
83

5 Reconstruction

The subject of this chapter is thereconstruction problem, which has two versions.

In both, the objective is to construct a presentation for some process given certain

information about that process. In the first, which we will callreconstruction from

probabilities, the given information is the probability the process assigns to every word

in X
�. In the second, which we will callreconstruction from a sample, the given

information is a sample of the process’s output. We will use this sample data solely to

estimate probabilities of words, so reconstruction from a sample may be viewed as a form

of reconstruction from probabilities in which the probabilities are only approximately

known. Alternatively, reconstruction from probabilities may be thought of as an idealized

form of reconstruction from a sample, in which the sample is infinitely large. In

both versions, we make the assumption that the span of the process states is finite-

dimensioned. In fact, we will show how to construct a GHMM presentation for any

process which satisfies this condition.

A substantial body of research has accumulated around the problem of reconstruction

from a sample for HMMs, for example [23–26]. Most of it involves versions of an

algorithm known as forward-backward or Baum-Welsh [17,24]. These are forms of the

expectation-maximization (EM) algorithm [27]. With all of these algorithms, a number

of structural assumptions are required — the number of states and some choice about

what transitions will be allowed to occur (for example, all may be allowed). Then a

random initial presentation which satisfies the structural assumptions is chosen. The

various algorithms then implicitly assume it describes the sample to some degree, and

iteratively adjust the parameters while leaving the structure fixed.

In contrast, we will present a solution to the problem of reconstruction from

probabilities, which appears not to have been studied before. We will follow this

with an adaptation of this solution to reconstruction from a sample. The resulting

reconstruction algorithm does not require its user to choose a number of states or a

structure of allowed transitions, nor does it depend on any ability of random HMMs to

describe the sample. Instead, it operates by estimating conditional distributions (that is,

process states) from the sample and then constructs GHMM transition matrices directly

from these conditional distributions.

84

This algorithm is new, and it is the work of the author. It should be noted,

however, that other elements of this algorithm have been used before. Gilbert [20]

and Dharmadhikari [10,28], consider the rank of the matrix of probabilities we call

HT kF . Given a function of a Markov chain in a certain class, Gilbert constructs a

new function of a Markov chain which is conjugate to the original. His technique,

like the one used here, derives a set of presentation states form a matrix of word

probabilities. Crutchfield [11] uses estimated probabilities to reconstruct presentations

of stochastic deterministic finite automata from samples. And the QL algorithm is a

standard technique in numerical linear algebra [29].

5.1 Constructing a Presentation for a Process

The key observation in section 4.3 was this: the matricesHF andHT kF , for all k,

do not depend on a presentation. We can rewrite theorem 4.3.10 as follows: if a process

P =

�
X
Z;X;P

�
has a presentation for whichW and S are minimal wordlists, then

�
W;X ;

�
Bk

	
;
�

is a presentation forP. That is, we can construct a presentation for

P almost without referring to a preexisting presentation — if we know the probabilities

of the right words, we can compute all the components of
�
W;X ;

�
Bk

	
;
�

from those

probabilities using 4.3.10. But so far, we still need a preexisting presentation from which

to construct the wordlists. To solve the problem of reconstruction from probabilities,

then, we need to be able to build minimal wordlists from probabilities — that is, from

a process without referring to a presentation.

It turns out that it is possible to construct suitable wordlists from probabilities of

words, but no finite algorithm can do so correctly in every case. The reason is simple:

a finite algorithm can only examine the probability of a finite number of words. If

we build a presentation from the probabilities of a finite number of words, then it is

always possible that there is a word, which was not examined, whose probability is not

correctly extrapolated from the words which were examined by the presentation. Thus,

the solution to the problem of reconstruction from probabilities must have an element

which is either infinitary or nonconstructive. Fortunately, there is an algorithm, built on

our theoretical framework, that works well in practice as we will see in the next section.

And we can find suitable wordlists directly given any upper bound on the maximum

word length, such as that which can be derived from the number of presentation states.

85

In chapter 4, we built our history wordlists so that the set of mixed states induced by

their words spannedH=KF . Recall thatU is defined as the span of the recurrent process

states, without reference to a presentation, and thatU is isomorphic toH=KF . To build

history wordlists without referring to presentations, we will choose words that induce

a set of process states spanningU . Describing the future wordlists in an analogous

fashion is a little more difficult because we do not have a concept analogous to “state”

that refers to something induced by the future.* If we recall the definition of a reachable

process state — a conditional distribution on the future which is induced by a history

word — then the appropriate analog is clear: a conditional distribution on the past which

is induced by a future word. Such a conditional distribution would be a process state if

we were to reverse the direction of time, so we will call it areverse state. The future

wordlists we wish to build, then, consist of words which induce a set of reverse states

which has the same span as the set of all reverse states. It will not be necessary to

actually write reverse states in any calculations, so we will not define notation for them.

At this point, we shift to more nearly concrete objects. We need to choose an

order onX � — the order we choose does not matter, so long as it is fixed. A natural

choice is to put shorter words before longer words, and put words of the same length in

lexicographical order by some order onX . WhenX = f0; 1g, and0 precedes1, we have

�; 0; 1; 00; 01; 10; 11; 000; . . . (5.1)

Let qi be the ith word in this ordering, then we have a one-to-one correspondence

betweenN and X �.

We can now define the infinite matrixP , whose entries are indexed byN�N. Let

w = qi, s = qj, and

Pij =

�
P(sjw) P(w) 6= 0

0 P(w) = 0:
(5.2)

For convenience and clarity, we will useqi in place of i itself in subscripts ofP and

write Pw;s instead ofPij . Each row ofP is labeled with a history word, each column

with a future word, and each entry (except for those in all-zero rows) is a conditional

probability. The top row, with history word�, contains the unconditioned probabilities

P(wj�) = P(w). So in principle the top row alone can generate the whole matrix. Each

*There is a time-symmetric development of our approach that we have chosen not to present here.

86

row contains a complete description of a reachable process state, in the form of all the

conditional probabilities on future words. Each column contains a complete description

of a reverse state, although some renormalization is needed to put the column into the

right form. Thus, any wordw identifies both a unique rowPw;� and a unique column

P
�;w. We will denote the row associated withw by r(w) and the column associated

with s by c(s).

The following definition is analogous to definition 4.2.4 of sufficient wordlists for

a GHMM.

Definition 5.1.1. A history wordlistW is sufficient for a processif the rows identified

by the words inW span all the rows ofP . Similarly, a future wordlistS is sufficient

for a process if the columns identified by the words inS span all the columns ofP .

Now, a pair of wordlistsW andS identifies a submatrix ofP in a natural way:

if W = fw1; . . . ; wng and S = fs1; . . . ; skg, we define the submatrixG of P by

Gij = Pwi;sj , so thatGij = P(sjjwi) for all i = 1; . . . ; n and j = 1; . . . ; l. That is,

we pick out the elements ofP which are both in the rows identified byW and in the

columns identified byS. If we had a presentation forP and we built the wordlistsW

andS and the matricesH andF for that presentation, we would find thatG = HF (see

equation 4.40). In the same manner, we define a submatrixCk of P for eachk 2 X by

picking out the rows ofP corresponding to words inW and the columns corresponding

to wordsksj for sj 2 S. That is,Ck is defined byCk
ij = Pwi;ksj = P(ksjjwi). Thus,

if we had a presentation forP, we would haveCk = HT kF .

In corollary 4.2.9, we established that ifW andS are minimal for a GHMM, then

HF is invertible. And we know that if eitherW or S is sufficient but not minimal,

thenHF is larger in size — but not in rank — than it would be ifW and S were

minimal. Thus ifW andS are sufficient,HF is invertible if and only ifW andS are

both minimal. We will use the analogous version of this for the following definition.

Definition 5.1.2. A pair of wordlistsW andS areminimal for a processP if they are

sufficient forP and the matrixG they define is invertible.

The next few results establish that sufficiency and minimality for a process have the

properties we will need in theorem 5.1.8, which is the main result of this section. These

87

properties are roughly analogous to the properties of sufficient and minimal wordlists

for a GHMM, though we will not attempt to draw precise analogies.

We are interested in the number of linearly independent rows and columns ofP .

If P were finite, we would refer to its rank. Thus we give the following definition for

rank in this infinite context.

Definition 5.1.3. The rank of P is defined to be the supremum of the ranks of the

finite submatrices ofP .

Lemma 5.1.4. The rank ofP is equal to the dimension of the span ofU .

Because of the close connection between the rows ofP and the reachable process

states, this is almost automatic. The only difficulties are in dealing with the infinitely

many columns in those rows.

Proof. Let n = dim(U), which we will assume for the moment is finite. We can choose

fw1; . . . ; wng such that ifAi = P(�jwi) for i = 1; . . . ; n, the process statesA1; . . . ;An

spanU . Then for allw 2 X �, there are numbersa1; . . . ; an such that

P(�jw) = a1A1 + . . . + anAn: (5.3)

so for all s, P(sjw) =
P
i

aiAi(s). This implies that the rowr(w) can be written as

r(w) = a1r(w1) + . . . + anr(wn). So the rowsr(w1); . . . ; r(wn) form a basis for the

rows of P . Thus, any collection of more thann rows is linearly dependent, and the

same must be true for the rows of submatrices. This shows that rank(P) � n.

Conversely, becauseA1; . . . ;An are linearly independent and the rowr(wi) determines

the distributionAi = P(�jwi), r(w1); . . . ; r(wn) must be linearly independent. So the

row space ofP has dimensionn. What remains to be shown is thatP has a finite

submatrix of rankn.

For any words, let c0(s) be the lengthn column vector consisting of those elements of

c(s) which lie in rowsr(w1); . . . ; r(wn); that is,

c0(s) =

0
@
P(sjw1)

...
P(sjwn)

1
A =

0
@
Pw1;s

...
Pwn;s

1
A: (5.4)

We will call c0(s) a subcolumnof P . Choose a wordlistS such thatc0(s1); . . . ; c0(sl)

is a linearly independent basis for the span of all subcolumnsc0(s). Let G be then� l

88

submatrix ofP given by W and S. The columns ofG are exactly the subcolumns

c0(s1); . . . ; c
0(sl), so G has rankl. We have shown the rank ofG must be less than

n, so l � n.

We now define the subrowr0 in a manner analogous to the definition of a subcolumn.

The subrowr0(s) is the lengthl row vector(Ps1;w; . . . ; Psl;w). We will reserve the terms

subrow and subcolumnfor these subsets ofP , and we will use the termsrow vector

and column vectorfor other row and column vectors, including linear combinations of

subrows and subcolumns.

Suppose thatl < n. Then there exists a row vector(a1; . . . ; an), not all components of

which are zero, such that the product(a1; . . . ; an)G is a linear combination of subrows

which is the zero row vector. Now, for anys 2 X �, the subcolumnc0(s) is a linear

combination ofc0(s1); . . . ; c0(sl), so if the subrowr0(wi) is zero, theith element of

eachc0(sj) must be zero, and so theith element of every subcolumn must be zero.

That is, if a subrow is zero, the corresponding entire row must be zero. The same

must be true for linear combinations of subrows: for anys the element in columns of

the infinite vectora1r(w1) + . . . + anr(wn) is a linear combination of elements of the

row vector (a1; . . . ; an)G. Thus, if (a1; . . . ; an)G is all zeros, then every element of

a1r(w1) + . . . + anr(wn) is a linear combination of zeros, and so

a1Pw1;s + . . . + anPwn;s = 0; (5.5)

for all words s.

But the rows r(w1); . . . ; r(wn) have been shown to be linearly independent, so

a1r(w1) + . . . + anr(wn) cannot be equal to a row of zeros. Thus, there is a word

s such that

a1Pw1;s + . . . + anPwn;s 6= 0: (5.6)

This is a contradiction. Therefore,n = l and G is a square submatrix ofP which

has rankn.†

†We may interpret this in the following way: the process states of the forward and time-reversed processes have span sets of the
same dimension. Thus, the minimal GHMM presentations for the forward and time-reversed processes have the same number of
presentation states.

89

Lastly, if n = dim (U) is infinite, then for anym we can find linearly independent

process statesA1; . . . ;Am. Proceeding as above, we can construct a submatrixG or

P with rank m. Thus there is no upper bound to the ranks of the submatrices ofP ,

so the rank ofP is infinite.�

The first part of the following result has essentially already been proven. The second

part establishes that minimal wordlists exist.

Proposition 5.1.5. For any processP, let n be the rank ofP . If n is finite, then

1. There exists an invertiblen � n submatrix ofP , and

2. If G is any such matrix, then the wordlistsW andS that produce it are minimal

for P.

Proof. In the proof of lemma 5.1.4, we constructed ann� l matrixG which had rankl,

and showed thanl = n. ThusG is a square matrix of full rank, and must be invertible,

which proves part 1. Note that the invertibility ofG is also part of what it means to

be minimal for a process. Thus, to prove part 2, we need only show thatW andS are

sufficient, becauseG is invertible. That is, we need only show thatr(w1); . . . ; r(wn)

span all rows ofP , and thatc(s1); . . . c(sn) span all columns ofP . As in the proof of

lemma 5.1.4, we will usec0(s) to denote the subcolumn ofP ,

c0(s) =

0
@
Pw1;s

...
Pwn;s

1
A: (5.7)

Thus,c0(sj) is thejth column ofG. Likewise, we will user0(w) to denote the subrow

r0(w) = (Pws1 ; . . . ; Pwsn), so thatr0(wi) is the ith row of G.

Let w be any word not inW . The set of subrowsfr0(w); r0(w1); . . . ; r
0(wn)g contains

n+1 vectors of lengthn, hence they are not linearly independent. Butr0(w1); . . . ; r
0(wn)

are linearly independent, sor0(w) must be a linear combination of them. That is, there

is a vectora such thataG = r0(w). BecauseG is invertible, we havea = r0(w)G�1;

that is, there is exactly one sucha.

Now let s be any word not inS, and consider the(n+ 1) � (n+ 1) submatrixM

of P given by

M =

�
G c0(s)

r0(w) Pws

�
: (5.8)

90

We know that rank(P) = n, soM must be singular. The firstn rows ofM are linearly

independent, so the last row must be a linear combination of them. That is, there must

be a vectorb such thatbG = r0(w) and bc0(s) = Pw;s. Now we have just shown that

there is a unique vectora such thataG = r0(w), and thisa clearly does not depend on

s. So we must havea = b, andac0(s) = Pw;s. Furthermore, this must hold for alls.

Thus the entire rowr(w) of P satisfies

r(w) = a1r(w1) + . . . + anr(wn); (5.9)

so we have shown that all rows ofP lie in the span ofr(w1); . . . ; r(wn).

A similar argument shows that the columnsc(s1); . . . ; c(sn) span all columns ofP .�

The next lemma completes the development of minimal wordlists for a process.

Lemma 5.1.6. Let P be any process such that the rankn of P is finite. If W andS

are minimal wordlists forP, then bothW andS have lengthn.

Proof. If W andS are minimal wordlists forP, thenG is an invertible submatrix of

P . The rank ofG is at mostn, and soW andS (which must have the same length

because invertible matrices must be square) have length at mostn. Furthermore, there

are sets ofn rows which are linearly independent, all of which must lie in the span of

the rows identified byW . SoW must have lengthn.�

We need one more lemma before we are ready for theorem 5.1.8. This one is a

calculation, most of which appeared in the proof of proposition 5.1.5.

Lemma 5.1.7. Given a processP and a matrixG defined by minimal wordlists, for

any w; s 2 X �, we have

r0(w)G�1c0(s) = P(sjw): (5.10)

Proof. As in the proof of proposition 5.1.5, let

M =

�
G c0(s)

r0(w) Pw;s

�
: (5.11)

M must be singular in such a way that there is a vectora satisfying

1. aG = r0(w), and

2. ac0(s) = Pw;s.

91

And becauseG is invertible, we must havea = r0(w)G�1. Thus we have

r0(w)G�1c0(s) = Pw;s = P(sjw):� (5.12)

Note that if we letw = x ands = �, lemma 5.1.7 gives usr0(x)G�1c0(�) = P(�jx).

But c0(�) = ~1 andP(�jx) = 1 for any x, so for allx we have

r0(x)G�1~1 = 1: (5.13)

We have now completed the minor results concerning minimal wordlists for pro-

cesses, and are ready to state and prove the main result of this section. We will use�i

to represent a vector with a one in theith position and zeros in all other positions. This

symbol represents a row vector when it appears to the left of a matrix and a column

vector when it appears to the right of a matrix.

Recall that we have definedCk by Ck
ij = Pwi;ksj , and that if we have arbitrary

wordlists and any presentation forP, we haveG = HF andCk = HT kF . Note that

Ck satisfies the following:

Ck
ij = P(ksjjwi)

= P(kjwi)P(sjjwik)

= P(kjwi)Pwik;sj :

(5.14)

so the ith row of Ck satisfies

�iC
k = P(kjw)r0(wik) (5.15)

Theorem 5.1.8. If P is any process for which the dimension of the span ofU is

finite, andW andS are minimal wordlists forP, then
�
W;X ;

�
Bk
	
;
�

is a GHMM

presentation forP, whereBk = CkG�1 and = (P(s1); . . .P(sn))G
�1.

Proof. To prove that
�
W;X ;

�
Bk
	
;
�

is a presentation forP, we must show
P
k

Bk is

unit–sum and thatBx~1 = P(x) for all x 2 X �. The first of these is a calculation. By

manipulating the definition of theBks, we get X
k

Bk

!
~1 =

 X
k

Ck

!
G�1~1: (5.16)

92

We will work with the ith row alone, and use equation 5.15:

�i

 X
k

Bk

!
~1 = �i

 X
k

Ck

!
G�1~1 =

X
k

P(kjwi)r
0

(wik)G
�1~1: (5.17)

Applying equation 5.13, we get

�i

 X
k

Bk

!
~1 =

X
k

P(kjwi)

= 1:

(5.18)

Since this is true for eachi, we have shown that
P
k

Bk is unit-sum:

�P
k

Bk

�
~1 = ~1.

Showing that

Bx~1 = P(x) (5.19)

holds for allx is more involved. We will prove this by proving that for allx,

Bx
= P(x)r0(x)G�1: (5.20)

From this multiplying on the right by~1 and applying equation 5.13 gives us equation

5.19.

We will establish equation 5.20 by inductively concatenating symbols to form an

arbitrary wordx. The base case is trivial —B is the identity matrix,P(�) = 1,

and = r0G�1 by definition. So what remains to be shown is the induction case:

given a wordx and a symbolk, assume thatBx
= P(x)r0(x)G�1 and prove that

BxBk
= P(xk)r0(xk)G�1.

Consider thejth coordinate ofP(kjx)r0(xk): we have

P(kjx)r0(xk)�j = P(kjx)Pxk;sj

= P(kjx)P(sjjxk)

= P(ksjjx):

(5.21)

Replacing the right hand side using lemma 5.17, we have

P(kjx)r0(xk)�j = r0(x)G�1c0(ksj): (5.22)

Now, note thatCk
ij = Pwi;ksj is the ith row of c0(ksj), so that for alli,

�ic
0

(ksj) = Ck
ij = �iC

k�j: (5.23)

93

Thus, we haveCk�j = c0(ksj), and equation 5.22 becomes

P(kjx)r0(xk)�j = r0(x)G�1Ck�j: (5.24)

This holds for allj, so we have

P(kjx)r0(xk) = r0(x)G�1Ck: (5.25)

Next we multiply both sides byP(x) on the left andG�1 on the right and then simplify:

P(x)P(kjx)r0(xk)G�1
= P(x)r0(x)G�1CkG�1

P(xk)r0(xk)G�1
= P(x)r0(x)G�1Bk:

(5.26)

Finally, we use the induction hypothesisBx
= P(x)r0(x)G�1 and we get

P(xk)r0(xk)G�1
= BxBk; (5.27)

and the proof is complete.�

We summarize the constructive portion of the preceding development as follows.

Algorithm 5.1.9. Let P =

�
XZ;X;P

�
be a process satisfying the condition that the

span of its process states is finite-dimensional. A GHMM presentation forP may be

constructed by the following steps.

1. Construct the infinite matrixP with entriesPw;s = P(sjw).

2. Find a nonsingular minorG of P such that no other minor ofP has rank greater

than the rank ofG.

3. Build the history wordlistW = fw1; . . . ; wng by defining wi to be the word

associated with theith row of P . Build the future wordlists = fs1; . . . ; sng by

defining sj to be the word associated with thejth column ofP .

4. For eachk 2 X , construct the matrixCk with entriesCk
ij = P(ksjjwi).

5. For eachk 2 X , computeBk
= CkG�1.

6. Compute = (P(s1); . . . ;P(sn))G
�1.

As we will see in section 5.2, a reconstruction program based on this theoretical

framework has been developed. When it is given a set of word probabilities produced

by a GHMM it reliably constructs a GHMM which accurately reproduces those word

probabilities.

94

We conclude this section with the converse of theorem 4.16, which says that every

process that has a GHMM presentation satisfies dim(U) <1. And if conjecture 6.1.1

is true, it is also a converse of theorem 3.6.1, which says the same thing for HMMs.

Corollary 5.1.10. Every process such that the dimension of the span of its reachable

process states is finite has a GHMM presentation.

Proof. Let P be any process for which the span ofU is finite dimensional. Lemma

5.1.4 tells us thatP has finite rank, and proposition 5.1.5 then establishes that finite

minimal wordlists exist. Theorem 5.1.8 gives us a GHMM presentation in terms of

these wordlists.�

Together, theorem 4.16 and corollary 5.1.10 prove the following characterization of

the class of processes represented by GHMMs.

Theorem 5.1.11.A process has a GHMM presentation if and only if the dimension of

the span of its reachable process states is finite.

5.2 Reconstruction from a Sample

Suppose we are given a finite sequence of symbols and we are told that it is a sample

of output from a processP. How can we construct a presentation for this process? This

is the problem ofreconstruction from a sample. We will consider samples which consist

of a single sample sequence of lengthL, such as

01101 . . . 10; (5.28)

and also samples which consist of several sample sequences of total lengthL, like

11110 . . . 11; 0111 . . . 0; and010110 . . . 001: (5.29)

It should be apparent to the reader that this problem is of a different character

than the problem of reconstruction from probabilities. Any given finite sample could

have been generated by any one of an infinite number of processes, so the problem

cannot be solved in any absolute sense. The best we can possibly do is to give a

presentation for a process which would be likely to generate this sample, and consider

this presentation to represent a new process that is an approximation toP. Thus, we

95

must heed statistical issues such as variances of parameter estimates, and how much

data is available. Further, because this is a question which can be asked for real data in

a practical setting, we will be interested in the computational issues of operation counts

and storage needs. These issues are discussed in subsections 2 and 3, following the

description of the reconstruction algorithm.

The Algorithm Our approach to reconstruction from a sample estimates conditional

probabilities of various words from the relative frequencies of those words in the data.

It then assembles these probabilities into a truncated (finite size) estimateP̂ of P .

From here we will proceed as in algorithm 5.1.9, substitutingP̂ for P and adapting the

algorithm so that it works with the finite size and imperfect estimation ofP̂ .

Our first task, then, is to construct̂P , for which we need an estimator and a pair of

wordlists. Letr andr0 be the lengths of the longest history and future words which we

will consider, respectively. Define acutpoint to be a position between to consecutive

symbols in a sample sequence which is at leastr symbols from the beginning andr0

symbols from the end of the sample sequence. That is, a cutpoint is a time at which we

know the immediate history and future words of lengths at leastr andr0, respectively.

For any pair of wordsw ands, let b be the number of cutpoints in all sample sequences

preceded byw, and leta be the number of cutpoints preceded byw and followed by

s. Our estimate forP(sjw), which we will denote�(sjw), is given by�(sjw) = a=b.

We use the conventions that�(sjw) = 0 if b = 0 and that ifw = �, b is the number

of cutpoints in the sample. This is simply a frequency substitution estimate, and it

has meanP(sjw). For any sample, and for any choice ofr, the estimates�(sjw) for

different pairs of wordsw ands are consistent with each other. (For example, for any

w, s, andx, �(wsjx) = �(wjx) � �(sjw).)

The wordlists we will use to construct̂P will not be minimal in any sense. We

will make them as large as possible to make sure they are sufficient. We are limited

by our data in what words we can include. (If we fixb, the variance of�(sjw) can be

shown to beP(sjw)(1�P(sjw))=b, so the estimate is of little value ifb is too small.

If a is too small, on the other hand, the standard deviation becomes large relative to

a=b even if b is large.) Thus, we will need to select a large set of words which occur

reasonably often. The precise method by which we do this may be rather ad-hoc, as

96

all reasonable methods will produce similar sets of words. This is because they will

all include short words with well estimated probabilities and will exclude long words

with poorly estimated probabilities. The essential requirement is that a balance must be

struck between making the wordlists large and making the variances of the estimates

small. For simplicity, we will use the following heuristic: letl be the largest natural

number such thatK times the total number of words of length2l + 1 that occur in the

sample is less than the total number of cutpoints in the sample, for some fixed constant

K. This means that those words of length2l+1 that have at least one occurrence in the

sample occur an average of more thanK times. We choose both of our wordlists to be

the set of all words of lengthl or less that occur in the sample. LetY denote this set.

Now, with our wordlists chosen, we construct thejY j� jY j matrix P from history

wordlist Y and future wordlistY just as we constructedG from the minimal wordlists

W andS in section 5.1. That is, letP consist of one row and one column for each

word in Y , so that for allw; s 2 Y , P has an elementPw;s = Pw;s = P(sjw). P

contains those unknown true probabilities we want to estimate. We definejY j � jY j

matrix P̂ by replacing each conditional probabilityPw;s = P(sjw) with its estimate

P̂w;s = �(sjw) for all w; s 2 Y . Thus,P̂ is a stochastic matrix which may be thought

of as an estimate ofP .

Hopefully P̂ is large enough, by which we mean thatY contains sufficient history

and future wordlists for the processP. If it is not, then the presentation we produce will

represent only a poor approximation toP, and the available data is probably insufficient

to induce a good approximation. In this case, the estimates inP̂ have sufficiently

small variances, but some essential behavior of the process cannot be deduced from

the probabilities we have estimated. If we makeY larger, the probabilities we attempt

to estimate capture the essential behavior, but our estimates might have variance large

enough to make them meaningless. If we followed section 5.1 exactly, the next step

would be to find a minorG of P̂ which has the same rank aŝP . Because we have

chosenY as large as possible, we expect it to contain minimal wordlistsW andS as

proper subsets, and we expectP̂ to have a rank much less than its size.

However, this is probably not the case. IfY is big enough,P will have a rank

much less than its size; but̂P will not. Because eacĥPw;s is a random variable with

nonzero variance,̂P is a random matrix close to the singular matrixP . Generically,

97

such a matrix will be nonsingular, but ill-conditioned. We wantG to have the same

rank asP and to be well-conditioned; because the rank ofP is unknown, we will make

G as large a well-conditioned submatrix ofP̂ as possible. For this reason, the problem

of finding a suitableG is itself an estimation problem.

We solve it as follows. We decomposêP by the QL algorithm with pivoting. The

QL decomposition is related by transposes to the more familiar QR decomposition, and

both are standard techniques in numerical linear algebra [29]. This algorithm builds a

basis for the row space of̂P , starting with an empty basis, and adding one vector at

a time. At each step, it computes the distance from each row vector to the subspace

spanned by the developing basis. It selects the row with the greatest distance, and adds

a vector derived from it to the basis, in such a way that the basis now spans the selected

row. As the reader may deduce, each row is selected at most once and the distances for

the selected rows decrease as more rows are selected.

As a by-product, the QL algorithm lists the rows of the matrix in the order in which

they were selected, and it gives the distance computed for each row at the time it was

selected. These distances tell us how significant each row is and thus, how significant

each basis vector is. We choose a threshold� for these distances and discard the rows

with distances less than this threshold. These discarded rows with their small distances

makeP̂ ill-conditioned rather than singular, and their contributions are likely to result

from stochastic (sample) variation rather than reflecting the true probabilities inP . How

we choose this threshold� is necessarily somewhat arbitrary. We use a second heuristic

that attempts to draw the threshold just above the largest distance resulting from the

variance of the estimateŝPw;s.

We build our history wordlistW by collecting the words that induce the rows we

keep. This step dictates the numbern = jW j of presentation states in the presentation

we will reconstruct. Finally, we apply the QR algorithm (related to QL by transposes) to

this edited matrix and select the columns with then largest distances. The result is that

we are left with a square matrixG and a wordlistS. The construction ofG guarantees

that it is invertible and well-conditioned.

From here, we construct the matricesCk such thatCk
ij = �(ksjjwi) and let

Bk = CkG�1 as in section 5.1. And if we letpi = �(sij�) for each wordsi in the future

wordlistS, we can set = (p1; . . . ; pn)G
�1. The same calculations we used in the proof

98

of theorem 5.1.8 show that
�
W;X ;

�
Bk

	
;
�

satisfies all the necessary conditions and

is in fact a Proto-GHMM. This finishes the construction of the presentation, which we

summarize as follows.

Algorithm 5.2.1. If we are given one or more sample sequences of output from a

processP =

�
XZ;X;P

�
for which P is unknown, we may construct a Proto-GHMM

W;X
�
Bk

	
; � which approximately representsP by the following steps.

1. Construct a matrix of estimated word probabilities. This may be done as follows.

a. Fix a numberK and choose the largestl such that each word of length2l + 1

occurs an average ofK times.

b. Let Y be the set of all words of lengthl or less.

c. For eachw; s 2 Y , compute

P̂w;s =
the number of timesws occurs
the number of timesw occurs

: (5.30)

2. Find a nonsingular, well-conditioned minorG of P . One way to do this is as follows.

a. Perform a QL decomposition of̂P to compute a significance for each row.

b. Fix a threshold� and discard all rows of̂P with significance less than�. Let

n be the number of rows remaining.

c. Perform a QR decomposition of the remainder ofP̂ and select then columns

with the highest significance. These subcolumns ofP̂ comprise the matrixG.

3. Let the history wordlistW be the set of words associated with the rows ofG, and

let the future wordlistS be the set of words associated with the columns ofG.

4. For eachk 2 X , construct the matrixCk with entriesCk
ij = �(ksjjwi) = P̂wi;ksj

5. For eachk 2 X , computeBk = CkG�1.

6. For eachsi 2 S, compute an estimate�(si) of P(si).

7. Compute = (�(s1); . . . ; �(sn))G
�1.

This computes all the parts of a Proto-GHMM
�
W;X ;

�
Bk

	
;
�
. If this Proto-GHMM

is valid, it is a GHMM presentation for a process which has word probabilities close

to those ofP.

This construction is not completely satisfactory, however. We cannot assert that
�
W;X ;

�
Bk

	
;
�

is a GHMM because we have not shown that it is valid. In fact it

99

is possible to construct a sample from which a reconstruction yields an invalid Proto-

GHMM. As mentioned in section 4.1, determining whether or not a given presentation

is valid is quite difficult. We will address this further in section 6.2.

Statistical Considerations Algorithm 5.1.1 produces a Proto-GHMM as a func-

tion of a sample. If the sample is a random sample of the output from a processP,

the sample is a random variable, and so the Proto-GHMM is also a random variable.

Thus the reconstruction algorithm, together withP and the length of the sample, induce

a distribution on the space of Proto-GHMMs.

We would like to be able to describe this distribution, but doing so is quite

complicated. One of the difficulties is describing the distribution ofP̂ . Each entry

�(sjw) in P̂ has the formX

Y
, whereX appears to have a binomial distribution, with

parameter� = P(sjw) andY trials, andY is the random variable describing the number

of occurrences of the wordw. However,X may not be binomial, because occurrences

of s may not be independent of previous occurrences. Similarly, the distribution of

Y cannot be described easily. Moreover, entries ofP̂ are not independent. Although

it may appear that the joint distributions of some groups of entries may be a function

of a multinomial distribution, this is not the case. Our “trials” are not independent,

as they come from examining pieces of the sample sequences, and these pieces may

overlap. For example, if the alphabet isX = f0; 1g and the sample consists of a single

sequence, then the numbers of occurrences of01 and 10 may differ by at most one.

This complicates any description of the distribution ofP̂ . In addition, even the size of

P̂ depends on the sample. Although it may be possible to characterize the distribution

of P̂ in a tractable way, doing so is beyond the scope of this dissertation.

If we were able to express this distribution reasonably, we would manipulate it

further in order to derive the distribution it induces on the set of all Proto-GHMMs.

To do this, we would look at the output of the QL algorithm as a random variable and

examine its distribution. Continuing in this way, we would derive distributions forG,

the Cks, and eventually for and theBks. However, we cannot proceed with this

program because we cannot describe the distribution ofP̂ . Most of the steps would be

laborious, and probably not very interesting.

100

The distribution of the output of QL raises two interesting questions in mathematical

statistics. First, given a random matrix̂A which is the sum of an unknown singular matrix

A and a random matrix (with zero mean and some assumptions about its variance), how

can we best estimate the rank ofA? Second, how ill-conditioned canA be — or how

small must the variance of the random matrix be — so that we can reliably estimate

the rank ofA?

Computational Issues The computational issues for the reconstruction algorithm

are the numbers of operations and the storage requirements of this algorithm. As is

common practice, we will be concerned only with how these quantities scale — their

order — and not with precise estimation.

First, we need notation for the parameters of the problem. We have usedL as the

length of the sample, andm = jXj as the size of the alphabet. LetY be the large

wordlist used to construct̂P , and letN be the number of words inY — this means that

P̂ is N �N . Let l be the length of the longest word inY , and letn be the number of

words in the minimal wordlists we derive. These parameters are not all independent; we

must haven < N and may reasonably expect, assuming the entropy rate of the process

is close to the maximum possible, thatl � logmN .

To construct the estimates, we need to count the number of occurrences of each

word of the formws for w and s in Y . To do so, we step through the sample. At

each step, and for each length up to2l, we identify the word of that length which

starts at our present location in the sample, and add one to that word’s count. (This

technique requires minor adjustments involving the ends of sample sequences to produce

the estimates exactly as we defined them in terms of cutpoints on page 95.) The number

of locations is essentiallyL, and the number of words at each location is2l. The work

to be done for each word may be organized so that it has constant time. Thus, the

number of operations required to do the estimation has orderO(lL).

The storage requirements of estimation are simple. To estimateP̂ , we must store

one counter for each ofN2 words. In addition, the matricesCk depend on the counts

for words of the formwks, with w ands in Y andk 2 X . It is convenient to do the

necessary counts for words of length up to2l+1 at the same time. This does not change

the order of the number of operations, and it increases the storage toO
�
N

2
m
�
.

101

Constructing minimal wordlists, and a basis for the mixed states, is the next stage

of reconstruction. The QL algorithm we use to do this requiresO
�
N3
�

operations and

O
�
N2
�

storage. In practice, this is the most time-consuming part of the algorithm.

ComputingG�1 takesO
�
n3
�

operations, which is dominated byN3 and so may be

ignored.

Finally, the algorithm constructs the matricesCk and performs the multiplications

CkG�1. There arem of these multiplications, each a product ofn � n matrices, so

this stage requiresO
�
n3m

�
operations andO

�
n2m

�
memory. This last quantity is

dominated by the storage requirements of the estimation stage, and we will ignore it.

Thus, the entire reconstruction algorithm requires

O
�
lL +N3 + n3m

�
(5.31)

operations andO
�
N2m

�
memory.

Of the parameters in expression 5.31, onlyL andm are known in advance. The

number of statesn is difficult to estimate — indeed, a good part of the work of the

reconstruction algorithm is in estimating it. However,m is usually small enough andn is

usually sufficiently smaller thanN thatn3m is small compared toN3. Thus, the number

of operations does not scale strongly with the eventual number of presentation states.

With the heuristic we used to chooseY , the remaining two parameters are related

by l � logN . This will necessarily be true of any method for choosingY , since the

number of possible words of lengthl or less is
�
ml+1

� 1
�
=(m� 1) � ml. Thus, l

changes slowly compared toN . Because of this and because expression 5.31 depends

linearly on l but on the cube ofN , we see thatN is far more important to the scaling

of the operation count.

The heuristic forY (page 96) gives us a way to estimatel andN . It choosesl so that

the words of length2l+1 occur an average ofK times. There are aboutL opportunities

for such words to occur, so there must be aboutL=K such words. Assuming allm2l+1

possible words of length2l + 1 appear in the sample, we havem2l+1
� L=K, or

ml
�

�
L

K

� l

2l+1

�

r
L

K
: (5.32)

Taking the basem of both sides gives us the approximationl � log
m

p
L=K . Assuming

all possible words of lengthl occur in the sample, the left-hand side of equation 5.32 is

102

an estimate of theN produced by the heuristic, so we haveN �
p
L=K. With these

substitutions, the expression 5.31 becomes

O

L log

m

L

K
+

�
L

K

�3

2

+ n3m

!
(5.33)

and we see that the reconstruction algorithm takes orderL
3

2 operations. Similarly, it

requires memory ofO(mL=K).

We conclude this computational analysis a few final comments. First, recall that

there is more than one possible choice of the heuristic for selectingY . The conclusion

we have just reached, that the reconstruction algorithm takes time of orderL
3

2 , depends

explicitly on the choice. Other choices may give higher or lower exponents, and may

make the algorithm as a whole better or worse. We have no reason to believe that the

heuristic we have used is a particularly good one.

Second, it is worth mentioning the time and memory required by the forward-

backward algorithm because the reconstruction algorithm will inevitably be compared to

it. The forward-backward algorithm operates by repeatedly making small adjustments

to a presentation. It needsO
�
n2L

�
operations per iteration and usesO

�
nL+ n2m

�
storage overall. There are variants that take fewer operations, but these do not appear to

be widely used [30,31]. The number of states initially selected is likely to be larger than

the n estimated by the reconstruction algorithm because this number must be chosena

priori and because it is usually necessary to use more states than are mathematically

needed in order to get an HMM which describes the data well. Additionally, the forward-

backward algorithm requires an unspecified number of iterations to converge. The author

knows no way to estimate how this number of iterations scales with the size of the data

set or the complexity of the process.

Finally, the reconstruction algorithm, as presented here, should be thought of as a

mathematical draft, rather than a finished program. At this time it has been implemented,

but the implementation cannot be considered an optimal coding. There has not been a

systematic search either for a good heuristic forY or for the heuristic used to choose

the threshold�. And there has not been any systematic comparison of the results of this

algorithm to those of the forward-backward algorithm.

When the existing implementation is given actual probabilities (that is, we apply QL

to P instead ofP̂) for a process defined by a GHMM, it reliably produces a minimal

103

GHMM which is, to machine precision, equivalent to the original. When it is given a

sufficiently large sample of the output from a GHMM, it typically produces a GHMM that

represents a process with word probabilities similar to those of the original GHMM. It is

prone to two types of failures, however. In one, it produces a GHMM with an excessive

number of states because the threshold� is too low. In the other, it produces an invalid

Proto-GHMM. The reconstruction algorithm needs more work on the implementation

details in order to make it widely usable, but the overall framework has a solid theoretical

grounding and may, in time, replace the forward-backward algorithm.

104

6 Conclusions and Further Directions

In the preceding chapters, we have introduced process states, described the process

states of an HMM, and shown that the span of an HMM’s process states is a finite-

dimensional vector space. We have introduced GHMMs, shown how to tell when pairs

of GHMMs represent the same process, and shown how to construct a minimal GHMM

equivalent to a given one. Finally, we have given procedures for constructing a GHMM

presentation for a process either from word probabilities or from a sample of output. We

will conclude this dissertation by making some observations and by suggesting some

directions for further investigation. We will discuss the viewpoint which led to this

work, the problem of GHMM validity, and the question of how to find an HMM that

is equivalent to a given GHMM. We will end by discussing the implications of this

dissertation for the broader field of modeling complex systems.

6.1 Process states and presentations

The results of this dissertation have followed from a few ideas. The first of these is

that the process is more fundamental than the presentation which represents it. This

idea is present in the dynamical systems literature; see [32,33,11]. The second is

that a process has states which are inherent to it, and distinct from the states of any

presentation. The third is a question: What are the process states for a process in terms

of a presentation that defines it? And the fourth is the observation that if a process has

an HMM presentation, then its process states lie in a finite-dimensional vector space.

Together, these ideas lead to a viewpoint that is useful for the study of the processes

generated by HMMs.

Some previous work on HMMs has defined the processes represented by HMMs,

usually in discussing the problem of HMM equivalence [2]. However, these works have

kept the focus on the HMMs’ presentations themselves, and have worked with processes

very little. In this dissertation, on the other hand, the focus is on the processes, and

HMMs are of interest primarily as convenient representations of processes. We justify

this shift in focus, and the accompanying shift in viewpoint, with the assertion that

processes are the more fundamental objects. The process, not the presentation, is almost

always the object of the real focus. (There may be a few applications in which a

105

phenomenon being studied has a known structure, and the presentation states may be

chosen so as to have some inherent reality of their own. But in any other use of HMMs,

the presentation states themselves have no meaning and the HMM is being used solely

as a representation of a process.)

A similar contrast between this dissertation and previous work on HMMs can be

made for process states and presentation states. In previous work on HMMs, the word

state is used exclusively to refer to presentation states. Much of this work uses the

vectors we have namedmixed states[1,3] without referring to them as states of any sort.

(The termsmixed state, process state, andpresentation statewere coined by the author

for this work, so they could not have been used in previous works. Mixed states have not

been named; process states have been calledcausal states[11], and presentation states

have simply been calledstates.) In some works — for example, [1] — it is clear that

the authors were aware that mixed states render the future conditionally independent

of the past.

Beginning with the process, we are led to define the process state, because process

states are inherent to the process, and presentation states are not. And later, when

we introduce HMMs, it is natural to ask what their process states look like. With

this background, the mixed states become objects with meaning — conditional future

distributions — instead of merely being intermediate results in a computation. Thus

HMMs, which we use as a convenient way to represent processes, have given us a

convenient way to represent process states. From this we see that an HMM’s process

states lie in a finite-dimensional vector space, and we see the presentation states in their

true role as basis vectors for this space.

This viewpoint can lead us in other directions as well. Process states are useful

for calculating various statistics. The entropy of a process, for instance, may readily be

computed from an HMM presentation by use of mixed states, but not directly from the

presentation states. This was done in [1,34,35]

The author has work in progress concerning the computation of other statistics

— notably statistical complexity and excess entropy [9,11] — and a classification of

processes with HMM presentations. It appears that this perspective will be a useful one

for any research involving HMMs.

106

6.2 Generalized Hidden Markov Models

Many of the results in this dissertation are stated for Generalized Hidden Markov

Models instead of Hidden Markov Models. For several reasons, however, the reader may

prefer to work with HMMs. Certainly HMMs are more familiar, and the reader is likely

to be more comfortable with them than with GHMMs because of their negative entries.

There is no question of validity with HMMs — every HMM is valid. Also, HMMs can

be interpreted by examining the transition matrices, though such interpretation may be

suspect unless equivalent HMMs receive similar interpretations. And finally, there are

questions which make sense for HMMs but not for GHMMs, such as, What presentation

state is the HMM most likely to be in at timet? (The meaningfulness of the answer is

questionable, as discussed above, unless individual states have intrinsic meanings.)

We ask the reader to work with GHMMs for the following reasons. First, when the

presentation states are correctly understood as the basis elements for the space containing

the process states, the entries in the transition matrices are understood to be coordinates

and not probabilities. With this in mind, restricting vectors to the positive cone of the

space, in which all coordinates are positive, is unnatural and arbitrary. Second, the

results of chapters 4 and 5 use the tools of linear algebra. Use of these tools becomes

much more difficult if it is necessary to stay entirely in the positive cone. Furthermore,

it is possible — though no examples are known to the author — that there are processes

which may be represented with fewer states as GHMMs than as HMMs, or that processes

exist that can be represented as GHMMs but not as HMMs.

Determining whether or not a Proto-GHMM is valid — given
�
V;X ;

�
T k
	
; �
�

such

that � and
P

k

T k are unit-sum, is�Tx~1 � 0 for all wordsx? — seems to be a hard

problem. If we simply generate random output, negative “probabilities” of symbols

usually show up quickly or not at all. But the absence of negative “probabilities” up to

any finite time does not prove that the Proto-GHMM is valid.

We might try the following naive algorithm for testing validity. If we order the set

of all finite words, we can compute the probability of each word in turn. When we

reach a negative probability, we conclude the Proto-GHMM is invalid and halt. But if

it is valid, the process never halts.

The question of validity can be phrased in the following way. Does the set of

107

reachable process states intersect the set of vectorsv for which vT
k~
1 < 0 for any

symbolk? The latter of these sets is a finite union of half-spaces, so the answer does

not change if we replace the former set with its convex hull. This suggests the following

approach: we take a queue of mixed states, initially containing only the stationary vector

� and a convex setS, initially empty. For each vectorv that we remove from the queue

and for each symbolk, we compute the “probability”vT k~
1 and halt if it is negative.

Then we generate the mixed stateu = N
�
vT

k
�

which is the result if the process is

in the process state corresponding tov and then emitsk. If u is not in S, we replace

S with the convex hull ofS [fug and addu to the queue. We continue in this way

until the queue is empty.

In essence, this algorithm constructs a subset of the set of all words such that if

none of the words in the subset has negative “probability,” then the Proto-GHMM is

valid. However, this algorithm has the same problem as the naive algorithm. For some

GHMMs it will never stop because this subset is still infinite — the queue may never

be empty. For the simple nondeterministic source we saw in section 3.5, for example,

there is an infinite sequence of words all of which lie outside the convex hull of all

the preceding words.

No finite method for generating the convex hull of the set of reachable process

states is known, though it may be possible to develop such a method based on linear

programming. The work of Heller, which gives results for functions of finite Markov

Chains in terms of convex polygonal cones, may contain part of a solution [21]. Indeed,

it is not known whether or not this set can always be finitely described. Thus, we do

not know of a practical method for testing whether or not a Proto-GHMM is valid.

6.3 Converting GHMMs to HMMs

There is another aspect of our understanding of GHMMs which is unsatisfactory.

If we have a GHMM, is there an HMM which is equivalent to it? If so, is there an

equivalent HMM that has the same number of states as the GHMM? These questions

are open, but in light of the present understanding, we offer the following conjectures.

Conjecture 6.3.1. Given a GHMM, there is an HMM that is equivalent to it.

108

Conjecture 6.3.2. Given a GHMM, there is an HMM that is equivalent to it with the

same number of presentation states.

For a slightly different formulation of GHMMs — which output from states instead

of from transitions — Balasubramanian [8] has asserted that conjecture 6.3.1 holds but

conjecture 6.3.2 does not. A similar assertion is implied in [7], but neither paper gives

any proof or any counterexamples that apply to GHMMs as defined here. Darmadhikari

and Heller state results for “regular” functions of a Markov Chain that the author has

not applied to GHMMs [10,21]. One or both of these results may show that conjecture

6.3.2 is false. The author of this dissertation expects that both conjectures hold, but

has not found a proof.

Whether or not conjectures 6.3.1 and 6.3.2 hold, there are GHMMs for which

equivalent HMMs exist. We can construct such GHMMs by conjugating HMMs, or

by reconstructing from probabilities. When an equivalent HMM exists, how can we

find it? Because this is a matter of converting from a generalized HMM to an ordinary

HMM, we will call this the degeneralization problem.

There is reason to believe that the degeneralization problem is nontrivial. Suppose,

for instance, we have an algorithm that will degeneralize any GHMM for which an

equivalent HMM exists. If we apply this algorithm to an invalid Proto-GHMM, it must

fail. If we apply it to an arbitrary Proto-GHMM, and it succeeds, we have shown that

the Proto-GHMM is valid. Thus, if we have a degeneralization algorithm we have a

way to establish the validity of a substantial collection of Proto-GHMMs. Furthermore,

if conjecture 6.3.1 is true, the only way this degeneralization algorithm can fail is if the

Proto-GHMM is invalid. In this case, our degeneralization algorithm serves as a general

test which determines the validity of Proto-GHMMs.

We can give a necessary and sufficient condition for a GHMM to have a HMM

equivalent to it, but this condition is so close to restating the definition that it has little

value. Given a GHMM, there is an HMM equivalent to it if and only if there exists a

convex setC in the space containing the mixed states with a finite number of vertices

such that

1. the initial distribution� is in C, and

109

2. for all verticesv and for all symbolsk the vectorvT k lies in the convex hull of

C [

n
~0
o

.

If C exists, then the vertices ofC are the presentation states of an HMM equivalent to

the given GHMM. As with validity, the problem is finding the convex set.

No degeneralization algorithm exists at present, but one possible approach is known.

If we conjugate by a carefully chosen matrix, we can make any particular entry in any

given transition matrix nonnegative, with the possible cost of making some other entry

negative. It may be possible to choose a matrix that makes all entries simultaneously

nonnegative. The task of finding such a matrix may be approached as a maximization

task: maximize the sum of the negative entries of the matricesAT kA�1 over the space

of n � n stochastic invertible matricesA.

General multidimensional maximization techniques fail to find suitable matrices even

when they are known to exist. This probably occurs because these techniques search for

local maxima and the space of invertible matrices is disconnected. However, it may be

possible to develop a global technique specialized to the form of this specific problem.

Further, and of particular interest if conjecture 6.3.1 holds but conjecture 6.3.2 fails,

it is possible to add states to a GHMM by an operation similar to conjugation. Ifv is

a stochastic row vector of lengthn, andh is an arbitrary column vector of lengthn,

consider then � (n+ 1) matrix

A = (I � hv h) (6.1)

and the(n+ 1) � n matrix

B =

�
I

v

�
: (6.2)

Note that bothA andB are stochastic and their product isAB = I. If
�
V;X ;

�
T k
	
; �
�

is a GHMM and we let� = �A, and for allk we letUk
= BT kA, then for any suitable

V 0,
�
V 0;X ;

�
Uk

	
; �
�

is ann+1–state GHMM which is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Thus, if we cannot find ann–state HMM equivalent to our original GHMM, we can

search for one with more thann states. A solution to the degeneralization problem may

well emerge from these techniques.

110

6.4 Reconstruction

The reconstruction algorithm is the crowning achievement of this dissertation. The

algorithm is novel and it is not a variation on an older algorithm. It operates directly,

without requiring an initial configuration and without making iterative adjustments to

the model. The connection between the source data and the resulting Proto-GHMM

through the probability estimates is natural and clear.

The practical implementation of the reconstruction algorithm (that builds GHMMs

from samples) shows considerable promise, but needs further development in order to

be widely useful. As discussed at the end of section 5.2, this work includes looking

for better heuristics, considering other possible estimators, a proper statistical study, and

general fine-tuning.

6.5 Last remarks

The problem of HMM (or GHMM) reconstruction may be thought of as a “complex

estimation problem” or a problem of “model inversion with uncertainty.” That is, we

want to take a random sample and build a model from it. But what we have is a

class of models and a method of generating random samples from a model in this

class. However, the method of generating samples, while not complicated, is involved

enough that there is not a practical way to “invert” it. There are many model classes

to which this description applies, including a number which have applications: Hidden

Markov Models, neural networks, and a number of less well known model classes used

in pattern recognition.

In recent years, there has been a proliferation of work attempting to solve these prob-

lems by iterated improvement. Forward-backward and back propagation, for HMMs and

neural nets, respectively, are probably the oldest of these. Many of these approaches use

versions of the expectation-maximization (EM) algorithm, which is a general algorithm

that may be specialized to address many situations. Others use stochastic optimization al-

gorithms, such as simulated annealing and genetic algorithms. Most of these approaches

have similar failings: they get stuck in local optima, they may depend strongly on the

initial (random) model, and they often require larger models than is appropriate to get a

decent answer. Nonetheless, these approaches are being used because these algorithms

111

provide a way to get some sort of answer to questions that previously would have been

intractable. It is not inappropriate to describe these methods as crude tools by which

one can bring a computer to bear on modelling problem.

This dissertation has taken a different approach. We began by attempting to better

understand HMMs on a theoretical level. This led to an attempt to characterize the

class of processes which could be represented by HMMs. With the better theoretical

understanding we had gained, a new approach to the reconstruction problem became

accessible. Although it remains to be seen how the reconstruction algorithm will serve

in practice, there is reason to believe that in time it may replace forward-backward as

the main method by which HMMs are constructed from the sample data.

It is the author’s contention that this experience is applicable to other problems

of model inversion with uncertainty. It is undoubtedly easier to implement an iterative

improvement algorithm than to do this sort of theoretical study, so iterative improvement

schemes may remain useful in the study of new model classes. After a model class has

proved its utility, however, it is valuable to gain the theoretical understanding necessary

to develop more direct algorithms.

