
52

4 Generalized Hidden Markov Models

At the beginning of the last chapter, we viewed a Hidden Markov Model as a Markov

chain with a stochastic output filter, and we only interpreted the presentation states as

the states of a Markov Chain. Over the course of that chapter, we used the tools of linear

algebra more and more, working with mixed states rather than directly with presentation

states. Finally, we introduced an alternative interpretation of the presentation states —

that they are basis elements for the set of mixed states, or equivalently, for the set of

process states. In this interpretation, the transformation matrices define the process by

defining linear transformations on the mixed states. As we will see, this linear algebra

interpretation is the more fundamental one.

In this chapter, we will define and use a generalization of Hidden Markov Models

in which the presentation states cannot be interpreted as states of a Markov chain, but

can only reasonably be interpreted as basis elements. The first use of Generalized

Hidden Markov appears to have been as a counter-example in [10]. Several authors

have used Generalized Hidden Markovs and similar techniques in recent years, including

connection to neural nets developed in [22 ] and the solution of the problem of HMM

equivalence in [7]. Late in this chapter, and in the next one, we will choose a linearly

independent basis for the span of the process states, and use these basis vectors as

presentation states of a new presentation we construct directly from the process.

4.1 Generalized Hidden Markov Models

When we think of a Hidden Markov Model as an object of linear algebra, it makes

sense to consider what happens when we perform a change of basis — a canonical

linear algebra operation. And so, after one convenient definition, we will work through

a change of basis for a generic HMM.

Definition 4.1.1. A unit-sum vector is a vector whose components sum to one. A

unit-sum matrix is a matrix whose row vectors are unit-sum vectors.

That is, a row vectorv is unit-sum row vector ifv~1 = 1, and a matrixA is a unit

sum matrix if

A~1 = ~
1: (4.1)
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Note that the inverse of a unit-sum matrix must also be unit-sum. If we multiply both

sides of equation 4.1 byA�1, we get

I~1 = A�1~1 (4.2)

and, clearly,I~1 = ~1. If a unit-sum vector satisfies the additional requirement that all

of its components are nonnegative, then it is astochasticvector. Similarly a matrix is

stochastic if all of its rows are stochastic vectors.

Suppose we have an HMMI =

�
V;X ;

�
T k
	
; �
�
. A mixed state� =

�
�1; . . . ; �jV j

�

for this HMM is a stochastic vector in a vector space with basis elements associated

to the statesi 2 V : if � is induced by a history objects, then �i = P(ijs). The

process state associated with� is a linear combination
P
i

�iAi of the conditional future

distributionsAi = P(�ji). If we letU be the span of all of the HMM’s reachable process

states, then
�
A1; . . . ;AjV j

	
is the basis we used forU in section 3.6.

We will now work through a change of basis. We begin by choosing a new basis�
B1; . . . ;BjV j

	
for U as follows: choose an invertible unit-sumjV j � jV j matrix M ,

and for all i let

Bi =

X
j

MijAj: (4.3)

Clearly, for alli, Bi 2 U , and becauseM is invertible,
�
B1; . . . ;BjV j

	
is a basis forU .

This change of basis calculation will be facilitated by the following somewhat

nonstandard notation. We will write the vectors of the basis in a formal column vector

as if they were scalars. That is, we define the formal column vectors~A and ~B by

~A =

0
@
A1

...
A

jV j

1
A and~B =

0
@
B1

...
B
jV j

1
A (4.4)

Thus, we may rewrite 4.3 as

~B = M~A: (4.5)

In this notation, if� 2 RjV j is a mixed state, then it is a row vector, and it describes the

process state�~A. From equation 4.5, we getM�1~B = ~A, so �M�1~B = �~A. Thus

if � = �M�1, then�~A = �~B, so � and� describe the same process state in different
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coordinate systems. HenceM�1 maps~A–coordinates to~B–coordinates. Since� is not

a mixed state for any HMM we have defined yet, we will call it a coordinate vector.

Our HMM’s stationary distribution� and its transition matrices are all given in
~A–coordinates. What do they look like in~B–coordinates?� is simply a mixed state,

so it transforms to the coordinate vector� = �M�1 as we have indicated above. If� is

a coordinate vector, then�~B 2 U , and�M defines a row vector in~A coordinates — a

mixed state. We can operate on�M with the operatorTk, and transform the result back

to ~B coordinates withM�1. The result is that the operation�! �T k in ~A coordinates

becomes� ! �MT kM�1 in ~B coordinates. That is, the similarity transformation which

transformsT k into ~B coordinates produces the matrixUk
= MT kM�1.

Now, if we define a set of formal symbolsV 0

=
�
1
0; 20; . . . ; jV j

0

	
, we can construct

a quadruple
�
V 0;X ;

�
Uk
	
; �
�
. This quadruple looks like an HMM. It may fail to be

one, however, because theUk matrices may have negative entries. Nonetheless, it

satisfies the rest of the definition of an HMM. The transition matrices
�
Uk
	

satisfy�P
k

Uk

�
~1 = ~1, since

 X
k

Uk

!
~1 =

 X
k

MT kM�1

!
~1

= M

 X
k

T k

!
M�1~1

= M

 X
k

T k

!
~1

= M~1 = ~1:

(4.6)

And � satisfies� = �
P
k

Uk since

�
X
k

Uk
= �M�1

X
k

MT kM�1

= �M�1M

 X
k

T k

!
M�1

= �

 X
k

T k

!
M�1

= �M�1
= �:

(4.7)
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Further, if we manipulate
�
V 0;X ;

�
Uk
	
; �
�

as if it were an HMM, and calculate

�Uw~1 for an arbitrary wordw = w1 . . .wl, we get

�Uw~1 = �Uw1 . . .Uwl~1

=
�
�M�1

��
MUw1M�1

�
. . .
�
MUw1M�1

�
~1

= �Tw1 . . .TwlM�1~1;

(4.8)

and sinceM�1 is unit-sum, this becomes

�Uw~1 = �Tw~1: (4.9)

Thus, for every wordw 2 X �, we getP(w) = �Uw~1. In spite of the fact that it is not

an HMM,
�
V 0;X ;

�
Uk
	
; �
�

defines a process as if it were. We will call it aGeneralized

Hidden Markov Model (GHMM), following [8].

For instance, consider the following presentation of the Golden Mean Process which

we saw in section 3.5:

V = fB;Cg; X = f0; 1g; � = ( 2
3
; 1

3
)

T 0 =

�
0 1

2

0 0

�
; T 1 =

�
1

2
0

1 0

�
(4.10)

As discussed in section 3.5, the processes states for this HMM are represented by the

mixed states
�
2

3
; 1
3

�
, (1; 0) and (0; 1). Let

M =

�
1 0

2 �1

�
; (4.11)

which is an invertible, unit-sum matrix. Note thatM�1 = M . Now, when we perform

the change of basis, we get

� = �M�1 =
�
4

3
;�1

3

�
; (4.12)

U0 = MT 0M�1 =

�
1 �1

2

2 �1

�
; and (4.13)

U1 = MT 2M�1 =

�
1

2
0

0 0

�
: (4.14)

The new coordinates for the process states, which are the images of the mixed states

under multiplication (on the right) byM�1, are
�
4

3
;�1

3

�
, (1; 0), and(2;�1).

How can we make sense of
�
V 0;X ;

�
Uk
	
; �
�
? If we try to think of10 2 V 0 as a

state in some variation on a Markov chain, it makes no sense at all — this casts
P
k

Uk
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in the role of a transition matrix, so we find ourselves looking at negative transition

probabilities. If we insist on this interpretation, then we must reject the whole idea of

GHMMs as absurd. But if we think of10 as an vector in a basis forU , there is no

substantial difficulty. A row ofUk simply gives the coordinates of the image of some

basis element under a linear mapping, and a negative coordinate is a perfectly sensible

thing. Instead of contemplating possible meanings for negative probabilities, we simply

stop interpreting the matrix entriesUk

ij as probabilities. Essentially, we attribute meaning

to the entire matrixUk — it is a linear map — but not to individual entries in this matrix.

(We will continue to use the termmixed state, although it is no longer apt.)

Definition 4.1.2. A Proto-Generalized Hidden Markov Model (Proto-GHMM)is a

quadruple
�
V;X ;

�
T k
	
; �
�
, whereV andX are finite sets, and eachT k is a jV j � jV j

matrix, and the following conditions are satisfied:

1.
P
k

T k is a unit-sum matrix*,

2. � is a unit-sum vector, and

3. � = �
P
k

T k.

We would like to have a Proto-GHMM define a process in the same way that an

HMM does, but this does not always happen, because of a complication introduced

by allowing negative entries in theT ks. Proto-GHMMs
�
V;X ;

�
T k
	
; �
�

and wordsw

exist such that�Tw~1 < 0. An example is

V =
�
0
0; 10

	
; X = f0; 1g; � =

�
1

2

;
1

2

�

T 0
=

�
�1 0

0 �1

�
; T 1

=

�
0 2

2 0

�
;

(4.15)

for which �T 0~1 = �1. Clearly, then, a Proto-GHMM may fail to define a process. The

next two definitions address this problem.

Definition 4.1.3. A Proto-GHMM
�
V;X ;

�
T k
	
; �
�

is valid if, for all words w 2 X �,

it satisfies�Tw~1 � 0.

*The reader may wonder why we require
P

k

U
k to be unit-sum, when we could discard this restriction and have greater generality.

This extra generality costs us some convenience. For example, the fact that� and
P

k

T
k are unit-sum guarantees that

P

k

P(k) = 1.

We can work around such difficulties, but there is no point — as we will see in chapter 5. Every process which could possibly be
represented with this greater generality has a GHMM presentation.
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Definition 4.1.4. A Generalized Hidden Markov Model (GHMM)is a valid Proto-

GHMM.

This definition is precisely what we need in order to have GHMMs represent

processes.

Proposition 4.1.5. Every GHMM defines a process.

Proof. We prove this by applying B.1.1, wheref(w) = �Tw~1. Thus we must verify

1. f(�) = 1, and

2. for all wordsw 2 X �,

f(w) =
X
z2X

f(zw) =
X
z2X

f(wz): (4.16)

Unlike previous applications of B.1.1, here we must also show thatf : X � ! [0; 1].

First, f(�) = �T�~1, whereT � is the identity matrix by definition and� is unit-sum.

So clearly,f(�) = 1. Next, we deal withf(wz):X
z2X

f(wz) =
X
z2X

�TwT z~1

= �Tw

 X
z2X

T z

!
~1:

(4.17)

But
P
z2X

T z is a unit-sum matrix, so this becomes

X
z2X

f(wz) = �Tw~1 = f(w): (4.18)

The other equality in equation 4.16 may be handled by a similar calculation, using

� = �
P
z2X

T z in place of the unit-sum property.

Finally, we need to show that for an arbitrary wordw 2 X �, 0 � f(w) � 1. Half of

this is given by validity. Given the properties we have just shown, a simple induction

argument establishes that for alll, X
s2X l

f(s) = 1: (4.19)

Let l = jwj, and rewrite 4.19 as

1 =
X
s2X l

f(s) = f(w) +
X

s2X l; s6=w

f(s): (4.20)
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Both terms in this sum are nonnegative, so neither can be greater than1.�

We can characterize the preceding development as follows: A Proto-GHMM is an

object which would be an HMM if it didn’t have negative entries in its matrices, and a

GHMM is a Proto-GHMM which never assigns a negative number to a word, and thus

defines a process. That is, we are allowing negative entries in transition matrices, but

only when the result works with the procedures we use for HMMs.

Testing the validity of a Proto-GHMM is nontrivial. Consider the obvious, naive

algorithm: Take the (countably infinite) list of all words inX �, and write a loop which

computes�Tw~1 for every wordw on the list. Make the loop halt if this quantity is

negative, and continue down the list if it is not. The Proto-GHMM is valid if and only

if the loop never halts. Clearly this is not a practical test. One can find improvements to

this algorithm which prune this list and thus typically reach invalid conclusions faster.

And there are some special cases in which validity can be established — for instance,

every HMM is a (valid) GHMM. Nevertheless, the essence of the test in the general

case remains the same.

We have now finished defining GHMMs, and we will present some results involving

them. The first of these is an extension of theorem 3.6.1 to GHMMs. The proof of 3.6.1

will serve as a proof of 4.1.6 without modification, so we will not give a separate proof

here. Recall thatW is the set of all signed measures on the future.

Proposition 4.1.6.Given a processP, letU be the subset ofW spanned by the reachable

process states. IfP has a GHMM presentation
�
V;X ;

�
T k

	
; �
�
, thendim(U ) � jV j.

We conclude this section by restating and expanding on the basis change manipula-

tion we performed earlier in this section. We begin with the following result.

Proposition 4.1.7. If
�
V;X ;

�
T k

	
; �
�

is a GHMM andM is an invertible unit-sum

matrix, andV 0 is any set of sizejV j, then
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is a GHMM

which defines the same process as
�
V;X ;

�
T k

	
; �
�
.

Proof. It may easily be verified that
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is a Proto-GHMM.

And by the same arguments used above for conjugation of HMMs, we know that for

any w 2 X �,

�Uw~1 = �Tw~1: (4.21)
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The right side of equation 4.21 is always nonnegative, so the left side must be also.

Therefore
�
V 0;X ;

�
MT kM�1

	
; �M�1

�
is valid, and thus it is also a GHMM.�

Definition 4.1.8. We say that two Proto-GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are conjugateto each other by an invertible unit-sum matrixM if

1. jV j = jV 0j,

2. � = �M�1, and

3. for all k, Uk = MT kM�1.

Note that this is a linear conjugacy, which is the only kind of conjugacy we will consider.

Proposition 4.1.7 tells us, then, that if a Proto-GHMM is conjugate to a GHMM,

then it is itself a GHMM.

Definition 4.1.9. When two GHMMs define the same process, we say that they are

equivalent.

Thus the proof of proposition 4.1.7 also shows that if two GHMMs are conjugate,

then they are equivalent.

Lemma 4.1.10. If two GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, are conjugate

by an invertible unit-sum matrixM , then for allw 2 X �,

�UwM = �Tw: (4.22)

Note that since these two HMMs are equivalent, we know that�Tw~1 = �Uw~1. So

if we divide equation 4.22 by this quantity, we get

�Uw

�Uw~1
M =

�Tw

�Tw~1
; (4.23)

which we may recognize as

N (�Uw)M = N(�Tw): (4.24)

That is,M takes mixed states to mixed states.



60

Proof. We are given thatU 0
= MT 0M�1, U1

= MT 1M�1, and� = �M�1. Multiply

by M , and we haveMT 0
= U0M , MT 1

= U1M , and� = �M . Thus, for allw,

�UwM = �Uw1 . . .UwlM

= �Uw1
. . .Uwl�1MTwl

...

= �MTw1 . . .Twl

= �Tw: �

(4.25)

The converse of proposition 4.1.7 does not hold — there are pairs of GHMMs

which are equivalent but not conjugate. This is caused by redundancy — extra states in

the presentation. In fact, there are pairs of such presentations which are both HMMs.

Consider
V = f0; 1; 2g; X = f0; 1g; � =

�
1

3

;
1

3

;
1

3

�

T 0
=

0
@
0

1

2
0

0 0 0

0
1

2
0

1
A; T 1

=

0
@

1

2
0 0

0 0 1
1

2
0 0

1
A;

(4.26)

and
V 0

=
�
0
0; 10; 20

	
; X = f0; 1g; � =

�
2

9

;
1

3

;
4

9

�

U0
=

0
@
0

1

2
0

0 0 0

0
1

2
0

1
A; U1

=

0
@
0 0

1

2

0 0 1

1

2
0 0

1
A:

(4.27)

These are both presentations of the Golden Mean Process, which are redundant in

different ways. The reader may see this by noticing that states0 and 2 — and 0
0

and2
0 — have the same future conditional distributions. Thus,0 and2 — and0

0 and

2
0 —can be merged.

To show that these presentations are not conjugate, we will show that there exists

no invertible unit-sum matrixA which takes�Tw to �Uw for all w 2 X �. Lemma

w �Tw �Uw

0
�
0; 1

3
; 0
� �

0; 1
3
; 0
�

01
�
0; 0; 1

3

� �
0; 0; 1

3

�

011
�
1

6
; 0; 0

� �
1

6
; 0; 0

�

0111
�
1

12
; 0; 0

� �
0; 0; 1

12

�

Table 4.1 The actions of the HMMs given in equations 4.26 and 4.27 on selected words.
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4.1.10 tells us that each row of table 4.1 constrains the matrixA. These constraints

are incompatible; the first three rows imply thatA is the identity matrix, and the fourth

implies that it is not. Thus, no suitable matrixA exists, so these presentations are not

conjugate.

4.2 Redundancy and Linear Algebra

In the last section we saw an example in which two equivalent presentations may fail

to be conjugate to one another, because they are redundant in different ways. We will

now study redundancy, and then return in the next section to GHMM equivalence. The

methods we will develop here give us a new way of describing the essential information

in a GHMM. In this new form, we will be able to identify and factor out redundancy,

which is the key to resolving the equivalence and minimization problems.

Vector SpacesWe begin by identifying two vector spacesH andF , which we will

call the history and future spaces. Given a GHMM
�
V;X ;

�
T k
	
; �
�
, let H be the span

of the set of all mixed states:

H = spanfN(�Tw)jw 2 X �g: (4.28)

In a complementary fashion, let

F = span
n
T s~1js 2 X �

o
: (4.29)

Elements ofH are linear combinations of mixed states, which are row vectors, and

elements ofF are column vectors. Just asN(�Tw) contains all the information about

the history suffixw that is relevant to the future,T s~1 contains all the information about

the future that is relevant to the past. Implicit in this is that� and~1 play analogous

roles which is suggested by the identities�
P
k

T k = � and
P
k

T k~1 = ~1. Just as we may

use�Tw to calculate the conditional distributions on the future induced byw, we may

useT s~1 to calculate the conditional distributions on the past induced bys. Thus, we

may think of T s~1 as a backward analog of a process state, and we may think of any

f 2 F as a linear combination of these.

Let h = N(�Tw) andf = T s~1. If we take the product of these, we gethf = P(sjw).

In considering the producthf , we may think ofh as the linear functional andf as the
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operand, or vice versa. In general, ifh 2 H andf 2 F , then we may think ofh as a

maph : F ! R defined byh(f) = hf , and we may think off as a mapf : H ! R

given byf(h) = hf . ThusH andF are almost each other’s dual spaces.

ButH andF may not be each other’s duals. If there is redundancy in the presentation

states — that is, if there are distinct mixed states which induce the same conditional

future — then it may happen thatH andF have different dimensions, and there may

be nonzeroh 2 H for which hf = 0 for all f 2 F .

Let

KF = fh 2 Hj for all f 2 F ; hf = 0g; (4.30)

and similarly,

KH = ff 2 Fj for all h 2 H; hf = 0g: (4.31)

That is, h 2 H is in KF if it is in the kernel of everyf 2 F . If h = �Tw is a

row vector induced by a wordw and h 2 KF , we usually haveh = (0; . . . ; 0) and

P(w) = 0. In an HMM, this is the only way a row vector induced by a word may fall

in KF . But differences between mixed states may lie inKF . Suppose two wordsw1

andw2 induce the same process state,P(�jw1) = P(�jw2), and leth1 = N(�Tw1) and

h2 = N(�Tw2). Then for all wordss,

h1T
s~1 = P(sjw1) = P(sjw2) = h2T

s~1: (4.32)

Because everyf 2 F is a linear combination of column vectorsT s~1, this implies

h1f = h2f for all f 2 F , or h1 � h2 2 KF . If we know that the current history suffix

is eitherw1 or w2, but we do not know which one, then our finding out which one

does not improve our ability to predict the future. And this works backward, too — if

h1 � h2 2 KF , thenw1 andw2 induce the same process state.KF contains exactly

those vectors which are irrelevant to the future of the process. For this reason we say

that KF consists of redundancy.

Similar statements are true aboutKH. If, and only if, f1; f2 2 F andhf1 = hf2

for all h 2 H, thenf1� f2 2 KH, and the distinction betweenf1 andf2 is independent

of the history of the process.

Now we can eliminate this redundancy — factor it out, so to speak — by working

with the quotient spacesH=KF andF=KH in place ofH andF . As the following
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lemma shows,H=KF is in one-to-one correspondence withU the span of the reachable

process states, so it contains no redundancy.

Lemma 4.2.1. H=KF is isomorphic toU .

Proof. Let  be the quotient map : H ! H=KF , and letM : H ! U be defined

as follows: if h 2 H, thenM(h) is the signed measure on the future space given by

M(h)(s) = hT s~1 for all s 2 X �. Now we can define our isomorphism� : H=KF ! U .

If g 2 H=KF , chooseh 2  �1(g) and define�(g) = M(h). The value of�(g) does

not depend on our choice ofh, because ifh1; h2 2  �1(g), thenh1 � h2 2 KF . This

implies thath1T s~1 = h2T
s~1 for all s, soM(h1) = M(h2).

Because andM are linear,� must be linear. To show that it is an isomorphism, we

must show that it is injective and surjective. The first of these is trivial: suppose�(g1) =

�(g2). If we chooseh1 2  �1(g1) andh2 2  �1(g2), we haveM(h1) = M(h2), which

is equivalent toh1T s~1 = h2T
s~1 for all s. Thush1 � h2 2 KF , so g1 = g2.

Next we show that� is surjective. The definition ofU implies that there must exist

wordsw1; . . . ; wn such that the process statesA1 = P(�jw1); . . . ; An = P(�jwn) form a

linearly independent basis forU . That is, there are no real numbersa1; . . . ; an, such that

(a1A1 + . . . + anAn)(s) = 0 for all s: (4.33)

For i = 1; . . . ; n, let gi =  (N(�Twi)). For all i and for all s, we have

�(gi)(s) =M(N(�Twi))(s)

= P(sjw)

= A(s);

(4.34)

so �(gi) = Ai. Thus if g1; . . . ; gn were linearly dependent,A1; . . . ;An would have to

be linearly dependent as well. Sog1; . . . ; gn are a linearly independent basis for some

subspace ofH=KF and� is a map which takes this basis to a basis forU . This means

that� is an isomorphism from this subspace ontoU . But � is injective and takes all of

H=KF to U , hence this subspace is all ofH=KF .�

An element ofH=KF is a set of row vectors, differences between which lie inKF .

Similarly an element ofF=KF is a set of column vectors which is parallel toKH. What

does a linear functional — a real valued linear function — onH=KF look like? It is
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simply a linear functional onH which is constant along directions which lie inKF .

Every f 2 F is a linear functional onH which is zero on all ofKF , so everyf 2 F

is a linear functional onH=KF . Note thatf1; f2 2 F represent the same functional

onH — and thus onH=KF — if and only if f1 and f2 differ by an element ofKH.

So all of the column vectors in anye 2 F=KH represent the same linear functional on

H=KF . So we may say thate is that functional. And ifg 2 H=KF , we havege = hf

for anyh 2  �1(g) and for anyf 2 F taken by the quotient map toe. Likewise, each

g 2 H=KF is a unique linear functional onF=KH. SoH=KF andF=KH like H and

F , consist of elements of each other’s dual spaces. But unlike elements ofH andF ,

elements ofH=KF andF=KH contain no redundancy.

Lemma 4.2.2. H=KF andF=KH are each other’s dual spaces.

Proof. We have seen that everye 2 F=KH is a unique linear functional onH=KF .

Thus, to show thatF=KH is the dual ofH=KF , we need only show thatF=KH

contains the entire dual space rather than a proper subspace. Similarly, we must show

thatH=KF contains the entire dual ofF=KH.

Let n be the dimension ofH=KF , and letn be the dimension ofF=KH. Let g1; . . . ; gn

be a linearly independent basis forH=KF and lete1; . . . ; em be a linearly independent

basis forF=KH. Finally, letA be then �m matrix with entriesAij = giej. Suppose

a linear combinationa1g1 + . . . angn is taken to zero by all ofe1; . . . ; em. It must be

taken to zero by everye 2 F=KH, and hence(a1g1 + . . . angn)f = 0 for everyf 2 F .

This is possible only ifa1g1 + . . . angn = 0, so the rows ofA are linearly independent

andA has rankn. A similar argument shows thatA has rankm, so n = m. Hence

H=KF andF=KH have the same dimension, so neither can be a proper subspace of

the other’s dual space. Each must be the dual space of the other.�

Bases We will now move on to more concrete and more readily manipulated forms of

these vector spaces. In particular, we will be working with bases for subspaces ofH and

F that are isomorphic toH=KF andF=KH, respectively. In addition, we will want to

be able to refer to our basis vectors in a way that does not depend on any basis derived

from a presentation. Thus we will choose basis vectors which are associated with words.
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Definition 4.2.3. A wordlist W of length l is a finite list (ordered set) of words

w1; . . . ; wl 2 X �.

Given a wordlistW of lengthl and a GHMM
�
V;X ;

�
T k

	
; �
�
, we define thel�jV j

matrix H as follows: theith row of H is N(�Twi). We callW the history wordlist

andH thehistory matrix. Similarly, given a wordlistS of lengthm, which we will call

the future wordlist, we define thefuture matrixF to be thejV j �m matrix whoseith

column isT si~1. Note thatH andF are functions ofW andS, respectively. We will

sometimes writeH(W ) andF (S) to avoid ambiguity. We will useH andF to denote

the span of the rows ofH and the columns ofF , respectively.

Because we wantH to contain a representation of every process state, we are

interested in wordlists which induce a sufficiently large basis.

Definition 4.2.4. A history wordlist W is sufficient for a given GHMM, or simply

sufficient if the span of the rows ofH(W ) satisfies

span
�
H [KF

	
= H: (4.35)

Similarly, a future wordlistS is sufficient if the span of the columns ofF (S) satisfies

span
�
F [KH

	
= F :

This definition means that a history wordlist, for example, is sufficient if the rows

of H, mapped intoH=KF by the quotient map , form a basis forH=KF .

It is possible for a sufficient wordlist to contain words which are not needed for

sufficiency. As we will see shortly, removing such words is desirable.

Definition 4.2.5. A history wordlist is minimal if it is sufficient and it has length

l = dim fHg� dim fKFg. Similarly, a future wordlist is minimal if it is sufficient and

it has lengthm = dim fFg � dim fKHg.

If W andS are minimal history and future wordlists, thenH andKF are compli-

mentary subspaces ofH, andF andKH are complimentary subspaces ofF .

Proposition 4.2.6. If W is a minimal history wordlist, thenH is isomorphic toH=KF .

Similarly, if S is a minimal future wordlist thenF is isomorphic toF=KH. In both

cases, the restriction of the quotient map — toH andF as appropriate — is a suitable

isomorphism.



66

Proof. If W is a wordlist of lengthl, thendim
�
H
	
� l. But if W is sufficient, then

H andKF together spanH, so

dim

�
H
	
+ dim fKFg � dimfHg: (4.36)

If W is also minimal, this impliesdim
�
H
	
� l, so we havedim

�
H
	
= l and

dim

�
H
	
+ dim fKFg = dim fHg: (4.37)

Thus the rows ofH must be linearly independent. Further,H must be independent of

KF , so we can write

H = H �KF : (4.38)

ThusH is complementary toKF , and the restriction of the quotient map toH is an

isomorphism betweenH andH=KF . A similar proof holds forS, F , andF=KH.�

Proposition 4.2.7. If W andS are minimal wordlists, then

1. jW j = jSj,

2. rank(H) = rank(F ),

3. dim
�
H
�
= dim

�
F
�
, and

4. H and F are each other’s dual spaces.

Proof. H is isomorphic toH=KF , andF is isomorphic toF=KH. Lemma 4.2.2 tells

us thatH=KF andF=KH are dual to each other, and we know that these isomorphisms

preserve the products of elements. ThisH and F must be each other’s dual spaces,

which proves (4). This, in turn, implies (1), (2), and (3).�

We began this section by defining the vector spacesH andF so that elements ofH

represent conditional distributions on the future, and elements ofF represent conditional

distributions on the past. ButH andF contain subspaces of redundancy,KF andKH.

Now, if W andS are sufficient, we have vector spacesH andF , the elements of which

still encode the same set of conditional distributions, and we have basesH andF for

H and F , respectively. In addition, ifW and S are minimal,H and F contain no

redundancy andH andF are linearly independent bases.

Note that we have now shown that if our history wordlist is minimal,H is isomorphic

to U . In particular, we have a natural map from one to the other: IfA 2 U , then there
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is a uniqueh 2 H such that for alls 2 X �, we haveA(s) = hT s~1. That is, if h is

a mixed state, it is the mixed state representation forA. (This h may be found by the

techniques used in the proof of lemma 4.2.1, which involve building a basis of process

states and a corresponding basis of mixed states induced by the same words.) ThusH

may be thought of as a version ofU consisting of tangible vectors of real numbers rather

than the more abstract signed measures on an infinite sequence space.

As the following proposition establishes, ifW andS are sufficient, then the matrices

H andF , like the vector spacesH andF , can tell us whether or not a distinction is

independent of the past or of the future. And ifW andS are minimal, thenH andF

contain no redundancy, in the sense that no row vector in the span ofH is independent

of the future, and likewise forF . We will work with minimal wordlists whenever we

can because the absence of redundancy makes it easier to determine whether or not two

processes states are distinct.

Proposition 4.2.8. If W andS are sufficient,f 2 F , andh 2 H, then

1. f 2 KH if and only if Hf =

0
@
0
...
0

1
A, and

2. h 2 KF if and only if hF = (0; . . . ; 0).

Proof. If f 2 KH andh is a row ofH, thenh 2 H, sohf = 0. If f 62 KH, then there

is someh 2 H such thathf 6= 0. Any vector inH can be written ash = cH + k, a

linear combination of the rows ofH plus somek 2 KF . Thus we have

0 6= hf = cHf + kf; (4.39)

where we know thatkf = 0. So this becomes0 6= cHf , which impliesHf 6=

0
@
0
...
0

1
A.

This proves (1), and a virtually identical argument proves (2)�

Recall that each row ofH is associated with a particular word: theith row of H is

the mixed stateN(�Twi), wherewi is theith element ofW . Similarly, thejth column

of F is T sj~1, wheresj is the jth element ofS. ThusHF is the matrix of conditional

probabilities given by

(HF )
ij
= N(�Twi)T sj~1 = P(sjjwi): (4.40)
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Also, becauseW andS have the same length,HF is square.

Corollary 4.2.9. If W andS are minimal, thenHF is a nonsingular matrix. Conversely,

if W andS are sufficient and one or both ofW andS is not minimal, thenHF is singular.

Proof. Supposev is a row vector such thatvHF = (0; . . . ; 0). Then (vH)F =

(0; . . . ; 0), sovH 2 KF . But vH 2 H, and sinceW is minimal,H\KF = f(0; . . . ; 0)g.

Thus we havevH = (0; . . . ; 0). The rows ofH are linearly independent, so we must

havev = (0; . . . ; 0). That is, if a linear combination of the rows ofHF is the zero row,

then all of the coefficients of the linear combination are zero. Hence the rows ofHF

are linearly independent. AndHF is square, so it is nonsingular.

Conversely, assume thatW is not minimal. The case in whichS is not minimal may be

treated similarly. LetW 0 be a minimal wordlist which is a subset ofW , and letH 0 be

the history matrix induced byW 0. Now we consider two cases. In the first, the rows of

H span the same space as the rows ofH 0. This means that the dimension ofH must be

less than the number rows inH. Thus the rows ofH must be linearly dependent, which

implies that the rows ofHF are linearly dependent. In the second,H is larger than the

span of the rows ofH 0. But the span of the rows ofH 0 is isomorphic toH=KF . Any

larger subspace ofH must contain nonzero vectors which lie inKF and which are sent

to zero byF . Thus the row span ofH is reduced by multiplication byF , which means

that the rows ofHF are linearly dependent.�

Wordlists In the next section, we will useH andF extensively, as they will be our

primary tools for solving the equivalence and minimization problems. In the remainder

of this section, we will discuss the construction of these matrices and the construction

of the wordlists on which they depend.

The next lemma is a minor fact which we will need in section 4.3.

Lemma 4.2.10. If S is sufficient andh 2 KF , then for anyk in the alphabetX ,

hT k 2 KF .

Proof. Our assumption thath 2 KF implies that for all wordss, hT s~1 = 0. This means

that for anyk, for all wordss, hT ks~1 = 0, simply becauseks is a word. Thus we have
�
hT k

�
T s~1 = 0 for all words s, which implies thathT k 2 KF .�
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Two facts make the construction of sufficient wordlists feasible. First,H is a vector

space spanned by the mixed states, which are vectors of lengthjV j, so a basis forH

— or any subspace ofH — need not have more thanjV j elements. Similarly, a basis

for F need not have more thanjV j elements. So wordlists never need to be longer than

jV j in order to be sufficient. Second, we have the following fact of linear algebra.

Lemma 4.2.11.If u 2 spanfv1; . . . ; vng, andA is any matrix such that the productuA

is defined, thenuA 2 spanfv1A; . . . ; vnAg.

Proof. There must exist numbersc1; . . . ; cn such thatu = c1v1 + . . . + cnvn. But then

uA = c1v1A + . . . + cnvnA.�

We construct sufficient wordlists using the following algorithm, which is used for

a somewhat different purpose in [8].

Algorithm 4.2.12. Let Q be a queue — a first-in, first-out list —Q of words, and let

and letW be a list of words. QueueQ will store a list of words which the algorithm

has determined it must examine, andW will store the developing wordlist.

1. Initialize Q to contain only the word�, and initializeW to be empty.

2. Take a wordz from the tail ofQ and test whether of notN (�T z) lies in

spanfN(�Tw)jw 2 Wg = spanfrows ofH(W )g: (4.41)

3. If it does, discardz and skip forward to step 6. (Otherwise, continue with step 4.)

4. Add z to the wordlistW .

5. For eachx 2 X , add the wordzx to the head ofQ.

6. If Q is not empty, go back to step 2.

7. Stop. Q is empty, andW contains the completed wordlist.

Algorithm 4.2.12 builds only history wordlists, but a virtually identical algorithm

builds future wordlists.

Proposition 4.2.13. The wordlists constructed by algorithm 4.2.12 are sufficient. In

fact, for these wordlists,H = H .

Proof. We need to show that ifh 2 H, thenh 2 H. Everyh 2 H is a linear combination

of vectors of the formN(�Tw) for somew 2 X �, so it will suffice to consider vectors
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of that form. Suppose there exists a wordy such thatN(�T y) 62 H. Let z be the

longest prefix ofy such thatN(�T z) 2 H. There is at least one such prefix, namely

�. Let x be the symbol which followsz in y — that is, choosex 2 X so thatzx is

a prefix of y. ThusN(�T zx) is not in H.

Now, we have chosenz so thatN(�T z) is in H = spanfN(�Tw)jw 2 Wg, but

N(�T zx) is not. By lemma 4.2.11, we know thatN(�T z)T x is in the span of

fN(�Tw)T xjw 2 Wg, or equivalently,

N(�T zx) 2 spanfN(�Twx)jw 2 Wg: (4.42)

Because the algorithm added eachw to W , we know that it added the wordswx to

the queue. Thus the vectorsN(�Twx) were subsequently tested against the developing

basis and added to the basis if it did not already span them. Hence we know that for all

w 2 W , the vectorsN(�T zx) lie in H, soN(�T zx) is a linear combination of vectors

which are known to be inH, thus it is itself inH. This is a contradiction, hence no

words y can exist.�

Sufficient future wordlists may be constructed by an essentially identical process.

Lemma 4.2.14. A GHMM
�
V;X ;

�
T k

	
; �
�

has sufficient wordlistsW and S, every

word of which has length less thanjV j.

Proof. The construction we have just given has the property that ifw is not added to

W , then no words of the formwz can be added toW . Thus ifw is in W , every prefix

of w is in W as well, including the length zero word�. This means that if a word of

lengthl is added to a wordlistW , thenW has at least one element of each of the lengths

0; 1; . . . ; l and thus contains at leastl + 1 elements. Note that the wordlists constructed

here never have more thanjV j elements because rows ofH are linearly independent

and span a subset ofRjV j. Thus a word of lengthjV j or more can never be added toW .

A virtually identical proof holds forS.�

Once we have sufficient wordlists, we can get minimal wordlists simply by extracting

appropriate subsets. Suppose we have history and future wordlistsW andS, we take

H(W )F (S) and delete every row which is linearly dependent on those which precede
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it. The words associated with the remaining rows form a new wordlistW 0, and the

remaining rows themselves formH(W 0)F (S).

The rows ofH(W 0)F (S) are now linearly independent, which means the rows of

H(W 0) are independent. Moreover, because we only deleted linearly dependent rows,

the row span ofH(W 0)F (S) is the same as that ofH(W )F (S). The properties ofF are

such that we can be sureH(W 0) has the appropriate span. As we will show next, the

resulting wordlistW 0 is minimal. The analogous construction, deleting columns instead

of rows, builds us a minimal future wordlistS 0.

Proposition 4.2.15. Let W and S be sufficient wordlists. IfW 0 is a subset ofW

such that

1. the row span ofH(W 0)F (S) is the same as that ofH(W )F (S), and

2. the rows ofH(W 0)F (S) are linearly independent,

thenW 0 is minimal. Similarly, if S 0 is a subset ofS such that

1. the column span ofH(W )F (S0) is the same as that ofH(W )F (S), and

2. the columns ofH(W )F (S0) are linearly independent,

then S 0 is minimal.

Proof. As usual, we have separate statements about the past and the future, and we will

only prove the one about the past, as essentially the same argument will serve for the

future. We will not need to refer toF (S 0), and will useF = F (S).

We will first show thatW 0 is sufficient, that is, that the rows ofH(W 0), together with

KF , spanH.

Let h1; . . . ; hn be the rows ofH(W ). If h 2 H, then there exists a vectora =

(a1; . . . ; an) such that

h = a1h1 + . . . + anhn + k

= aH(W ) + k
(4.43)

for somek 2 KF . Multiplying on the right byF , we havehF = aH(W )F + kF . We

know thatkF = 0, sohF is in the span of the rows ofH(W )F . But the rows ofH(W 0)F

have the same span, so there must exist some vectorc such thathF = cH(W 0)F . This

is equivalent to(h� cH(W 0))F = 0, which means thath � cH(W 0) is in KF . Thus
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h = cH(W 0) + k0 for somek0 2 KF . ThusKF and the rows ofH(W 0) spanH, so

W 0 is sufficient.

Showing thatW 0 is minimal is now trivial. The rows ofH(W 0)F are linearly

independent and multiplying byF cannot eliminate any linear dependency which is

in the rows ofH(W 0). So the rows ofH(W 0) are linearly independent, andW 0 is

minimal.�

In this section, we have studied the relationship between the past and the future in

terms of linear algebra. As part of this study, we introduced and definedH andF , and

showed how to construct them and their associated wordlists. Next, we will begin to

use them to identify and eliminate redundancy from GHMM presentations.

4.3 Equivalence and Minimization of GHMMs

This section addresses two problems. The first of these, which we discussed in

section 4.1, is theidentifiability problem: When are two GHMMs equivalent? That is,

when do two GHMMs define the same process? The second is theminimizationproblem:

Given a GHMM, what GHMM is as small as possible — that is, has as few presentation

states as is possible — but is equivalent to the given one? These two questions are

closely related, and have been studied for HMMs for some time. The identifiability

problem is the more famous of the two and was posed by Blackwell and Koopmans in

1957 and solved by Ito et al in 1992, by a methods similar to the one presented here.[2,7]

The minimization problem is nearly solved in the same paper, and was completed by

Vijay Balasubramanian.[8] The details of the method presented here are the work of the

author. Notably, the standard presentation, which is important here and again in chapter

5, does not appear in any previous paper, though related presentations have appeared

before beginning with [20].

Suppose we have a GHMM presentation
�
V;X ;

�
T k

	
; �
�

for a processP and

wordlistsW andS such thatH andF are invertible. (This can only happen if there is

no redundancy, that is, ifKF andKH are trivial.) We are now going to define a sort

of a canonical presentation forP, which we will call thestandard presentationfor P,

which in this case is conjugate to
�
V;X ;

�
T k

	
; �
�

by H.
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If we conjugateT k byH, we getBk = HT kH�1, and if we writeH�1 asF (HF )
�1,

we have

Bk = HT kF (HF )
�1
: (4.44)

We will call the matricesBk the standard transition matricesfor the processP given

W and S. As we know, each(HF )ij is simply P(sjjwi). Similarly, for all k 2 X

and for all i; j 2 V ,
�
HT kF

�
ij
= N(�Twi)T kT sj~1

= P(ksjjwi):
(4.45)

In words,HT kF exhibits the action of the mapT k in terms of the bases — the rows

of H and the columns ofF — we have developed for the past and the future. And

both (HF )
�1 andHT kF are entirely determined by probabilities of words — by the

process, rather than by the presentation. This fact is key to the algorithms of this section

and the next chapter.

The same is true of the initial vector


 = �H�1 = �F (HF )
�1
; (4.46)

since (�F)j = P(sj). We will refer to 
 as thestandard initial vectorfor P given

W andS. Thus
 andBk depend only on the wordlists and the process, and not on

the GHMMs themselves.

The following definition assembles the standard transition matrices and the standard

initial vector into a presentation. We may choose any set of sizejV j as the set of

presentation states. It will be convenient to chooseW because, as we will see shortly,

the presentation states are associated with the words inW . Also, recall corollary 4.2.9,

which tells us thatHF is invertible.

Definition 4.3.1. If
�
V;X ;

�
T k

	
; �
�

is a GHMM presentation for the processP andW

andS are wordlists such that the matrixHF is invertible, then we define thestandard

presentationfor P given W and S to be

�
W;X ;

n
Bk

o
; 

�
; (4.47)

whereBk = HT kF (HF )
�1 and 
 = �H�1 = �F (HF )

�1.
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The following result establishes that ifH andF are invertible, the standard pre-

sentation forP is in fact a presentation, and that it is a presentation forP. In 4.3.10,

we will establish that the standard presentation is a presentation forPwheneverHF is

invertible, that is, whenever the standard presentation is defined.

Lemma 4.3.2.Let
�
V;X ;

�
T k

	
; �
�

be a GHMM presentation for the processP and let

W andS be wordlists such that the matricesH andF are invertible. Then the standard

presentation forP givenW andS is a GHMM presentation forP.

Proof. The standard presentation
�
W;X ;

�
Bk

	
; 

�

is conjugate to
�
V;X ;

�
T k

	
; �
�

by

H. Given this fact, proposition 4.1.7 tells us that
�
W;X ;

�
Bk

	
; 

�

is a GHMM and

that it is equivalent to
�
V;X ;

�
T k

	
; �
�
.�

Suppose we have a second GHMM
�
V 0;X ;

�
Uk

	
; �
�

which is equivalent to our

first GHMM,
�
V;X ;

�
T k

	
; �
�
. If we take its history and future matricesH 0 and

F 0 with respect to the same wordlistsW and S, then we must haveH 0F 0
= HF ,

H 0UkF 0
= HT kF , and �F 0

= �F . The for both presentations generate the same


and the same set ofBks and so they generate the same standard presentation. In this

sense, the standard presentation plays a role similar to that of a canonical form. But

because the standard presentation depends on the wordlistsW andS, there is no single,

absolute standard presentation. This is why we call it thestandardpresentation and not

the canonical presentation.

In other words, suppose we have two equivalent GHMMs, and we have wordlists

such that both GHMMs’ history and future matrices are invertible. Then they must

produce the same
 andBk, and therefore they must both be conjugate to the standard

presentation. We know that if two GHMMs are both conjugate to a third GHMM, then

they must be equivalent. So using standard presentations shows promise of resolving

the identifiability problem. The approach above for constructing the standard transition

matrices will not work in general, because the assumption thatH andF are invertible

may fail. However, there is a generalization of the standard presentation which we can

always construct, and so we can give a new solution to the identifiability problem using

this generalization.

Theorem 4.3.3. Suppose we are given two GHMMs
�
V;X ;

�
T k

	
; �
�

and
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�
V 0;X ;

�
U k

	
; �
�
, and letW andS be history and future wordlists which are sufficient

for both of them. LetP be the probability measure induced by
�
V;X ;

�
T k

	
; �
�

and

let Q be that induced by
�
V 0;X ;

�
Uk

	
; �
�
. The GHMMs are equivalent — that is,

P = Q — if and only if all of the following hold:

1. for all wi 2 W and sj 2 S, P(sjjwi) = Q(sjjwi),

2. for all wi 2 W , sj 2 S, andk 2 X , P(ksjjwi) = Q(ksjjwi), and

3. for all sj 2 S, P(sj) = Q(sj).

We will prove this by showing that the probability of any word is determined by

these few probabilities, these few conditional probabilities, and the information thatW

andS are sufficient. Thus the entire process is determined by these same few pieces of

information. At this point, it is worth recalling Bayes rule —P(sjw) = P(ws)=P(w)

— because it tells us that we can compute the necessary conditional probabilities from

the (non-conditional) probabilities of all wordswi, sj, wisj, andwiksj for all wi 2 W ,

sj 2 S, andk 2 X . We can ignore the possibility thatP(wi) = 0 for somei, and hence

thatP(sjjwi) will not be well-defined, because the row ofH corresponding to thatwi

must lie inKF . Such a row is never needed in the basis.

The proof itself, which begins on page 79, uses a number of lemmas, most of which

are proved by calculation and use of the properties ofH andF . These lemmas develop

a generalization of the standard presentation. Note that we are usingW as a set of

presentation states. Recall that we concluded in chapter 3 that the role of presentation

states was to serve as basis vectors for the space containing the mixed states. Here, we

use this the other way, and having chosen a basis for the mixed states, we will use the

elements of that basis as presentation states. Arguably, the presentation states should be

labeled with the mixed states, rather than the strings inW which induce those mixed

states, but we will use the strings themselves for brevity and clarity.

Whenever two GHMMs share an alphabet†, it is always possible to find wordlists

which are sufficient for both of them. IfW1 andW2 are sufficient for
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, respectively, then the wordlistW = W1 [W2, with words in any

fixed order, will be sufficient for both
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
.

†Two GHMMs which have distinct alphabets always represent different processes. In some applications, however, it may be
desirable to map one alphabet onto another so as to sidestep this fact.
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WhenW andS are not minimal, and thusHF is not invertible, we can no longer

define the standard transition matricesBk. It is still possible, however, to define a form

of the standard presentation, though we can no longer define it as simply as we can if

W and S are minimal.

Definition 4.3.4. Given a GHMM presentation
�
V;X ;

�
T k
	
; �
�

of a processP and

sufficient wordlistsW andS, we say that
�
W;X ;

�
Bk

	
; 

�

is a quasi-presentationif

1. for eachk 2 X , Bk satisfiesBkHF = HT kF , and

2. 
 satisfies
HF = �F .

We refer toBk and
 as aquasi-transition matrixand aquasi-initial vectorrespectively.

If HF is invertible, then there is a unique quasi-presentation for a processP given

W and S, and it is the standard presentation. Otherwise, quasi-presentations are not

unique. Lemma 4.3.5 shows that quasi-presentations exist.

Lemma 4.3.5. If W andS are sufficient, then for eachk there exists a quasi-transition

matrix Bk such that

BkHF = HT kF; (4.48)

and there exists a quasi-initial vector
 such that
HF = �F .

Proof. Let hi = N(�Twi) be the ith row of H. Then the ith row of HT k is

hiT
k = N(�Twi)T k, which must lie inH. The rows ofH and elements ofKF

spanH, so there is somev 2 KF and somea 2 R
n such thathiT k = aH + v. This

means thathiT kF = aHF . Let the ith row of Bk be a.

Likewise, � is in H, so we can find
 2 Rn andv 2 KF such that
H + v = �, and

hence
HF = �F .�

The next lemma depends on the normalization of the rows ofH. In fact it is the

reason we definedH — and indeed,H — usingN(�Tw) instead of the simpler�Tw.

Lemma 4.3.6. The matrix
P

k2X

Bk and the vector
 are both unit-sum.

Proof. Because~1 is an element ofF , there exists ana 2 Rn and anu 2 KH such that

~1 = Fa+ u. ThusH~1 = HFa, and since the rows ofH are mixed states and so must
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be unit-sum, we have~1 = HFa. Similarly, for all k 2 X , we can write

HT k~1 = HT kFa+HT ku (4.49)

But each row ofHT k is in H, soHT ku = 0 and we haveHT k~1 = HT kFa. Now,P
k

T k is unit-sum, so if we sum onk, this becomes~1 = H
P
k

T kFa.

Summing 4.48 onk gives us X
k2X

Bk

!
HF = H

 X
k2X

T k

!
F: (4.50)

If we multiply on the right bya, we can substitute~1 for HFa and forH
P
k

T kFa, and

we have

�P
k

Bk

�
~1 = ~1.

Similarly, 
HF = �F becomes
HFa = �Fa, which in turn becomes
~1 = 1.�

Lemma 4.3.6 establishes that
�
W;X ;

�
Bk
	
; 

�

satisfies conditions 1 and 2 of the

three conditions of definition 4.1.2, which defines a Proto-GHMM. The next lemma tells

us that it may fail to satisfy the final condition —

P
k

Bk may differ from
, but only

by a vector inKF .

Lemma 4.3.7. For some vectorr such thatrHF = 0, 
 satisfies

P
k

Bk
= 
 + r.

Proof. Because
 is known to satisfy
HF = �F , there is av 2 KF such that


H = � + v. Thus,


H
X
k

T k
= �

X
k

T k
+ v

X
k

T k

= � + v0
(4.51)

for somev0 2 KF . Similarly, 4.50 tells us that

H
X
k

T k
=

X
k

BkH +A (4.52)

for some matrixA, all rows of which lie inKF . When we substitute the right-hand

side of equation 4.52 into equation 4.51, we have

P
k

BkH = �+v0�
A, from which

the substitution of
H � v for � gives us



X
k

BkH = 
H + v0 � 
A� v: (4.53)



78

Multiplying by F , we have



X

k

BkHF = 
HF: (4.54)

Thus, there is some row vectorr such thatrHF = 0 and

P
k

Bk = 
 + r.�

We would like lemma 4.3.7 to have established that

P
k

Bk = 
, because that would

have completed the verification that
�
W;X ;

�
Bk
	
; 

�

is a Proto-GHMM. However,

this is not always the case — a quasi-presentation is not always a Proto-GHMM. If

HF is invertible — that is, ifW andS are minimal — then
�
W;X ;

�
Bk
	
; 

�

is the

standard presentation. In this case, we do have a Proto-GHMM, which we may prove by

multiplying equation 4.54 by(HF )
�1. We will soon show that the standard presentation

is, in fact, a GHMM equivalent to
�
V;X ;

�
T k
	
; �
�
, and we will use this fact later in

this section when we address the minimization problem.

In the next lemma, which is the key step in the proof of theorem 4.3.3, we establish

that the quasi-initial vector
 and the quasi-presentation matricesBk can reproduce the

probabilities of words given by the initial vector� and the transition matricesT k. Here,

we begin using the quasi-transition matrices as transition matrices, with the convention

that if x = x1 . . .xn is a word, thenBx = Bx1 � � �Bxn.

Lemma 4.3.8. For all x 2 X �,

1. HT xF = BxHF ,

2. �T xF = 
BxHF , and

3. �T x~1 = 
Bx~1.

Proof. We will prove by induction on the length ofx. If the length is one, then 1 is

equivalent toBkHF = HT kF , which Bk satisfies by definition.

If x has length greater than one, then we can writex = yk for k 2 X and y the

prefix of x with length jxj � 1. We will assume, as our induction assumption, that

HT yF = ByHF . This means that there is some matrixA such that

HT y = ByH +A; (4.55)

and all rows ofA lie in KF . Now, multiply on the right byT k and we have

HT yT k
= ByHT k

+AT k: (4.56)
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BecauseBk is defined to satisfyBkHF = HT kF , we know thatHT k
= BkH +C for

some matrixC, all rows of which lie inKF . Making this substitution forHT k on the

right-hand side of 4.56 and writingC 0
= C + AT k, we have

HT yT k
= ByBkH + C 0: (4.57)

Note thatC 0F is a matrix of zeros. Thus, if we multiply equation 4.57 byF , we have

HT xF = BxHF; (4.58)

which proves 1.

Note that we have shown that

HT x
= BxH +A (4.59)

for some matrixA such thatAF is a matrix of zeros. Multiplying by
 and then

substituting� + v for 
H gives us

�T x
+ vT x

= 
BxH + 
A; (4.60)

for somev 2 KF . Note that bothvT x and 
A lie in KF . Now, if we multiply by

F , we get

�T xF = 
BxHF; (4.61)

thus proving 2.

And finally, if we multiply equation 4.60 by~1, we have

�T x~1 = 
BxH~1: (4.62)

BecauseH is a unit-sum matrix, equation 4.62 proves 3.�

We have now defined quasi-presentations, proven that they exist, and proven that

they determine the probabilities of all words. Having done so, we are ready to prove

theorem 4.3.3.

Proof of Theorem 4.3.3. If two GHMMs
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are

equivalent, then they agree on the probabilities of all words, and thus an all conditional
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probabilities. The interesting part of the theorem is that ifW and S are sufficient

for both
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�
, and if these two GHMMs agree on

the probabilitiesP(sjw), P(ksjw), andP(s) for all w 2 W , s 2 S, andk 2 X , then
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are equivalent. We will prove this by constructing

a quasi-presentation for
�
V;X ;

�
T k

	
; �
�

and showing that it is also a quasi-presentation

for
�
V 0;X ;

�
Uk

	
; �
�
.

Let H1 andF1 be the history and future matrices for
�
V;X ;

�
T k

	
; �
�

and letH2 and

F2 be the history and future matrices for
�
V 0;X ;

�
Uk

	
; �
�
. Let us recall the hypotheses

of this theorem.

1. For allwi 2 W and sj 2 S, P(sjjwi) = Q(sjjwi),

2. For allwi 2 W , sj 2 S, andk 2 X , P(ksjjwi) = Q(ksjjwi), and

3. For all sj 2 S, P(sj) = Q(sj).

First, P(sjjwi) = (H1F1)ij, andQ(sjjwi) = (H2F2)ij, so 1 is equivalent toH1F1 =

H2F2. Second,P(ksjjwi) =
�
H1T

kF1

�
ij

, andQ(ksjjwi) =
�
H2U

kF2

�
ij

, so 2 can

be written as follows: for allk, H1T
kF1 = H2U

kF2. Last, P(sj) = (�F1)j, and

Q(sj) = (�F2)j, so 3 becomes�F1 = �F2. Thus, what we need to show is that

these three facts —H1F1 = H2F2, H1T
kF1 = H2U

kF2 for all k, and �F1 = �F2

— together imply thatP(x) = Q(x) for any x 2 X �, whereP(x) = �Tx~1 and

Q(x) = �Uk~1. Let 
 be any solution to
H1F1 = �F1, and for allk, let Bk be any

solution toBkH1F1 = H1T
kF1. Then

�
W;X ;

�
Bk

	
; 

�

is a quasi-presentation for the

process represented by
�
V;X ;

�
T k

	
; �
�
. Lemma 4.3.8 now tells us that for anyx 2 X �

�T x~1 = 
Bx~1.

But we know thatH1F1 = H2F2 and �F1 = �F2, so 
 satisfies
H2F2 = �F2.

Similarly, eachBk satisfiesBkH2F2 = H2U
kF2. Thus,

�
W;X ;

�
Bk

	
; 

�

is also a quasi-

presentation for
�
V 0;X ;

�
Uk

	
; �
�
. So lemma 4.3.8 tells us that for allx, �Ux~1 = 
Bx~1,

and therefore that for allx, �Ux~1 = �T x~1.�

Corollary 4.3.9. If
�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are two GHMMs which

assign the same probabilities to all words of length less than2n, neither of which has

more thann states, then they are equivalent.
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Proof. Lemma 4.2.14 tells us that we can find wordlistsW andS in which all of the

words have length at mostn�1. For such wordlists, all words of the formwi, sj, wisj,

andwiksj have lengths less than2n, so
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

must

agree on allP(sjjwi) = P(wisj)=P(wi), P(ksjjwi) = P(wiksj)=P(wi), andP(sj).

Thus, by theorem 4.3.3, they are equivalent.�

With this machinery in hand, we can resolve the minimization problem.

Theorem 4.3.10.Given a GHMM
�
V;X ;

�
T k
	
; �
�
, let P be the process it represents,

and letW andS be minimal wordlists. Then the standard presentation
�
W;X ;

�
Bk
	
; 

�

for givenW andS is a GHMM, and it is equivalent to
�
V;X ;

�
T k
	
; �
�
. Furthermore,

no GHMM exists with fewer thanjW j states which is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Proof. As noted on page 78, whenHF is invertible, 
 =
P

k

Bk
, and the standard

presentation is a Proto-GHMM. We established in lemma 4.3.8 that
Bx~1 = �T x~1 for all

x 2 X �. This proves both that it is a GHMM and that it is equivalent to
�
V;X ;

�
T k
	
; �
�
.

Because the rows ofHF are linearly independent, and these rows consist of conditional

future probabilities, we know that the process statesP(�jwi) are linearly independent.

Thus the span of the reachable process states has dimension at leastjW j. In fact, if

we combine lemma 4.2.1 and proposition 4.2.6, we have proven that its dimension is

exactlyjW j. If a GHMM has fewer thanjW j states, then it induces a process for which

the span of the reachable process states has dimension less thanjW j, and thus it cannot

be equivalent to
�
V;X ;

�
T k
	
; �
�
.�

We conclude this section with a result — the existence of conjugacies — which we

promised in section 4.1. This was first shown — for functions of finite Markov Chains

— by Gilbert [20].

Proposition 4.3.11. Let
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

be two minimal,

equivalent GHMMs — that is,jV j = jV 0j = dim (U), whereU is the span of the

reachable process states. Then there exists a matrixM such that
�
V;X ;

�
T k
	
; �
�

and
�
V 0;X ;

�
Uk
	
; �
�

are conjugate byM .

Proof. Let W and S be minimal wordlists for
�
V;X ;

�
T k
	
; �
�
, and letH1 and F1

be the associated history and future matrices. BecauseW and S are minimal,H1F1
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must be invertible. We know thatjV j = dim(U), and for minimalW we know that

jW j = dim(U). ButH1 hasjW j rows andjV j columns, so it must be square. Likewise,

F1 must be square and bothH1 andF1 must be invertible.

LetH2 andF2 be the history and future matrices for
�
V 0;X ;

�
U k

	
; �
�
. Then the process

statesP(�jwi) form a linearly independent basis forU , hence the rows ofH2 must be

linearly independent. ThusH1, F1, andH2 are full rank square matrices, and must be

invertible. We also know thatH1F1 = H2F2 is invertible, soF2 = H�1

2
H1F1 must

be invertible.

Now, we calculate. We haveH2U
kF2 = H1T

kF1 and�F1 = �F2, so

Uk
= H�1

2
H1T

kF1F
�1

2
(4.63)

and � = �F1F
�1

2
. And if we let M = H�1

2
H1, M is a unit-sum matrix. And

H1F1 = H2F2 implies H�1

2
H1F1F

�1

2
= I, so M�1

= F1F
�1

2
. So equation 4.63

may be writtenUk
= MT kM�1. Moreover, we have� = �F1F

�1

2
= �M�1. Thus

�
V;X ;

�
T k

	
; �
�

and
�
V 0;X ;

�
Uk

	
; �
�

are conjugate.�

We began this section by defining a GHMM to be a representation of a process

similar to an HMM, but with negative entries allowed in its transition matrices. We

studied the vector spaces of conditional distributions on the future induced by history

words and of conditional distributions on the past induced by future words. We

found bases for these vector spaces in terms of these same words. These bases were

instrumental in resolving the identifiability and minimization problems, and they led

us to the standard presentation. We have shown that the standard presentation is a

GHMM presentation for a process, and we have observed that it is determined entirely by

probabilities of words. In the next chapter, we will use this fact to construct presentations

directly from probabilities of words — that is, directly from the process.


