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Appendix A Notation

Processes
X Alphabet (set of symbols), canonicallyf0; 1; . . . ;m� 1g.

XZ The set of bi-infinite sequences of symbols inX .

X�, X+ The history and future sequence spaces, which are sets of
semi-infinite sequences.

x A bi-infinite sequence, that is, an element ofXZ.

x
�, x+ Semi-infinite history and future sequences, which are elements of

X� andX+ respectively.

xi ith element in sequencex, x+, or x�.

X � The set of all (finite-length) words of symbols inX .

w, s Words inX � or subsequences, especially history suffixes, which
are subsequences with end time�1, or next words, which are
subsequences with end time0.

jwj The length of a word or subsequencew.

Aw The set of (bi-infinite) sequences which match the wordw.

X The�-field onXZ generated by the cylinder sets.

F The future�-field, subset ofX.

H The history�-field, subset ofX.

P A probability distribution on measureable space
�
XZ;X

�
.

P A process, which is a measure space
�
XZ;X;P

�
in whichP is

stationary.

N The set of bad histories, on which we do not condition.

R The set of non-null history suffixes — that is, the set of words
with positive probability — on which conditioning is well defined.

P(�js) The conditional distribution on the future induced by a words. If
s 2 R, P(�js) is a reachable process state.

P
�
�jx�

�
The conditional distribution on the future induced by a history
x
�. If s 62 N , P

�
�jx�

�
is an infinitely preceded process state.

A A process state, which is a conditional distribution on the future
induced by conditioning on a history, a history suffix, or both.
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Hidden Markov Models
V Set of presentation states or Markov chain states.

jV j The size — that is, number of elements — ofV .

� The initial distribution of a Markov chain or an HMM, which we
always take to be stationary.

P The transition matrix of a Markov Chain(V; P; �).

i, j Indices which refer to specific presentation states.

k An index which refers to a symbol in the alphabetX .

T k A joint matrix of a Hidden Markov Model, also sometimes
referred to as a transition matrix. Note that the superscriptk is an
index, not an exponent.

T k
ij

An entry in a joint matrix: if the HMM is in the presentation
statei, T k

ij is the probability that the HMM will make a transition
to presentation statej and emit the symbolk.

Tw For any wordw = w1 . . .wn, Tw is the productTw1Tw2 � � � Twn.
�
V;X ;

�
T k

	
; �
�

A Hidden Markov Model. The of matrices
�
T k

	
contains one

matrix for each symbolk 2 X .

B The output matrix for an HMM which emits symbols from states
rather than from transitions. Such an HMM may be converted to
joint matrix form by assigningT k

ij = PijBjk.

~1 A column vector containing all1s. Size is implied by context.

N The normalization operator: ifv is a row vector,N(v) is v

multiplied by a scalar so that its entries sum to1.

�(s), �
�
x
�

�
The mixed state induced by a history suffixs 2 R or a history
x
� 2 N . For s, we have�(s) = N(�Ts).

�, � Mixed states of an HMM, which are row vectors satisfying
�~1 = 1.

W The space of all signed measures on the future.

U The span of the reachable process states, which is a subspace of
W.
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Generalized Hidden Markov Models
M Conjugation matrix, which is an invertible unit-sum matrix.

H, F History and future vector spaces, which are spaces of row and
column vectors.

KF The subspace ofH consisting of all vectors which are sent to zero
by multiplication on the right by every vector inF .

KH The subspace ofF consisting of all vectors which are sent to zero
by multiplication on the left by every vector inH.

H A matrix, the rows of which are mixed states and form a basis for
H=KF .

F A matrix, the columns of which have the formT s~
1 and form a

basis forF=KH.

W , S History and future wordlists. The rows ofH are the mixed states
induced by the words inW , and the columns ofF are the vectors
T s~
1 for the wordss 2 S.

Bk A joint matrix for the standard presentation.Bk solves
HT kF = BkHF .

 The initial vector of the standard presentation. solves
�F = HF .
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Reconstruction
qi The ith word in a fixed ordering ofX �.

P TheN�N matrix with entriesPij = P(qjjqi).

P The jW 0j � jS 0j truncation ofP containing those rows and
columns which correspond to words in the large wordlistsW 0 and
S 0 respectively.

�(sjw) The frequency-count estimate ofP(sjw) estimated from sample
data.

P̂ A jW 0j � jS 0j approximation toP estimated from sample data.

r(w) The row ofP which corresponds to the wordw.

c(s) The column ofP which corresponds to the words.

r0(w) The sub-row ofr(w) containing only those columns
corresponding to words inS

c0(s) The sub-column ofc(s) containing only those rows corresponding
to words inW .

G The submatrix ofP containing those rows and columns which
correspond to words in the wordlistsW andS respectively.G is
normally chosen to be invertible.

Ck The jW j � jSj matrix with entriesCk
ij = P(ksjjwi).

Bk A joint matrix of the reconstructed presentation, given by
Bk

= CkG�1
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Appendix B Selected Probability Theory

This appendix outlines selected elements of probability theory that are used in this

dissertation. For a thorough presentation of this material, see any text on the subject,

for example [14,13].

B.1 Kolmogorov’s Extension Theorem and Process Existence

The purpose of this section is to prove the following theorem, which is our tool for

showing that processes exist.

Theorem B.1.1. Given a mapf : X � ! [0; 1] statisfying

1. f(�) = 1, and

2. For all wordsw 2 X �, f(w) =
P

z2X

f(zw) =
P

z2X

f(wz),

there is a unique (stationary) processP =

�
XZ;X;P

�
such that for allw 2 X �,

P(w) = f(w).

This result is derived from Kolmogorov’s extension theorem, which appears in the

literature in several forms. None of the forms the author has seen, however, can be

transformed into the form we need without an unreasonable amount of manipulation,

thus this section. We will useRn andRN to refer to the Borel�-fields onRn and

R
N, respectively.

Theorem B.1.2. (Kolmogorov’s Extension Theorem[13 p. 428]) Suppose that

we are given probability measures�n on (R
n;Rn

) that are consistent; that is,

�n+1((a1; b1]� . . .� (an; an]�R) = �n((a1; b1]� . . .� (an; an]): (B.1)

Then there is a unique probability measureP on
�
R
N;RN

�
with

P(xjx 2 (ai; bi]; 1 � i � n) = �n((a1; b1]� . . .� (an; bn]): (B.2)

There are three diferences between the probability measure
�
R
N;RN;P

�
shown to

exist by Kolmogorov’s Extension Theorem and a stationary process
�
XZ;X;P

�
. We

will need to surmount all three to prove theorem B.1.1. First,R
N is a product of copies

of the real numbers andXZ is a product of copies of the finite discrete setX . We will
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deal with this by an injective mapg : X ! R. Second, and most troublesome, elements

of RN are semi-infinite sequences and elements ofXZ are bi-infinite sequences. Our

trick for working around this difficulty makes use of a bijective maph : N ! Z, and

involves considering the integers in the order0;1;�1; 2;�2; . . .. This has an unfortunate

effect on the readability of the proofs. Last,P need not be stationary nor does it need

to satisfy any similar condition. We will use Kolmogorov’s Extension Theorem to show

thatP exists, and then prove separately that it is stationary.

Before we begin, we will introduce several functions and some notation. First, we

defineg to be any injective mapg : X ! R. It will not matter what the images of

particular symbolsx 2 X are, as long as they are different.

Second, we define the bijective maph : N ! Z mentioned above by

h(n) =

�
n=2 n even
(1 � n)=2 n odd:

(B.3)

Its inverse is given by

h�1(y) =

�
2y y > 0

1� 2y y � 0:
(B.4)

In effect, h alternately returns positive and negative integers. It maps1; 2; 3; 4; 5 to

0; 1;�1; 2;�2 respectively, andh�1 maps�2;�1; 0; 1; 2 to 5; 3; 1; 2; 4 in that order.

Several more functions are defined in terms ofh: J(n) is a set-valued function

J(n) =
�
y 2 Zjh�1(y) � n

	
, andd(n) andc(n) are respectively the largest and smallest

values inJ(n). Because we will useJ(n) primarily as an index set, we will consider

its elements in a particular order, namely increasing numerical order. These functions

can be characterized by the following equations:

c(n) = min(h(n); h(n� 1)) =

�
2�n

2
n even

1�n

2
n odd

(B.5)

d(n) = max(h(n); h(n� 1)) =

�
n

2
n even

n�1

2
n odd

(B.6)

J(n) = fc(n); . . . ; d(n)g: (B.7)

The reader may wish to verify a few facts which will be needed presently. Ifn is even,

we haveh(n+ 1) < 0, c(n+ 1) = c(n)� 1 andd(n+ 1) = d(n). If n is odd, we have

h(n+ 1) > 0, c(n+ 1) = c(n) and d(n+ 1) = d(n) + 1.
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Now we move on to sets of subsequences. We will useX [a;b] to denote the set

of all subsequencesxa . . .xb with start timea and end timeb. Similarly, we will use

X J(n) to denote the set of all subsequencesxc(n) . . .xd(n) with start timec(n) and end

time d(n). BecausejJ(n)j is always equal ton, X J(n) is a product ofn copies ofX .

In fact, X J(n) is identical toX n except that the coordinates ofX J(n) are labeled with

c(n); c(n+ 1); . . . ; d(n) instead of1; 2; . . . ; n. Thus, ifn is odd,X J(n+1) = X J(n)�X ,

whereas ifn is even,X J(n+1) = X � X J(n).

In addition, we need to define a function that takes subsequences inX J(n) to

subsequences inRn and a closely related function that takes bi-infinite sequences in

XZ to semi-infinite sequences inRN. We will denote both of these functions byH.

They will reorder their argument’s coordinates and map them intoR. If x 2 X J(n),

then there is a subsequencev 2 Rn that satisfiesvi = g
�
xh(i)

�
for all i 2 1; . . . ; n. We

defineH : X J(n) ! R
n by H(x) = v. For example, ifx = x

�1x0x1x2 2 X
J(4), then

H(x
�1x0x1x2) = g(x0)g(x1)g(x�1)g(x2): (B.8)

For an arbitraryx = xc(n) . . .xd(n) 2 X
J(n), we have

H
�
xc(n)xc(n)+1 . . .xd(n)

�
= g(x0)g(x1) . . . g

�
xc(n)+d(n)+1

�
: (B.9)

Similarly, if x 2 XZ, then there existsv 2 R
N such that for alli 2 Z, the coordinate

vi satisfiesvi = g
�
xh(i)

�
. We defineH : XZ ! R

N by H(x) = v. Neither version of

H is invertible, becauseg is not invertible. However, they do have set inverses. For

instance, ifA � R
n thenH�1(A) =

n
x 2 X J(n)jH(x) 2 A

o
:

Next, we define anindexed product setS to be a subset ofX [a;b] of the form

S = Sa � . . .� Sb, whereSi � X . If S = Sa � . . .� Sb is an index product set, and

S 0 � X , thenS � S0 is an indexed product set contained inX [a;b+1]. We define the

cylinder mapCyl which takes indexed product sets to sets of sequences as follows:

Cyl(S) =
n
x 2 XZjxi 2 Si; a � i � b

o
: (B.10)

That is,Cyl(S) is the set of all sequences inXZ that match a subsequence inS. We

will also define the shift mapT on indexed product sets by

T (S) =
n
x 2 X [a�1;b�1]jxi 2 Si+1; a � i+ 1 � b

o
: (B.11)
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(The reader may have noticed that we are using the same notation for the shift map on

indexed product sets as we use on sequences.)

Lemma B.1.3. The following facts aboutCyl andT may be easily verified, and

we will give no proof.

1. Cyl(S) = Cyl(S �X ) = Cyl(X � S)

2. T (S �X ) = T (S) � X = X � T (S)

3. T (Cyl(S)) = Cyl(T (S))

One special interaction is worth noting. LetS � X J(n) be an indexed product set

S = Sc(n) � . . . � Sd(n) and let

A = Cyl(S) =
n
x 2 XZjxi 2 Si for all i; c(n) � i � d(n)

o
: (B.12)

Then we have

T (S) =
n
x 2 X [c(n)�1;d(n)�1]jxi 2 Si+1; c(n) � i+ 1 � d(n)

o
; (B.13)

T (A) =
n
x 2 XZjxi 2 Si+1; c(n) � i+ 1 � d(n)

o
; (B.14)

andT (A) = Cyl(T (S)) and thus by lemma B.1.3,T (A) = Cyl(T (S)�X ).

Finally, notice that for any indexed product setS 2 X [a;b] there is a setS � X J(n),

wheren = min (�2a; 2b+ 1), such thatCyl(S) = Cyl
�
S
�
. Since every cylinder set

can be written asCyl(S) for someS 2 X [a;b], this means that every cylinder set can

be written asCyl
�
S
�

for someS 2 X J(n).

At last, we are ready to state and prove a result. This is Kolmogorov’s extension

theorem in a form which applies to processes.

Theorem B.1.4 (Bidirectional Discrete version of Kolmogorov’s Extension Theo-

rem). Suppose we have a sequence of measures�n onX J(n) which satisfy the following

conditions for alln and for all indexed product setsS � X J(n). If n is odd,

�n(S) = �n+1(S �X ) (B.15)

and if n is even,

�n(S) = �n+1(X � S) and (B.16)

�n(S) = �n+1(T (S)�X ): (B.17)
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Then there exists a unique stationary processP =
�
X Z;X;P

�
such that, for alln and

for all S � XJ(n),

P(Cyl(S)) = �n(S): (B.18)

The proof of this statement is in two parts. In the first, we show thatP exists using

the awkward mapping tricks defined above, theorem B.1.2 and equations B.15 and B.16.

In the second, we use equations B.15, B.16, and B.17 to show thatP is stationary.

Proof. We define a sequence of measures�n on Rn as follows: if A � R
n, we

define�n(A) = �n
�
H�1(A)

�
, that is

�n(A) = �n

n
x 2 X J(n)jH(x) 2 A

o
(B.19)

The following calculation establishes that the�ns are consistent. By definition,

�n+1(A� R) = �n+1

�
H�1(A� R)

�
: (B.20)

Now, H�1(A� R) can be rewritten as

H�1(A� R) =

�
H�1(A)�X n odd
X �H�1(A) n even;

(B.21)

so we have

�n+1(A� R) =

�
�n+1

�
H�1(A)�X

�
n odd

�n+1

�
X �H�1(A)

�
n even:

(B.22)

And by applying equations B.15 and B.16 to the right-hand sides, we get

�n+1(A� R) = �n
�
H�1(A)

�
= �n(A):

(B.23)

Thus, we can apply Kolmogorov’s Extension Theorem to the measures�n, which gives

us a unique measureP on
�
R
N;RN

�
which agrees with the�n: if Ai is a Borel set for

all i 2 1; . . . ; n and A = A1 � . . . � An, then

P(xjxi 2 Ai; i 2 1; . . . ; n): (B.24)

Now we defineP. For all S 2 X,

P(S) = P(H(x)jx 2 S): (B.25)
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This P is in fact an extension of the�ns. For allS 2 X J(n), we have
�n(S) = �n(H(S))

= P
�
a 2 RNja1 . . .an 2 H(S)

�

= P
�
x 2 X

Z
jxc(n) . . .xd(n) 2 S

�
= P(Cyl(S))

(B.26)

Thus, we have shown thatP exists.

To show thatP is stationary, we need to show thatP(T (A)) = P(A) for a

sufficiently rich set ofA 2 X. Any collection which contains all the cylinder sets

will suffice. The collection we choose is

A =
n
Cyl(S)j indexed product setsS � X J(n) for somen

o
: (B.27)

Thus, everyA 2 A has an associatedn and an associatedS. (Of course, there will be

more than one suitablen; S pair, but there will be a smallestn and a unique associated

S, and these are then andS to which we refer.)

If n is even, equation B.17 gives us

P(A) = �n(S)

= �n+1(T (S)�X )

= P(Cyl(T (S)�X )):

(B.28)

And sinceCyl(T (S)�X ) = Cyl(T (S)) = T (A), this becomesP(A) = P(T (A)).

If n is odd, we expandS by one and then do a similar calculation.

P(A) = �n(S)

= �n+1(S �X )

= �n+2(T (S �X )�X )

= P(Cyl(T (S �X )�X ))

(B.29)

Here we can again apply lemma B.1.3 to getCyl(T (S �X )�X ) = T (A), and thus

P(A) = P(T (A)).�

Now we are ready to prove theorem B.1.1, which we restate here:

Theorem B.1.1. Given a mapf : X �
! [0; 1] statisfying

1. f(�) = 1, and

2. For all wordsw 2 X
�,

f(w) =
X

z2X

f(zw) =
X

z2X

f(wz); (B.30)
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there is a unique stationary processP =
�
XZ;X;P

�
such that for allw 2 X �,

P(w) = f(w).

The proof will proceed as follows: we will construct measures�n which satisfy

equations B.15, B.16, and B.17, and then apply Theorem B.1.4 to get the result.

Proof. For all w 2 X � and jwj = n, let S = fwg and define

�n(S) = f(w): (B.31)

For a generalS � X J(n), S is a disjoint union of sets of the formSw = fwg. Thus we

may safely define the measure�n on all subsets ofX J(n) by

�n(S) =
X
w2S

�n(Sw) =
X
w2S

f(w): (B.32)

We need to show that�n is a probability measure; that is, we need to show that

�n

�
X J(n)

�
= 1. We will do this by induction onn. If n = 0 then X J(n) = f�g

and we are givenf(�) = 1, so�1 is a probability measure. The induction step depends

on equation B.30, and the odd and even cases must be done separately. Ifn is odd and

�n is a probability distribution, then we have

�n+1

�
X J(n+1)

�
=

X

w2X J(n+1)

f(w)

=
X

w2XJ(n)

X
x2X

f(wx)

=
X

w2XJ(n)

f(w)

= �n

�
X J(n)

�
= 1:

(B.33)

If n is even and�n is a probability measure, then the calculation is the same except that

we write f(xw) in place off(wx) and we use the other half of equation B.30.

Now we must show that equations B.15, B.16, and B.17 are satisfied. We will

establish each of them using equation B.30 much as before. First equation B.15,

assumingn is odd:

�n(S) =
X
w2S

f(w) =
X
w2S

X
x2X

f(wx)

=
X

z2(S�X )

f(z)

= �n+1(S �X ):

(B.34)
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Second, equation B.16, assumingn is even:

�n(S) =
X

w2S

f(w) =
X

w2S

X

x2X

f(xw)

=
X

z2(X�S)

f(z)

= �n+1(X � S)

(B.35)

Lastly, equation B.17, again assumingn is even:

�n(S) =
X

w2S

f(w) =
X

w2S

X

x2X

f(wx)

=
X

z2(S�X )

f(z):
(B.36)

But this time,S � X 6� X J(n), so the expression�n+1(S �X ) does not make sense.

However, we do haveT (S �X ) = T (S) � X � X J(n), and f does not depend on

time indices, so we have

�n(S) =
X

z2(S�X )

f(z) =
X

z2(T (S)�X )

f(z)

= �n+1(T (S)�X ):

(B.37)

We have now shown that the�ns satisfy all of the conditions of theorem B.1.4.

Thus, applying this theorem, we have shown that there exists a unique stationary process

P =
�
XZ;X;P

�
such that for alln and for allS � X J(n), we haveP(Cyl(S)) = �n(S).

Therefore, if we letS = fwg for any lengthn word w, we have

f(w) = �n(S) = P(Cyl(S)) = P(w): (B.38)

So we are done.�

B.2 Martingales

This section presents the martingale convergence results needed in chapters 2 and 3.

Let X be a random variable on a probability space(
;F ;P), and letG be a sub-�-field

of F . That is,G is a �-field andG � F as sets of sets.

Definition B.2.1. Theconditional expectationof X with respect toG is any random

variable Y that satisfies

1. Y is measureable with respect toG, and

2. for all A 2 G, Z

A

XdP =

Z

A

Y dP: (B.39)
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Several facts about conditional expectation are worth noting. First, conditional

expectations exist on all the probability spaces considered in this dissertation. Second,

conditional expectations are unique up to sets of measure zero — if bothY andY 0 satisfy

definition B.2.1, thenY = Y 0 almost everywhere. Third, a conditional expectation is a

variable, not a constant. That is,Y is a function on
. However,Y is constant almost

everywhere on atoms ofG. (A setA 2 G is an atom if the only sets inG which are

subsets ofA are the empty set andA itself.)

The connection between conditional expectation and the conditional probability of

elementary probability is as follows. IfZ is a random variable on(
;F ;P), thenZ

induces a�-field �(Z) on 
, namely the smallest�-field containing all sets of the form

Z�1(B) for Borel setsB. Let A be a set inF with indicator function (characteristic

function) 1A. If we fix a constantc 2 R and evaluate the conditional expectation

E(1Aj�(Z)) on x 2 Z�1(c), we find that

E(1Aj�(Z))(x) = P(x 2 AjZ = c) (B.40)

for almost every suchx.

A filtration is an increasing sequence of�-fields fFg = F1 � F2 � . . ..

Definition B.2.2. A sequencefXg = X1;X2; . . . is a martingale with respect to

the filtration fFg if

1. for all i, Xi is measureable with respect toFi, and

2. for all s; t 2 N such thatt > s, Xs = E(XtjF)

Martingale convergence theorems are commonly stated like this: iffXng is a

martingale andE(jXnj) < 1 for all n, then there exists a random variableX such

that Xn converges almost surely toX with E(jXj) < 1. Note that this statement

establishes that the limitX exists, not whatX is.

The result needed in this disseratation is this. Given a filtrationfFg, let G be the

smallest�-field that contains everyFi. Let A be a set inF , and defineXn to be the

conditional expectationE(1AjFn). ThenfXg is a martingale with respect tofFg. The

fact we need isXn ! E(1AjG) almost surely.

The following result appears as theorem 4.3 in [36].

Theorem B.2.3. (Doob’s Martingale Convergence Theorem)If fFng is an

increasing sequence of�-fields (that is, for alln � 0, Fn is a sub-�-field of Fn+1),
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andX is a measureable function such thatE(jXj) <1, then lim
n!1

E(XjFn) converges

almost surely toE(XjF), whereF is the smallest�-field which contains all of theFns.

Now the result we need is simply Doob’s Martingale convergence theorem restricted

to the case in whichX is an indicator function.

Corollary B.2.4. If fFng is an increasing sequence of�-fields andA is an event,

thenP(AjFn) ! P(AjF) almost surely, whereF is the smallest�-field which contains

all of the Fns.
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