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3 Hidden Markov Models

In the last chapter, we talked entirely about distributions on sequence space. Al-
though this viewpoint will be necessary for some of our results, processes as we have
defined them are not very tractable or structured. A distribution on an infinite set need
not lend itself to a finite description, let alone a brief one. In order to do anything
concrete, we will need another set of definitions. These are the traditional definitions
used in the study of Hidden Markov Models [3,16,17]. In this chapter, we define Hidden
Markov Models and then study how they represent processes. We will look at how to
represent the process states of a process defined by an HMM. And we will conclude the
chapter with a result on the structure of these processes’ sets of process states.

The material in sections 3.1, 3.2, and 3.3 is fairly standard in the literature on
HMMs, appearing in such works as [3,16]. The contents of section 3.4 has probably all
been deduced before. Mixed states, for example, appear in [1], although not with that
name. What is new is stating this material in terms of process states. And the material
in section 3.6 is entirely the author’s though some similar results are known.

We will be careful to keep clear the distinction between the process and the way
it's presented to us. Byrocess we will always mean a stationary distribution on a
sequence space. When we refer to a finite specification of a process, such as a Hidden
Markov Model, we will call it a presentation of a process, or simplgresentation

3.1 Notation for Markov Chains

Before we start on Hidden Markov Models, we will define a Markov Chain. This
definition and the following discussion are not intended to be complete; rather, they are
intended to introduce the reader to the notation we will be using.

Definition 3.1.1. An n-stateMarkov Chain(MC) is a triple(V, P, =), where V is a finite
set of sizen, P is ann x n matrix, andr is a lengthn row vector, such that

() Each row of P has sum one,
(i) Z’” = 1, and
iy 7P = 7.
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Elements ofV are called statesP is called the transition matrix, and is called a
stationary distribution over the statés

Note that this definition requires a Markov Chain to have finitely many states. At
times in the following, we will discuss both countably and uncountably infinite state
Markov Chains, but we will not define them rigorously.

If we let V be theo-field defined by the cylinder sets driZ, then (VZ, V) is a
measurable space. We define a distribufoms follows: ifv = vgvy . ..v;_;, with all
v; € V, we define

ﬁ(”) = Ty P“Uo"lh S P“Ul—2“vl—17 (31)

and we defineP(\) = 1. Equation 2.2 is satisfied trivially. We will verify equation
2.3 and invoke theorem B.1.1 to show tHRtis a stationary probability distribution.
If = € V, then

P(\z) =P(z)\) = P(z) = 7.. (3.2)
Thus,
Y PN =) Pz =) r.=1=P()) (3.3)
zeV zeEV zeV
If v =wg...v_1, we hav®(vz) = P(v)P,,_,.. Thus
> Pvz)=P(v)) Py_,.=P(v) 1 =P(v) (3.4)
z€V zeV
On the other hand,
P(2v) = 72 Povy Pogoy - - - Poryors» (3.5)
SO
> P(zv) = (sz ) Pooos - - Por_yui_s- (3.6)
z€V z€V
But > 7.P., is thev, coordinate ofrP andrP = =, so
z€V
Z 7"'szvo = Ty (37)
zeV
and
> P(zv) =P(v). (3.8)
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Thus the Markov ChairiV, P, r) defines a processV’Z, Vv, P).

We conclude this section with at definition which we will need in section 3.2.

Definition 3.1.2. If (V,P,x) is a Markov Chain and” C V, we say thatC is a
recurrent componendf the Markov Chain if:

(i) For all u,v € C, there exists an integér > 0 such thatP* > 0, and
(i) Forall w € C, for allv € V \ C, and for all integers: > 0, we haveP* = 0.

Here, P* means the:th power of the matrixP.

Definition 3.1.3. A finite Markov Chain isreducibleif it has more than one recurrent
component.

If a Markov Chain is reducible, it is often appropriate to think of it as two or more
separate Markov Chains. A Markov Chain which has exactly one recurrent component
is said to beirreducible

3.2 Hidden Markov Models

In this section, we will give a definition of a Hidden Markov Model (HMM), and
we will show how an HMM specifies a process.

A Hidden Markov Model is a Markov Chain with an associated output mechanism
which takes either states or transitions between states to either symbols or distributions
on symbols. We will refer to the Markov Chain as thaderlying Markov Chairof
the HMM. We will calculate exclusively with finite presentations — those in which the
Markov Chain has finitely many states. However, we will, at times, consider infinite
presentations.

Hidden Markov Models appear in the literature in several forms, the most frequent
being Functions of a Markov Chain[1] and State-output Hidden Markov Models[16].
These forms are equivalent in the sense that for any HMM in one of these forms, there
is an HMM in each of the other forms which defines the same process. The HMMs
in this work will be Edge-output Hidden Markov Models, the elements of which are
the set of states, the set of symbols, a stationary distribution on those states, and, for
each state, a joint distribution on symbols and next states. The following definition
formalizes this idea.
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Definition 3.2.1. A Hidden Markov Model (HMM3 a quadruplé V., X', {T*}, ), where
V and.X’ are finite sets of sizes = |V| andm = |X|, {T*} = {T*|k =0,...,m — 1}
is a set ofn x n matrices, andr is a probability vector with length. The matrices
{T*} must satisfy

1. For all: such thatt < : <n -1
d T =1, (3.9)
5k

2. and for allz,; suchthatdt <i,5 <n—-1and0 <k <m-—1,
k
Ti; > 0. (3.10)
Finally, = must satisfy

T = Z ﬂ',’Ti];. (3.11)
1,k

The underlying Markov Chainof a Hidden Markov Model is a the Markov Chain
(V, S TF w> :

k

Elements ofl/, called presentation statesare the states of the underlying Markov
Chain. Elements oft' are calledsymbols as in chapter 2. Unless we have rea-
son to do otherwise, we will us& = {0,1,....n—1} or V. = {A B,...} and
X ={0,1,....m—1}. The {Tk} called thejoint matrices represent a set of joint
distributions on next states< V' and output symbolé € X in the following way. If
1,7 € Vandk € X and the Markov Chain is in state then the probability that the
next symbol emitted will bé: and the next state will bg is

P(j, k|i) = TF (3.12)

NE
The last element of the quadruple #s which is astationary distribution Most

definitions of HMMs found in the literature have an initial distribution instead of

a stationary distribution. The difference is that an initial distribution may be any

distribution over the states, whereas the stationary distribution is constrained to satisfy

equation 3.11. Using a stationary distribution here makes the resulting process stationary.

If the underlying Markov Chain has a single recurrent component,thsmniquely
determined by the joint matrices. If, however, the underlying Markov Chain has more
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than one recurrent component, thers only partially determined. Choosing a stationary
distribution is then tatamount to choosing a distribution over the components.

In addition, we will define a few auxiliary matrices. Thensition matrix P of a
Hidden Markov Model is defined by

Pij=> Tk (3.13)
k

The output matrix/3 is ann» x m matrix such thats;; gives the probability of emitting
the symbolk € X while in the statef € V. B is define by

Bri=>Y 1k (3.14)
J

The conditions imposed on the joint matrices ensurefhand 5 are stochastic matrices,
that is, their rows sums are all equal to Also, we haver P = =, and we can write
the underlying Markov Chain of the HMM &3/, P, r).

A warning to readers familiar with state-output Hidden Markov Models defined in
terms of transition and output matrices — our choice of notation may be misleading
to your intuition. The auxiliary matrice® and B are not always sufficient to recover
the joint matrices{Tk}. For example, if we start with a state-output HMM, the joint
matrices can be constructed ﬁ% = P;ijBj;, and equations 3.13 and 3.14 will be
satisfied. That is, if we compute the right hand sides of 3.13 and 3.14, we will recover
our original transition and output matrices. But, if we start with a set of joint matrices,
compute the transition and output matrices by equations 3.13 and 3.14, and then compute
P;;Bji, the result need not be the joint matrices. Doubtful readers are encouraged to
perform the calculations themselves on the two-state, two symbol process with joint

0 (0 0 L (12 1)2
matrices?” = (1/2 0 and7t = 0 1/2)

In general, a state-output HMM may be built from an edge-output HMM, but the
state-output HMM may need to have a greater number of states, because edge-output
HMMs have more degrees of freedom per state than state-output HMMs. Given an edge-
output HMM (V, X', {T*}, x), we can construct an equivalent state-output HMM with
set of state$/ = V' x V as follows: ifa, b, c,d € V, then we havéa, b), (¢,d) € U. Let

YTl b=c

Plap)(eay = {keX (3.15)
0 b#c,
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and let

b (3.16)

3.3 HMMs as Processes

An HMM presentation defines a process. That(i§, X', {7*}, ) determines a
probability distributionP and thus a procesp = (XZ,X,P). Let us see how this
works.

First, we suppose that the presentation’s underlying Markov Chain is in the state
: € V. Letk be a symbol ang € V be a presentation state. We want to know
P(k|7), the probability that the next symbol will bg andP(;|:, k), the probability that
next presentation state will beif the next symbol isk. These are straightforward to
calculate from the presentation.

P(kli) = > P(j, ki) Z (3.17)

J

P(j, ki) _ T
P(kli) S T%
l

P(jli, k) = (3.18)
Next, instead of assuming that the current presentation stafetiat is,P(:) = 1,

we assume that it has distributipn To calculate the analogous quantiti®s.|.) and

P(j|k, ), we start by calculatind(;, k|). After that, the answers are essentially the

same as above.

P(j,klp) = Zﬂz (7, k[?) =<#T> (3.19)

P(k|u) = ZPJakW =3 (), (3.20)
J

P(j.kp) _ (1T,

Pklp) 32 (pTh);

J

P(jly, k) = (3.21)

If we denote the column vectdt, ..., 1)" by I, we can writeP(k|u) = pT*T.
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Now, define a mag’;, which takes distributiong on the stated’ to distributions
onV, by

Crlp) = pTF T (3.22)

We then haveP(j|u, k) = (Ci(p));.

knowledge about the internal state of the process. Theshould be thought of as

We think of ¢ as representing our state of

update maps: they take a distributiorat one time and update it to reflect the passage
of time and the latest observatign

Having addressed single symbols, we are ready to address words. We begin with
a wordw of length two,w = wow;. P(w|x) factors toP(wg|p) - P(wi|wg, ). The
first of these terms is a case we have just treated in 3.20. For the second, if we update
p to Cy,(p), it reduces to the same cas®(w;|wo, 1) = P(wi|Cyy(p)). We now
expand and simplify,

P(w|p) = Plwolp) - P(w1]|Cu, ()

7 e § (3.23)
= (1) ( ’ ) ()
ol
=TT T
By similar manipulations, we have
MTw°>
Cuo, 0 Cuy )(1t) = Chuy .
(Cano Cun)li) = o ( L
(yT“’O ST T) T
— A (3.24)
(,on J T 1) Tl
B IMT"LU()T’UH
— pTwoTw ]

This extends to words of arbitrary length. 4f is a word of length/, then
P(w|p) = pT™ T ... T and the updated distribution over the presentation states
is

(Cuy0vvo Cay o)) = 2 T (3.25)

T Twea]
Now, if we use the stationary distributionin place of the arbitrary distribution, we
have a stationary process.
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Lemma 3.3.1. There is a unique stationary proce8s— (XZ, X,P) such that for all

wordsw = wy...wi_1,
P(w)=xT" ..  T%T. (3.26)

Proof. We will simply verify equations 2.2 and 2.3 and invoke theorem B.1.1. First,
P(\) = 7l = Y m; = 1. This takes care of 2.2. Second, fok X,

P(wz) =xT% .. TYTT, (3.27)

Thus,

> Plwz)=xT" ... T (Z TZ> 1. (3.28)

zeX 2€X

But the rows of_ 7' sum to one, sc(E TZ> I = 1. Hence,
z z

Y P(wz)=xl" . 1] = P(w). (3.29)
zeX

Similarly,

Y Plzuw)=n (Z TZ> T T (3.30)

zeX 2€X

But w(ZTZ> = m, SO

Z P(zw) =xT" .. . T = P(w). (3.31)
zeX

Thus the hypotheses of theorem B.1.1 are satiflied.

Definition 3.3.2. The process defined by an HMM presentatioh, X', {7*}, «) is the
processP = (XZ,X,P) which assigns the probabilit (w) = P(w|r) for any word
w of symbols inX'.

Over the course of this dissertation, we will be doing many calculations containing
expressions of the form¥™° ... 7T"-1. In order to shorten these expressions, we
will define the matrix7" for any wordw. If w = wy...w;_1, then we define
Tv = T ... T, For the empty word\, we define7* = I. Thus, for any pair
of words,w andz, we havel'** = TT*. In this notation, the probability of a word
w is P(w) = xT"1.
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As we have seen, matrix presentations are convenient for calculation. Intuitive
interpretation, on the other hand, is often easier with some other forms of presentation.
For this reason, we will introduce a new form of presentation, which we will call a
labeled directed graphExamples of labeled directed graph presentations may be found
in section 3.5. It is worth noting that, while labeled directed graph presentations are
often quite clear, they become less intelligible as the number of edges per state increases.
For example, compare figures 3.3 and 3.6 on pages 44 and 46.

We have already seen process state graph presentations in sections 2.5 and 2.6;
the presentations we define here are related, but distinct. Here the nodes of a labeled
directed graph represent presentation states, and not process states as was the case before.
Process state graphs are deterministic — that is, they cannot have two or more edges
leaving the same state labeled with the same symbol. Labeled directed graphs do not
have this restriction.

A labeled directed graph is a directed graph in which the nodes represent presentation
states and the edges represent possible transitions. Each edge is labeled with a symbol
and a probability. An edge from stateo state; which is labeled withk|p corresponds
to an entry in a joint matrixTi]} = p. That is,k is a symbol ang is a probability, and
whenever the labeled directed graph is in statié has probabilityp of following this
edge, and if it does so it will output & and go to statg. We can translate an HMM
into a labeled directed graph by drawing a node for each state of the HMM and an edge
for each nonzer(Ti’}. Similarly, we can usually translate a labeled directed graph into
an HMM. We letV be the set of nodes in the graph atdbe the set of all symbols
which are appear on the edges of the graph. For eacles V andk € X, if there
is an edge from staté to state; which is labeled withk|p for somep, then we set
Ti’; = p, and otherwise we séfi’} = 0. The one piece of an HMM which is not present
in a labeled directed graph is the stationary distributiorif there is only one possible
stationary distribution for the set of joint matrices, then the labeled directed graph is a
complete presentation, and it defines a process. If there is more than one — that is,
if the underlying Markov Chain has several recurrent components or is periodic[13] —
then the labeled directed graph does not specify a process.

A given process may have many presentations, and determining whether or not
two presentations describe the same process is nontrivial [7,2]. For example, the
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Fig. 3.1 Process “simple nondeterministic source,” presentation A.
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W={0,1}, & ={0,1}, 7p = (5. 1, 3)

)

Fig. 3.2 Process “simple nondeterministic source,” presentation B.

O v

presentations in figures 3.1 and 3.2 define the same process. To show that presentations
A and B are equivalent, it is sufficient to show that, for every finite vwordrAwa =

7pU™1. In this case, it can be done by induction. However such proofs are at best
computationally messy and are not very illuminating. In section 4.3, we will develop

a systematic approach to equivalence of presentations. We will prove that A and B are
equivalent there.

Not all processes can be presented as finite HMMs. For example, consider the
modified nested parentheses pro¢g8k a process with the alphabet 6f, ), and!.
(The termmodifiedrefers to the presence of the symbol.) One way to represent
this process is as a single presentation state and a counter which holds a nonnegative
integer. If the counter is set to zero, then with probabigtythe machine outputs &
and sets the counter to one, and with probab@itiy outputs a! and leaves the counter
at zero. If the counter is not set to zero, then with probab@itl_;he machine outputs a
) and decrements the counter and with probabi};it';t outputs a( and increments the
counter. If the initial value of the counter is drawn from the appropriate distribution,
this description defines a (stationary) process. This process always outputs balanced
strings of parentheses between any consecutive pairsyinbols, and there is no upper
bound to the number of levels of nesting. We will prove in section 3.6 that there is no
HMM presentation for this process.

Simply stated, in this section we have shown how to get a process from an HMM.
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But consider the inverse problem — suppose we have a process, and we want an HMM
presentation for it. Because a process can have more than one HMM presentation,
we cannot expect a unique answer. And, as the modified nested parentheses process
illustrates, we cannot always expect any answer at all. This is a form of the problem
of HMM reconstruction, and nothing we have seen here so far suggests a way of
approaching it.

Finally, we can define the class of processes which are the subject of this dissertation,
stochastic finite automata. gtochastic finite automatof&FA) is a process which has a
finite HMM presentation. In section 3.6, we will give a necessary condition for a process
to be an SFA. Notably, this condition will, among other things, suggest an approach to
HMM reconstruction.

3.4 Mixed States

In section 2.5, we defined process states in rather abstract terms, and in section 3.2
we described HMMs in more concrete terms. In this section, we will bring these threads
together and discuss the process states of processes defined by HMM presentations.

Recall that a process state is a conditional future distribution which arises when we
condition on a history or a history suffix. Suppose we have a prd@ess(?(z, X, P)
defined by an HMM presentatiofV, X', {T*},x). What are the process states for this
process?

There are some presentations for which the process states coincide with the presen-
tation states. Such presentations are necess#etbrministic This means that, for any
given presentation statec V' and symbol € X there is at most one presentation state
J € V such that the transition fromto j with symbol & is possible,Ti’} # 0. Ifa
process has a finite deterministic presentation then it is cal&ehastic Deterministic
Finite Automaton(SDFA). In this case, the presentation states and process states are
similar though they may not coincide. SDFAs are an important class of processes; see
[19]. However, typical HMMs are not deterministic and the processes they represent
are not SDFAs. It is this case which this section addresses.
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We will begin with reachable states, those which result from conditioning on a finite
history suffix. Suppose is a history suffix andoe is a next word. We have

P(sw 75T
P(wl|s) = PE(S)) = T (3.34)

(If P(s) =0, thenP(w|s) is not well defined. We will ignore such throughout this

section.) Since the conditional distributid(-|s) is the object we are interested in and
w IS the argument it takes, we will rewrite this as
vl

P(w|s) = P(:]s)(w) = WTSTTWT (3.35)

Here,P(-|s) shows up as7*/xT*I, which is a distribution on the presentation states.

In fact, distributions over the presentation states are close to being process states.
If x« is such a distribution, thel(-|x) is the conditional future distribution given the
measure:, defined byP(w|u) = xT*T. We will show below that all process states
can be represented in this way. If two different history suffixegnd s, define the
same distribution over presentation statesr£¢/xT°1 = xT°/xT°1 — then clearly
P(-|s) = P(-]3), sos ands lead to the same process state.

Before we proceed, we will introduce a notational convenience. When we have
a row vectoru, we often need tomormalizeit, that is, scale it so that the sum of its
components id. We have been writing the normalization pfas % We now define
N, the normalizing functionwhich takes row vectors to row vectors, by

N(p) = L. (3.36)
wl

With this, we can writeV (x7") instead ofr7*/=xT*1.

Definition 3.4.1. A mixed stateof a presentation is a distribution over the presentation
states.

(The namemixed statecomes from thinking of mixed states as “mixtures” of
presentation states. This is similar to the use of “mixed state” in quantum mechanics. It
should be noted that Fraser and Dimitriadis have use the term “mixed state” in connection
with HMMs to mean something entirely different [12].)

Mixed states are related to process states, but they are not quite the same. First, there
can be mixed states which do not represent any process states. For example, consider
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the process presented by the HMM
V= {071}7‘)( = {071}77‘— = (%7 %)

T0:<0 1) T1:<0 0) (3.37)
0 0) 1 0)

This process has only three process states. (If we have seen any history or history suffix
of length1 or more, then we know the entire past and the entire future almost surely
— it is either...0.10101... or...1.01010.... If not, we are conditioning o\, and
we get the futureg0101... and01010 ... with probability 1 each.) The mixed states
corresponding to these process states(éré), (1,0), and (%,1). The other mixed
states do not define process states.

Second, it can happen that two or more different mixed states correspond to a single
process state. This can only happen if the presentation in question is not minimal, that is,
if it has some redundancy in its states. For example, the process presented by the HMM

V={0,1},X={01},7=(%1)

0\ .1 _ (0
0>’T_<0

) (3.38)
is an elaborate presentation of a fair coin, which has only one process state. The mixed

~
o
I
TN
N= R

[MESNIT

states(1,0) and (0, 1), which arise asV (z7") and N (=) respectively, represent the
same process state.

Definition 3.4.2. Fix a process and an HMM presentation for it. L&tbe a process
state and: a mixed state. If for all next words we haveA (w) = uT™7T, then we say
that 1 is a mixed state versionf the process statd.

Theorem 3.4.3. Suppose we have a process and an HMM presentation for it. Then
every process state, except possibly those in a null set, has a mixed state version.

For a reachable process state we have essentially already shown this.slis a
history suffix withP(s) > 0 which inducesA, N(x71*) is a mixed state version of.
However, for unreachable states, there is no such simple solution. Most of the rest of
this section addresses this issue. The proof of this theorem appears on page 41.

To treat this case, we need to work in a probability space which contains both pre-
sentation states and symbols. Begin with our H\IM X', {T*}, r), and its underlying
Markov Chain(V, P, ). These define the observation proc@ss- (XZ,X,P) and the
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internal procesﬁvz, \/,F), respectively. We will define thpint processof these two
to be the procesg = <(V X X)Z, J, Q) as follows. The alphabet of the joint processes
is V x X and thus its sequence space 5 x X)Z. Its o-field is theo-field generated

by the cylinder sets iV’ x ). If we have a wordd = (vi,z1), (v2, z2), - . ., (vp, 27),
we have
Qi) = m, T, ... T2, (Z Tég) . (3.39)
eV

The pair(v, x) corresponds to our original HMM leaving stateand outputting symbol
z. ThusQ(w) is the probability that the HMM traverses the sequengen, ..., v
of presentation states and, as it does this, emits the ward,, ..., z;. Specifically,
this is the probability that the HMM starts in presentation state emits =; while
making a transition ta,, and then emitsc; while going tovs, and so forth. This
ends when the HMM emits;_; during the transition fromy;_; to »; and then emits
x; during a transition to any state. This free choice of the 1th state leads to the
sum at the end of equation 3.39. The new proc@ssas the HMM presentation
(V,V x X, {U¥k €V x X}, ), where ifo € V andx € X, thenU("*) is defined by

(v,x) . Tlg; v =1
U” = {0 oy (3.40)
and we can rewrite 3.39 as
Q) = xUvm)  plenedy (3.41)

Let M : V x X — X be the projection mapV(v,z) = =, and let M?

(V x X)Z — X be the projection map on sequence spaces which applieg each
time index: MZ(... zz1...) = (... M(%)M(%41)...). Thus for any subsequence
8 = 848441 ---5p si € X when we applyM ~! to the cylinder setd, we get the set of
all sequences iV x X)Z whosez part matches,

MY (Ay) = {z e (Vx X! M(z) = siforalli € a,at 1, ... b}. (3.42)
It should be clear thatl/ is a measurable function, and that Af € X, we have
P(A) = Q(M~1(A)).

In some sense, defining joint processes is a more natural way of approaching HMMs,
than the path we have taken of defining (symbol) processes first and then introducing
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HMMs as ways of representing processes. However, the joint process approach leads
one’s intuition in a direction other than the one in which this work is going. In particular,
the joint process approach does not suggest section 3.6, and in fact could lead one to
reject it. This is because introducing HMMs and joint processes first puts presentation
states in a more fundamental role than process states. In contrast, the insight which led
to section 3.6 resulted in part from observing that process states were actually the more
fundamental objects. We will use the joint process only in part of this section.

In section 2.5 we define@ to be the set of words € X* such thatP(w) # 0. We
also defined the set of bad histori&sto be the set of all histories, and we showed that
N is a null set. A historyx™ is in AV if llir?o P(s|w;) does not exist for some € X'*,
wherew; is the length/ suffix of A". In particular, ifx~ is not in A/, we know that
every suffixw; of x~ lies in R.

Definition 3.4.4. If s is either a history suffix ir? or a good history, the mixed stajes)
is defined to be that mixed state whodk coordinate satisfieg;(s)), = Q(vo = 1|s)
for all : € V. We cally(s) the mixed statéenducedby s.

How can we compute induced mixed states?wlfis a history suffix inR, we
can calculate directly, using equation 3.41 and definition 3.4.4. The answer is far
less cumbersome than the calculations needed to produce it, and brings us back to the
material of pages 36-36.

o QU,w) Que=d,r g g =wog. . w)
Qvo = ifw) = Q(w) Qle_;...o1=w_g...w_1) (3.43)

5 (w(vz,w».,.mwl) 5 Uw»w)f)

. v_i.. v €V TeX
Q(vg = ifw) = = - (3.44)
> <7TU(v7z,w7z) N .U(”—f—)’w—1)1>
v_;..v_1EV
w< > U(”—l’w—l)> ( > U(”l’w1)> PR

Qo = ifw) = =" i et (3.45)

77( > U(vz’wz)> ( > U(vhwl))f
v EV v €V
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Note that 3> U(*) = 7% and that( D U(W)T> = ¥ U](f;f) = &;;, Which
veEV ' TeX J veViaeX
means thaty [/(4*)] = ¢;, theith standard basis vector. Thus we can write
reX
Te-r T
Q(ijw) =~ e
77;-]1:106—1 A | (346)
= = N(xT")e,.
|

Thus, the induced mixed stat¢w) is simply given byn(w) = N(xT™).
Before we address the mixed sta;t(ax‘) induced by a histork ™, we need the
following theorem, due to technical difficulties of conditioning on sets of measure zero.

Corollary B.2.4. If {F,} is an increasing sequence ®ffields andA is an event, then
P(A|F,) — P(A|F) almost surely, wheré is the smallest-field which contains all
of the F,s.

Proposition 3.4.5. For any historyx~, let s; denote the length history suffix
x_y...2—1. For almost everk™, n(s;) — n(x~) as! — oc.

Proof. For each positive integédr, let 7; C J be theo-field generated onV x X)Z
by history suffixesw € X* of length/, and letF,, be theo-field generated by the
union of theF;s. ThusF, is the set of inverse images undér of sets in the history
o-field H of the process. Also, letA; C (V x X)Z be the set on whichy = :. Now,
applying theorem B.2.4, we get

Q(Ai|F) — Q(Ai|Fx) (3.47)

almost surely a$ — oo. For a given historxk~ ¢ A, and for each positive integér
let s; denote the length history suffixz_;...x_;. Now,

QA7) (x7) = Q(Ailst) = (n(s1)) (3.48)
since we know that; € R. Similarly,
Q(Ai|.7:oo)<x_> = Q(AZ'|X_> = (n(x_»i, (3.49)

so equation 3.47 becomess;) — n(x_> almost surely ag — oo, for almost every
x~ ¢ N, or simply for almost everx— .l
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The next result establishes thgt ) contains all the information about the past which
is contained ins and which is relevant to the future.

Proposition 3.4.6 Let «w be any word inX*. If s is a history suffix inR, then
P(wl|s) = n(s)T"I. And if x~ is a good history, the®(w|s) = n(x~)T*T almost
surely.

Proof. If s is a history suffix, we know that

P(w|s) = —=T"1 = N(xT*)T"1. (3.50)
Sincen(s) = N(xT*), we haveP(w|s) = n(s)T"1.

For a good histork ™, let s; = z_;...2_; for eachl, and letF; C X be theos-field
generated by the history suffixes of lengtHn addition, let4,, ¢ X'Z be the cylinder set
of sequences which contain. Now, if we apply theorem B.2.4, we g&( A,|F;) —
P(Aw|Fx) almost surely ag — oo, or equivalentlyP(wls;) — P (w|x™).

On the other hand, we know thats;) — 1(x~) almost surely. The function — ;7T
is continuous, s (s;) 7T — 5 (x~)1™T almost surely. And sincB (w|s;) = n(s)T*T
almost surely, we know thd(w|s;) converges almost surely to bokh(w|x~) and to
n(x7)T1, so it must be true that(x~) 7T = P(w|x~) almost surely.l

Proposition 3.4.6 directly implies that the past and the future are conditionally
independent given the mixed state induced by the past. At last, we can return to mixed
state versions of process states and prove theorem 3.4.3.

Proof of theorem 3.4.3Let A be a process state f@@ = (X,XZ,P). Then there
is either a history or a history suffix which inducéds Let s be any such history or
history suffix. For all next words», A(w) is defined to beéP(w|s) almost surely, and
we know thatP(w|s) = n(s)T%1, so A(w) = n(s)T"1. Thusp(s) is a mixed state
version ofA. W

Finally, with the remainder of this section, we will define a new presentation, called
the mixed state representatiofMSR). If we start with a presentatiofi/, X', {7}, ),
let V' be the set of all mixed stategs) which are induced by a history ¢ R or
a history suffixx~ ¢ A. Elements ofV/ are presentation states of the mixed state
representation. That is, presentation stateof the MSR are mixed states of the
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presentation V. X', {T*},x). The mixed state representation is another presentation
of the process defined by, X', {7}, ). Notably, it may have infinitely many states.
It is with this representation in mind that we use the wstatein the termmixed state

Suppose what we know of the history of our procss that the most recent output
word was the history suffixo. Then the next symbol will be € X with probability
P(z|w) = 5(w)T"T, and ifz is the next symbol, then the known history word becomes
wz. Now, we will look at this transition in terms of the mixed states. Since we know
that the history suffix isv, we are in mixed state(w). Fromn(w), the next symbol is
= with probability P(z|n(w)) = 5(w)T*1, and ifz is chosen as the next symbol, then
a transition is made to the MSR stajéwx).

In order to use mixed states as states, we need to be able to comfputefrom
n(w) without usingw. Fortunately, this is not difficult to do.

n(wz) = N(=TYT")

I e
CorTerel (3.51)
ATeTe T
xTeTsl Tl
Thus we have
w)T* -
n(wx) = 77(7)_, = N(n(w)T?) = Cy(n(w)). (3.52)
n(w)T*1

Note thatw does not appear except ifw) andn(wz).

Now we can define the mixed state representation. As we have stated, its presentation
states are elements bf, mixed states which are induced by histories or history suffixes.
We write them as row vectors = (m, . -7N|V|>- Its symbol set, clearly, will bet'.
Becausel’ may be infinite or even uncountable, we cannot define transition matrices,
but we can give equivalent information. Given a state V and a symbok ¢ X,
if the current state ig,

(i) the probability thatr is emitted iSP(x|x) = xT*71, and
(i) if = is emitted, the next state iS,(p) = N(p17).

We will not address here the issue of whether or not a stationary distributiovi on
exists. To use the mixed state presentation to compute the probability of awyord
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assume presentation starts in state- () € V and compute

l
H ,LL,'_lTWiT (3.53)
1=1

where! = |w|, po = = and p; = Cuyu,(pti=1) = N(pi—1T*) for + > 1. It can
easily be verified that the result of this calculation is equal to the probaBBility) =
1T T T assigned by V, X', {T*}, 7). The product in equation 3.53 is simply
the product of the quantities which the normalizing functiérdivides out of theu;.

Note that the mixed state representation is deterministic. That is, for any MSR
statepx € V and any symbol: € X, there is a unique MSR staté,(x) to which
a transition involving the emission of is possible. Further, the MSR states are in
one-to-one correspondence with the process states, except perhaps for a set of each of
measure zero.

In this section, we defined mixed states and showed that they are intimately related
to the process states. In fact, the significance of mixed states is that they give us a way
of representing the process states.

3.5 Examples

At this point we will digress from the formal development and present several
examples in detail. These examples are chosen in part to illustrate the variety of
behaviors which are seen in SFAs. The calculations to support the conclusions are
not presented here; the reader is encouraged to perform them.

The Golden Mean Process The first example is th&olden Mean Proces$&MP)

which we have already seen in section 2.6. This presentation is deterministic, and the
recurrent process states and the presentation states coincide, so GMP is a stochastic
deterministic finite automaton.

GMP has two symbols, and its smallest HMM presentation has two states. Its most
prominent feature is that its output sequences never contain pairs of consésutiMee
reader should be able to verify that= (2,1) from the transition matrice$® and7'!.

V={B,C}, X ={0,1}, 7 = (%, 1)

373

R
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Fig. 3.3 (a) Labeled directed graph presentation of GMP. (b) Process state graph presentation of
the process GMP. In this case, the recurrent process states coincide with the presentation states.

This process has three process states: i§ a history or history suffix which ends
in 1, it induces process stal®. The mixed state it induces 18 (z7") = (1,0). If w is
a history or history suffix which ends iy it induces process staté and mixed state
(0,1). This covers all histories and all history suffixes excepthich induces process
state A, which is transient, and mixed state= (2,%1). The probabilities associated
with the start state ar®(1|\) = #7'1 = 2 andP(0|\) = #7°T = L. Similarly, the
states to which these transitions are made are identified by comparing mixed states;
Ci(7) = (1,0) andCy(x) = (0,1). These are the mixed states associated to sktes

and C, respectively.

The Simple Nondeterministic Source Our next example is th€imple Nonde-
terministic Source (SNSyvhich we saw in section 3.2. This process can be represented
with only two presentation states, but as we will see shortly, it has infinitely many
process states. A two-state HMM presentation is

V={A B}, X ={0,1}, = = (1,1),

T0—<? 8>,T1_<

1]1/2

11172 0‘0 111/2

0|1/2

Fig. 3.4 Labeled directed graph presentation for SNS.

(3.55)

O v
[CITERNNITN
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Let w, = 01", the word consisting of & followed by »n 1s, and letA, be the
process state induced hy,. The matrix corresponding ta@,, is

" n 0 0
T = T0<T1> = (2—11—1 nQ_n_l )7 (356)
so the mixed state(w,) corresponding to,, is
N(zT¥) = N2 n27"1) = L “ (3.57)
’ n+1' nt+1)/) '

The first few of these states are listed in table 3.1. Aheare all distinct states, since
their mixed state versions are all distinct. In fact, the comprise all but one of the
process states. Also, the wobdis a synchronizing word, sincB(-|0) = P(-|w0) for
all words w such thatP(w0) > 0. We can verify this by calculating/o(x) = (1,0)
andCo(p) = (1,0) for all x. Thus all of thew,s are synchronizing words, and all of
the A, are reachable recurrent states.

SNS is also an example of a process in which reachable recurrent states are induced
by words which are not synchronizing. This precludes the possibility of a converse to
proposition 2.6.2, which said that synchronizing words induce reachable recurrent states.
The word11 induces the process stade;, a reachable recurrent state, also induced by
w3 = 0111. However,11 is not a synchronizing word, becaubBg-|011) andP(-|111)
are not equal toAs.

History or history Mixed statey(s) Process state P (symbol0|w)
suffix s
.0 (1,0) Ag 0

.-01 (5 3) A, :

011 (L,2) A, 5
...0111 (L,2) As 2
...01111 (L, %) Ay 2

o (s 1) A, Lt

infinitely many1s (0,1) A L

Table 3.1 The first few mixed and process states of the “simple nondeterministic source”.
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Fig. 3.5 An abbreviated version of the deterministic labeled directed graph presentation for
the process “simple nondeterministic source,” which has infinitely many process states.

The Cantor process Our third example is theCantor process, which has the
following HMM presentation:
V={AB}, XY ={0,1}, == (}}),

T0:<0.55 0 ) T1:<0.15 0.30) (3.58)
0.30 0.15 )’ 0 0.55

1]10.55

0]0.15

Fig. 3.6 Labeled directed graph presentation for the Cantor process.

Recall that a process state is an equivalence class of histories and history suffixes.
For the Cantor process, all of these equivalence classes are trivial: every history and
every history suffix induces a future conditional distribution which is different from that
generated by every other history and every other history suffix. (Of course, pairs of
future conditional distributions exist arbitrarily close to one another.) The result is that
the Cantor process has uncountably many elusive process states, one induced by each
history. Also, it has countably many strictly transient states, which are in one-to-one
correspondence with the history suffixes. Thus, this is an example of a process with
no synchronizing words.
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Note that

N((z.1—2)T") = ( se _595) ~ <f 1— 9 and

11— 22" 11 — 22 3’
-5 3

N((1—y,y)T°) = L Vax(1-L9).
11 —2y 11 — 2y 373

These approximations are exact (@t 1) and (1,0), and are withing; in between.

(3.59)

Thus, if ¢ is the mixed state induced by a history appending a symbol te
corresponds approximately to movingtwo-thirds of the distance to eith€d, 1) or

(1,0), respectively. The mixed states induced by histories form a set similar to the
middle-thirds Cantor set, hence the process’s name. This may be seen in figure 3.7,
which is a plot of the Cantor process’s mixed states, all of which lie on the line segment
with endpoints(0,1) and (1,0). The mixed states induced by history suffixes lie in
the middle of the intervals which are deleted to form the approximate Cantor set. (It
is possible to construct an HMM for which the mixed states induced by histories are
exactly the middle-thirds Cantor set, but it is degenerate — it is equivalent to a fair coin.)

0,1) (1,0)

+“ | “\“ - -7 o =T “\" | —+

Fig. 3.7 The mixed states for the process Cantor. Dots are mixed states corresponding to elusive process states.
The small vertical lines are the mixed states corresponding to the subset of transient process states.

The Two Biased Coins process The last example we will look at here is the
Two Biased Coins (2BQ)rocess. The process can be simulated with a pair of biased
coins. One of the biased coins is chosen by a flip of a fair coin. The chosen biased
coin is then flipped to produce a bi-infinite sequence. Like the above examples, it has
the following two-state presentation:

V={A B}, X =1{0,1}, 7 = (L, 1),

2 e (3.60)
r=(5 ) =),

2BC is a reducible process, as it consists essentially of two processes with no interaction

we O

between them; see figure 3.8.

Calculation of 2BC’s mixed states is equivalent to using Bayesian methods to infer
which of the two biased coins is being flipped. The stationary distributianthe prior
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distribution, andu(w) is simply the posterior distribution over the presentation states
given the wordw. The procedure we use for calculatipgwz) from w(w) can be

viewed as a procedure to dynamically update the posteg;ors;. isf a word of length
7w U

| 0
mixed statey(w) = N(xT") is 325 (3.37) = 57 = (3'=7,1). So the mixed state —

and the process state — induced by a word depends only on the difference between the

¢ 4+ j consisting of: 0s andy 1s in any order, thed™ = ( ), and resulting

number of0s and the number ofs in the word. Thus, there are countably infinitely
many reachable process states, one for each integer. Some of these process state are
portrayed in figure 3.8a.

With finite data, we are never sure which presentation state the process is in, so all
reachable process states are transient. Asymptotically, as the length of the word goes
to infinity, we can be sure with probability which of the presentations states we are
in. Thus, the mixed state versions of the recurrent process statés, ajeand (0, 1),

Hence there are exactly two recurrent process states, both of which are unreachable and
which correspond exactly to the presentation states.

There are also uncountably many histories in which the difference between the
number of zeros and the number of ones is bounded, for exampdk0101. These
histories induce elusive states, the total probability of which.is

a
1/5/8  1[1/2 0|1/2 0|5/8

03/10 O|3/8 1/3/8  1/3/10

(b)

0|3/4 1|1/4 0|1/4 a 1/3/4

Fig. 3.8 (a) A subset of the transient process states for 2BC. The state induced by a word is determined solely by
the number of0s minus the number aofs in the word. All of the transient states are infinitely preceded.
(b) The recurrent states of 2BC. BothandB are unreachable recurrent states. Each connected
component of the graph corresponds to a recurrent component of the underlying Markov Chain.
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3.6 When Does a Process have an HMM Presentation?

In this section we propose a characterization of when a process is an SFA —
that is, when a process has a (finite) HMM presentation — and we show that it is
a necessary condition. This characterization is a keystone of this dissertation. It leads
almost directly to the reconstruction algorithm of chapter 5. And it follows from the
following observation.

If we have a process with an HMM presentatidn X', {T*},7), then a mixed state
for that presentation is a distribution &f or equivalently, a vector dfi’| components.
This means that all the mixed states lie in th@-dimensional vector spadel’’!. This
in turn means that the dimension of the span of the mixed states is less than or equal
to |V| < co. As process states are essentially equivalent to mixed states, we can make
a similar statement about the process states.

First, we need to be able to work with process states as elements of a vector space.
Let W be the set of all signed measures on the future space. These include the process
states: ifA is a process state, theh € W. For anyA,B € W and¢,d € R, we
definecA + dB as follows. For all future words», (cA + dB)(w) is defined to be
cA(w) + dB(w), so thatW is a vector space. In addition, &, B are probability
measures and, d > 0, ¢+ d = 1, thencA + dB is a probability measure.

We now state the main result of this section.

Theorem 3.6.1Given a proces®, leti/ be the subspace d¥ spanned by the reachable
process states. If i@ has an HMM presentatiofl, X', {T* }, r), then diniz/) < |V|.

Before we can readily prove this result, we need to develop the connection between
W and RV,

Lemma 3.6.2 Suppose we hava,B € W andyx,» € RIVI such that for all future
wordsw we haveuT*T = A(w) and»T*T = B(w). Then for allc,d € R and for all
future wordsw, we have(cu + dv)T"T = (cA + dB)(w).

Proof. (cu + dl/)wa = c<,uTwT> —|—d<1/TwT> = cA(w)+dB(w) = (cA 4+ dB)(w). 1

For the next lemma, we need some additional notation. We wilDusedenote the
zero vector iRVl (Note thato is a row vector, in contrast to.) Also, we will use0 to
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denote the zero measurelin. Thus we have, for all future words, 071 = 0(w) = 0.

Lemma 3.6.3Suppose we have reachable process states.., A; € W, and vectors
@, ..., ut e RVl such thatu! is a mixed state verS|on ok, for eachi € 1., 0L If

there exist real numbers, ..., ¢;, not all zero, such thaE cipt =0, thenZ ¢iA; = 0.
=1 1=1

Proof. For all future wordsw, we have

k k
(Z c,'AZ') (w) = (Z ci,ui) s (3.61)

=1 =1
by lemma 3.6.2. However, the right hand side of equation 3.61 is zero by assumption.
Thus the left hand side is also zero for all] and we have

k
Z = (3.62)

Proof of theorem 3.6.1Choose anyV'| + 1 reachable process statas, ..., Ay,
and chooseu, ..., uy 11 € RIVI such thaty; is a mixed state version of; for each

i€1,....k. They; are a set ofV| + 1 vectors in aV'|-dimensional vector space, so
[Vi+1
they must be dependent. That is, there must exist ., ¢4, such that > ¢;u; = 0.
=1
Vi+1
Now, by lemma 3.6.3, Z c¢;A; = 0y, so theA;s are linearly dependent. Thus, we

have shown that a set of linearly independent process states has size 8t mestthe
span of the process states is at madst-dimensional. B

The following fact about SFAs follows immediately from theorem 3.6.1.

Corollary 3.6.4. Given a process, létf be the span of its process states. If it has a
(finite) HMM presentation, then diff¥) < co.

Proof. For any finite HMM (V, X', {T*}, ), we have|V| < co. Thus, using theorem
3.6.1, we have ditd/) < |V| < ool

As an illustration of the use of corollary 3.6.4, we will now prove the following
statement, which was stated without proof at the end of section 3.3.

Proposition 3.6.5. The modified nested parentheses process does not have an HMM
presentation.
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Proof. Letw, =!(" ! be the lengthn word consisting of a followed by n — 1
(s. Similarly, lets,, = )" — Iy pe the mirror image ofv,,. After the wordw,, the
counter must be: — 1. Before the words,,, the counter must be: — 1. Thuss,,
cannot followw, if m # n:

_ (%)n m=n
P<sm|wn>—{0 . (3.63)
Now let A,, be the process state induced dy,
_ B m=n
Ay(sm) = {0 - (3.64)
For every n and any for |linear combinationey,...,cy—1, We have

(c1A1+ ...cn—1Ap_1)(sn) = 0, While A, (s,) > 0. Thus,A,, is linearly independent
of Ai,...,A,_1. In this way we see that we can construct arbitrarily large, linearly
independent sets of process states. Thus we havespaq A;|: > 0}) = oo, so this
process cannot have an HMM presentatidii.

A related condition for functions of Markov chains was shown by Gilbert [20],
and variants appear in [10] and [21]. These conditions are stated in terms of a different
context of definitions and terminology, so that their exact relationship to corollary 3.6.4 is
difficult to ascertain. The author suspects that if one developed the appropriate machinery
to connect these contexts, one would find that the conditions are equivalent.

We have shown that dif¥) < cc is a necessary condition for a process to have an
HMM presentation. It is almost a sufficient condition. In order to make this precise,
however, we will need to develop a generalization of HMMs. This generalization is
the subject of the next chapter.



