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3 Hidden Markov Models

In the last chapter, we talked entirely about distributions on sequence space. Al-

though this viewpoint will be necessary for some of our results, processes as we have

defined them are not very tractable or structured. A distribution on an infinite set need

not lend itself to a finite description, let alone a brief one. In order to do anything

concrete, we will need another set of definitions. These are the traditional definitions

used in the study of Hidden Markov Models [3,16,17]. In this chapter, we define Hidden

Markov Models and then study how they represent processes. We will look at how to

represent the process states of a process defined by an HMM. And we will conclude the

chapter with a result on the structure of these processes’ sets of process states.

The material in sections 3.1, 3.2, and 3.3 is fairly standard in the literature on

HMMs, appearing in such works as [3,16]. The contents of section 3.4 has probably all

been deduced before. Mixed states, for example, appear in [1], although not with that

name. What is new is stating this material in terms of process states. And the material

in section 3.6 is entirely the author’s though some similar results are known.

We will be careful to keep clear the distinction between the process and the way

it’s presented to us. Byprocess, we will always mean a stationary distribution on a

sequence space. When we refer to a finite specification of a process, such as a Hidden

Markov Model, we will call it a presentation of a process, or simply apresentation.

3.1 Notation for Markov Chains

Before we start on Hidden Markov Models, we will define a Markov Chain. This

definition and the following discussion are not intended to be complete; rather, they are

intended to introduce the reader to the notation we will be using.

Definition 3.1.1. An n-stateMarkov Chain(MC) is a triple(V;P; �), where V is a finite

set of sizen, P is ann� n matrix, and� is a lengthn row vector, such that

(i) Each row ofP has sum one,

(ii)
P

i

�i = 1, and

(iii) �P = �:
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Elements ofV are called states,P is called the transition matrix, and� is called a

stationary distribution over the statesV .

Note that this definition requires a Markov Chain to have finitely many states. At

times in the following, we will discuss both countably and uncountably infinite state

Markov Chains, but we will not define them rigorously.

If we let V be the�-field defined by the cylinder sets onV Z, then
�
V Z;V

�
is a

measurable space. We define a distributionP as follows: if v = v0v1 . . .vl�1, with all

vi 2 V , we define

P(v) = �v0Pv0v1 . . .Pvl�2vl�1
; (3.1)

and we defineP(�) = 1. Equation 2.2 is satisfied trivially. We will verify equation

2.3 and invoke theorem B.1.1 to show thatP is a stationary probability distribution.

If z 2 V , then

P(�z) = P(z�) = P(z) = �z: (3.2)

Thus, X
z2V

P(z�) =
X
z2V

P(�z) =
X
z2V

�z = 1 = P(�): (3.3)

If v = v0 . . . vl�1, we haveP(vz) = P(v)Pvl�1z. ThusX
z2V

P(vz) = P(v)
X
z2V

Pvl�1z = P(v) � 1 = P(v): (3.4)

On the other hand,

P(zv) = �zPzv0Pv0v1 . . .Pvl�2vl�1
; (3.5)

so X
z2V

P(zv) =

 X
z2V

�zPzv0

!
Pv0v1 . . .Pvl�2vl�1

: (3.6)

But
P
z2V

�zPzv0 is the v0 coordinate of�P and�P = �, so

X
z2V

�zPzv0 = �v0 (3.7)

and X
z2V

P(zv) = P(v): (3.8)
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Thus the Markov Chain(V; P; �) defines a process
�
V Z;V;P

�
.

We conclude this section with at definition which we will need in section 3.2.

Definition 3.1.2. If (V; P; �) is a Markov Chain andC � V , we say thatC is a

recurrent componentof the Markov Chain if:

(i) For all u; v 2 C, there exists an integerk > 0 such thatP k
uv > 0, and

(ii) For all u 2 C, for all v 2 V r C, and for all integersk > 0, we haveP k
uv = 0.

Here,P k means thekth power of the matrixP .

Definition 3.1.3. A finite Markov Chain isreducible if it has more than one recurrent

component.

If a Markov Chain is reducible, it is often appropriate to think of it as two or more

separate Markov Chains. A Markov Chain which has exactly one recurrent component

is said to beirreducible.

3.2 Hidden Markov Models

In this section, we will give a definition of a Hidden Markov Model (HMM), and

we will show how an HMM specifies a process.

A Hidden Markov Model is a Markov Chain with an associated output mechanism

which takes either states or transitions between states to either symbols or distributions

on symbols. We will refer to the Markov Chain as theunderlying Markov Chainof

the HMM. We will calculate exclusively with finite presentations — those in which the

Markov Chain has finitely many states. However, we will, at times, consider infinite

presentations.

Hidden Markov Models appear in the literature in several forms, the most frequent

being Functions of a Markov Chain[1] and State-output Hidden Markov Models[16].

These forms are equivalent in the sense that for any HMM in one of these forms, there

is an HMM in each of the other forms which defines the same process. The HMMs

in this work will be Edge-output Hidden Markov Models, the elements of which are

the set of states, the set of symbols, a stationary distribution on those states, and, for

each state, a joint distribution on symbols and next states. The following definition

formalizes this idea.
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Definition 3.2.1. A Hidden Markov Model (HMM)is a quadruple
�
V;X ;

�
T k
	
; �
�
, where

V andX are finite sets of sizesn = jV j andm = jX j,
�
T k
	
=
�
T kjk = 0; . . . ;m� 1

	
is a set ofn � n matrices, and� is a probability vector with lengthn. The matrices�
T k
	

must satisfy

1. For all i such that0 � i � n � 1

X
j;k

T i
ij = 1; (3.9)

2. and for alli,j such that0 � i; j � n � 1 and0 � k � m � 1,

T k
ij � 0: (3.10)

Finally, � must satisfy

�j =
X
i;k

�iT
k
ij: (3.11)

The underlying Markov Chainof a Hidden Markov Model is a the Markov Chain�
V;
P
k

T k; �

�
:

Elements ofV , calledpresentation states, are the states of the underlying Markov

Chain. Elements ofX are calledsymbols, as in chapter 2. Unless we have rea-

son to do otherwise, we will useV = f0; 1; . . . ; n � 1g or V = fA;B; . . .g and

X = f0; 1; . . . ;m� 1g. The
�
T k
	

, called thejoint matrices, represent a set of joint

distributions on next statesj 2 V and output symbolsk 2 X in the following way. If

i; j 2 V and k 2 X and the Markov Chain is in statei, then the probability that the

next symbol emitted will bek and the next state will bej is

P(j; kji) = T k
i;j: (3.12)

The last element of the quadruple is�, which is astationary distribution. Most

definitions of HMMs found in the literature have an initial distribution instead of

a stationary distribution. The difference is that an initial distribution may be any

distribution over the states, whereas the stationary distribution is constrained to satisfy

equation 3.11. Using a stationary distribution here makes the resulting process stationary.

If the underlying Markov Chain has a single recurrent component, then� is uniquely

determined by the joint matrices. If, however, the underlying Markov Chain has more
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than one recurrent component, then� is only partially determined. Choosing a stationary

distribution is then tatamount to choosing a distribution over the components.

In addition, we will define a few auxiliary matrices. Thetransition matrixP of a

Hidden Markov Model is defined by

Pij =
X
k

T k
ij: (3.13)

The output matrixB is ann�m matrix such thatBjk gives the probability of emitting

the symbolk 2 X while in the statej 2 V . B is define by

Bki =
X
j

T k
ij: (3.14)

The conditions imposed on the joint matrices ensure thatP andB are stochastic matrices,

that is, their rows sums are all equal to1. Also, we have�P = �, and we can write

the underlying Markov Chain of the HMM as(V; P; �).

A warning to readers familiar with state-output Hidden Markov Models defined in

terms of transition and output matrices — our choice of notation may be misleading

to your intuition. The auxiliary matricesP andB are not always sufficient to recover

the joint matrices
�
T k
	

. For example, if we start with a state-output HMM, the joint

matrices can be constructed asT k
ij = PijBjk, and equations 3.13 and 3.14 will be

satisfied. That is, if we compute the right hand sides of 3.13 and 3.14, we will recover

our original transition and output matrices. But, if we start with a set of joint matrices,

compute the transition and output matrices by equations 3.13 and 3.14, and then compute

PijBjk, the result need not be the joint matrices. Doubtful readers are encouraged to

perform the calculations themselves on the two-state, two symbol process with joint

matricesT 0 =

�
0 0

1=2 0

�
andT 1 =

�
1=2 1=2

0 1=2

�
.

In general, a state-output HMM may be built from an edge-output HMM, but the

state-output HMM may need to have a greater number of states, because edge-output

HMMs have more degrees of freedom per state than state-output HMMs. Given an edge-

output HMM
�
V;X ;

�
T k
	
; �
�
, we can construct an equivalent state-output HMM with

set of statesU = V �V as follows: ifa; b; c; d 2 V , then we have(a; b); (c; d) 2 U . Let

P(a;b);(c;d) =

( P
k2X

T k
cd b = c

0 b 6= c;
(3.15)
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and let

B(a;b);k =
T k
a;b

P

l2X

T l
a;b

: (3.16)

3.3 HMMs as Processes

An HMM presentation defines a process. That is,
�
V;X ;

�
T k
	
; �
�

determines a

probability distributionP and thus a processP =
�
XZ;X;P

�
. Let us see how this

works.

First, we suppose that the presentation’s underlying Markov Chain is in the state

i 2 V . Let k be a symbol andj 2 V be a presentation state. We want to know

P(kji), the probability that the next symbol will bek, andP(jji; k), the probability that

next presentation state will bej if the next symbol isk. These are straightforward to

calculate from the presentation.

P(kji) =
X
j

P(j; kji) =
X
j

T k
ij (3.17)

P(jji; k) =
P(j; kji)

P(kji)
=

T k
ijP

l

T k
il

(3.18)

Next, instead of assuming that the current presentation state isi, that is,P(i) = 1,

we assume that it has distribution�. To calculate the analogous quantities,P(kj�) and

P(jjk; �), we start by calculatingP(j; kj�). After that, the answers are essentially the

same as above.

P(j; kj�) =
X
i

�iP(j; kji) =
�
�T k

�
j

(3.19)

P(kj�) =
X
j

P(j; kj�) =
X
j

�
�T k

�
j

(3.20)

P(jj�; k) =
P(j; kj�)

P(kj�)
=

�
�T k

�
jP

j

�
�T k

�
j

(3.21)

If we denote the column vector(1; . . . ; 1)T by ~1, we can writeP(kj�) = �T k~1.



31

Now, define a mapCk, which takes distributions� on the statesV to distributions

on V , by

Ck(�) = �T k=�T k~1: (3.22)

We then haveP(jj�; k) = (Ck(�))j. We think of � as representing our state of

knowledge about the internal state of the process. TheCk should be thought of as

update maps: they take a distribution� at one time and update it to reflect the passage

of time and the latest observationk.

Having addressed single symbols, we are ready to address words. We begin with

a wordw of length two,w = w0w1. P(wj�) factors toP(w0j�) � P(w1jw0; �). The

first of these terms is a case we have just treated in 3.20. For the second, if we update

� to Cw0
(�), it reduces to the same case:P(w1jw0; �) = P(w1jCw0

(�)). We now

expand and simplify,

P(wj�) = P(w0j�) �P(w1jCw0
(�))

=
�
�Tw0~1

��
Cw0

(�)Tw1~1
�

=
�
�Tw0~1

�� �Tw0

�Tw0~1

�
�
�
Tw1~1

�

= �Tw0Tw1~1

(3.23)

By similar manipulations, we have

(Cw1
� Cw0

)(�) = Cw1

�
�Tw0

�Tw0~1

�

=

�
�Tw0=�Tw0~1

�
Tw1

�
�Tw0=�Tw0~1

�
Tw1~1

=
�Tw0Tw1

�Tw0Tw1~1

(3.24)

This extends to words of arbitrary length. Ifw is a word of lengthl, then

P(wj�) = �Tw0Tw1 . . .Twl�1~1 and the updated distribution over the presentation states

is �
Cwl�1

� . . . � Cw0
. . .
�
(�) =

�Tw0 . . .Twl�1

�Tw0 . . .Twl�1~1
(3.25)

Now, if we use the stationary distribution� in place of the arbitrary distribution�, we

have a stationary process.
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Lemma 3.3.1. There is a unique stationary processP =
�
XZ;X;P

�
such that for all

words w = w0 . . .wl�1,

P(w) = �Tw0 . . .Twl�1~1: (3.26)

Proof. We will simply verify equations 2.2 and 2.3 and invoke theorem B.1.1. First,

P(�) = �~1 =
P
i

�i = 1. This takes care of 2.2. Second, forz 2 X ,

P(wz) = �Tw0 . . .Twl�1T z~1: (3.27)

Thus, X
z2X

P(wz) = �Tw0 . . .Twl�1

 X
z2X

T z

!
~1: (3.28)

But the rows of
P
z

T z sum to one, so

�
P

z

T z

�
~1 = ~1. Hence,

X
z2X

P(wz) = �Tw0
. . .Twl�1~1 = P(w): (3.29)

Similarly, X
z2X

P(zw) = �

 X
z2X

T z

!
Tw0

. . .Twl�1~1: (3.30)

But �

�P
z

T z

�
= �, so

X
z2X

P(zw) = �Tw0
. . .Twl�1~1 = P(w): (3.31)

Thus the hypotheses of theorem B.1.1 are satisfied.�

Definition 3.3.2. The process defined by an HMM presentation
�
V;X ;

�
T k
	
; �
�

is the

processP =

�
X
Z;X;P

�
which assigns the probabilityP(w) = P(wj�) for any word

w of symbols inX .

Over the course of this dissertation, we will be doing many calculations containing

expressions of the formTw0 . . .Twl�1 . In order to shorten these expressions, we

will define the matrixTw for any word w. If w = w0 . . .wl�1, then we define

Tw = Tw0 . . .Twl�1. For the empty word�, we defineT� = I. Thus, for any pair

of words,w andz, we haveTwz = TwT z. In this notation, the probability of a word

w is P(w) = �Tw~1.
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As we have seen, matrix presentations are convenient for calculation. Intuitive

interpretation, on the other hand, is often easier with some other forms of presentation.

For this reason, we will introduce a new form of presentation, which we will call a

labeled directed graph. Examples of labeled directed graph presentations may be found

in section 3.5. It is worth noting that, while labeled directed graph presentations are

often quite clear, they become less intelligible as the number of edges per state increases.

For example, compare figures 3.3 and 3.6 on pages 44 and 46.

We have already seen process state graph presentations in sections 2.5 and 2.6;

the presentations we define here are related, but distinct. Here the nodes of a labeled

directed graph represent presentation states, and not process states as was the case before.

Process state graphs are deterministic — that is, they cannot have two or more edges

leaving the same state labeled with the same symbol. Labeled directed graphs do not

have this restriction.

A labeled directed graph is a directed graph in which the nodes represent presentation

states and the edges represent possible transitions. Each edge is labeled with a symbol

and a probability. An edge from statei to statej which is labeled withkjp corresponds

to an entry in a joint matrix:Tk
ij = p. That is,k is a symbol andp is a probability, and

whenever the labeled directed graph is in statei, it has probabilityp of following this

edge, and if it does so it will output ak and go to statej. We can translate an HMM

into a labeled directed graph by drawing a node for each state of the HMM and an edge

for each nonzeroT k
ij. Similarly, we can usually translate a labeled directed graph into

an HMM. We letV be the set of nodes in the graph andX be the set of all symbols

which are appear on the edges of the graph. For eachi; j 2 V and k 2 X , if there

is an edge from statei to statej which is labeled withkjp for somep, then we set

T k
ij = p, and otherwise we setT k

ij = 0. The one piece of an HMM which is not present

in a labeled directed graph is the stationary distribution�. If there is only one possible

stationary distribution for the set of joint matrices, then the labeled directed graph is a

complete presentation, and it defines a process. If there is more than one — that is,

if the underlying Markov Chain has several recurrent components or is periodic[13] —

then the labeled directed graph does not specify a process.

A given process may have many presentations, and determining whether or not

two presentations describe the same process is nontrivial [7,2]. For example, the
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V = f0;1; 2g; X = f0; 1g; �A = ( 1
4
; 1
4
; 1
2
)

T 0 =

0
@0 1

2

1

2

0 0 0

0 0 0

1
A; T 1 =

0
@0 0 0

0 1

2

1

2

1

2
0 1

2

1
A

Fig. 3.1 Process “simple nondeterministic source,” presentation A.

W = f0; 1g; X = f0; 1g; �B = ( 1
4
; 1

4
; 1

2
)

U0 =

�
0 0
1

2
0

�
; U1 =

�
1

2

1

2

0 1

2

�

Fig. 3.2 Process “simple nondeterministic source,” presentation B.

presentations in figures 3.1 and 3.2 define the same process. To show that presentations

A and B are equivalent, it is sufficient to show that, for every finite wordw, �ATw~1 =

�BU
w~1. In this case, it can be done by induction. However such proofs are at best

computationally messy and are not very illuminating. In section 4.3, we will develop

a systematic approach to equivalence of presentations. We will prove that A and B are

equivalent there.

Not all processes can be presented as finite HMMs. For example, consider the

modified nested parentheses process[18], a process with the alphabet of( , ), and!.

(The termmodified refers to the presence of the! symbol.) One way to represent

this process is as a single presentation state and a counter which holds a nonnegative

integer. If the counter is set to zero, then with probability1

3
, the machine outputs a(

and sets the counter to one, and with probability2

3
it outputs a! and leaves the counter

at zero. If the counter is not set to zero, then with probability2

3
the machine outputs a

) and decrements the counter and with probability1

3
it outputs a( and increments the

counter. If the initial value of the counter is drawn from the appropriate distribution,

this description defines a (stationary) process. This process always outputs balanced

strings of parentheses between any consecutive pair of! symbols, and there is no upper

bound to the number of levels of nesting. We will prove in section 3.6 that there is no

HMM presentation for this process.

Simply stated, in this section we have shown how to get a process from an HMM.
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But consider the inverse problem — suppose we have a process, and we want an HMM

presentation for it. Because a process can have more than one HMM presentation,

we cannot expect a unique answer. And, as the modified nested parentheses process

illustrates, we cannot always expect any answer at all. This is a form of the problem

of HMM reconstruction, and nothing we have seen here so far suggests a way of

approaching it.

Finally, we can define the class of processes which are the subject of this dissertation,

stochastic finite automata. Astochastic finite automaton(SFA) is a process which has a

finite HMM presentation. In section 3.6, we will give a necessary condition for a process

to be an SFA. Notably, this condition will, among other things, suggest an approach to

HMM reconstruction.

3.4 Mixed States

In section 2.5, we defined process states in rather abstract terms, and in section 3.2

we described HMMs in more concrete terms. In this section, we will bring these threads

together and discuss the process states of processes defined by HMM presentations.

Recall that a process state is a conditional future distribution which arises when we

condition on a history or a history suffix. Suppose we have a processP =
�
XZ;X;P

�

defined by an HMM presentation
�
V;X ;

�
T k

	
; �
�
. What are the process states for this

process?

There are some presentations for which the process states coincide with the presen-

tation states. Such presentations are necessarilydeterministic. This means that, for any

given presentation statei 2 V and symbolk 2 X there is at most one presentation state

j 2 V such that the transition fromi to j with symbol k is possible,T k
ij 6= 0. If a

process has a finite deterministic presentation then it is called aStochastic Deterministic

Finite Automaton(SDFA). In this case, the presentation states and process states are

similar though they may not coincide. SDFAs are an important class of processes; see

[19]. However, typical HMMs are not deterministic and the processes they represent

are not SDFAs. It is this case which this section addresses.
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We will begin with reachable states, those which result from conditioning on a finite

history suffix. Supposes is a history suffix andw is a next word. We have

P(wjs) =
P(sw)

P(s)
=

�T sTw~1

�T s~1
: (3.34)

(If P(s) = 0, thenP(wjs) is not well defined. We will ignore suchs throughout this

section.) Since the conditional distributionP(�js) is the object we are interested in and

w is the argument it takes, we will rewrite this as

P(wjs) = P(�js)(w) =
�T s

�T s~1
Tw~1 (3.35)

Here,P(�js) shows up as�T s=�T s~1, which is a distribution on the presentation states.

In fact, distributions over the presentation states are close to being process states.

If � is such a distribution, thenP(�j�) is the conditional future distribution given the

measure�, defined byP(wj�) = �Tw~1. We will show below that all process states

can be represented in this way. If two different history suffixes,s and s, define the

same distribution over presentation states —�T s=�T s~1 = �T s=�T s~1 — then clearly

P(�js) = P(�js), so s and s lead to the same process state.

Before we proceed, we will introduce a notational convenience. When we have

a row vector�, we often need tonormalizeit, that is, scale it so that the sum of its

components is1. We have been writing the normalization of� as �

�~1
. We now define

N , the normalizing function, which takes row vectors to row vectors, by

N(�) =
�

�~1
: (3.36)

With this, we can writeN(�Tw) instead of�Tw=�Tw~1.

Definition 3.4.1. A mixed stateof a presentation is a distribution over the presentation

states.

(The namemixed statecomes from thinking of mixed states as “mixtures” of

presentation states. This is similar to the use of “mixed state” in quantum mechanics. It

should be noted that Fraser and Dimitriadis have use the term “mixed state” in connection

with HMMs to mean something entirely different [12].)

Mixed states are related to process states, but they are not quite the same. First, there

can be mixed states which do not represent any process states. For example, consider
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the process presented by the HMM

V = f0;1g;X = f0; 1g; � = ( 1
2
; 1

2
)

T 0 =

�
0 1

0 0

�
; T 1 =

�
0 0

1 0

�
:

(3.37)

This process has only three process states. (If we have seen any history or history suffix

of length 1 or more, then we know the entire past and the entire future almost surely

— it is either . . . 0:10101 . . . or . . . 1:01010 . . .. If not, we are conditioning on�, and

we get the futures10101 . . . and01010 . . . with probability 1

2
each.) The mixed states

corresponding to these process states are(0; 1), (1; 0), and ( 1
2
; 1

2
). The other mixed

states do not define process states.

Second, it can happen that two or more different mixed states correspond to a single

process state. This can only happen if the presentation in question is not minimal, that is,

if it has some redundancy in its states. For example, the process presented by the HMM

V = f0; 1g;X = f0; 1g; � = ( 1
2
; 1

2
)

T 0 =

�
1

2
0

1

2
0

�
; T 1 =

�
0 1

2

0 1

2

�
(3.38)

is an elaborate presentation of a fair coin, which has only one process state. The mixed

states(1; 0) and(0; 1), which arise asN
�
�T 0

�
andN

�
�T 1

�
respectively, represent the

same process state.

Definition 3.4.2. Fix a process and an HMM presentation for it. LetA be a process

state and� a mixed state. If for all next wordsw we haveA(w) = �Tw~1, then we say

that � is a mixed state versionof the process stateA.

Theorem 3.4.3. Suppose we have a process and an HMM presentation for it. Then

every process state, except possibly those in a null set, has a mixed state version.

For a reachable process stateA, we have essentially already shown this. Ifs is a

history suffix withP(s) > 0 which inducesA, N(�Ts) is a mixed state version ofA.

However, for unreachable states, there is no such simple solution. Most of the rest of

this section addresses this issue. The proof of this theorem appears on page 41.

To treat this case, we need to work in a probability space which contains both pre-

sentation states and symbols. Begin with our HMM
�
V;X ;

�
T k
	
; �
�
, and its underlying

Markov Chain(V; P; �). These define the observation processP =
�
XZ;X;P

�
and the
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internal process
�
V Z;V;P

�
, respectively. We will define thejoint processof these two

to be the processQ =

�
(V �X )

Z
;J;Q

�
as follows. The alphabet of the joint processes

is V �X and thus its sequence space is(V �X )
Z. Its �-field is the�-field generated

by the cylinder sets in(V �X )
Z. If we have a wordŵ = (v1; x1); (v2; x2); . . . ; (vl; xl),

we have

Q(ŵ) = �v1T
x1
v1v2

. . .T xl�1

vl�1vl

 X
i2V

T
xl

vli

!
: (3.39)

The pair(v; x) corresponds to our original HMM leaving statev and outputting symbol

x. ThusQ(ŵ) is the probability that the HMM traverses the sequencev1; v2; . . . ; vl

of presentation states and, as it does this, emits the wordx1; x2; . . . ; xl. Specifically,

this is the probability that the HMM starts in presentation statev1, emits x1 while

making a transition tov2, and then emitsx2 while going to v3, and so forth. This

ends when the HMM emitsxl�1 during the transition fromvl�1 to vl and then emits

xl during a transition to any state. This free choice of thel + 1th state leads to the

sum at the end of equation 3.39. The new processQ has the HMM presentation�
V; V �X ;

�
Uk
jk 2 V �X

	
; �
�
, where ifv 2 V andx 2 X , thenU (v;x) is defined by

U
(v;x)

ij =

�
T x
ij v = i

0 v 6= i
(3.40)

and we can rewrite 3.39 as

Q(ŵ) = �U (v1;x1) . . .U (vl;xl)~1 (3.41)

Let M : V � X ! X be the projection mapM(v; x) = x, and let MZ :

(V �X )Z ! X
Z be the projection map on sequence spaces which appliesM at each

time index: MZ(. . . zizi+1 . . .) = (. . .M(zi)M(zi+1) . . .). Thus for any subsequence

s = sasa+1 . . . sb, si 2 X when we applyM�1 to the cylinder setAs we get the set of

all sequences in(V �X )Z whosex part matchess,

M�1(As) =
n
z 2 (V �X )ZjM(zi) = si for all i 2 a; a+ 1; . . . b

o
: (3.42)

It should be clear thatM is a measurable function, and that ifA 2 X, we have

P(A) = Q
�
M�1(A)

�
.

In some sense, defining joint processes is a more natural way of approaching HMMs,

than the path we have taken of defining (symbol) processes first and then introducing



39

HMMs as ways of representing processes. However, the joint process approach leads

one’s intuition in a direction other than the one in which this work is going. In particular,

the joint process approach does not suggest section 3.6, and in fact could lead one to

reject it. This is because introducing HMMs and joint processes first puts presentation

states in a more fundamental role than process states. In contrast, the insight which led

to section 3.6 resulted in part from observing that process states were actually the more

fundamental objects. We will use the joint process only in part of this section.

In section 2.5 we definedR to be the set of wordsw 2 X � such thatP (w) 6= 0: We

also defined the set of bad historiesN to be the set of all histories, and we showed that

N is a null set. A historyx� is in N if lim
l!1

P(sjwl) does not exist for somes 2 X �,

wherewl is the lengthl suffix of N . In particular, ifx� is not inN , we know that

every suffixwl of x� lies in R.

Definition 3.4.4. If s is either a history suffix inR or a good history, the mixed state�(s)

is defined to be that mixed state whoseith coordinate satisfies(�(s))i = Q(v0 = ijs)

for all i 2 V . We call �(s) the mixed stateinducedby s.

How can we compute induced mixed states? Ifw is a history suffix inR, we

can calculate directly, using equation 3.41 and definition 3.4.4. The answer is far

less cumbersome than the calculations needed to produce it, and brings us back to the

material of pages 36–36.

Q(v0 = ijw) =
Q(i; w)

Q(w)
=
Q(v0 = i; x�l . . .x�1 = w�l . . .w�1)

Q(x�l . . .x�1 = w�l . . .w�1)
(3.43)

Q(v0 = ijw) =

P

v
�l...v�12V

�
�U (v

�l;w�l) . . .U (v
�1;w�1)

P
x2X

U (i;x)~1

�
P

v
�l...v�12V

�
�U (v

�l;w�l) . . .U (v
�2;w�1)~1

� (3.44)

Q(v0 = ijw) =

�

 P
v
�l2V

U (v
�l;w�l)

!
. . .

 P
v
�12V

U
(v
�1;w�1)

! P
x2X

U
(i;x)~1

�

 P
v
�l2V

U (v
�l;w�l)

!
. . .

 P
v
�12V

U (v
�1;w�1)

!
~1

(3.45)
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Note that
P

v2V

U (v;x) = T x and that

� P
x2X

U (i;x)~1

�
j

=
P

v2V;x2X

U
(i;x)
j;v = �ij, which

means that
P
x2X

U (i;x)~1 = ei, the ith standard basis vector. Thus we can write

Q(ijw) =
�Tw

�l . . .Tw
�1ei

�Tw
�l . . .Tw

�1~1

=
�Twei

�Tw~1
= N(�Tw)ei:

(3.46)

Thus, the induced mixed state�(w) is simply given by�(w) = N(�Tw).

Before we address the mixed state�
�
x�
�

induced by a historyx�, we need the

following theorem, due to technical difficulties of conditioning on sets of measure zero.

Corollary B.2.4. If fFng is an increasing sequence of�-fields andA is an event, then

P(AjFn)! P(AjF) almost surely, whereF is the smallest�-field which contains all

of the Fns.

Proposition 3.4.5. For any historyx�, let sl denote the lengthl history suffix

x�l . . .x�1. For almost everyx�, �(sl) ! �
�
x�
�

as l ! 1.

Proof. For each positive integerl, let Fl � J be the�-field generated on(V �X )
Z

by history suffixesw 2 X � of length l, and letF
1

be the�-field generated by the

union of theFls. ThusF
1

is the set of inverse images underM of sets in the history

�-field H of the processP. Also, letAi � (V �X )
Z be the set on whichv0 = i. Now,

applying theorem B.2.4, we get

Q(AijFl)! Q(AijF1) (3.47)

almost surely asl ! 1. For a given historyx� 62 N , and for each positive integerl,

let sl denote the lengthl history suffixx
�l . . .x�1. Now,

Q(AijFl)
�
x�

�
= Q(Aijsl) = (�(sl))i (3.48)

since we know thatsl 2 R. Similarly,

Q(AijF1)
�
x�

�
= Q

�
Aijx

�

�
=

�
�
�
x�

��
i
; (3.49)

so equation 3.47 becomes�(sl) ! �
�
x�

�
almost surely asl ! 1, for almost every

x� 62 N , or simply for almost everyx�.�
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The next result establishes that�(s) contains all the information about the past which

is contained ins and which is relevant to the future.

Proposition 3.4.6 Let w be any word inX �. If s is a history suffix inR, then

P(wjs) = �(s)Tw~1. And if x� is a good history, thenP(wjs) = �
�
x
�

�
Tw~1 almost

surely.

Proof. If s is a history suffix, we know that

P(wjs) =
�Ts

�T s~1
Tw~1 = N(�T s)Tw~1: (3.50)

Since�(s) = N(�T s), we haveP(wjs) = �(s)Tw~1.

For a good historyx�, let s
l
= x

�l
. . .x�1 for eachl, and letF

l
� X be the�-field

generated by the history suffixes of lengthl. In addition, letAw � XZ be the cylinder set

of sequences which containw. Now, if we apply theorem B.2.4, we getP(AwjFl) !

P(AwjF1) almost surely asl !1, or equivalentlyP(wjs
l
) ! P

�
wjx�

�
.

On the other hand, we know that�(s
l
)! �

�
x
�

�
almost surely. The function� ! �Tw~1

is continuous, so�(s
l
)Tw~1! �

�
x
�

�
Tw~1 almost surely. And sinceP(wjs

l
) = �(s

l
)Tw~1

almost surely, we know thatP(wjsl) converges almost surely to bothP
�
wjx�

�
and to

�
�
x
�

�
Tw~1, so it must be true that�

�
x
�

�
Tw~1 = P

�
wjx�

�
almost surely.�

Proposition 3.4.6 directly implies that the past and the future are conditionally

independent given the mixed state induced by the past. At last, we can return to mixed

state versions of process states and prove theorem 3.4.3.

Proof of theorem 3.4.3Let A be a process state forP =
�
X ;XZ;P

�
. Then there

is either a history or a history suffix which inducesA. Let s be any such history or

history suffix. For all next wordsw, A(w) is defined to beP(wjs) almost surely, and

we know thatP(wjs) = �(s)Tw~1, soA(w) = �(s)Tw~1. Thus �(s) is a mixed state

version ofA. �

Finally, with the remainder of this section, we will define a new presentation, called

the mixed state representation(MSR). If we start with a presentation(V;X ;fT xg; �),

let V be the set of all mixed states�(s) which are induced by a historys 2 R or

a history suffixx� 62 N . Elements ofV are presentation states of the mixed state

representation. That is, presentation statesV of the MSR are mixed states of the
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presentation(V;X ; fTxg; �). The mixed state representation is another presentation

of the process defined by(V;X ; fT xg; �). Notably, it may have infinitely many states.

It is with this representation in mind that we use the wordstatein the termmixed state.

Suppose what we know of the history of our processP is that the most recent output

word was the history suffixw. Then the next symbol will bex 2 X with probability

P(xjw) = �(w)T x~1, and if x is the next symbol, then the known history word becomes

wx. Now, we will look at this transition in terms of the mixed states. Since we know

that the history suffix isw, we are in mixed state�(w). From�(w), the next symbol is

x with probabilityP(xj�(w)) = �(w)T x~1, and if x is chosen as the next symbol, then

a transition is made to the MSR state�(wx).

In order to use mixed states as states, we need to be able to compute�(wx) from

�(w) without usingw. Fortunately, this is not difficult to do.

�(wx) = N(�TwT x)

=
�TwT x

�TwT x~1

=
�TwT x=�Tw~1

�TwT x1=�Tw~1
:

(3.51)

Thus we have

�(wx) =
�(w)T x

�(w)T x~1
= N(�(w)T x) = Cx(�(w)): (3.52)

Note thatw does not appear except in�(w) and �(wx).

Now we can define the mixed state representation. As we have stated, its presentation

states are elements ofV , mixed states which are induced by histories or history suffixes.

We write them as row vectors� =
�
�1; . . . ; �jV j

�
. Its symbol set, clearly, will beX .

BecauseV may be infinite or even uncountable, we cannot define transition matrices,

but we can give equivalent information. Given a state� 2 V and a symbolx 2 X ,

if the current state is�,

(i) the probability thatx is emitted isP(xj�) = �T x~1, and

(ii) if x is emitted, the next state isCx(�) = N(�T x).

We will not address here the issue of whether or not a stationary distribution onV

exists. To use the mixed state presentation to compute the probability of a wordw,
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assume presentation starts in state� = �(�) 2 V and compute

lY
i=1

�i�1T
wi~1 (3.53)

where l = jwj, �0 = � and �i = Cwi
(�i�1) = N(�i�1T

wi) for i � 1. It can

easily be verified that the result of this calculation is equal to the probabilityP(w) =

�Tw1Tw2 . . .Twl~1 assigned by
�
V;X ;

�
T k
	
; �
�
. The product in equation 3.53 is simply

the product of the quantities which the normalizing functionN divides out of the�i.

Note that the mixed state representation is deterministic. That is, for any MSR

state� 2 V and any symbolx 2 X , there is a unique MSR stateCx(�) to which

a transition involving the emission ofx is possible. Further, the MSR states are in

one-to-one correspondence with the process states, except perhaps for a set of each of

measure zero.

In this section, we defined mixed states and showed that they are intimately related

to the process states. In fact, the significance of mixed states is that they give us a way

of representing the process states.

3.5 Examples

At this point we will digress from the formal development and present several

examples in detail. These examples are chosen in part to illustrate the variety of

behaviors which are seen in SFAs. The calculations to support the conclusions are

not presented here; the reader is encouraged to perform them.

The Golden Mean Process The first example is theGolden Mean Process(GMP)

which we have already seen in section 2.6. This presentation is deterministic, and the

recurrent process states and the presentation states coincide, so GMP is a stochastic

deterministic finite automaton.

GMP has two symbols, and its smallest HMM presentation has two states. Its most

prominent feature is that its output sequences never contain pairs of consecutive0s. The

reader should be able to verify that� = ( 2
3
; 1

3
) from the transition matricesT 0 andT 1.

V = fB;Cg; X = f0; 1g; � = ( 2
3
; 1

3
)

T 0 =

�
0 1

2

0 0

�
; T 1 =

�
1

2
0

1 0

�
(3.54)
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B C

0|1/2

1|1

1|1/2

A
1|2/3 0|1/3

(b)

B C

0|1/2

1|1

1|1/2

(a)

Fig. 3.3 (a) Labeled directed graph presentation of GMP. (b) Process state graph presentation of

the process GMP. In this case, the recurrent process states coincide with the presentation states.

This process has three process states. Ifw is a history or history suffix which ends

in 1, it induces process stateB. The mixed state it induces isN (�Tw) = (1; 0). If w is

a history or history suffix which ends in0, it induces process stateC and mixed state

(0; 1). This covers all histories and all history suffixes except�, which induces process

stateA, which is transient, and mixed state� = ( 2
3
; 1

3
). The probabilities associated

with the start state areP(1j�) = �T 1~1 = 2

3
andP(0j�) = �T 0~1 = 1

3
. Similarly, the

states to which these transitions are made are identified by comparing mixed states;

C1(�) = (1; 0) andC0(�) = (0; 1). These are the mixed states associated to statesB

andC, respectively.

The Simple Nondeterministic Source Our next example is theSimple Nonde-

terministic Source (SNS), which we saw in section 3.2. This process can be represented

with only two presentation states, but as we will see shortly, it has infinitely many

process states. A two-state HMM presentation is

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
0 0
1

2
0

�
; T 1 =

�
1

2

1

2

0 1

2

�
:

(3.55)

A B1|1/2 1|1/2

0|1/2

1|1/2

Fig. 3.4 Labeled directed graph presentation for SNS.
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Let wn = 01n, the word consisting of a0 followed by n 1s, and letAn be the

process state induced bywn. The matrix corresponding town is

Twn = T 0
�
T 1
�
n

=

�
0 0

2�n�1 n2�n�1

�
; (3.56)

so the mixed state�(wn) corresponding toAn is

N(�Twn) = N
�
2�n�1; n2�n�1

�
=

�
1

n+ 1
;

n

n+ 1

�
: (3.57)

The first few of these states are listed in table 3.1. TheAn are all distinct states, since

their mixed state versions are all distinct. In fact, theAn comprise all but one of the

process states. Also, the word0 is a synchronizing word, sinceP(�j0) = P(�jw0) for

all wordsw such thatP(w0) > 0. We can verify this by calculatingC0(�) = (1; 0)

andC0(�) = (1; 0) for all �. Thus all of thewns are synchronizing words, and all of

the An are reachable recurrent states.

SNS is also an example of a process in which reachable recurrent states are induced

by words which are not synchronizing. This precludes the possibility of a converse to

proposition 2.6.2, which said that synchronizing words induce reachable recurrent states.

The word11 induces the process stateA3, a reachable recurrent state, also induced by

w3 = 0111. However,11 is not a synchronizing word, becauseP(�j011) andP(�j111)

are not equal toA3.

History or history
suffix s

Mixed state�(s) Process state P(symbol0jw)

. . . 0 (1; 0) A0 0

. . . 01 ( 1
2
; 1
2
) A1

1

4

. . . 011 ( 1
3
; 2
3
) A2

1

3

. . . 0111 ( 1
4
; 3
4
) A3

3

8

. . . 01111 ( 1
5
; 4
5
) A4

2

5

. . . 01n
�

1

n+1
; n

n+1

�
An

1

2

n

n+1

infinitely many1s (0; 1) A1
1

2

Table 3.1 The first few mixed and process states of the “simple nondeterministic source”.
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1|1

0|1/4

1|3/4

0|1/3

1|2/3

0|3/8

1|5/8

0|2/5

1|3/5
....

0|1/2

1|1/2

1

Fig. 3.5 An abbreviated version of the deterministic labeled directed graph presentation for

the process “simple nondeterministic source,” which has infinitely many process states.

The Cantor process Our third example is theCantor process, which has the

following HMM presentation:

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
0:55 0

0:30 0:15

�
; T 1 =

�
0:15 0:30

0 0:55

�
:

(3.58)

A B

0|0.55

1|0.15

1|0.55

0|0.15

1|0.3

0|0.3

Fig. 3.6 Labeled directed graph presentation for the Cantor process.

Recall that a process state is an equivalence class of histories and history suffixes.

For the Cantor process, all of these equivalence classes are trivial: every history and

every history suffix induces a future conditional distribution which is different from that

generated by every other history and every other history suffix. (Of course, pairs of

future conditional distributions exist arbitrarily close to one another.) The result is that

the Cantor process has uncountably many elusive process states, one induced by each

history. Also, it has countably many strictly transient states, which are in one-to-one

correspondence with the history suffixes. Thus, this is an example of a process with

no synchronizing words.
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Note that

N
�
(x; 1� x)T 1

�
=

�
3x

11� 2x
;
11 � 5x

11 � 2x

�
�
�x
3
; 1 �

x

3

�
; and

N
�
(1� y; y)T 0

�
=

�
11 � 5y

11 � 2y
;

3y

11 � 2y

�
�
�
1�

y

3
;
y

3

�
:

(3.59)

These approximations are exact at(0; 1) and (1; 0), and are within 1

54
in between.

Thus, if � is the mixed state induced by a historys, appending a symbol tos

corresponds approximately to moving� two-thirds of the distance to either(0; 1) or

(1; 0), respectively. The mixed states induced by histories form a set similar to the

middle-thirds Cantor set, hence the process’s name. This may be seen in figure 3.7,

which is a plot of the Cantor process’s mixed states, all of which lie on the line segment

with endpoints(0; 1) and (1; 0). The mixed states induced by history suffixes lie in

the middle of the intervals which are deleted to form the approximate Cantor set. (It

is possible to construct an HMM for which the mixed states induced by histories are

exactly the middle-thirds Cantor set, but it is degenerate — it is equivalent to a fair coin.)

(0,1) (1,0)

Fig. 3.7 The mixed states for the process Cantor. Dots are mixed states corresponding to elusive process states.

The small vertical lines are the mixed states corresponding to the subset of transient process states.

The Two Biased Coins process The last example we will look at here is the

Two Biased Coins (2BC)process. The process can be simulated with a pair of biased

coins. One of the biased coins is chosen by a flip of a fair coin. The chosen biased

coin is then flipped to produce a bi-infinite sequence. Like the above examples, it has

the following two-state presentation:

V = fA;Bg; X = f0; 1g; � = ( 1
2
; 1

2
);

T 0 =

�
3

4
0

0 1

4

�
; T 1 =

�
1

4
0

0 3

4

�
:

(3.60)

2BC is a reducible process, as it consists essentially of two processes with no interaction

between them; see figure 3.8.

Calculation of 2BC’s mixed states is equivalent to using Bayesian methods to infer

which of the two biased coins is being flipped. The stationary distribution� is the prior
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distribution, and�(w) is simply the posterior distribution over the presentation states

given the wordw. The procedure we use for calculating�(wx) from �(w) can be

viewed as a procedure to dynamically update the posteriors. Ifw is a word of length

i+ j consisting ofi 0s andj 1s in any order, thenTw =

�
3
i

4i+j 0

0 3
j

4i+j

�
; and resulting

mixed state�(w) = N(�Tw) is 1

3i+3j

�
3i; 3j

�
= 1

3i�j+1

�
3i�j; 1

�
. So the mixed state —

and the process state — induced by a word depends only on the difference between the

number of0s and the number of1s in the word. Thus, there are countably infinitely

many reachable process states, one for each integer. Some of these process state are

portrayed in figure 3.8a.

With finite data, we are never sure which presentation state the process is in, so all

reachable process states are transient. Asymptotically, as the length of the word goes

to infinity, we can be sure with probability1 which of the presentations states we are

in. Thus, the mixed state versions of the recurrent process states are(1; 0) and (0; 1),

Hence there are exactly two recurrent process states, both of which are unreachable and

which correspond exactly to the presentation states.

There are also uncountably many histories in which the difference between the

number of zeros and the number of ones is bounded, for example. . . 010101. These

histories induce elusive states, the total probability of which is0.

0 +1-1 +2-2

0|1/21|1/2 0|5/8

1|3/80|3/8

1|5/8

1|3/100|3/10

......

(a)

A0|3/4 1|1/4 B 1|3/40|1/4

(b)

Fig. 3.8 (a) A subset of the transient process states for 2BC. The state induced by a word is determined solely by

the number of0s minus the number of1s in the word. All of the transient states are infinitely preceded.

(b) The recurrent states of 2BC. BothA andB are unreachable recurrent states. Each connected

component of the graph corresponds to a recurrent component of the underlying Markov Chain.
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3.6 When Does a Process have an HMM Presentation?

In this section we propose a characterization of when a process is an SFA —

that is, when a process has a (finite) HMM presentation — and we show that it is

a necessary condition. This characterization is a keystone of this dissertation. It leads

almost directly to the reconstruction algorithm of chapter 5. And it follows from the

following observation.

If we have a process with an HMM presentation
�
V;X ;

�
T k

	
; �
�
, then a mixed state

for that presentation is a distribution onV , or equivalently, a vector ofjV j components.

This means that all the mixed states lie in thejV j-dimensional vector spaceRjV j. This

in turn means that the dimension of the span of the mixed states is less than or equal

to jV j <1. As process states are essentially equivalent to mixed states, we can make

a similar statement about the process states.

First, we need to be able to work with process states as elements of a vector space.

Let W be the set of all signed measures on the future space. These include the process

states: ifA is a process state, thenA 2 W. For anyA;B 2 W and c; d 2 R, we

define cA + dB as follows. For all future wordsw, (cA+ dB)(w) is defined to be

cA(w) + dB(w), so thatW is a vector space. In addition, ifA;B are probability

measures andc; d � 0; c + d = 1, thencA + dB is a probability measure.

We now state the main result of this section.

Theorem 3.6.1Given a processP, letU be the subspace ofW spanned by the reachable

process states. If theP has an HMM presentation
�
V;X ;

�
T k

	
; �
�
, then dim(U) � jV j.

Before we can readily prove this result, we need to develop the connection between

W and RjV j.

Lemma 3.6.2 Suppose we haveA;B 2 W and �; � 2 R
jV j such that for all future

wordsw we have�Tw~1 = A(w) and�Tw~1 = B(w). Then for allc; d 2 R and for all

future wordsw, we have(c� + d�)Tw~1 = (cA+ dB)(w).

Proof. (c�+ d�)Tw~1 = c
�
�Tw~1

�
+d

�
�Tw~1

�
= cA(w)+dB(w) = (cA + dB)(w):�

For the next lemma, we need some additional notation. We will use0 to denote the

zero vector inRjV j (Note that0 is a row vector, in contrast to~1.) Also, we will use0 to
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denote the zero measure inW. Thus we have, for all future wordsw, 0Tw~1 = 0(w) = 0.

Lemma 3.6.3Suppose we have reachable process statesA1; . . . ;Al 2 W, and vectors

�1; . . . ; �l 2 R
jV j such that�i is a mixed state version ofAi for eachi 2 1; . . . ; l. If

there exist real numbersc1; . . . ; cl, not all zero, such that
lP

i=1

ci�
i = 0, then

lP

i=1

ciAi = 0.

Proof. For all future wordsw, we have 
kX

i=1

ciAi

!
(w) =

 
kX

i=1

ci�
i

!
Tw~1 (3.61)

by lemma 3.6.2. However, the right hand side of equation 3.61 is zero by assumption.

Thus the left hand side is also zero for allw, and we have

kX
i=1

ciAi = 0: � (3.62)

Proof of theorem 3.6.1Choose anyjV j + 1 reachable process statesA1; . . . ;AjV j+1,

and choose�1; . . . ; �jV j+1 2 R
jV j such that�i is a mixed state version ofAi for each

i 2 1; . . . ; k. The�i are a set ofjV j+ 1 vectors in ajV j-dimensional vector space, so

they must be dependent. That is, there must existc1; . . . ; cjV j+1 such that
jV j+1P
i=1

ci�i = 0.

Now, by lemma 3.6.3,
jV j+1P
i=1

ciAi = 0W , so theAis are linearly dependent. Thus, we

have shown that a set of linearly independent process states has size at mostjV j, so the

span of the process states is at mostjV j-dimensional.�

The following fact about SFAs follows immediately from theorem 3.6.1.

Corollary 3.6.4. Given a process, letU be the span of its process states. If it has a

(finite) HMM presentation, then dim(U) < 1.

Proof. For any finite HMM
�
V;X ;

�
T k
	
; �
�
, we havejV j <1. Thus, using theorem

3.6.1, we have dim(U) � jV j < 1.�

As an illustration of the use of corollary 3.6.4, we will now prove the following

statement, which was stated without proof at the end of section 3.3.

Proposition 3.6.5. The modified nested parentheses process does not have an HMM

presentation.
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Proof. Let wn =!(n� 1 be the lengthn word consisting of a! followed by n � 1

(s. Similarly, letsn = )
n � 1

! be the mirror image ofwn. After the wordwn, the

counter must ben � 1. Before the wordsm, the counter must bem � 1. Thus sm

cannot followwn if m 6= n:

P(smjwn) =

�
( 2
3
)
n

m = n

0 m 6= n:
(3.63)

Now let An be the process state induced bywn,

An(sm) =

�
( 2
3
)
n

m = n

0 m 6= n:
(3.64)

For every n and any for linear combination c1; . . . ; cn�1, we have

(c1A1 + . . . cn�1An�1)(sn) = 0, while An(sn) > 0. Thus,An is linearly independent

of A1; . . . ;An�1. In this way we see that we can construct arbitrarily large, linearly

independent sets of process states. Thus we have dim(spanfAiji > 0g) = 1, so this

process cannot have an HMM presentation.�

A related condition for functions of Markov chains was shown by Gilbert [20],

and variants appear in [10] and [21]. These conditions are stated in terms of a different

context of definitions and terminology, so that their exact relationship to corollary 3.6.4 is

difficult to ascertain. The author suspects that if one developed the appropriate machinery

to connect these contexts, one would find that the conditions are equivalent.

We have shown that dim(U) <1 is a necessary condition for a process to have an

HMM presentation. It is almost a sufficient condition. In order to make this precise,

however, we will need to develop a generalization of HMMs. This generalization is

the subject of the next chapter.


