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4 Generalized Hidden Markov Models

At the beginning of the last chapter, we viewed a Hidden Markov Model as a Markov
chain with a stochastic output filter, and we only interpreted the presentation states as
the states of a Markov Chain. Over the course of that chapter, we used the tools of linear
algebra more and more, working with mixed states rather than directly with presentation
states. Finally, we introduced an alternative interpretation of the presentation states —
that they are basis elements for the set of mixed states, or equivalently, for the set of
process states. In this interpretation, the transformation matrices define the process by
defining linear transformations on the mixed states. As we will see, this linear algebra
interpretation is the more fundamental one.

In this chapter, we will define and use a generalization of Hidden Markov Models
in which the presentation states cannot be interpreted as states of a Markov chain, but
can only reasonably be interpreted as basis elements. The first use of Generalized
Hidden Markov appears to have been as a counter-example in [10]. Several authors
have used Generalized Hidden Markovs and similar techniques in recent years, including
connection to neural nets developed in [22 ] and the solution of the problem of HMM
equivalence in [7]. Late in this chapter, and in the next one, we will choose a linearly
independent basis for the span of the process states, and use these basis vectors as
presentation states of a new presentation we construct directly from the process.

4.1 Generalized Hidden Markov Models

When we think of a Hidden Markov Model as an object of linear algebra, it makes
sense to consider what happens when we perform a change of basis — a canonical
linear algebra operation. And so, after one convenient definition, we will work through
a change of basis for a generic HMM.

Definition 4.1.1. A unit-sumvector is a vector whose components sum to one. A
unit-sum matrix is a matrix whose row vectors are unit-sum vectors.

That is, a row vector is unit-sum row vector il = 1, and a matrix4 is a unit
sum matrix if

AT =1. (4.1)
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Note that the inverse of a unit-sum matrix must also be unit-sum. If we multiply both
sides of equation 4.1 byi~!, we get

IT= A" (4.2)

and, clearly,/1 = I. If a unit-sum vector satisfies the additional requirement that all
of its components are nonnegative, then it istachasticvector. Similarly a matrix is
stochastic if all of its rows are stochastic vectors.

Suppose we have an HMW = (V, X, {T*},x). A mixed state: = (u1,. .., uy))
for this HMM is a stochastic vector in a vector space with basis elements associated
to the states ¢ V: if x is induced by a history object, then y; = P(i|s). The
process state associated withs a linear combinatiorij ;A of the conditional future
distributionsA; = P(-|¢). If we let/ be the span of aﬁ of the HMM'’s reachable process
states, theq Ay, ..., Ay} is the basis we used fdr in section 3.6.

We will now work through a change of basis. We begin by choosing a new basis
{By,. ..,B|V|} for ¢/ as follows: choose an invertible unit-suvi| x |V| matrix M,
and for all: let

&zgy@M. (4.3)
j

Clearly, for alli, B; € ¢/, and becaus@/ is invertible,{By, ..., By} is a basis fot/.

This change of basis calculation will be facilitated by the following somewhat
nonstandard notation. We will write the vectors of the basis in a formal column vector
as if they were scalarsThat is, we define the formal column vectoksand B by

B Ay B B,
A= : andB = : (4.4)
Ay By

Thus, we may rewrite 4.3 as
B=MA. (4.5)

In this notation, ifx. € RIV! is a mixed state, then it is a row vector, and it describes the
process statp A. From equation 4.5, we ge/ !B = A, souM~'B = pA. Thus
if v =M™, thenyA = vB, sou andr describe the same process state in different
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coordinate systems. Hendé ! maps&—coordinates tdB—coordinates. Since is not
a mixed state for any HMM we have defined yet, we will call it a coordinate vector.

Our HMM’s stationary distributionr and its transition matrices are all given in
A—coordinates. What do they look like iB—coordinates?r is simply a mixed state,
so it transforms to the coordinate vector- A/~ as we have indicated above. /ffis
a coordinate vector, thenB € ¢/, andvM defines a row vector itk coordinates — a
mixed state. We can operate of/ with the operatofl*, and transform the result back
to B coordinates withi/~1. The result is that the operatign— 7% in A coordinates
becomes — vMT* M~ in B coordinates. That is, the similarity transformation which
transformsT* into B coordinates produces the matfi¥ = MT*M~!.

Now, if we define a set of formal symbols' = {12, ... |V|'}, we can construct
a quadruple(V', X', {U*}, 7). This quadruple looks like an HMM. It may fail to be
one, however, because tfi& matrices may have negative entries. Nonetheless, it
satisfies the rest of the definition of an HMM. The transition matri{:é@ } satisfy

<Zcfk>f = 1, since
k

k 17
S o

And 7 satisfiesr = 73 U* since
k
T Z UF = eyt Z MT*pr1
k k

— MM (Z Tk) Mt

= (2}; Tk> M

— oM~ =

4.7)



55

Further, if we manipulatd V', X', {U*},r) as if it were an HMM, and calculate
771 for an arbitrary worcw = w; ... w;, we get

TUYT =70 ... U™T
= (eM~ Yy (MU MY (MU MDT (4.8)
= 7T TYMT,

and sinceM ! is unit-sum, this becomes
FUYT = 77T, (4.9)

Thus, for every wordo € X*, we getP(w) = 7U/*1. In spite of the fact that it is not
an HMM, (V. x, {U*},7) defines a process as if it were. We will call iGeneralized
Hidden Markov Model (GHMM)following [8].

For instance, consider the following presentation of the Golden Mean Process which

we saw in section 3.5:
V= {B,C}, X = {071}7 T = (%7 1?)

P =)

As discussed in section 3.5, the processes states for this HMM are represented by the
mixed states(2, 1), (1,0) and (0,1). Let

373
1 0
M = (2 _1>, (4.11)

which is an invertible, unit-sum matrix. Note that~' = M. Now, when we perform
the change of basis, we get

0 0qy—1 1 -3
U =MIT"M— = 5 1 , and (4.13)
1
Ut=MT*M~! = (8 8) (4.14)

The new coordinates for the process states, which are the images of the mixed states
under multiplication (on the right) by/ 1, are (3, —3%), (1,0), and(2, —1).

How can we make sense ¢F”, X, {U*},7)? If we try to think of1’ € V' as a
state in some variation on a Markov chain, it makes no sense at all — this?algfs
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in the role of a transition matrix, so we find ourselves looking at negative transition
probabilities. If we insist on this interpretation, then we must reject the whole idea of
GHMMs as absurd. But if we think of’ as an vector in a basis féf, there is no
substantial difficulty. A row of/* simply gives the coordinates of the image of some
basis element under a linear mapping, and a negative coordinate is a perfectly sensible
thing. Instead of contemplating possible meanings for negative probabilities, we simply
stop interpreting the matrix entriéé{; as probabilities. Essentially, we attribute meaning

to the entire matrix/¥ — it is a linear map — but not to individual entries in this matrix.

(We will continue to use the terrmixed statgalthough it is no longer apt.)

Definition 4.1.2. A Proto-Generalized Hidden Markov Model (Proto-GHMNS a
quadruple(V, X', {T*}, 7), whereV and X are finite sets, and eadtt is a|V| x |V|
matrix, and the following conditions are satisfied:

1. Y. 7T* is a unit-sum matrix

k
2. w is a unit-sum vector, and
T =Y T
k

We would like to have a Proto-GHMM define a process in the same way that an
HMM does, but this does not always happen, because of a complication introduced
by allowing negative entries in thg*s. Proto-GHMMs(V, X, {T*},r) and wordsw
exist such thatr7%1 < 0. An example is

11

V= {01}, X ={0,1}, 7r—<—,—>

2 2
0 —-1) S \2 0/

for which #7°T = —1. Clearly, then, a Proto-GHMM may fail to define a process. The
next two definitions address this problem.

Definition 4.1.3. A Proto-GHMM (V, X', {T*}, =) is valid if, for all words w € X'*,
it satisfiesz7%T > 0.

*The reader may wonder why we reqw @ U” to be unit-sum, when we could discard this restriction and have greater generality.

This extra generality costs us some convenlence For example, the fazctahdg T* are unit-sum guarantees t@P( )=1.

We can work around such difficulties, but there is no point — as we will see in chapter 5. Every process WhICh could possibly be
represented with this greater generality has a GHMM presentation.
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Definition 4.1.4. A Generalized Hidden Markov Model (GHMM$ a valid Proto-
GHMM.

This definition is precisely what we need in order to have GHMMs represent
processes.

Proposition 4.1.5. Every GHMM defines a process.

Proof. We prove this by applying B.1.1, whepgw) = =7%1. Thus we must verify
1. f(A\) =1, and
2. for all wordsw € X',

flw) = Zf(zw) = Zf(wz). (4.16)

2€EX zeX
Unlike previous applications of B.1.1, here we must also show fthat™ — [0, 1].

First, f(A\) = =T*I, whereT" is the identity matrix by definition and is unit-sum.
So clearly, f(A) = 1. Next, we deal withf(wz):

Z flwz) = Z TV 1

zeX 2€X

(4.17)
= 7T% (Z TZ> I.
zeX
But Y 7% is a unit-sum matrix, so this becomes
zeX
> flwz) =711 = f(w). (4.18)
zeX

The other equality in equation 4.16 may be handled by a similar calculation, using

© = x »_. T% in place of the unit-sum property.
zeX

Finally, we need to show that for an arbitrary warde X*, 0 < f(w) < 1. Half of
this is given by validity. Given the properties we have just shown, a simple induction
argument establishes that for &l

> fs)=1. (4.19)
seX!
Let / = |w|, and rewrite 4.19 as
L= fs)=fw)+ > f(s) (4.20)
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Both terms in this sum are nonnegative, so neither can be greatet .llan

We can characterize the preceding development as follows: A Proto-GHMM is an
object which would be an HMM if it didn’'t have negative entries in its matrices, and a
GHMM is a Proto-GHMM which never assigns a negative number to a word, and thus
defines a process. That is, we are allowing negative entries in transition matrices, but
only when the result works with the procedures we use for HMMs.

Testing the validity of a Proto-GHMM is nontrivial. Consider the obvious, naive
algorithm: Take the (countably infinite) list of all words .ii*, and write a loop which
computesr7¥1 for every wordw on the list. Make the loop halt if this quantity is
negative, and continue down the list if it is not. The Proto-GHMM is valid if and only
if the loop never halts. Clearly this is not a practical test. One can find improvements to
this algorithm which prune this list and thus typically reach invalid conclusions faster.
And there are some special cases in which validity can be established — for instance,
every HMM is a (valid) GHMM. Nevertheless, the essence of the test in the general
case remains the same.

We have now finished defining GHMMs, and we will present some results involving
them. The first of these is an extension of theorem 3.6.1 to GHMMs. The proof of 3.6.1
will serve as a proof of 4.1.6 without modification, so we will not give a separate proof
here. Recall thatV is the set of all signed measures on the future.

Proposition 4.1.6. Given a proces®, letl/ be the subset of¥ spanned by the reachable
process states. ® has a GHMM presentatioqV, X', {T*}, x), thendim (¢/) < |V|,

We conclude this section by restating and expanding on the basis change manipula-
tion we performed earlier in this section. We begin with the following result.

Proposition 4.1.7. If (V,X,{T*},x) is a GHMM and M is an invertible unit-sum
matrix, andV’ is any set of sizeV|, then (V', X, {MT*M~'} xM~') is a GHMM
which defines the same process(@X, {T*}, 7).

Proof. It may easily be verified thatV’, X', {MT*M =1}, #M~') is a Proto-GHMM.
And by the same arguments used above for conjugation of HMMs, we know that for
any w € X',

TUCT = 7 T"1. (4.21)
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The right side of equation 4.21 is always nonnegative, so the left side must be also.
Therefore(V', X', {MT*M~'}, #M~1) is valid, and thus it is also a GHMM

Definition 4.1.8. We say that two Proto-GHMMEV, X', {T*}, =) and(V', X, {U/*}, 7)
are conjugateto each other by an invertible unit-sum matrix if

1. V| = |V,
2. 7 =M1, and
3. forallk, UF = MT M1,

Note that this is a linear conjugacy, which is the only kind of conjugacy we will consider.

Proposition 4.1.7 tells us, then, that if a Proto-GHMM is conjugate to a GHMM,
then it is itself a GHMM.

Definition 4.1.9. When two GHMMs define the same process, we say that they are
equivalent

Thus the proof of proposition 4.1.7 also shows that if two GHMMs are conjugate,
then they are equivalent.

Lemma 4.1.10. If two GHMMs (V, X, {T*}.x) and (V', X, {U*},7), are conjugate
by an invertible unit-sum matrid/, then for allw € X,

UM = 7T". (4.22)

Note that since these two HMMs are equivalent, we know #¥&tT = 7U/*1. So
if we divide equation 4.22 by this quantity, we get

U v
M= (4.23)
TU%1 7 %1
which we may recognize as
N(UYM = N(=T"). (4.24)

That is, M takes mixed states to mixed states.
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Proof. We are given that/® = M7°M~1, U = MTIM =1, andr = =M ~1. Multiply
by M, and we haveVT° = UM, MT' = U'M, andr = 7M. Thus, for allw,
TUYM =7U" .UMM
= U U MT™
(4.25)
=7MT* ... T"
=77% N
The converse of proposition 4.1.7 does not hold — there are pairs of GHMMs

which are equivalent but not conjugate. This is caused by redundancy — extra states in
the presentation. In fact, there are pairs of such presentations which are both HMMs.

Consider 1
V =10,1,2}, & = {0,1}, :<_7_7_>
{ } { } g 3 3 3
0 5 0 7 00 (4.26)
=10 0 0o}, 7'={0 0 1],
0 3 0 1o o0
and 21 4
vi={0,1,2}, x={0,1 ::<_ ! _>
{ 0 }7 {7 }77T 97379
0 5 0 0.0 5 (4.27)
U=10 0 o), U'=[0 0 1
0 3 0 1o o

These are both presentations of the Golden Mean Process, which are redundant in
different ways. The reader may see this by noticing that statasd 2 — and (0’
and?2’ — have the same future conditional distributions. THugnd2 — and(0’ and
2! —can be merged.

To show that these presentations are not conjugate, we will show that there exists
no invertible unit-sum matrixd which takesz7* to ~U* for all w € X*. Lemma

w T U
0 (0,,0) (0,3,0)
01 (0,0, 3) (0,0, 5)
011 (£.0,0) (3,0,0)
0111 (5. 0,0) (0,0, 5)

Table 4.1 The actions of the HMMs given in equations 4.26 and 4.27 on selected words.
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4.1.10 tells us that each row of table 4.1 constrains the matrixThese constraints
are incompatible; the first three rows imply thatis the identity matrix, and the fourth
implies that it is not. Thus, no suitable matrik exists, so these presentations are not
conjugate.

4.2 Redundancy and Linear Algebra

In the last section we saw an example in which two equivalent presentations may fail
to be conjugate to one another, because they are redundant in different ways. We will
now study redundancy, and then return in the next section to GHMM equivalence. The
methods we will develop here give us a new way of describing the essential information
in a GHMM. In this new form, we will be able to identify and factor out redundancy,
which is the key to resolving the equivalence and minimization problems.

Vector SpacesWe begin by identifying two vector spacés and.F, which we will
call the history and future spaces. Given a GHMM X', {T*},x), let H be the span
of the set of all mixed states:

H =spaq N(zT")|w € X*}. (4.28)
In a complementary fashion, let
F = spar{T‘Sﬂs € X*}. (4.29)

Elements ofH are linear combinations of mixed states, which are row vectors, and
elements ofF are column vectors. Just &&(x7*) contains all the information about
the history suffixw that is relevant to the futurd;*1 contains all the information about
the future that is relevant to the past. Implicit in this is thaand I play analogous
roles which is suggested by the identitie§" 7* = = and > T*1 = I. Just as we may
usexT*" to calculate the conditional distrfbutions on théC future inducedvbyve may
useT*1 to calculate the conditional distributions on the past induced.b¥hus, we
may think of 7°T as a backward analog of a process state, and we may think of any
f € F as a linear combination of these.

Leth = N(xT%) andf = T*1. If we take the product of these, we det = P(s|w).
In considering the productf, we may think ofz as the linear functional and as the
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operand, or vice versa. In generalhife H and f € F, then we may think of. as a
maph : F — R defined byh(f) = hf, and we may think off as a mapf : H — R
given by f(h) = hf. ThusH andF are almost each other’s dual spaces.

But’H andF may not be each other’s duals. If there is redundancy in the presentation
states — that is, if there are distinct mixed states which induce the same conditional
future — then it may happen th&t and.F have different dimensions, and there may
be nonzerah € H for which hf = 0 for all f/ € F.

Let
Ky ={heH|forall feF, hf =0}, (4.30)

and similarly,
Ky ={feF|forallh € H, hf =0}. (4.31)

That is,h € H is in Kg if it is in the kernel of everyf € F. If h = x#T" is a
row vector induced by a woreb andh € K, we usually haveh = (0,...,0) and
P(w) = 0. In an HMM, this is the only way a row vector induced by a word may fall
in Kr. But differences between mixed states may liekig. Suppose two words:
andw; induce the same process std;|w;) = P(-|w2), and leth; = N(x1T*") and

ho = N(xT*?). Then for all wordss,

hT*T = P(s|wi) = P(s|wg) = hoT*1. (4.32)

Because everyf € F is a linear combination of column vectof&*T, this implies
hif =hof forall f € F, orhy —hy € Kr. If we know that the current history suffix
is eitherw; or w2, but we do not know which one, then our finding out which one
does not improve our ability to predict the future. And this works backward, too — if
hy — hy € K, thenw; andwy induce the same process stat€; contains exactly
those vectors which are irrelevant to the future of the process. For this reason we say
that A r consists of redundancy.

Similar statements are true abakiy;. If, and only if, /1, fo € F andhfi = hfo
forall » € H, thenf, — f> € Ky, and the distinction betweefy and /> is independent
of the history of the process.

Now we can eliminate this redundancy — factor it out, so to speak — by working
with the quotient space®//Kr and F/Ky in place of H and F. As the following
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lemma showsH /K r is in one-to-one correspondence withthe span of the reachable
process states, so it contains no redundancy.

Lemma 4.2.1. H/K r is isomorphic tol/.

Proof. Let > be the quotient map : H — H/Kr, and letM : H — U be defined

as follows: ifh € H, then M(h) is the signed measure on the future space given by
M(h)(s) = hT*1 for all s € X*. Now we can define our isomorphist H/K r — U.

If ¢ € H/Kz, chooseh € v~ 1(g) and defines(¢g) = M(h). The value ofs(g) does

not depend on our choice &f because ifi1, hy € v 1(g), thenhy — hy € Kz. This
implies thath,T°T = hoT*1 for all s, SO M(hy) = M(hs).

Because) and M are linear,» must be linear. To show that it is an isomorphism, we
must show that it is injective and surjective. The first of these is trivial: supp@se =
é(g2). If we chooseh; € ¢v~1(g1) andhz € ¢y "1(g2), we haveM (h1) = M(hz), which

is equivalent toh; T°1 = hoT*1 for all s. Thush; — ho € K7, SO¢1 = go.

Next we show that, is surjective. The definition o/ implies that there must exist
wordswi, . .., w, such that the process statks = P(-|w;), ..., A, = P(-|w,) form a
linearly independent basis fof. That is, there are no real numbers. . ., a,, such that

(a1A1+ ...+ a,Ay)(s) =0 for all s. (4.33)
For: =1,...,n,letg;, = ¢(N(xT"")). For all: and for all s, we have
o(gi)(s) = M(N(xT™))(s)
= P(s|w) (4.34)
= A(s),

S0 ¢(g;) = A;. Thus ifgy,..., ¢, were linearly dependeny, ..., A, would have to
be linearly dependent as well. 39, ...,¢, are a linearly independent basis for some
subspace of{/ Kr and¢ is a map which takes this basis to a basistforThis means
that ¢ is an isomorphism from this subspace obtoBut ¢ is injective and takes all of
H/K £ to U, hence this subspace is all &f/ K r.1

An element ofH/ K r is a set of row vectors, differences between which li&'in.
Similarly an element ofF/ K r is a set of column vectors which is parallel£g;. What
does a linear functional — a real valued linear function —NK r look like? It is
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simply a linear functional ori{ which is constant along directions which lie .
Every f € F is a linear functional ori{ which is zero on all ofK r, so everyf € F

is a linear functional or{/ K. Note thatf,, fo € F represent the same functional
on H — and thus orH/Kr — if and only if f; and f» differ by an element ofi'y.

So all of the column vectors in anye F/ Ky represent the same linear functional on
H/Kr. So we may say that is that functional. And ify € H/Kr, we havege = hf

for anyh € v'~!(¢) and for anyf € F taken by the quotient map to Likewise, each

g € H/K# is a unique linear functional o/ K+. SoH/K r andF /Ky like H and
F, consist of elements of each other’s dual spaces. But unlike elemeftsaoid 7,
elements ofH/Kr and F /Ky contain no redundancy.

Lemma 4.2.2. H/ Ky and F /Ky are each other’s dual spaces.

Proof. We have seen that eveeye F/K1y is a unique linear functional ot/ K r.

Thus, to show thatF/ Ky is the dual ofH/Kr, we need only show thaf /Ky
contains the entire dual space rather than a proper subspace. Similarly, we must show
that H/K r contains the entire dual of / K.

Letn be the dimension of{/ K r, and letn be the dimension of / K. Letgi, ..., g

be a linearly independent basis faf/ K+ and letey, ..., e, be a linearly independent
basis forF/Ky. Finally, let A be then x m matrix with entriesA;; = g;e;. Suppose

a linear combination gy + ...a,g, IS taken to zero by all o, ..., e,,. It must be

taken to zero by every € 7 /Ky, and hencéaig; + ...ang,)f = 0 for every f € F.

This is possible only iti1g1 + ... angn = 0, SO the rows ofd are linearly independent
and A has rankn. A similar argument shows that has rankm, son = m. Hence

H/ K7 and F/ Ky have the same dimension, so neither can be a proper subspace of
the other’s dual space. Each must be the dual space of the diher.

Bases We will now move on to more concrete and more readily manipulated forms of
these vector spaces. In particular, we will be working with bases for subspatearud

F that are isomorphic té{/ K+ and.F/ Ky, respectively. In addition, we will want to

be able to refer to our basis vectors in a way that does not depend on any basis derived
from a presentation. Thus we will choose basis vectors which are associated with words.
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Definition 4.2.3. A wordlist W of length [ is a finite list (ordered set) of words

wi,...,w; € X*.

Given a wordlist¥ of length! and a GHMM(V, X', {T*}, ), we define thé x |V/|
matrix H as follows: theith row of H is N(x7T*). We call W the history wordlist
and H the history matrix Similarly, given a wordlistS' of lengthm, which we will call
the future wordlist we define th€uture matrix /' to be the|V| x m matrix whoseith
column is7*1. Note that// and I are functions ofi’ and S, respectively. We will
sometimes write// (W) and F'(S) to avoid ambiguity. We will usé/ and ' to denote
the span of the rows off and the columns of’, respectively.

Because we wanf/ to contain a representation of every process state, we are
interested in wordlists which induce a sufficiently large basis.

Definition 4.2.4. A history wordlist W is sufficientfor a given GHMM, or simply
sufficient if the span of the rows off (W) satisfies

spaf H U K7} = H. (4.35)

Similarly, a future wordlistS is sufficient if the span of the columns of(5) satisfies
spa{ U Ky} = F.

This definition means that a history wordlist, for example, is sufficient if the rows
of H, mapped intoH/K r by the quotient mag>, form a basis forH/K r.

It is possible for a sufficient wordlist to contain words which are not needed for
sufficiency. As we will see shortly, removing such words is desirable.

Definition 4.2.5. A history wordlist is minimal if it is sufficient and it has length
[ =dim {H} — dim { Kr}. Similarly, a future wordlist is minimal if it is sufficient and
it has lengthm = dim {F} — dim {Ky}.

If W and.S are minimal history and future wordlists, théh and K » are compli-
mentary subspaces &f, and ' and K3, are complimentary subspaces Bf

Proposition 4.2.6.1f W is a minimal history wordlist, thed/ is isomorphic toH /K .
Similarly, if S is a minimal future wordlist theri” is isomorphic toF/ K. In both
cases, the restriction of the quotient map —fcand /' as appropriate — is a suitable
isomorphism.
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Proof. If W is a wordlist of length, thendim {#} < (. But if W is sufficient, then
H and K r together spart{, so

dim {H } + dim {K#} > dim {H}. (4.36)
If W is also minimal, this implieslim {# } > /, so we havelim { H } = [ and
dim {F} +dim{Kr} = dim {H}. (4.37)

Thus the rows offf must be linearly independent. Furthéf, must be independent of
Kr, so we can write

H=HaoKr. (4.38)

Thus H is complementary td<+, and the restriction of the quotient map b is an
isomorphism betwee®/ and®/K . A similar proof holds forS, F, and.F /K1

Proposition 4.2.7. If W and S are minimal wordlists, then
(W] = |51,

rank H) = rank /'),

dim(#/) = dim(#'), and

I and I are each other’s dual spaces.

w0 D PE

Proof. H is isomorphic toH/K #, and F' is isomorphic taF/Ky. Lemma 4.2.2 tells

us thatH/ K andF/ K4 are dual to each other, and we know that these isomorphisms
preserve the products of elements. Thisand /' must be each other’s dual spaces,
which proves (4). This, in turn, implies (1), (2), and ).

We began this section by defining the vector spdg¢eend.F so that elements df
represent conditional distributions on the future, and elementsrejpresent conditional
distributions on the past. Bat and.F contain subspaces of redundanéy; and K.
Now, if W and S are sufficient, we have vector spadésand F, the elements of which
still encode the same set of conditional distributions, and we have Basasd F' for
H and F, respectively. In addition, i#¥ and S are minimal, H and F' contain no
redundancy and! and /" are linearly independent bases.

Note that we have now shown that if our history wordlist is minintalis isomorphic
to Z{. In particular, we have a natural map from one to the otheA ¥ ¢/, then there
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is a uniqueh € H such that for alls € X*, we haveA(s) = hT°I. That is, if A is

a mixed state, it is the mixed state representationAfor(This 4~ may be found by the
techniques used in the proof of lemma 4.2.1, which involve building a basis of process
states and a corresponding basis of mixed states induced by the same wordsfy Thus
may be thought of as a version#fconsisting of tangible vectors of real numbers rather
than the more abstract signed measures on an infinite sequence space.

As the following proposition establishes Jif and.S are sufficient, then the matrices
H and F, like the vector space® and.F, can tell us whether or not a distinction is
independent of the past or of the future. AndMif and S are minimal, then// and I
contain no redundancy, in the sense that no row vector in the spAni®independent
of the future, and likewise fof'. We will work with minimal wordlists whenever we
can because the absence of redundancy makes it easier to determine whether or not two
processes states are distinct.

Proposition 4.2.8. If W and S are sufficient,f € F, andk € H, then

0
1. fe Kyifandonlyif Hf = | : ], and

0
2. h € Kgifandonly if hF = (0,...,0).
Proof. If f € Ky andh is a row of H, thenh € 'H, sohf = 0. If f & Ky, then there
is someh € ‘H such thathf # 0. Any vector inH can be written a® = cH + k, a
linear combination of the rows o/ plus somet € Kx. Thus we have

04 hf =cHf +kf, (4.39)

0
where we know that f = 0. So this become8 # ¢H f, which impliesH [ #

This proves (1), and a virtually identical argument provedli(2)

Recall that each row off is associated with a particular word: thié row of H is
the mixed statéV(z7"), wherew; is theith element ofi’. Similarly, the;jth column
of F is T*1, wheres;, is the jth element ofS. Thus H F is the matrix of conditional
probabilities given by

(HF);; = N(xT")TT = P(s|w;). (4.40)
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Also, becausél and S have the same lengttH ' is square.

Corollary 4.2.9. If W andS are minimal, therH F' is a nonsingular matrix. Conversely,
if W ands are sufficient and one or both Bf andsS is not minimal, therf/ £ is singular.

Proof. Supposev is a row vector such thatHF = (0,...,0). Then(vH)F =
(0,...,0),s00H € Kr. ButvH € H, and sincéV is minimal, F NKx = {(0,...,0)}.
Thus we havenH = (0,...,0). The rows ofH are linearly independent, so we must
havev = (0,...,0). That s, if a linear combination of the rows &fF" is the zero row,
then all of the coefficients of the linear combination are zero. Hence the rowsof
are linearly independent. And F' is square, so it is nonsingular.

Conversely, assume thHt is not minimal. The case in which is not minimal may be
treated similarly. Lef?’ be a minimal wordlist which is a subset 8f, and let/I’ be
the history matrix induced bi#’. Now we consider two cases. In the first, the rows of
H span the same space as the row$/6f This means that the dimension Bf must be
less than the number rows #. Thus the rows off must be linearly dependent, which
implies that the rows of/ I are linearly dependent. In the secoiljs larger than the
span of the rows of/’. But the span of the rows of’ is isomorphic toH /K ». Any
larger subspace oft must contain nonzero vectors which lie &y and which are sent
to zero byF'. Thus the row span off is reduced by multiplication by, which means
that the rows oft/ I' are linearly dependeill.

Wordlists In the next section, we will us& andF extensively, as they will be our
primary tools for solving the equivalence and minimization problems. In the remainder
of this section, we will discuss the construction of these matrices and the construction
of the wordlists on which they depend.

The next lemma is a minor fact which we will need in section 4.3.
Lemma 4.2.10. If S is sufficient andh € Kz, then for anyk in the alphabetY’,
KTk € Kr.

Proof. Our assumption that € K~ implies that for all words, 271 = 0. This means
that for anyk, for all wordss, hT*T = 0, simply becausés is a word. Thus we have
(RT*)T*T = 0 for all words s, which implies thath7* € K .1
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Two facts make the construction of sufficient wordlists feasible. Fifsis a vector
space spanned by the mixed states, which are vectors of Ie¢rigtiso a basis fofH
— or any subspace dff — need not have more tha#’| elements. Similarly, a basis
for F need not have more thal| elements. So wordlists never need to be longer than
|V] in order to be sufficient. Second, we have the following fact of linear algebra.

Lemma 4.2.11.1f v € spadvi,...,v,}, and A is any matrix such that the produeti
is defined, thentA € spafviA,... v, A}.

Proof. There must exist numbers. ..., ¢, such thatu = cjv; + ... + cpv,. But then
uA = cpviA4+ ... F e AR

We construct sufficient wordlists using the following algorithm, which is used for
a somewhat different purpose in [8].

Algorithm 4.2.12. Let () be a queue — a first-in, first-out list -© of words, and let
and letW be a list of words. Queu€ will store a list of words which the algorithm
has determined it must examine, avd will store the developing wordlist.

Initialize @ to contain only the word\, and initializeW to be empty.
2. Take a word: from the tail of and test whether of na¥ (#7%) lies in

spaq N(7T")|w € W} = spar{rows of H(WW)}. (4.41)

If it does, discard and skip forward to step 6. (Otherwise, continue with step 4.)
Add = to the wordlist\V.

For eachr € X', add the word:« to the head of).

If ¢) is not empty, go back to step 2.

N o g M w

Stop. @) is empty, andi’ contains the completed wordlist.

Algorithm 4.2.12 builds only history wordlists, but a virtually identical algorithm
builds future wordlists.

Proposition 4.2.13. The wordlists constructed by algorithm 4.2.12 are sufficient. In
fact, for these wordlistsH = H.

Proof. We need to show that if € H, thenk € H. Everyh € H is a linear combination
of vectors of the formV(z1'*) for somew € X'*, so it will suffice to consider vectors
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of that form. Suppose there exists a wardsuch thatN(77Y) ¢ H. Let z be the
longest prefix ofy such thatN(xT%) € H. There is at least one such prefix, namely
A. Let » be the symbol which follows in y — that is, choose: € X' so thatzx is

a prefix ofy. Thus N(zT%") is not in H.

Now, we have chosen so that N(z7%) is in H = spar{N(zT%)|w € W}, but
N(=xT#*) is not. By lemma 4.2.11, we know tha¥(x7%)7T* is in the span of
{N(#T*)T"|w € W}, or equivalently,

N(#xT**) € spaq N(#T"*)|w € W}. (4.42)

Because the algorithm added eachto W, we know that it added the words» to

the queue. Thus the vectoMs(=7"") were subsequently tested against the developing
basis and added to the basis if it did not already span them. Hence we know that for all
w € W, the vectors/ (#7%) lie in H, so N(xT*") is a linear combination of vectors
which are known to be irf7, thus it is itself in/Z. This is a contradiction, hence no
words y can existll

Sufficient future wordlists may be constructed by an essentially identical process.

Lemma 4.2.14. A GHMM (V, X, {T*},x) has sufficient wordlist§V" and S, every
word of which has length less tha#|.

Proof. The construction we have just given has the property that i§ not added to
W, then no words of the form > can be added tbl’. Thus ifw is in W, every prefix

of w is in W as well, including the length zero word This means that if a word of
length!/ is added to a wordlistV/, thenV has at least one element of each of the lengths
0,1,....1 and thus contains at least- 1 elements. Note that the wordlists constructed
here never have more thal| elements because rows &f are linearly independent
and span a subset Bf"|. Thus a word of lengthi’| or more can never be added .

A virtually identical proof holds forS.l

Once we have sufficient wordlists, we can get minimal wordlists simply by extracting
appropriate subsets. Suppose we have history and future wordlisiad S, we take
H(W)F(S) and delete every row which is linearly dependent on those which precede
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it. The words associated with the remaining rows form a new wordlist and the
remaining rows themselves fori (W) F'(S).

The rows of H(W')F(S) are now linearly independent, which means the rows of
H(W'") are independent. Moreover, because we only deleted linearly dependent rows,
the row span of (W) F'(S) is the same as that ¢f (1) F(S). The properties of” are
such that we can be suré(W') has the appropriate span. As we will show next, the
resulting wordlisti?’’ is minimal. The analogous construction, deleting columns instead
of rows, builds us a minimal future wordlist'.

Proposition 4.2.15. Let W and S be sufficient wordlists. Ifi¥’ is a subset ofi}’
such that

1. the row span of/ (W')F(S) is the same as that af (W)F(S), and
2. the rows of H(W')F(S) are linearly independent,

then W' is minimal. Similarly, if S’ is a subset of5 such that

1. the column span off (W)F(S') is the same as that df (W)F(S), and
2. the columns off/ (W) F(S’) are linearly independent,

then S’ is minimal.

Proof. As usual, we have separate statements about the past and the future, and we will
only prove the one about the past, as essentially the same argument will serve for the
future. We will not need to refer t&'(S’), and will useF” = F(S).

We will first show thati¥’ is sufficient, that is, that the rows @f (W), together with
Kr, spanH.

Let Ay,...,h, be the rows of H(W). If h € H, then there exists a vecter =
(ai,...,ay) such that
h=ath1+...+aphy,+k
(4.43)
=aHW)+k

for somek € K. Multiplying on the right by/', we havehF = « H(W)F + kF. We
know thatk F' = 0, soh F is in the span of the rows df (W) . But the rows oftf (W) F
have the same span, so there must exist some vestach thath I’ = cH(W')F. This
is equivalent to(h — cH(W'))F = 0, which means that — cH(W') is in K. Thus
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h = cH(W') + K for somek’ € Kr. Thus Kx and the rows ofd (W') spanH, so
W' is sufficient.

Showing thatW’ is minimal is now trivial. The rows ofH(W')F are linearly
independent and multiplying by' cannot eliminate any linear dependency which is
in the rows of H(W'). So the rows ofH (W’) are linearly independent, and” is
minimal A

In this section, we have studied the relationship between the past and the future in
terms of linear algebra. As part of this study, we introduced and defihead F', and
showed how to construct them and their associated wordlists. Next, we will begin to
use them to identify and eliminate redundancy from GHMM presentations.

4.3 Equivalence and Minimization of GHMMs

This section addresses two problems. The first of these, which we discussed in
section 4.1, is thedentifiability problem: When are two GHMMs equivalent? That is,
when do two GHMMs define the same process? The second msithimizationproblem:

Given a GHMM, what GHMM is as small as possible — that is, has as few presentation
states as is possible — but is equivalent to the given one? These two questions are
closely related, and have been studied for HMMs for some time. The identifiability
problem is the more famous of the two and was posed by Blackwell and Koopmans in
1957 and solved by Ito et al in 1992, by a methods similar to the one presented here.[2,7]
The minimization problem is nearly solved in the same paper, and was completed by
Vijay Balasubramanian.[8] The details of the method presented here are the work of the
author. Notably, the standard presentation, which is important here and again in chapter
5, does not appear in any previous paper, though related presentations have appeared
before beginning with [20].

Suppose we have a GHMM presentatiol, X', {7*}, =) for a processP and
wordlistsW and S such thatH and /' are invertible. (This can only happen if there is
no redundancy, that is, ik and Ky are trivial.) We are now going to define a sort
of a canonical presentation f@, which we will call thestandard presentatiofor P,
which in this case is conjugate {0/,.X, {T*}, =) by H.
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If we conjugatel'* by H, we getB* = HT*H =1, and if we writeH ! asF(HF)*,
we have

BY = HT*F(HF)™. (4.44)

We will call the matricesB* the standard transition matricefor the process® given
W and 5. As we know, eacHH F');; is simply P(s;[w;). Similarly, for all £ € X
and for allz,; € V,

<HTkF> = N(zT%)T*Ts T
iy (4.45)

= P(ksj|w;).
In words, HT*F exhibits the action of the map* in terms of the bases — the rows
of H and the columns of" — we have developed for the past and the future. And
both (HF)_1 and HHT*I" are entirely determined by probabilities of words — by the
process, rather than by the presentation. This fact is key to the algorithms of this section
and the next chapter.

The same is true of the initial vector
v=rH '=xFHF)", (4.46)

since (7 1), = P(s;). We will refer to as thestandard initial vectorfor 7 given
W and S. Thus~ and B* depend only on the wordlists and the process, and not on
the GHMMs themselves.

The following definition assembles the standard transition matrices and the standard
initial vector into a presentation. We may choose any set of diZzeas the set of
presentation states. It will be convenient to chodsébecause, as we will see shortly,
the presentation states are associated with the wortls.i\Iso, recall corollary 4.2.9,
which tells us thatH /' is invertible.

Definition 4.3.1. If (V, X, {T'*}, =) is a GHMM presentation for the proceBsand W/
and S are wordlists such that the matriX ' is invertible, then we define th&tandard
presentationfor P given W and S to be

<W, X, {Bk} , 7>, (4.47)

where B* = HT*F(HF) " andy = xH ™' = z F(HF)™".
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The following result establishes that H and /' are invertible, the standard pre-
sentation forP is in fact a presentation, and that it is a presentatiori/forin 4.3.10,
we will establish that the standard presentation is a presentatidAvitneneverH F' is
invertible, that is, whenever the standard presentation is defined.

Lemma 4.3.2.Let (V, X, {T*},~) be a GHMM presentation for the proceBsand let
W and S be wordlists such that the matricésand /' are invertible. Then the standard
presentation fof? given W and S is a GHMM presentation foP.

Proof. The standard presentatighV, X', { B¥},~) is conjugate toV, X', {T*}, =) by
H. Given this fact, proposition 4.1.7 tells us thd@, X, {B*},~) is a GHMM and
that it is equivalent toV, X, {T*}, ).l

Suppose we have a second GHMM’, X, {Uk},r) which is equivalent to our
first GHMM, (V,X,{T*}, 7). If we take its history and future matriced’ and
F' with respect to the same wordlist$ and S, then we must havel' ' = HF,
H'UFF' = HT*F, andrF"' = =F. The for both presentations generate the same
and the same set d#*s and so they generate the same standard presentation. In this
sense, the standard presentation plays a role similar to that of a canonical form. But
because the standard presentation depends on the wottliated S, there is no single,
absolute standard presentation. This is why we call itsthedardpresentation and not
the canonical presentation.

In other words, suppose we have two equivalent GHMMs, and we have wordlists
such that both GHMMs’ history and future matrices are invertible. Then they must
produce the same and B*, and therefore they must both be conjugate to the standard
presentation. We know that if two GHMMs are both conjugate to a third GHMM, then
they must be equivalent. So using standard presentations shows promise of resolving
the identifiability problem. The approach above for constructing the standard transition
matrices will not work in general, because the assumption #haind ' are invertible
may fail. However, there is a generalization of the standard presentation which we can
always construct, and so we can give a new solution to the identifiability problem using
this generalization.

Theorem 4.3.3. Suppose we are given two GHMMYV, X, {7*} r) and
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(V' x,{U*},7), and letW and S be history and future wordlists which are sufficient
for both of them. LetP be the probability measure induced by, X', {T*}, =) and
let Q be that induced byV’, X, {U*},). The GHMMs are equivalent — that is,
P = Q — if and only if all of the following hold:

for all w; € W ands; € S, P(s;|w;) = Q(s;|ws),
for allw;, € W, s; € S, andk € X, P(ksj|w;) = Q(ks;|w;), and
3. foralls; € 5, P(s;) = Q(sy).

We will prove this by showing that the probability of any word is determined by
these few probabilities, these few conditional probabilities, and the informatiovithat
and S are sufficient. Thus the entire process is determined by these same few pieces of
information. At this point, it is worth recalling Bayes rule P{s|w) = P(ws)/P(w)

— because it tells us that we can compute the necessary conditional probabilities from
the (non-conditional) probabilities of all words;, s, w;s;, andw;ks; for all w; € W,

sj € S, andk € X'. We can ignore the possibility th&(w,) = 0 for somez, and hence

that P(s;|w;) will not be well-defined, because the row Bf corresponding to thab;

must lie in K. Such a row is never needed in the basis.

The proof itself, which begins on page 79, uses a number of lemmas, most of which
are proved by calculation and use of the propertie aind /'. These lemmas develop
a generalization of the standard presentation. Note that we are UsSiag a set of
presentation states. Recall that we concluded in chapter 3 that the role of presentation
states was to serve as basis vectors for the space containing the mixed states. Here, we
use this the other way, and having chosen a basis for the mixed states, we will use the
elements of that basis as presentation states. Arguably, the presentation states should be
labeled with the mixed states, rather than the string®/irwhich induce those mixed
states, but we will use the strings themselves for brevity and clarity.

Whenever two GHMMs share an alphahét is always possible to find wordlists
which are sufficient for both of them. I#/; and W, are sufficient for(V, X', {T*}, x)
and (V', X, {U*}, ), respectively, then the wordligt” = W U W,, with words in any
fixed order, will be sufficient for botlfV, X', {T*}, ) and (V', X, {U*}, 7).

TTwo GHMMs which have distinct alphabets always represent different processes. In some applications, however, it may be
desirable to map one alphabet onto another so as to sidestep this fact.
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WhenW and S are not minimal, and thu# /' is not invertible, we can no longer
define the standard transition matricd@§. It is still possible, however, to define a form

of the standard presentation, though we can no longer define it as simply as we can if
W and S are minimal.

Definition 4.3.4. Given a GHMM presentatiorfV, X', {T*}, ) of a processP and
sufficient wordlistsW and S, we say that( W, X', { B¥},~) is aquasi-presentatiorif

1. for eachk ¢ X, B¥ satisfiesB*HF = HT*F, and
2. v satisflesyHF = 7F.

We refer toB* and~ as aquasi-transition matrixand aquasi-initial vectorrespectively.

If HF is invertible, then there is a unique quasi-presentation for a prdeegsen
W and S, and it is the standard presentation. Otherwise, quasi-presentations are not
unique. Lemma 4.3.5 shows that quasi-presentations exist.

Lemma 4.3.5.1f W and S are sufficient, then for eachthere exists a quasi-transition
matrix B* such that

B*HF = HT*F, (4.48)

and there exists a quasi-initial vectorsuch thatyH ' = = F'.

Proof. Let h; = N(xT™) be theith row of H. Then theith row of HT* is
hT* = N(xT%)T*, which must lie in4. The rows of I and elements of\ r
span’H, so there is some € Kr and some: € R™ such thath;7* = «H + v. This
means that,T*F = «HF. Let theith row of B* be a.

Likewise, = is in H, so we can findy € R" andv € K such thatyH + v = », and
hencevHF = '

The next lemma depends on the normalization of the row# ofin fact it is the
reason we definedd — and indeed — using N(#x71™) instead of the simplex7™.

Lemma 4.3.6. The matrix 5. B* and the vector are both unit-sum.
keX

Proof. Becausel is an element ofF, there exists am € R" and anu € K such that
1= Fa+u. ThusHI = HFa, and since the rows off are mixed states and so must
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be unit-sum, we havé = H Fa. Similarly, for all k € X', we can write
HT* = HT*Fa + HT*u (4.49)

But each row of/T* is in H, so HT%u = 0 and we haveld T*1 = HT*Fa. Now,

S°T* is unit-sum, so if we sum oh, this becomed = H Y. T*Fa.
k ;

Summing 4.48 onkt gives us
(Z Bk> HF = H (Z Tk> F. (4.50)
keX keX

If we multiply on the right bya, we can substituté for / F'a and for # 3" T* Fa, and
k

we have (E Bk>f = 1.
k
Similarly, vHF = = F becomesyH F'a = = Fa, which in turn becomes! = 1.1
Lemma 4.3.6 establishes th@ltV, X', { B*},~) satisfies conditions 1 and 2 of the
three conditions of definition 4.1.2, which defines a Proto-GHMM. The next lemma tells

us that it may fail to satisfy the final condition =~>_ B* may differ from~, but only
k

by a vector inK r.
Lemma 4.3.7. For some vector such that-H F = 0, ~ satisfiesy . B¥ = ~ + r.
k

Proof. Becausey is known to satisfyyH F' = = I, there is av € Ky such that
~H = 7m + v. Thus,

’yHZTk:ﬂ'ZTk—I—vZTk
k k k

(4.51)
=7+ v
for somev’ € Kx. Similarly, 4.50 tells us that
HY Th=> B'H+A (4.52)
k k

for some matrixA, all rows of which lie in K. When we substitute the right-hand
side of equation 4.52 into equation 4.51, we haye B*H — 7+ —~ A, from which
k

the substitution ofy H — v for = gives us

’yZBkH =~H + v —~A—w. (4.53)
k
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Multiplying by F', we have

v B"HF =~HF. (4.54)
k
Thus, there is some row vectersuch that- HF = 0 andy > B* = v + r. I
k

We would like lemma 4.3.7 to have established that B* = ~, because that would

have completed the verification thgtV, X, { B}, ) ié a Proto-GHMM. However,

this is not always the case — a quasi-presentation is not always a Proto-GHMM. If
HF is invertible — that is, ifi’ and S are minimal — then(W, X', { B*},~) is the
standard presentation. In this case, we do have a Proto-GHMM, which we may prove by
multiplying equation 4.54 bYHF)_l. We will soon show that the standard presentation

is, in fact, a GHMM equivalent t¢V, X', {T*},7), and we will use this fact later in

this section when we address the minimization problem.

In the next lemma, which is the key step in the proof of theorem 4.3.3, we establish
that the quasi-initial vectoy and the quasi-presentation matride$ can reproduce the
probabilities of words given by the initial vecterand the transition matricé&*. Here,
we begin using the quasi-transition matrices as transition matrices, with the convention
that if z = z;...z, IS a word, thenB* = B* ... B¥,

Lemma 4.3.8. For all = ¢ X,

1. HT"F = B*HF,

2. #T°F = ~B*HF, and

3. #7°1 = vB*I.

Proof. We will prove by induction on the length of. If the length is one, then 1 is

equivalent toB*HF = HT*F, which B* satisfies by definition.

If « has length greater than one, then we can write- y4& for £ € X andy the
prefix of  with length || — 1. We will assume, as our induction assumption, that
HTYF = BYHF. This means that there is some matrxsuch that

HTY = BYH + A, (4.55)
and all rows ofA lie in K. Now, multiply on the right by7’* and we have

HTYT* = BYHT* + AT, (4.56)
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BecauseB* is defined to satishB*HF = HT*F, we know thatdT* = B¥H + C for
some matrix(, all rows of which lie inK 7. Making this substitution foi7* on the
right-hand side of 4.56 and writing’ = C' + AT*, we have

HTYT* = BYB*H + (. (4.57)
Note thatC’F' is a matrix of zeros. Thus, if we multiply equation 4.57 by we have
HTF = B*HF, (4.58)
which proves 1.
Note that we have shown that
HT® =B*H+ A (4.59)

for some matrixA such thatAF is a matrix of zeros. Multiplying byy and then
substitutingr + v for vH gives us

7T" + 0T = yB*H + v A, (4.60)

for somev € K. Note that bothv7* and~A lie in Kx. Now, if we multiply by
I, we get

7T"F =~yB*HF, (4.61)
thus proving 2.

And finally, if we multiply equation 4.60 by, we have
*T%T = vB*HI. (4.62)

BecauseH is a unit-sum matrix, equation 4.62 proved3.

We have now defined quasi-presentations, proven that they exist, and proven that
they determine the probabilities of all words. Having done so, we are ready to prove
theorem 4.3.3.

Proof of Theorem 4.3.3. If two GHMMs (V, X, {T*},x) and (V', X, {U*},7) are
equivalent, then they agree on the probabilities of all words, and thus an all conditional
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probabilities. The interesting part of the theorem is thatlifand S are sufficient
for both (V, X, {T*},x) and (V', X, {U*},7), and if these two GHMMs agree on
the probabilitiesP (s|w), P(ks|w), andP(s) for all w € W, s € S, andk € X, then
(V, X, {T*}, ) and(V', X, {U*},7) are equivalent. We will prove this by constructing
a quasi-presentation fg#, X', {7* }, =) and showing that it is also a quasi-presentation
for (V/, &, {U*}, 7).

Let H; and F; be the history and future matrices fov, X, {T*},x) and letH, and
%, be the history and future matrices for’, X', {U*}, 7). Let us recall the hypotheses
of this theorem.

1. For allw; € W ands; € S, P(sj|w;) = Q(sj]w;),
2. Forallw; € W, s; € S, andk € X, P(ksj|w;) = Q(ksj|w;), and
3. For alls; € S, P(s;) = Q(s)).

First, P(s;[w;) = (HiF1);, andQ(sj|w;) = (HaF3);;, so 1 is equivalent tdf I =
HyFy. Second,P(ks;lw;) = (HlTkFl)z.j, and Q(ks;|w;) = (HzUsz),»j, so 2 can
be written as follows: for alls, H\T*Fy = HoU*F,. Last, P(s;) = (vF1);, and
Q(sj) = (rt32);, so 3 becomes F; = 7F,. Thus, what we need to show is that
these three facts —H1Fy = Hyly, HiT*Fy = HURF, for all k, and 7 Fy = 7%
— together imply thatP(z) = Q(z) for any = € X*, whereP(z) = «7°1 and
Q(z) = rU*T. Let~ be any solution toy [/, I, = = F, and for allk, let B* be any
solution to B*H, Iy = H\T*Fy. Then(W, X, {B*},~) is a quasi-presentation for the
process represented by, X', {T*}, 7). Lemma 4.3.8 now tells us that for anyc A'*
*T°1 = vB*1.

But we know thatH{Fy = HoF, andxly = 1F,, so~ satisfiesyHsFy = 7F5.
Similarly, eachB* satisfiesB* H, I, = HU* Fy. Thus,(W, X', { B*},~) is also a quasi-
presentation fofV’, X', {U/*}, 7). So lemma 4.3.8 tells us that for all 7U*T = v B"1,
and therefore that for alt, 7U*1 = =7*1.1A

Corollary 4.3.9. If (V,X,{T*},x) and (V',x,{U*},r) are two GHMMSs which
assign the same probabilities to all words of length less thameither of which has
more thann states, then they are equivalent.
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Proof. Lemma 4.2.14 tells us that we can find wordligtsand .S in which all of the
words have length at most— 1. For such wordlists, all words of the formy;, s;, w;s;,
and w;ks; have lengths less thatn, so (V. X, {T*} ) and (V', X, {U*},7) must
agree on allP(s;|w;) = P(w;s;)/P(w;), P(ksjlw;) = P(w;ks;)/P(w;), andP(s;).
Thus, by theorem 4.3.3, they are equivallint.

With this machinery in hand, we can resolve the minimization problem.

Theorem 4.3.10.Given a GHMM (V, X, {T*},x), let P be the process it represents,
and leti¥ andS be minimal wordlists. Then the standard presentatién.X’, { B*}, v)

for given W and S is a GHMM, and it is equivalent t§V, X', {T*}, x). Furthermore,
no GHMM exists with fewer thai¥'| states which is equivalent @/, X', {T*}, 7).

Proof. As noted on page 78, wheH F' is invertible,y = > B*~, and the standard
k

presentation is a Proto-GHMM. We established in lemma 4.3.8that = =71 for all
@ € X'*. This proves both that it is a GHMM and that it is equivalen{to.X', { 7%}, 7).

Because the rows o /' are linearly independent, and these rows consist of conditional
future probabilities, we know that the process stdé¢gw,) are linearly independent.
Thus the span of the reachable process states has dimension gifléadn fact, if

we combine lemma 4.2.1 and proposition 4.2.6, we have proven that its dimension is
exactly|W|. If a GHMM has fewer thaniV'| states, then it induces a process for which
the span of the reachable process states has dimension les§ithaand thus it cannot

be equivalent to(V, X, {T*},r).H

We conclude this section with a result — the existence of conjugacies — which we
promised in section 4.1. This was first shown — for functions of finite Markov Chains
— by Gilbert [20].

Proposition 4.3.11. Let (V,X,{T*},x) and (V/,x,{U*},7) be two minimal,
equivalent GHMMs — that is]V| = |V'| = dim (i), wherel/ is the span of the
reachable process states. Then there exists a matrsuch that(V, X, {7*}, =) and
(V,x,{U*},7) are conjugate byM.

Proof. Let W and S be minimal wordlists for(V, X, {T*}. ), and letH; and F}
be the associated history and future matrices. Bec@éildsand .S are minimal, H; Iy
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must be invertible. We know that’| = dim(¢/), and for minimallW we know that
|W| = dim(Z{). But H; has|W| rows and|V'| columns, so it must be square. Likewise,
F1 must be square and both; and F; must be invertible.

Let H, and /> be the history and future matrices for’, X', {U*}, 7). Then the process
statesP(-|w;) form a linearly independent basis fof, hence the rows of/; must be
linearly independent. Thu#,, F1, and H, are full rank square matrices, and must be
invertible. We also know that/; 7'y = HyF, is invertible, soFy = H;H;Fy must
be invertible.

Now, we calculate. We havB,U*F, = H{T*F, andxFy = 7F, SO
UF = 07 Hy TR R (4.63)

andr = =/ F; . And if we let M = F; [y, M is a unit-sum matrix. And
Iy = HyFy implies H; VPP = 1, so M~™' = FiF;'. So equation 4.63
may be writtenl’* = MT*M~!. Moreover, we have = = F; ! = #M~!. Thus
(V,x,{T*},7) and (V', X, {U*},7) are conjugatd

We began this section by defining a GHMM to be a representation of a process
similar to an HMM, but with negative entries allowed in its transition matrices. We
studied the vector spaces of conditional distributions on the future induced by history
words and of conditional distributions on the past induced by future words. We
found bases for these vector spaces in terms of these same words. These bases were
instrumental in resolving the identifiability and minimization problems, and they led
us to the standard presentation. We have shown that the standard presentation is a
GHMM presentation for a process, and we have observed that it is determined entirely by
probabilities of words. In the next chapter, we will use this fact to construct presentations
directly from probabilities of words — that is, directly from the process.



