, andd(n) andc(n) are respectively the largest and smallest
values inJ(n). Because we will usg(n) primarily as an index set, we will consider

its elements in a particular order, namely increasing numerical order. These functions
can be characterized by the following equations:

c(n) = min(h(n), h(n — 1)) = { j:j " g‘é‘;” (B.5)
d(n) = maxh(n), h(n — 1)) = { %2;1 e (B.6)
J(n) ={ec(n),...,d(n)}. (B.7)

The reader may wish to verify a few facts which will be needed presently.idfeven,
we haveh(n+ 1) <0,¢(n+1) =c¢(n)—1andd(n+ 1) =d(n). If n is odd, we have
hin41) >0, c¢(n+1) =¢(n) andd(n+ 1) = d(n) + 1.
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Now we move on to sets of subsequences. We will &i¢e®! to denote the set
of all subsequences, ...x; with start timee and end time. Similarly, we will use
X7(") to denote the set of all subsequenegs,) . .. 7, With start timec(n) and end
time d(n). Becausd.J(n)| is always equal ta, X'/(") is a product of. copies of..
In fact, X'7/(") is identical to.X™ except that the coordinates af’(*) are labeled with
c(n),e(n+1),...,d(n) instead ofl, 2, ..., n. Thus, ifn is odd, X /+1) = 37 « x|
whereas ifn is even, X /(ntl) = x x x/(),

In addition, we need to define a function that takes subsequencas’i to
subsequences IR" and a closely related function that takes bi-infinite sequences in
X7 to semi-infinite sequences Y. We will denote both of these functions Y.
They will reorder their argument’s coordinates and map them fntolf = € X7/,
then there is a subsequence R" that satisfies); = g(xp(;)) foralli e 1,...,n. We
definefl : /(") — R™ by H(z) = v. For example, ift = z_jzoz122 € X’®, then

H(xz_1zoz122) = g(20)g(x1)g(z—1)g9(2). (B.8)

For an arbitraryr = (... 74, € X7, we have

H (@ o(m)o(n)41 - - Ta(m)) = 9(20)g(21) - 9 (Te(m)4d(m)41) (B.9)

Similarly, if x € XZ, then there exists € RN such that for all € Z, the coordinate

v; satisfiesv; = g(xh(i)>. We defined : X% — RN by H(x) = v. Neither version of

H is invertible, because is not invertible. However, they do have set inverses. For
instance, ifA C R” then H=1(A) — {T e XYW |H(x) e A}.

[4.0] of the form

Next, we define anndexed product set to be a subset oft
S =S, x...x S, whereS; c X. If § =5, x...x S is an index product set, and
S' c X, thenS x §' is an indexed product set contained A**+1]l. We define the

cylinder mapC'y! which takes indexed product sets to sets of sequences as follows:
Cyl(S) = {x c Xy, €S, a<i< b}. (B.10)

That is, C'yl(S) is the set of all sequences i? that match a subsequencedn We
will also define the shift maf” on indexed product sets by

T(S) = {:c el e Sy a<iHl < b}- (B.11)
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(The reader may have noticed that we are using the same notation for the shift map on
indexed product sets as we use on sequences.)

Lemma B.1.3. The following facts about'y! and7" may be easily verified, and
we will give no proof.

Cyl(S) = Cyl(S x X) = Cyl(X x 9)

TIEXX)=T(S) xX =X xT(5)

T(Cyl(S)) = Cyl(T(S5))

One special interaction is worth noting. L&tc .X'/(") be an indexed product set

= Se(n) X --- X Sy(n) and let

n

A:Om@p:&ex%@e&ﬁnm@dmgigﬂm} (B.12)
Then we have
zwﬁ:{xeXMmﬁﬂmﬁmne&ﬂ,wwg¢+1gﬂm}, (B.13)

Jumz{xexﬂwesﬁbdmgi+1gﬂm} (B.14)

andT'(A) = Cyl(T(S)) and thus by lemma B.1.3/(A) = Cyl(T(S5) x X).

Finally, notice that for any indexed product se€ X% there is a sef c X7/,
wheren = min (—2a,2b+ 1), such that“'y/(5) = Cyl(S). Since every cylinder set
can be written ag'y/(S) for someS € X[ this means that every cylinder set can
be written asCy!(S) for someS ¢ x 7,

At last, we are ready to state and prove a result. This is Kolmogorov’s extension
theorem in a form which applies to processes.

Theorem B.1.4 (Bidirectional Discrete version of Kolmogorov’'s Extension Theo-
rem). Suppose we have a sequence of measyres X' /(") which satisfy the following
conditions for alln and for all indexed product sets  X7("). If n is odd,

vn(S) = vp41(S x X) (B.15)
and if n is even,
vn(S) = vp41(X x S) and (B.16)

va(S) = v (T(S) x ). (B.17)
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Then there exists a unique stationary procgss (X2, X,P) such that, for all: and
for all 5 ¢ x/(),

P(CyI(S)) = va(S). (B.18)

The proof of this statement is in two parts. In the first, we show Ehaikists using
the awkward mapping tricks defined above, theorem B.1.2 and equations B.15 and B.16.
In the second, we use equations B.15, B.16, and B.17 to showPtlmatstationary.

Proof. We define a sequence of measurgson R" as follows: if A ¢ R", we
define i, (A) = vu (H71(A)), that is

jin( A) = un{x e XM H(2) € A} (B.19)
The following calculation establishes that thgs are consistent. By definition,
fing1(A X R) = vy1 (H7HA x R)). (B.20)

Now, H~1(A x R) can be rewritten as

_ H7Y(A)x X n odd
1 _
H7(AxR) = {X x H7Y(A) n even (B.21)
so we have
I RZES (H_I(A) X X) n odd

a1 (A X R) = {un+1()( x H7'(A)) n even (B.22)

And by applying equations B.15 and B.16 to the right-hand sides, we get
nt1(AXR) = v, (H (A
fint1( ) (H'(A)) (B.23)

= pin(A).
Thus, we can apply Kolmogorov’s Extension Theorem to the meagureshich gives
us a unique measui@ on (RN, RN) which agrees with the,,: if A; is a Borel set for
all: e 1,....nand A = A x ... x A,, then

P(x|x; € Ay, i€ 1,....n). (B.24)
Now we defineP. For all § € X,

P(S) = P(H(z)|x € 9). (B.25)



121

This P is in fact an extension of the,s. For allS € X7("), we have
vn(.S) = pn(H(5))
=P(acRNar...a, € H(S)) (B.26)
_ P<X € Xt o) - Tan) € 5) — P(Cyl(S))
Thus, we have shown th& exists.

To show thatP is stationary, we need to show th®(7'(A)) = P(A) for a
sufficiently rich set ofA € X. Any collection which contains all the cylinder sets
will suffice. The collection we choose is

A= {(Jyl(S)| indexed product set§ ¢ /™ for somen}. (B.27)

Thus, everyA € A has an associated and an associatetl. (Of course, there will be
more than one suitable S pair, but there will be a smallest and a unique associated
S, and these are the and S to which we refer.)
If n is even, equation B.17 gives us
P(A) = va(5)
= v (T(S) x X) (B.28)
=P(Cyl(T(S) x X)).
And sinceCyl(T(S) x X) = Cyl(T(S)) = T(A), this become®(A) = P(T(A)).
If » is odd, we expand by one and then do a similar calculation.
P(A) = va(5)
= l/n_|_1(5 X X)
(B.29)
= vp42(T(S x X) x X)

=P(Cyl(T(S x X) x X))
Here we can again apply lemma B.1.3 to géfl/(7(S x X') x X') = T(A), and thus
P(4) = P(T(A)).1
Now we are ready to prove theorem B.1.1, which we restate here:
Theorem B.1.1. Given a mapf : X* — [0, 1] statisfying
1. f(A\) =1, and
2. For all wordsw € X'*,

flw) =" flzw) =) f(wz), (B.30)

zelX 2€X
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there is a unique stationary proce®s = (XZ,X,P) such that for allw € X,
P(w) = f(w).

The proof will proceed as follows: we will construct measurgswhich satisfy
equations B.15, B.16, and B.17, and then apply Theorem B.1.4 to get the result.

Proof. For allw € X* and|w| = n, let S = {w} and define
vn(S) = f(w). (B.31)

For a generab c X7/("), § is a disjoint union of sets of the fortfi, = {w}. Thus we
may safely define the measurg on all subsets oft /(") by

(S) =D val(Sw) = Y flw). (B.32)

weS weS

We need to show that, is a probability measure; that is, we need to show that
Vn <XJ(")> — 1. We will do this by induction om. If n = 0 then X7/(®) = {\}
and we are giverf(\) = 1, sov; is a probability measure. The induction step depends
on equation B.30, and the odd and even cases must be done separataly.otfd and
vy, 1S @ probability distribution, then we have

Vn+1<XJ(n—|—1)>: Z F(w)

weXJ(n+1)

= Z Zf(wm)

weXI(m zeX (B.33)

If » is even and,, is a probability measure, then the calculation is the same except that
we write f(zw) in place of f(wx) and we use the other half of equation B.30.

Now we must show that equations B.15, B.16, and B.17 are satisfied. We will
establish each of them using equation B.30 much as before. First equation B.15,
assumingn is odd:

va(S) =Y flw) =YY" flwr)

weS weS zelX

— Z f(2) (B.34)
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Second, equation B.16, assumings even:

)= fw)=> Y faw)

wWES weS veX
— Z f(z) (B.35)
Z€(XA%S)
= vp41(X x 5)
Lastly, equation B.17, again assumingis even:

)= fw)=> Y f(wa)

weS weS zelX

= > flz

Z€(SxX)
But this time, S x X ¢ X7("), so the expression,, (S x .X') does not make sense.
However, we do havd'(S x X) = T(S) x X c X7/ andf does not depend on

time indices, so we have
= > flz Y. f2)
2E(Sx.X) 2€(T(S)xX) (B.37)

= vn41(T(S) x X).
We have now shown that the,s satisfy all of the conditions of theorem B.1.4.

(B.36)

Thus, applying this theorem, we have shown that there exists a unique stationary process
P = (X%, X, P) such that for alk and for allS ¢ X7, we haveP(Cyl(S)) = va(S).
Therefore, if we letS = {w} for any lengthn word w, we have

F(w) = va(S) = P(CyI(S)) = P(w). (B.38)

So we are don#

B.2 Martingales

This section presents the martingale convergence results needed in chapters 2 and 3.
Let X be a random variable on a probability spafe 7, P), and letG be a subs-field
of 7. That is,G is ac-field andG C F as sets of sets.

Definition B.2.1. The conditional expectationf X with respect t@; is any random
variable Y that satisfies

1. Y is measureable with respect o and
2. forall A € G,

/ XdP = / Y dP. (B.39)

A A
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Several facts about conditional expectation are worth noting. First, conditional
expectations exist on all the probability spaces considered in this dissertation. Second,
conditional expectations are unique up to sets of measure zero — it'batidY”’ satisfy
definition B.2.1, thert” = Y’ almost everywhere. Third, a conditional expectation is a
variable, not a constant. That i5, is a function on(2. However,Y is constant almost
everywhere on atoms @f. (A setA € G is an atom if the only sets ig which are
subsets of4 are the empty set and itself.)

The connection between conditional expectation and the conditional probability of
elementary probability is as follows. I is a random variable o}, 7, P), thenZ
induces ar-field o(Z) on 2, namely the smallest-field containing all sets of the form
Z7Y(B) for Borel setsB. Let A be a set inF with indicator function (characteristic
function) 14. If we fix a constantc € R and evaluate the conditional expectation
E(14]l0(Z)) onz € Z71(¢), we find that

E(14|0(Z2))(2) =P(x € A|Z = ¢) (B.40)
for almost every such:.

A filtration is an increasing sequence effields {F} =F, C Fo C ...,

Definition B.2.2. A sequence[ X'} = Xy, Xy, ... is a martingalewith respect to

the filtration {F} if

1. for all 7, X; is measureable with respect f§, and
2. for all s,# € N such thatt > s, X, = E(Xy|F)

Martingale convergence theorems are commonly stated like thigXjf} is a
martingale andk(| X,,|) < oo for all n, then there exists a random variable such
X
establishes that the limik exists, not whatX is.

that X,, converges almost surely t& with E(

) < oo. Note that this statement

The result needed in this disseratation is this. Given a filtra{i6n, let G be the
smallesto-field that contains every;. Let A be a set inF, and defineX,, to be the
conditional expectatiol (1 4|F,). Then{X } is a martingale with respect {oF}. The
fact we need isX,, — E(14|G) almost surely.

The following result appears as theorem 4.3 in [36].

Theorem B.2.3. (Doob’s Martingale Convergence Theorem)f {F,} is an
increasing sequence offields (that is, for alln > 0, F,, is a subs-field of F,+1),
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and X is a measureable function such thgt X |) < oo, then lim E(X|F,) converges
almost surely td( X |F), whereF is the smallest-field whig;goontains all of theF,;s.

Now the result we need is simply Doob’s Martingale convergence theorem restricted
to the case in whichX is an indicator function.

Corollary B.2.4. If {F,} is an increasing sequence offields andA is an event,
thenP(A|F,) — P(A|F) almost surely, wheré is the smallest-field which contains
all of the F,s.
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distribution, 14

conjugate, 59
cutpoint, 95
cylinder set, 8

degeneralization problem, 108
deterministic, 35
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fair coin, 11
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forward-backward, 83
future, 12

events, 12
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matrix, 65
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Golden Mean Process, 43
good histories, 17

Hidden Markov Model, 1, 28
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events, 12
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matrix, 65

space, 12
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HMM, 28

identifiability, 72

indexed product set, 118
induced, 39

inducing set of histories, 18
infinitely preceded, 21
irreducible, 27

joint matrices, 28
labeled directed graph, 33

Markov Chain, 25
martingale, 124
match, 8
minimal, 65
for a process, 86
minimization, 72
mixed state, 36
mixed state representation, 41
mixed state version, 37

modified nested parentheses
process, 34

next symbol, 8
normalize, 36
null history, 13
null word, 13

order, 100

presentation, 25
presentation states, 28
process, 7, 10

defined by an HMM
presentation, 32

process state, 15, 17
process state graph, 20
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Markov Model, 56
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quasi-initial vector, 76
guasi-presentation, 76
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rank, 87
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realization, 13

reconstruction from a sample,
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reconstruction problem, 83
recurrent, 21

recurrent component, 27
reducible, 27

reverse state, 85

SDFA, 35
shift map, 9
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Source (SNS), 44

standard initial vector, 73
standard presentation, 72, 73
standard transition matrices, 73
stationary, 9

stationary distribution, 28
stochastic, 53

Stochastic Deterministic
Finite Automaton, 35

stochastic finite automaton, 35
strictly transient, 22
subcolumn, 87
subsequence, 8
sufficient, 65
for a process, 86
symbol, 2,7
synchronizing word, 24

transient, 22
transition matrix, 29
Two Biased Coins (2BC), 47

underlying Markov Chain, 28
unit-sum, 52
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word, 8
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