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Abstract

Theory and Algorithms for Hidden Markov
Models and Generalized Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in pattern recognition applications,
most notably speech recognition. However, they have been studied primarily on
a practical level, with the HMM matrices as the fundamental objects and without
considering the viewpoint of an observer trying to accurately predict the future output.
This dissertation is a study of the processes represented by HMMs using the concepts
and techniques of stochastic automata derived from the study of dynamical systems and
their complexity. The goal is to understand these processes in the language of stochastic
automata. Along the way, certain ideas of stochastic automata are characterized in a
measure-theoretic manner.

We begin by defining a process to be a stationary measure space of bi-infinite
sequences. We define a process state to be a conditional distribution on the future of a
process which corresponds to the state of knowledge held by an observer who has seen
some or all of the process’s history. This definition is similar in spirit to ideas used in
dynamical systems, and it is a formalization of the notion of a "deterministic state" used
in automata theory. We describe the process states of HMM processes. And we give a
necessary condition for a process to have an HMM representation.

Following [7] and [8], we define Generalized Hidden Markov Models (GHMMS).
These are structurally and operationally the same as HMMs, except that parameters
which are interpreted as probabilities in defining HMMs are allowed to be negative in
GHMMs. We describe necessary and sufficient conditions for two GHMMs (and thus
two HMMSs) to represent the same process, and we give a method for finding the smallest
possible GHMM equivalent to a given one.

Going further, we give an algorithm for constructing a GHMM that represents a
process from the probabilities that process assigns to words. We prove that, for every
process, either the algorithm constructs a GHMM that represents the given process or
that no such representation exists. This characterizes the set of process representable
by GHMMs. Finally, we describe an implementation of this algorithm which constructs
GHMMs from sample sequences.



Contents

1 Introduction . . . . . . . . ... e 1
2 Processesand Process States . . . ... ... ... ... ... . .. 7
2.1 SeqUENCE SPACE . . . . . . 7
2.2 Processes . . ... . .. e 9
23 Pastand Future . . . . . . ... . 11
2.4 Historiesand States . . . ... ... ... .. ... ... 13
2.5 Process States . . . .. ... e 15
2.6 Transient and Recurrent States . . . . ... ... ... ... ....... 20
2.7 Synchronization . . . . . . .. ... 23
3 Hidden Markov Models . . . . .. ... ... .. . ... 25
3.1 Notation for Markov Chains . . . ... ... ... ... .......... 25
3.2 Hidden Markov Models . .. ... ... ... ... ... . . . ....... 27
33 HMMs as Processes . . . ... . ... .. . . . e 30
3.4 Mixed States . . . . . . . ... 35
35 Examples . . . ... 43
3.6 When Does a Process have an HMM Presentation? . . . . ... ... 49
4 Generalized Hidden Markov Models . . . . ... ... ............. 52
4.1 Generalized Hidden Markov Models . . . ... .............. 52
4.2 Redundancy and Linear Algebra . . . ... ................ 61
4.3 Equivalence and Minimization of GHMMs. . . . .. .. ... ... ... 72
5 Reconstruction . . .. . . . . . e 83
5.1 Constructing a Presentation fora Process . ... ............ 84
5.2 Reconstruction froma Sample . ... ... ... ... ... . ...... 94
6 Conclusions and Further Directions . . . ... ... ... .......... 104
6.1 Process states and presentations . . . .. ... ............. 104
6.2 Generalized Hidden Markov Models . .. ... ............. 106
6.3 Converting GHMMsto HMMs . . . . ... .. ... ........... 107
6.4 Reconstruction . . ... ... .. .. .. ... 110
6.5 Lastremarks. . . .. . . . ... . 110
Appendix A Notation . . . . . .. ... ... . .. 112
Appendix B Selected Probability Theory ... ... ... ........... 116
B.1 Kolmogorov's Extension Theorem and Process Existence . . . .. 116
B.2 Martingales . . .. ... ... ... 123
Bibliography . . . . . ... . .. e 126



Acknowledgments

| thank my coworkers James Crutchfield, Karl Young, Jim Hanson, Lisa Borland, and
Deirdre Des Jardins for the many discussions and suggestions that helped me develop
this work.

| thank James Akao, William Grosso, and the members of the games group for their
camaraderie and collegiality.

| thank Dorothy Brown for helping me focus on my writing.

| thank Professor Feldman and Professor Brillinger for their feedback on the various
drafts of my dissertation.

| thank Professor Hirsch for giving me the freedom to take off in my own directions
and work closely with Doctor Crutchfield. | would like to thank Doctor Crutchfield
for his insights, advice, and enthusiasm and for understanding what | was doing. | am
indebted to both of these advisors for the support, financial and otherwise, they have
given me over the years.

Finally, I thank my wife, Nancy Jamieson, for her everyday presence, her emotional
support, and her help in many practical ways, which together enabled me to complete
this dissertation.

This work was supported at UC Berkeley by grants ONR N00014-95-1-0524 and
AFOSR 91-0293 and at the Santa Fe Institute by grant ONR N00014-95-1-0975.



1 Introduction

This dissertation is about a class of stochastic processes that are usually presented
as having a finite set of states, but which, in another sense, may have an infinite number
of states. These processes are known variousliflidden Markov Model{HMMS),
functions of a Markov Chain, or stochastic finite automata, all of which are essentially
equivalent. HMMs are used most widely and will be used here.

A process in the HMM class can be described as a finite-state Markov Chain with
a memoryless output process which produces symbols in a finite alphabet. This is the
sense in which these processes have finitely many states. However, from the perspective
of an observer who knows the parameters of some representation of the process and is
able to observe the output symbols but not the internal states, things look different. For
some processes there are infinitely many distinct states of such an observer’'s knowledge
about the status of the process. This knowledge is defined in terms of conditional
distributions on future symbols. This is the sense in which there can be infinitely many
states. These states are more relevant than the original finite set of states to the study
of the process, since they allow for optimal prediction.

Functions of Markov Chains were the first descriptions of these processes to be
studied, and they were initially studied as mathematical information sources [1]. There
were a handful of papers such as [2] published in the 1950s and early 1960s, which
define HMMs and lay out these theoretical questions. What is the entropy rate for a
function of a Markov Chain? Do these two functions of Markov Chains define the
same process (the identifiability question)? What is the smallest function of a Markov
Chain equivalent to the given one (the minimality question)? This work was done
by researchers with mathematical backgrounds, studying HMMs from a perspective of
probability and information theory.

From the 1970s onward, HMMs have been used for modeling observed patterns,
especially in speech recognition. There are a large number of papers, such as [3-5], that
present HMMs as tools for use on these practical problems. These papers are written
by researchers interested in pattern recognition, often from a viewpoint in engineering
or computer science, and they usually focus on algorithms and on results in practical
situations.
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A new insight in 1987 led to a generalization of HMMs and to resolution of the
identifiability and minimality questions about Hidden Markov Models [6]. These results
appear in a very few papers that treat HMM matrices as objects of linear algebra
without regard to the signs of the transition matrix entries — which have traditionally
been interpreted as probabilities. These papers include [7] and [8], which solve the
identifiability and minimality questions for HMMs by solving them for a generalization
of HMMs known asGeneralized Hidden Markov Mode{&HMMS).

In addition to this development of HMMs per se, there is a substantial literature
in computer science dealing with finite state machines. An emerging branch of this
literature deals with stochastic finite automata, and falls under the heading of complex
systems. This body of work, composed of papers such as [9], focuses on intrinsic
processes rather than representations, and looks at stochastic automata as the simplest
systems in which to study how natural systems process information. Because the
definition of a stochastic finite automaton is quite similar to the definition of a Hidden
Markov Model, this work provides an alternative way of looking at HMMs.

This dissertation developed from looking at HMMs from the viewpoint of the work
on stochastic finite automata. This approach led to the material of chapters 2 and 3.
The work in chapters 4 and 5 followed from this and used the generalization of HMMs
mentioned above. The next paragraphs contain brief overviews of these chapters and
are intended to give the reader an idea of what is to come.

The primary objects of chapter 2 apeocessesnd process statesA process is a
stationary probability measure on the space of bi-infinite sequences of symbols, where a
symbolis an element of a finite set called the alphabétidices into these sequences are
thought of as times, as if the process were a laboratory apparatus that emits a symbol
with every tick of a clock. Thus, negative indices refer to symbols that were emitted in
the past and that may be known, and nonnegative indices refer to symbols that have not
yet been emitted and may not have been internally determined yet. We define a word
to be a finite string of symbols in the alphabet. A process assigns a probability to each
word and is uniquely determined by these probabilities.

*In the stochastic process literature, the term “state” is usually used where we use “symbol”. In papers such as [2,10], this leads
to the somewhat confusing use of “state” to refer to both symbols and presentation states. In this dissertation, the term “state” is
used exclusively to refer to objects which render the future conditionally independent of the past.
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A process state is a conditional distribution over the future — a measure space
of semi-infinite sequences of symbols — induced by conditioning on known historical
information, such as what particular symbols were emitted at the last few ticks of the
clock. The process states are the possible states of knowledge of an observer who wishes
to predict the future symbols with high accuracy. This observer knows the design of
our hypothetical apparatus, but not the current status of its internal components.

The definition of a process state is new in this dissertation, but the underlying idea
is not. It is used, for example, in [11]. What the author has done here is to formalize
this fundamental idea. The definition of a process is, of course, standard.

In chapter 3, we will introduce Hidden Markov Models (HMMs). An HMM consists
of a recurrent finite-state Markov Chain, an alphabet of output symbols, and a distribution
over that alphabet for each transition in the Markov Chain. The states and transitions
of the Markov Chain are hidden from observation so that only the output symbols are
visible. We represent an HMM primarily by a set of matrie[:—ka}, one matrix7*
for each symbok in the alphabet — note that the superscripis an index, not an
exponent. Each entrfﬁi’} is the probability, if the Markov Chain is in stateof emitting
symbol &£ and going to statg. An HMM defines a process in a natural way, and so
HMMs provide a convenient way to represent some processes. The states of an HMM'’s
underlying Markov Chain are quite different from process states. We will refer to the
Markov Chain’s states agresentation states

We compute the process states for a process represented by an HMM in terms of
the presentation. We show that they are represented by probability distributions over
the presentation states or, equivalently, by mixtures of presentation states. We call them
mixed statesand we identify the real role of presentation states. The presentation states
are the things we combine to make mixed states. Essentially, presentation states are
basis vectors for a vector space containing the mixed states, and mixed states represent
the states of knowledge of an observer. In this interpretation, the mafffcetefine
linear transformations among these vectors.

Finally, we consider the question of when a process can be represented by an
HMM. We prove that the following condition is necessary: if a process has an HMM
presentation, then the span of the process states — a subspace of the space of conditional

TThe termmixed statess used in the context of HMMs, with an entirely unrelated meaning in [12].
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distributions on the future — is finite-dimensional. This result is a natural consequence of
the fact that the process states of such a process can be represented by linear combinations
of presentation states.

The definition of an HMM given in chapter 3 is one of several equivalent definitions.
Mixed states first appeared in [1], although not with that name. Most of the remaining
material in the chapter has not previously appeared in print, but has undoubtedly been
deduced a number of times before. Stating these results in terms of process states is the
author’s work, as is the question, “What are the process states for a process represented
by an HMM?” and the resulting interpretation of presentation states as basis vectors,
both of which are crucial to this dissertation. The final section of this chapter is entirely
the author's own.

Chapter 4 introduces a new class of presentations, Generalized Hidden Markov
Models. We represent a GHMM like an HMM, by a matrix for each symbol, but in
a GHMM we do not interpret the entries in these matrices as probabilities. Indeed,
we allow them to be negative or greater than one. We do constrain these entries, and
we constrain them in such a way that the calculations we use with HMMs produce
meaningful results for GHMMs. In this way, a GHMM assigns probabilities to words
and so it defines a process.

We justify this change as follows. For a process represented by an HMM, we
calculate the probabilities of words by simple linear algebra and we represent process
states as vectors in a space generated by the presentation states. But because we restrict
the entries in the matricés® to be positive, we restrict the class of linear transformations
they can represent and we restrict the set of possible mixed states to a small subset of
the vector space. If we remove this constraint, we can make use of all sensible linear
transformations and we can use any portion of the vector space. This is what we allow
when we use GHMMs.

Two long-standing problems for HMMs can be readily solved in terms of GHMMs,
namely the equivalence question — Do these two HMMs (or GHMMS) represent the
same process? — and the minimization question — How small is the smallest HMM
which is equivalent to a given HMM? These questions were resolved in [7]. The present
work presents a new and relatively clean resolution of these questions that is similar in
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spirit to the work just cited. But it is different in details and includes an important new
construction, the standard presentation.

Chapter 5 contains two significant results. The first is a proof that every process such
that the span of its process states is finite-dimensional can be represented as a GHMM.
We show this by constructing such a representation. This completes a characterization
of the processes representable by GHMMs, the first half of which appears for HMMs
in chapter 3 and is generalized to GHMMs in chapter 4. The complete characterization
is this: a process has a GHMM presentation if and only if the span of its process states
is finite-dimensional.

It is noteworthy that we can actually construct a GHMM presentation for any process
which has one. This construction leads to the second result of chapter 5. a technique
for constructing a GHMM from a sample of the output from a process. This technique,
which we call thereconstruction algorithmis completely unlike the forward-backward
algorithm, the most widely used technique for constructing HMMs from sample output.
It needs further development, but it has much more solid theoretical footing than the
forward-backward algorithm. Indeed, it may eventually replace the forward-backward
algorithm. The work in this chapter is entirely that of the author.

In the chapter overviews, we introduced a number of concepts that may be unfamiliar
to the reader. We conclude the introduction with an example, to make some of them
clearer and more concrete to the reader. Let us consider the Hidden Markov Model,
depicted in figure 1.1.

1]1/2

W(O==0
0|1

Fig. 1.1 First example HMM.

The circlesA andB represent presentation states, the states of the underlying Markov
Chain. The arrows connecting them represent the transitions of the HMM and the labels
indicate the symbol that will be emitted if that transition is taken and the probability
of that transition. For example, the lab#[1/2 at the top indicates that the symbbl
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is emitted when this transition is made and that this transition is takeh/»rof the
occasions when a transition is made from staté\Ne represent this same HMM with

0 0 1o
T0:<1 0>andT1:<(2) ) (1.1)

This is not the full description of an HMM that we will give in chapter 3. In particular,

the transition matrices

(el

we have not defined an initial state distribution for this HMM.

It should be clear to the reader that each presentation state in our example defines
a distribution on the future symbol sequences. We call this the conditional distribution
on the future given that presentation state.

Now, suppose that we know the transition matrices and can see the output of
this machine, but do not know what presentation state the HMM is in. That is, the
presentation states are hidden from us, whence the kidden Markov Models. If
the most recent symbol we have seen &, ahen we can deduce that the HMM is in
presentation stat. But if the most recent symbol we have seen is we cannot deduce
which presentation state the HMM is in. We can, however, infer a distribution over the
presentation states. The HMM is in either stAter stateB with probability 1/2 each.

And we can deduce a conditional distribution on the future given that the most recent
symbol was d. If we do this we will find that it is equal té/2 of the sum of the two
conditional distributions on the future given presentation statesd B, respectively.

In the terminology of this dissertation, we have now seen two process states. The
first is the conditional distribution on the future given that the most recent symbol was
a 0. This happens to be identical to the conditional distribution on the future given
presentation statd. The second is the conditional distribution on the future given that
the most recent symbol waslawhich does not correspond to either presentation state.
We can represent the first of these process states by the mixedi3tate 1, Pg = 0), a
distribution over the presentation states which puts all probability on Atatekewise,
we represent the second of our process states by the mixed Biate 1/2, Pg = 1/2),

a distribution which makes each presentation state equally likely.

We begin in chapter 2 with a full definition of processes and process states.



2 Processes and Process States

In this chapter and the next one, we defimecessesthe central objects of this
work. We will work with them in two ways, from two different viewpoints. First
we will define processes in the abstract, as probability measures on a sequence space.
Second, more concretely, we will defittdden Markov Models— partially observed
finite state Markov chains — which we will use to represent processes. In this chapter
we will introduce the first of these viewpoints, and in chapter 3 we will introduce the
second and then bring the two together.

This chapter builds on, and uses the concepts and terminology of, probability theory.
Appendix B contains a few necessary definitions and theorems with which the reader
may be unfamiliar. A presentation of the basics, if needed, may be found in a number
of standard texts, e.g. [13,14].

The reader may find it helpful to keep in mind the following metaphor. A process
may be thought of as a black box on a laboratory bench with a row of lights on it. These
lights are our symbols, and the row of them is our alphabet. There is a flash from one
or another of these lights every second, which we describe as the emission of a symbol.
This box has been running forever, and will continue running forever. We may know
the design of the box, and we may have observed a number of recent symbol emissions,
but we cannot observe the current configuration of the box’s internal parts.

2.1 Sequence Space

In this section, we define and introduce notation for the sets upon which we will
build our probability spaces.

Begin with a finite seft’ of symbolswhich we will call analphabet Our canonical
choice will be X = {0,1,..., m — 1} for some natural number. Let XZ be the
space of bi-infinite sequences of elementstaf That is, ifx € XZ, thenx is a bi-
infinite sequence. .z _3r_sx_1xgri7973 . .., SO that for any integer, there is a symbol
x¢ € X. We will think of the indices as denoting measurement times, with negative
indices referring to the past and nonnegative indices indicating the future. Often, we
will assume that the symbols with negative indices are known and the symbols with
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nonnegative indices are unknown. We will want to think of each measurement time as
being either in the past or in the future, so that we will only need to consider our state
of knowledge after one event an before another, and we will not need to consider our
state of knowledge “as a symbol is becoming known”. Thus we will be thinking of time

t = 0 as being in the future. The reader may wish to think of the “present” as a small

negative number, perhaps%. Because time = 0 is the smallest future time at which

a symbol is observed, we will refer tey as thenext symbol

In these terms, avord w of lengthl is ani-tuple of elements oft’, w € X!. We
will denote the empty word, of length zero, By and the length of the word by |w]|.
For, example, if0,1 € X', |01101| = 5. A subsequence is a structures = (w, (a, b)),
wherew is a word and«, b) is a pair of times such that has lengthb — a« + 1. The
subsequence is said to be annstanceof the wordw from which it is formed, ando
is said to be théase wordof the subsequence= (w, (¢,b)). s may also be denoted
SaSa+1---5p. a andb are called thestart timeand end time respectively, ofs. The
length of a subsequence is the length of its base word. An instancetloén, is written
(A, (a,a —1)). A sequence is said to contain, omatch a subsequence= (w, («a, b))
if, for all ¢t € {a,...,b}, sy = ;. We will most often refer to theext word which is
any subsequence= (w, (a, b)) with start timea = 0, or thehistory suffix which is any
subsequence with end time negative dne —1.

When writing a subsequence which containg or x¢, we will sometimes use the
decimal point to denote this and to imply the start and end times. For exaniple,
is denotes history suffix1011, (—4,—1)) and.0110 is denotes next wor{h110, (0, 3)).
We will not always be precise about distinguishing words from subsequences, nor about
usingw for words ands for subsequences. 1§ and > are words, them > denotes their
concatenation. The set of all words will be denoted Y, this set contains.

The setA; of sequences which match a subsequence
{xe?{zmzsifor alli e {a,...b}} (2.1)

is called thecylinder setdefined bys. If s is an instance ok, The cylinder set defined
by any instance of\ is A'Z.



2.2 Processes

Processes are the central objects of this work. The definition of a process is this:
a process is a stationary probability measure on a space of sequences. In this section
we will develop this definition.

A probability measure is a function which assigns probabilities to sets — in this
case, sets of sequences. To what subset¥%fill our process assign probabilities?
That is, what is the domain of this function? We need to define this set of subsets of
X2, which is called ar-field. Our choiceX is defined to be the-field generated by
the cylinder sets. That i is the smallest collection of subsets.&f such that:

1. for every subsequence A; € X, and
2. X is closed under complements and countable unions.

The pair(XZ, X) is the measurable space in which we will be working.

Essentially, a probability measure MZ,X) is something which assigns proba-
bilities to the cylinder sets defined by subsequences. i#f a sequence and; is the
cylinder set of sequences which matghwe defineP(s) — the probability ofs —
to be the probability of the cylinder s@(A;). BecauseP is a probability measure,
P(xZ) = 1. Recall thattZ = A4, so we haveP()\) = 1.

As we stated above, we will require our processes to be stationargtatfonary
process is one in which the probability of a subsequence does not depend on its start time.
Stationarity will allow us to disregard the time index when we do not need it explicitly.

In particular, it allows us to define the probability of a word to be the probability of any
instance of it, as we will see shortly. Virtually all the probability measures on sequence
space addressed in this work are stationary, and the exceptions will be identified as such.

The shift map7 on a sequence space? is a map?T : X2 — xZ such that for
all x € X2, for all t, (T(x)), = x¢+1. The shift map “shifts” a sequence over by one;
it moves the time origin.

Definition 2.1.1. A processP is stationaryif for all setsA € X, P(T'(A)) = P(A).

Note that we do not need to require shift invariance in both directions, as it is
automatic. Sincd’ is invertible in a space of bi-infinite sequences, fet= T~1(A),
and apply the definition of stationarity 8, and we haveP (7~'(A)) = P(A).
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Definition 2.1.2. A processP is a stationary probability spadetZ, X, P). That is, P
is a stationary probability measule on the measurable spaﬁéﬁz, X).

The author has chosen to work exclusively with stationary processes for convenience
and for reasons which have their roots in the historical development of this work.
However, virtually all of the results in this dissertation are valid with a definition which
does not require processes to be stationary and instead expects a process to have a start
and stop at finite times. Some of the statements made here, and many of the proofs,
require modifications in order to apply under such a definition.

Let w be a word and let be an instance ab. If P is stationary, all instances af
have the same probability. Thus, we can define the probability tf beP (w) = P(s),
so we can think of a proced® as a function which assigns probabilities to words. We
will use W; to denote the set of all words of lengthwith positive measure. This leads
us to two facts, which are trivial consequences of the properties of probability measures.
The first of these is that, because the cylinder set inducedibylefined to be all oftZ,

P(\) = 1. (2.2)
The second is that, for any word and any length > 0,

> P(wz)= > P(zw)=P(w). (2.3)

zeW,; zeW,
As it happens, the converse of this pair of facts is true — any functiod’dbnwhich
satisfies equations 2.2 and 2.3 defines a process. This will be our primary tool for
showing that a particular object is a stationary process.

In the statement of the theorem B.1.1, we have separAtéom P for clarity.
When we use this theorem , we will not usually mentiprexplicitly. Instead, we
will use P in the role whichf serves here, verify equations 2.2 and 2.3, and invoke
the theorem to assert th® describes a unique process. This renders the distinction
betweenf and P moot.

Theorem B.1.1. Given a mapf : X* — [0, 1] satisfying

1. f(A\) =1, and

2. For all wordsw € X*, f(w) = Y f(zw) = > f(wz),
zeX ZEX
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there is a unique procedd = (X2, X, P) such that for alko € X*, P(w) = f(w).

This theorem follows directly from Kolmogorov's extension theorem. Proving it is
conceptually simple but requires some rather serpentine logistics. Instead of appearing
here as a interruption of the conceptual development, the proof appears in appendix B.1.

A few examples are in order before we go on. We will call the first of these the
fair coin. This process should be thought of as a bi-infinite sequence of coin flips
being revealed (or flipped) as time passes. H&re= {headstails}, and z; is the
result of the coin flip at time. Recall that we think of negative times as the past, and
nonnegative times as the future, so that we have seen all the resdtis¢ < 0 and
we have not yet seen any for ¢+ > 0. For any wordw of lengthl, P(w) = 27,

The symbols are independent and identically distributed (iid) so the process must be
stationary. Every sequence.¥¥ is a realization (defined in section 2.3) of the fair coin
process. Although we don’t need theorem B.1.1 to prove that this process exists, we will
verify that equations 2.2 and 2.3 are satisfied. For 2(2) = 2° = 1. For 2.3, ifw has
length! andz € X, thenf(wz) = f(zw) = 2=+ so we have-2-(+1) = 2l = f(w).

The second of our examples is a strictly periodic process, in which a fixed word
is repeated over and over. In this example, we choose the wWoxih), and a typical
realization looks like

...00010000100001000010000100 . .. (2.4)

If the phase (i.e. the index associated tb, aaken moduld) is uniformly distributed,

P is stationary, and we have a process. It is not difficult to see that every word is
assigned a probability of eithér or % with the exception of\, 0, 00, and000, which

have probabilitied, % % and%, respectively. This is clearly a process — the measure
can be described explicitly. It assigns measglreach to five bi-infinite sequence and

0 to all the others.

2.3 Past and Future

At times, we will need to treat the past and the future separately. In this section
we will introduce a decomposition of a processes underlying probability s(p’é@eX)
which will facilitate this.
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Let X'T, the future space be the usual set of semi-infinite sequences of elements
of X,

X""z{X+:x0,x1,...|f0ralli20,x,'EX} (2.5)

and X’ ~, the history spacebe the set of semi-infinite sequences of element’’ afith
negative indices:

XT={x"=...,2g,z_lforalli <0, »; € X} (2.6)

We will think of a bi-infinite sequence € X2 as an ordered pair of semi-infinite
sequence¢x—,xT), wherex~ ¢ X~ andxt ¢ X*. Thus, we can writetZ as a
product of setsyZ = X~ x X*. We will refer to an element™ of X'~ as ahistory,
and an element™ of X' as afuture Thus a history suffix, which we defined in section
2.1 to be a subsequence with end timeg, is in fact a suffix of a history.

Next, we will define thehistoryos-fieldH and thefutureo-field F, both of which are
o-fields on¥'Z and are subfields of X. H andF are generated by the cylinder sets
in X~ and. X't respectively. That isH is defined to be the-field on X2 generated by
all cylinder sets defined by subsequences with negative end time$; @&ndefined to
be thes-field on X2 generated by all cylinder sets with nonnegative start times. Thus
if s =(w,(a,b)) is a subsequence with end time< —1, then A, — the set of all bi-
infinite sequences ¢ Y2 which matchs — is an event irH. We will refer to elements
of H ashistory eventsIntuitively, a history event is a set for which membership depends
only on the history part of a sequence. A similar statement is trué fand we will
refer to elements ofF as future events

In addition, we will need to define a series of finite histop-fields
{H;|1 € {0,1,...}}, whereH; is the o-field on XZ generated by all lengtfi his-
tory suffixes. Ko is the trivial o-field on XZ.) An event inH;, then, is the set of
bi-infinite sequences which satisfy some in positions_;,...,x_;. As the reader
may readily verify, the finite history-fields form an increasing sequence. That is,
for all / > 0, H; C H;y;. In addition, the union of the finite history-fields is the
(infinite) history o-field:

GHJ = H. (2.7)
=0
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A realization from a processP is a bi-infinite sequence iftZ which, loosely
speaking, is within the support of the process’ meadireFormally, the support of
a measure depends on the topology of the measure space, and we have not defined
one. Instead of doing so now, we will define a realization directly. Take a sequence
x € X, and consider the set of all subsequences wkicbntains. If, for each of these
subsequences, the set of sequences which contains it has positive measuxeisthen
realization of P. In the same vein, aull word is a word with probability zero; and a

history x~ is a null history if it has a suffix that is a null word.

2.4 Histories and States

In the last section, we established our notation and technical framework. The
material in this section has these components, but it also has a conceptual component.
We will defer most of the technical details until the next section. The material in this
section draws on the concepts and terminology of Markov chains. Readers unfamiliar
with Markov chains may wish to peruse section 3.1 at this time.

Consider the following situation from a time series perspective. Suppose we are
watching a sequence of symbols appear as the output of an apparatus. Suppose further
that this apparatus is known to be described by the profess (X2, X,P). Given
P and some natural additional information — namely, the most recent few symbols —
what can we predict about the future? In particular, how can we simulate future output
from this apparatus?

We may assume, due to stationarity, that the next symbol will appear at tinte
Then the symbols we know form a subsequencwith stop timeb = —1 — that is,

w is a history suffix. We will make the reasonable assumption Eat) > 0. Thenw
induces a conditional distribution ory, P(zy = k|w).

Suppose we choose a symhglaccording to this conditional distribution, and build
a new history suffix- from it andw shifted by one:z_; = xg, and z—1 = wy¢ if ¢ is
betweenwy’s start and end times. We now find ourselves in the same situation we started
in, only one time step further along and with a new history suffix. We can repeat this
process as many times as we like and thus (theoretically, at least) generate synthetic data.

In effect, we are using the history suffixes as states of an infinite Markov chain. If
we output each new symbol as we choose it, we can accurately simulate the original
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apparatus. Essentially, we’ve built what's called a Hidden Markov Model representation
of our process. (A Hidden Markov Model is a partially observed Markov chain — see
chapter 3.) However, because there are infinitely many history suffixes, it has infinitely
many states, and none of these states are recurrent. That is, once a state has been
seen it can never be revisited. This recasting of the process is not useful in the sense
that it doesn'’t tell us anything new beyond knowify and we have to use all the
history we know in each simulation step. Is there a more concise or informative way
of simulating P?

Let’s back up, and look at what we can say about distributions on the future space.
Our known history suffixw induces a conditional distributioR(-|w) = P(-|Ay) On
the future space X', F).

P(-|w) is an example of @aonditional future distributiona distribution on the future
which arises when we condition on a history event. Conditional future distributions
are of substantial importance. The conditional future distribution reflectsstate of
knowledgeabout possible future observations frofh It includes all the information
we have about the future — if we know the conditional future distribution induced by
a history suffix, we may as well forget the history suffix itself. This, loosely speaking,
is the sense in whiclP(-|w) is a state.

In the next section, we will consider conditional future distributions which arise
when we condition on either a history or a history suffixx™. Here, however,
we will restrict ourselves to distributions which arise when we condition on history
suffixes. If two history suffixes; andz, lead to the same conditional future distribution,
P(-|z) = P(-|y), then we will say that they are equivalent, denajed =. They provide
the same information about the future. We definedhaivalence clasé’. of a history
suffix z to be the set of all history suffixessuch thaty ~ z: €, = {y € X*|y ~ 2}

These equivalence classes should be thought of as condensed versions of the past,
in the sense that if we remember only which equivalence algsa history suffixz
belongs to and we forget itself, then we have lost no information about the future.
More formally, suppose we define a random variableshich maps a history suffix to
its equivalence classy(z) = C,. For all future wordss, the definition ofC', tells us
that the conditional probabilit(s|z) is equal to the conditional probability(s|C.).
Then the history suffix and the future are conditionally independent gien



15

We can now use these equivalence classes to address the problem of simulating
future output. Start with equivalence clasg which contains our known history suffix
w. (' induces a distribution omy. As before, we choose a symbok X' according to
this distribution. Next, we choose any history sufjixn ', — we need not choose
— and append;, and shift it over by one to get= yk&, which is again a history suffix.
Fromz, we get back to an equivalence cldss= S(z). Note that any choice of € C,
yields the samé’,, because equality of distributions over the entire future space implies
equality of distributions over the subspace of sequences which start with a:gjven

As before, we have built a Hidden Markov Model presentation of our process. This
time, however, we may have gained by doing so. It is possible for the states — that
is, equivalence classes — to be recurrent. For example, in the fair coin process, all
history suffixes are equivalent, so there is exactly one equivalence class, and it is visited
after every time step. We may have infinitely many states, or we may have only finitely
many, depending on the structure of the set of equivalence classes. Essentially, if we
remember only the current equivalence class, we are keeping only the information from
the past that is relevant to predicting the future. This recasting, as we will see, is
fundamental. These conditional distributions on the future are the basis of the primary
notion of “state” that we will be using. However, because there is more than one kind
of object we will want to call a state, we will refer to the equivalence classes — or
rather, the conditional future distributions they induce —pascess states

We can extend this idea to include conditional future distributions induced by
conditioning on an entire history. Whett is a history and’(-|x_) is the conditional
future distribution it induces, we can compaté-|x~) to a conditional future distribution
P(-|z) induced by a history suffix. Considering conditional future distributions induced
by histories introduces some complications, with which we will deal in the next section.

2.5 Process States

In this section, we will go through the preceding development again, rigorously.
Those readers for whom the preceding discussion constitutes an adequate definition are
advised to skim the this section rather than reading it closely.

First, we will develop a rigorous definition @ (-|w), wherew is a history suffix.
We are only interested in conditioning on non-null history suffixes.diet +_;...xz_
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and letR; be the set of all non-null lengthhistory suffixes,R; = {s;|P(s;) > 0}. Then
R= G R; is the set of all non-null history suffixes. Let be any history suffix not in
R, argl?joleth € H be the history event containing all histories which matchFor any
future eventd € F, we define the conditional probabiliy( A|w) by Bayes rule. That is,

P(Alw) = 7})(;1(;510)7 (2.8)
which we will write as
P(Alw) = Pf()i’;)”). (2.9)

Next, we will develop a definition for a conditional future distribution given a
history, P(-[x~). We will define P(:|x~) in terms of the conditional distributions
P(-|w;), wherew; is taken to be the lengthsuffix of the historyx~. For every word
s, we will define

P(s]x™) = llggo P(s]wy). (2.10)

Note that if we let

1 xe€ A

0 otherwise (2.11)

La(x) = {

P(Alw;) is the conditional expectatidBi(14]|H;)(x) for any sequence which matches

w. Thus the limit in equation 2.10 may be Writt?lilrcr)lo E(14[H;), which converges
almost surely toE(14|H)(x) by theorem B.2.3, which is a martingale convergence
theorem. Thus we have

llggo P(-|Jw;) = P(:|x7) (2.12)

for almost everyx~. This is our definition ofP (-|x™).

Our next step is to define the set of histories on which we will condition when
defining process states. We have just shown that this definition gives a well-defined
conditional future distribution for almost all histories, and we will condition only on
those histories.

Let us examine hovP(-|x—) can fail to be well-defined for a given histosy™.

For each of the countably many wordsthere may be a set of histories; — a set
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of measure zero — on Whicllti,r?o P(s|w;) does not converge. For examplexif has
a suffix w; with probability zero, then for all > [, P(wn,) = 0, and P(s|x™) is
ill-defined for all s. The unionA of the N is itself a null set. On its complement
XZ\ W, which is thus a set of full measurB,(-|x~) exists. We will call\” the set of
bad histories and we will say that a history igoodif it lies in X2\ .

Now we are ready to define process states.

Definition 2.5.1. A process statas a conditional future distribution which arises in
conditioning on a non-null history suffix or a good history. That is, a process state is
either a conditional future distributid®(-|w) for somew € R or it is a conitional future
distribution P (-|x~) for somex™ € X~ \ N. Thus thesetS of all process statefor

a given process is

S ={P(-|w)|lw € R}U{P(|x7)|x~ € X"\ N}, (2.13)

In section 2.4, we developed the idea of process states in terms of equivalence
classes of history suffixes. We have now developed a formal definition of process states,
and we have defined a process state to be a conditional future distribution and not an
equivalence class of history suffixes. This does not require changing how we think about
process states, because there is a natural correspondence between equivalence classes as
we described them in section 2.4 and conditional future distributions induced by non-null
history suffixes. Recall that two history suffixes are said to be equivalent if they induce
the same conditional future distribution. Thus every equivalence class has an associated
conditional future distribution. At the same time, every process state is induced by
at least one non-null history suffix or at least one good history. All history suffixes
which induce a given process state are automatically equivalent to each other, as are all
histories which induce a given process state. So every process state has an associated
equivalence class of history suffixes, an equivalence class of histories, or both.

In addition, some of our terminology will refer to process states as if they were
equivalence classes of history suffixes. In particular, we will say that a history or
history suffix is amemberor an elementof the process state which ihduces In
addition, we define the ma@ : XY~ — S which takes a non-null history to the process
state it induces, a&/(x~) = P(:|x")
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Definition 2.5.2. The inducing set of historiesf a process statd is the set(: 1(A)
of all histories which induceA.

G~1(A) may be empty; this occurs i is induced only by history suffixes.

We will want to define a probability t6:~'(A). As it happens, we do not know
thatG—1(A) x XT — which lies inAZ — is measurable. This next result tells us that,
if it does not lie in thes-field H, G~1(A) x X1 differs from a measurable set by a
subset of a set of measure zero. Essentially, this means the we can reasonably assign a
measure to it. From here on, we will do so without comment.

Proposition 2.5.3. For any process statd, GG"'(A) x Xt can be written as the
intersection of a measurable set and a set of full measure.

Proof. In this proof, we will be referring to truncations of both the history and the
future. We will use/ for history length and: for future length. Also, the reader is
reminded that the process stateis a probability distribution on the future space, and
so it makes sense to refer #o(w), the probabilityA assigns to a wora.

For every natural numbéerand wordw, and for every histork—, define
f(x7) =E(1a,[H)(x") =P(wlo_...2_1) (2.14)
and
fv <X_> = E(lAw“H])(X_) = P<w|x_). (2.15)
By B.2.4, we know tha?f?o 1Y = f* almost surely.f;” is a measurable function, and
so its limit f* must be measurable.

If we have two process statd and C, we will say that they aré-equivalentif, for
all wordsw of length less than or equal g B(w) = C(w). Let A be a process state
and letA;(A) be the set of all histories~ which induce process staté§x~) that are
k-equivalent toA. In other language, that is,

Ar(A) = {x7| for all w with |w] < k, P(w|x") = A(w)}. (2.16)

That is,
A A= (] {XTIP(wx™) = A(w)}

w: |w|=k

= (] ()7 (Aw),

w: |w|=k

(2.17)
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{A(w)} is a measurable set anfl” is a measurable function, so the inverse image
(f*)"'(A) must be measurable. Thus,(A) is a finite intersection of measurable set
and must be measurable. Further, if we take

AA) = (] Ar(A), (2.18)
k=1

A(A) is a countable intersection of measurable sets, and so it is measurable.

Now, every history inA(A) N (XZ \ ) induces the process stafe, and no history
which is not inA(A) inducesA. ThusA(A) N (XYZ\A) = G7L(A). Note that the
X2 < N has full measure, so we are donill

The processes addressed in this section and the previous one output bi-infinite
sequences, but the idea of a process state is no less relevant to processes with finite or
semi-infinite output. The essential idea is that a state is a prediction of, or distribution
on, the future reached by some knowledge of the past.

Before going on to the next section, let us look an example. This process has
elements of both of the examples from the previous section. The alphabieti$0,1}.
We first define a nonstationary probability meas@yeon (XZ,X), which generates
sequencey = (...y_1yoy1...) € X7 such that

1. if ¢+ is even,y; = 1, and

2. if ¢t is odd, theny; is either0 or 1 with probability . each.

Now, we define the procesB = (XYZ,X,P) by P = 1(Q + T(Q)), whereT is the

shift map. In words, our process consists of alternatisg@nd coin flips, and the coin
flips are equally likely in either even or odd positions. We will not prove that this is a
process, nor will we do so for the examples in the next section. (In chapter 3, we will
develop a systematic approach to calculating probabilities of words, which will make
it practical to present such proofs). The proc@sss called theband-merging process

for historical reasons[15].
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0|1/3 0|1/2

Fig. 2.1 Process state graph representation of the band-merging proceBsC, D, andE are
the process stated\ is the start state (induced by). The labels on the edges consist
of a symbol followed by a vertical bar and a transition probability. Herel — @

Figure 2.1 is a process state graph representation of the band-merging process. The
small circles A, B, C, D, andE) represent process states. The double circle for state
A indicates that it is the process state induced\pwhich is called thestart state The
process is said to b a state if the known history or history suffix induces that state.
The edges represent possible transitions between states and the labels are of the form
symboltransition probability For instance, the edge from stateto stateB, labeled
with “1|3/4” indicates that if the process is in state, then with probability% it will
emit a1, after which it will be in stateB.

The band-merging process has five process states. Staterduced by any history
suffix consisting of an even number b, and statd3 is induced by any history suffix
consisting of an odd number ®§. States" andD correspond to any history or history
suffix ending with & followed by an even or odd number o$, respectively, and state
E is induced only by the history consisting entirely . StateE is an interesting
example of a state which we could ignore because it is irrelevant to the study of the
process — it induced only by a single history which has mass zero — but which is well
defined. Such states are said toddasive We will discuss elusive states more in the
next section, after which we will usually ignore them.

2.6 Transient and Recurrent States

In section 2.5, we defined a process state to be a distribution on the future which
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is induced by a finite length history suffix or a semi-infinite history. This means that
there may be some process states which are induced by history suffixes and not by any
histories, some states which are induced by histories and not by history suffixes, and
some states that are induced by histories and history suffixes. In this section we classify
process states by the history objects which induce them.

First, we will define terms for the above distinctions.

Definition 2.6.1. A process state igfinitely precededf it is induced by at least one

good history.

Definition 2.6.2. A process state iseachableif it is induced by at least one history

suffix w with P(w) > 0.

In addition, we need to define one more property. For a process Atate S,
considerG~1(A), the set of histories which induck. We know that we can assign this
set a measure, for which we will now use the shorth®d) = P(G~'(A)), where
P~ is the measure on the history space. That is, if we have seen a histB(A) is
the probability thats induces process statk.

Definition 2.6.3. A process state isecurrentif P(A) > 0.

The termpositive recurrenis often used for this concept [13]. We have chosen to
userecurrentfor brevity and because null recurrence does not happen in the systems
of interest here.

Now, for any process state, we may ask three questions. Is it reachable? Is it
infinitely preceded? And, is it recurrent? There are eight triples of answers, of which
three are impossible and five are observed.

Proposition 2.6.4.

Every unreachable process state is infinitely preceded.
Every recurrent process state is infinitely preceded.

This proposition asserts that the following three kinds of states do not occur:

* unreachable recurrent states which are not infinitely preceded,

» reachable recurrent states which are not infinitely preceded, and
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* unreachable states which are neither recurrent nor infinitely preceded.

Proof. Statement 1 is automatic from the definition of a process state, since every
process state is induced by at least one history or history suffix. Statement 2 follows
from definitions 2.6.1 and 2.6.3. Let be a recurrent process state. Thegn!(A) has
positive measure and thus is nonempty. Sifnte (A) contains only good histories,
then it contains at least one good history which indusesll

Definition 2.6.5. A process state igransientif it is reachable and not recurrent. A
transient state is said to srictly transientif it is not infinitely preceded.

Definition 2.6.6. A process state islusiveif it is unreachable and not recurrent.

Unlike the other kinds of states we have discussed, elusive states can often be
ignored. Whereas every reachable state can be induced by at least one word of
positive probability and a recurrent state can be induced by a set of histories of positive
probability, an elusive state can only be induced by events of zero probability. Thus any
countable set of elusive states can be ignored without changing the process’ probability
measure. We will usually omit elusive states for brevity. However, in some processes
the existence and structure of the elusive states is implied by the recurrent states and
in others the set of all elusive states is uncountable and has positive measure, so we
cannot forget them completely.

Proposition 2.6.4 established that there are five classes of states. This, together
with definitions 2.6.5 and 2.6.6, gives us names for them. Table 2.1 summarizes the
relevant information about each type. In figure 2.2, we have examples of all types except
unreachable recurrent states. In order to present processes which have such states in a
reasonable form, we will need to develope more machinery for presenting processes.
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Process state type Reachable Infinitely Recurrent
Preceded

Strictly Transient yes no no
Infinitely Preceded yes yes no
Transient

Reachable Recurrent yes yes yes
Unreachable Recurrent no yes yes
Elusive no yes no

Table 2.1 Summary of process state types.

1)1

Fig. 2.2 Process state graph representations of two processes. (a) The golden mean process. The précess state
is reachable and neither infinitely preceded nor recurrent. SBatasd C are reachable, infinitely

preceded and recurrent. (b) The even process. pletel — g StatesD andE are reachable and
infinitely preceded but not recurrerit,and G are reachable, infinitely preceded and recurrent, ldnd

is unreachable, infinitely preceded, and not recurrent. For both of these processes, there may be
additional ill-defined states resulting from conditioning on histories in some measure-zero bad set.

2.7 Synchronization

Suppose we are watching the output of the even system, and the history suffix we

have seen contains dl§. This means that our state of knowledge about the future of the

process is described by either process diater E. It is possible that another observer,

who has been watching longer, knows more about the future than we do. In contrast, if

the history suffix we have seen contain8,ahen this is not the case. An observer may
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have more historical information than we do, but this extra information is irrelevant to
the future. In this case we say that we aggchronizedo the machine.

Definition 2.7.1. A non-null history suffixw is asynchronizing wordf all good histories
and all non-null history suffixes which end in induce the same process state.

Proposition 2.7.2. If w is a synchronizing word, them induces a reachable recurrent
process state.

Proof. Let A be the process state induced by A is induced by a history suffix, so

it is reachable. Note that is itself a history suffix that ends i@, so A is the process
state induced by all histories and history suffixes which matchFurther, we know
thatw is not a null word, and that the set of histories which matches it is a subset of
G71(A). So we have

P(A) > P(all histories which match)
(2.19)
> P(w) > 0.

Thus we conclude thaA is recurrent. B

The converse of Proposition 2.7.2 does not hold. There are process in which
nonsynchronizing words induce recurrent states. Also, some processes have no reachable
recurrent states, and hence no synchronizing words. These processes either have
unreachable recurrent states or have uncountably many elusive states. We will see
examples in section 3.5.
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3 Hidden Markov Models

In the last chapter, we talked entirely about distributions on sequence space. Al-
though this viewpoint will be necessary for some of our results, processes as we have
defined them are not very tractable or structured. A distribution on an infinite set need
not lend itself to a finite description, let alone a brief one. In order to do anything
concrete, we will need another set of definitions. These are the traditional definitions
used in the study of Hidden Markov Models [3,16,17]. In this chapter, we define Hidden
Markov Models and then study how they represent processes. We will look at how to
represent the process states of a process defined by an HMM. And we will conclude the
chapter with a result on the structure of these processes’ sets of process states.

The material in sections 3.1, 3.2, and 3.3 is fairly standard in the literature on
HMMs, appearing in such works as [3,16]. The contents of section 3.4 has probably all
been deduced before. Mixed states, for example, appear in [1], although not with that
name. What is new is stating this material in terms of process states. And the material
in section 3.6 is entirely the author’s though some similar results are known.

We will be careful to keep clear the distinction between the process and the way
it's presented to us. Byrocess we will always mean a stationary distribution on a
sequence space. When we refer to a finite specification of a process, such as a Hidden
Markov Model, we will call it a presentation of a process, or simplgresentation

3.1 Notation for Markov Chains

Before we start on Hidden Markov Models, we will define a Markov Chain. This
definition and the following discussion are not intended to be complete; rather, they are
intended to introduce the reader to the notation we will be using.

Definition 3.1.1. An n-stateMarkov Chain(MC) is a triple(V, P, =), where V is a finite
set of sizen, P is ann x n matrix, andr is a lengthn row vector, such that

() Each row of P has sum one,
(i) Z’” = 1, and
iy 7P = 7.
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Elements ofV are called statesP is called the transition matrix, and is called a
stationary distribution over the statés

Note that this definition requires a Markov Chain to have finitely many states. At
times in the following, we will discuss both countably and uncountably infinite state
Markov Chains, but we will not define them rigorously.

If we let V be theo-field defined by the cylinder sets driZ, then (VZ, V) is a
measurable space. We define a distribufoms follows: ifv = vgvy . ..v;_;, with all
v; € V, we define

ﬁ(”) = Ty P“Uo"lh S P“Ul—2“vl—17 (31)

and we defineP(\) = 1. Equation 2.2 is satisfied trivially. We will verify equation
2.3 and invoke theorem B.1.1 to show tHRtis a stationary probability distribution.
If = € V, then

P(\z) =P(z)\) = P(z) = 7.. (3.2)
Thus,
Y PN =) Pz =) r.=1=P()) (3.3)
zeV zeEV zeV
If v =wg...v_1, we hav®(vz) = P(v)P,,_,.. Thus
> Pvz)=P(v)) Py_,.=P(v) 1 =P(v) (3.4)
z€V zeV
On the other hand,
P(2v) = 72 Povy Pogoy - - - Poryors» (3.5)
SO
> P(zv) = (sz ) Pooos - - Por_yui_s- (3.6)
z€V z€V
But > 7.P., is thev, coordinate ofrP andrP = =, so
z€V
Z 7"'szvo = Ty (37)
zeV
and
> P(zv) =P(v). (3.8)
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Thus the Markov ChairiV, P, r) defines a processV’Z, Vv, P).

We conclude this section with at definition which we will need in section 3.2.

Definition 3.1.2. If (V,P,x) is a Markov Chain and” C V, we say thatC is a
recurrent componendf the Markov Chain if:

(i) For all u,v € C, there exists an integér > 0 such thatP* > 0, and
(i) Forall w € C, for allv € V \ C, and for all integers: > 0, we haveP* = 0.

Here, P* means the:th power of the matrixP.

Definition 3.1.3. A finite Markov Chain isreducibleif it has more than one recurrent
component.

If a Markov Chain is reducible, it is often appropriate to think of it as two or more
separate Markov Chains. A Markov Chain which has exactly one recurrent component
is said to beirreducible

3.2 Hidden Markov Models

In this section, we will give a definition of a Hidden Markov Model (HMM), and
we will show how an HMM specifies a process.

A Hidden Markov Model is a Markov Chain with an associated output mechanism
which takes either states or transitions between states to either symbols or distributions
on symbols. We will refer to the Markov Chain as thaderlying Markov Chairof
the HMM. We will calculate exclusively with finite presentations — those in which the
Markov Chain has finitely many states. However, we will, at times, consider infinite
presentations.

Hidden Markov Models appear in the literature in several forms, the most frequent
being Functions of a Markov Chain[1] and State-output Hidden Markov Models[16].
These forms are equivalent in the sense that for any HMM in one of these forms, there
is an HMM in each of the other forms which defines the same process. The HMMs
in this work will be Edge-output Hidden Markov Models, the elements of which are
the set of states, the set of symbols, a stationary distribution on those states, and, for
each state, a joint distribution on symbols and next states. The following definition
formalizes this idea.
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Definition 3.2.1. A Hidden Markov Model (HMM3 a quadruplé V., X', {T*}, ), where
V and.X’ are finite sets of sizes = |V| andm = |X|, {T*} = {T*|k =0,...,m — 1}
is a set ofn x n matrices, andr is a probability vector with length. The matrices
{T*} must satisfy

1. For all: such thatt < : <n -1
d T =1, (3.9)
5k

2. and for allz,; suchthatdt <i,5 <n—-1and0 <k <m-—1,
k
Ti; > 0. (3.10)
Finally, = must satisfy

T = Z ﬂ',’Ti];. (3.11)
1,k

The underlying Markov Chainof a Hidden Markov Model is a the Markov Chain
(V, S TF w> :

k

Elements ofl/, called presentation statesare the states of the underlying Markov
Chain. Elements oft' are calledsymbols as in chapter 2. Unless we have rea-
son to do otherwise, we will us& = {0,1,....n—1} or V. = {A B,...} and
X ={0,1,....m—1}. The {Tk} called thejoint matrices represent a set of joint
distributions on next states< V' and output symbolé € X in the following way. If
1,7 € Vandk € X and the Markov Chain is in state then the probability that the
next symbol emitted will bé: and the next state will bg is

P(j, k|i) = TF (3.12)

NE
The last element of the quadruple #s which is astationary distribution Most

definitions of HMMs found in the literature have an initial distribution instead of

a stationary distribution. The difference is that an initial distribution may be any

distribution over the states, whereas the stationary distribution is constrained to satisfy

equation 3.11. Using a stationary distribution here makes the resulting process stationary.

If the underlying Markov Chain has a single recurrent component,thsmniquely
determined by the joint matrices. If, however, the underlying Markov Chain has more
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than one recurrent component, thers only partially determined. Choosing a stationary
distribution is then tatamount to choosing a distribution over the components.

In addition, we will define a few auxiliary matrices. Thensition matrix P of a
Hidden Markov Model is defined by

Pij=> Tk (3.13)
k

The output matrix/3 is ann» x m matrix such thats;; gives the probability of emitting
the symbolk € X while in the statef € V. B is define by

Bri=>Y 1k (3.14)
J

The conditions imposed on the joint matrices ensurefhand 5 are stochastic matrices,
that is, their rows sums are all equal to Also, we haver P = =, and we can write
the underlying Markov Chain of the HMM &3/, P, r).

A warning to readers familiar with state-output Hidden Markov Models defined in
terms of transition and output matrices — our choice of notation may be misleading
to your intuition. The auxiliary matrice® and B are not always sufficient to recover
the joint matrices{Tk}. For example, if we start with a state-output HMM, the joint
matrices can be constructed ﬁ% = P;ijBj;, and equations 3.13 and 3.14 will be
satisfied. That is, if we compute the right hand sides of 3.13 and 3.14, we will recover
our original transition and output matrices. But, if we start with a set of joint matrices,
compute the transition and output matrices by equations 3.13 and 3.14, and then compute
P;;Bji, the result need not be the joint matrices. Doubtful readers are encouraged to
perform the calculations themselves on the two-state, two symbol process with joint

0 (0 0 L (12 1)2
matrices?” = (1/2 0 and7t = 0 1/2)

In general, a state-output HMM may be built from an edge-output HMM, but the
state-output HMM may need to have a greater number of states, because edge-output
HMMs have more degrees of freedom per state than state-output HMMs. Given an edge-
output HMM (V, X', {T*}, x), we can construct an equivalent state-output HMM with
set of state$/ = V' x V as follows: ifa, b, c,d € V, then we havéa, b), (¢,d) € U. Let

YTl b=c

Plap)(eay = {keX (3.15)
0 b#c,
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and let

b (3.16)

3.3 HMMs as Processes

An HMM presentation defines a process. That(i§, X', {7*}, ) determines a
probability distributionP and thus a procesp = (XZ,X,P). Let us see how this
works.

First, we suppose that the presentation’s underlying Markov Chain is in the state
: € V. Letk be a symbol ang € V be a presentation state. We want to know
P(k|7), the probability that the next symbol will bg andP(;|:, k), the probability that
next presentation state will beif the next symbol isk. These are straightforward to
calculate from the presentation.

P(kli) = > P(j, ki) Z (3.17)

J

P(j, ki) _ T
P(kli) S T%
l

P(jli, k) = (3.18)
Next, instead of assuming that the current presentation stafetiat is,P(:) = 1,

we assume that it has distributipn To calculate the analogous quantiti®s.|.) and

P(j|k, ), we start by calculatind(;, k|). After that, the answers are essentially the

same as above.

P(j,klp) = Zﬂz (7, k[?) =<#T> (3.19)

P(k|u) = ZPJakW =3 (), (3.20)
J

P(j.kp) _ (1T,

Pklp) 32 (pTh);

J

P(jly, k) = (3.21)

If we denote the column vectdt, ..., 1)" by I, we can writeP(k|u) = pT*T.
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Now, define a mag’;, which takes distributiong on the stated’ to distributions
onV, by

Crlp) = pTF T (3.22)

We then haveP(j|u, k) = (Ci(p));.

knowledge about the internal state of the process. Theshould be thought of as

We think of ¢ as representing our state of

update maps: they take a distributiorat one time and update it to reflect the passage
of time and the latest observatign

Having addressed single symbols, we are ready to address words. We begin with
a wordw of length two,w = wow;. P(w|x) factors toP(wg|p) - P(wi|wg, ). The
first of these terms is a case we have just treated in 3.20. For the second, if we update
p to Cy,(p), it reduces to the same cas®(w;|wo, 1) = P(wi|Cyy(p)). We now
expand and simplify,

P(w|p) = Plwolp) - P(w1]|Cu, ()

7 e § (3.23)
= (1) ( ’ ) ()
ol
=TT T
By similar manipulations, we have
MTw°>
Cuo, 0 Cuy )(1t) = Chuy .
(Cano Cun)li) = o ( L
(yT“’O ST T) T
— A (3.24)
(,on J T 1) Tl
B IMT"LU()T’UH
— pTwoTw ]

This extends to words of arbitrary length. 4f is a word of length/, then
P(w|p) = pT™ T ... T and the updated distribution over the presentation states
is

(Cuy0vvo Cay o)) = 2 T (3.25)

T Twea]
Now, if we use the stationary distributionin place of the arbitrary distribution, we
have a stationary process.



32

Lemma 3.3.1. There is a unique stationary proce8s— (XZ, X,P) such that for all

wordsw = wy...wi_1,
P(w)=xT" ..  T%T. (3.26)

Proof. We will simply verify equations 2.2 and 2.3 and invoke theorem B.1.1. First,
P(\) = 7l = Y m; = 1. This takes care of 2.2. Second, fok X,

P(wz) =xT% .. TYTT, (3.27)

Thus,

> Plwz)=xT" ... T (Z TZ> 1. (3.28)

zeX 2€X

But the rows of_ 7' sum to one, sc(E TZ> I = 1. Hence,
z z

Y P(wz)=xl" . 1] = P(w). (3.29)
zeX

Similarly,

Y Plzuw)=n (Z TZ> T T (3.30)

zeX 2€X

But w(ZTZ> = m, SO

Z P(zw) =xT" .. . T = P(w). (3.31)
zeX

Thus the hypotheses of theorem B.1.1 are satiflied.

Definition 3.3.2. The process defined by an HMM presentatioh, X', {7*}, «) is the
processP = (XZ,X,P) which assigns the probabilit (w) = P(w|r) for any word
w of symbols inX'.

Over the course of this dissertation, we will be doing many calculations containing
expressions of the form¥™° ... 7T"-1. In order to shorten these expressions, we
will define the matrix7" for any wordw. If w = wy...w;_1, then we define
Tv = T ... T, For the empty word\, we define7* = I. Thus, for any pair
of words,w andz, we havel'** = TT*. In this notation, the probability of a word
w is P(w) = xT"1.
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As we have seen, matrix presentations are convenient for calculation. Intuitive
interpretation, on the other hand, is often easier with some other forms of presentation.
For this reason, we will introduce a new form of presentation, which we will call a
labeled directed graphExamples of labeled directed graph presentations may be found
in section 3.5. It is worth noting that, while labeled directed graph presentations are
often quite clear, they become less intelligible as the number of edges per state increases.
For example, compare figures 3.3 and 3.6 on pages 44 and 46.

We have already seen process state graph presentations in sections 2.5 and 2.6;
the presentations we define here are related, but distinct. Here the nodes of a labeled
directed graph represent presentation states, and not process states as was the case before.
Process state graphs are deterministic — that is, they cannot have two or more edges
leaving the same state labeled with the same symbol. Labeled directed graphs do not
have this restriction.

A labeled directed graph is a directed graph in which the nodes represent presentation
states and the edges represent possible transitions. Each edge is labeled with a symbol
and a probability. An edge from stateo state; which is labeled withk|p corresponds
to an entry in a joint matrixTi]} = p. That is,k is a symbol ang is a probability, and
whenever the labeled directed graph is in statié has probabilityp of following this
edge, and if it does so it will output & and go to statg. We can translate an HMM
into a labeled directed graph by drawing a node for each state of the HMM and an edge
for each nonzer(Ti’}. Similarly, we can usually translate a labeled directed graph into
an HMM. We letV be the set of nodes in the graph atdbe the set of all symbols
which are appear on the edges of the graph. For eacles V andk € X, if there
is an edge from staté to state; which is labeled withk|p for somep, then we set
Ti’; = p, and otherwise we séfi’} = 0. The one piece of an HMM which is not present
in a labeled directed graph is the stationary distributiorif there is only one possible
stationary distribution for the set of joint matrices, then the labeled directed graph is a
complete presentation, and it defines a process. If there is more than one — that is,
if the underlying Markov Chain has several recurrent components or is periodic[13] —
then the labeled directed graph does not specify a process.

A given process may have many presentations, and determining whether or not
two presentations describe the same process is nontrivial [7,2]. For example, the
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Fig. 3.1 Process “simple nondeterministic source,” presentation A.
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W={0,1}, & ={0,1}, 7p = (5. 1, 3)

)

Fig. 3.2 Process “simple nondeterministic source,” presentation B.

O v

presentations in figures 3.1 and 3.2 define the same process. To show that presentations
A and B are equivalent, it is sufficient to show that, for every finite vwordrAwa =

7pU™1. In this case, it can be done by induction. However such proofs are at best
computationally messy and are not very illuminating. In section 4.3, we will develop

a systematic approach to equivalence of presentations. We will prove that A and B are
equivalent there.

Not all processes can be presented as finite HMMs. For example, consider the
modified nested parentheses pro¢g8k a process with the alphabet 6f, ), and!.
(The termmodifiedrefers to the presence of the symbol.) One way to represent
this process is as a single presentation state and a counter which holds a nonnegative
integer. If the counter is set to zero, then with probabigtythe machine outputs &
and sets the counter to one, and with probab@itiy outputs a! and leaves the counter
at zero. If the counter is not set to zero, then with probab@itl_;he machine outputs a
) and decrements the counter and with probabi};it';t outputs a( and increments the
counter. If the initial value of the counter is drawn from the appropriate distribution,
this description defines a (stationary) process. This process always outputs balanced
strings of parentheses between any consecutive pairsyinbols, and there is no upper
bound to the number of levels of nesting. We will prove in section 3.6 that there is no
HMM presentation for this process.

Simply stated, in this section we have shown how to get a process from an HMM.
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But consider the inverse problem — suppose we have a process, and we want an HMM
presentation for it. Because a process can have more than one HMM presentation,
we cannot expect a unique answer. And, as the modified nested parentheses process
illustrates, we cannot always expect any answer at all. This is a form of the problem
of HMM reconstruction, and nothing we have seen here so far suggests a way of
approaching it.

Finally, we can define the class of processes which are the subject of this dissertation,
stochastic finite automata. gtochastic finite automatof&FA) is a process which has a
finite HMM presentation. In section 3.6, we will give a necessary condition for a process
to be an SFA. Notably, this condition will, among other things, suggest an approach to
HMM reconstruction.

3.4 Mixed States

In section 2.5, we defined process states in rather abstract terms, and in section 3.2
we described HMMs in more concrete terms. In this section, we will bring these threads
together and discuss the process states of processes defined by HMM presentations.

Recall that a process state is a conditional future distribution which arises when we
condition on a history or a history suffix. Suppose we have a prd@ess(?(z, X, P)
defined by an HMM presentatiofV, X', {T*},x). What are the process states for this
process?

There are some presentations for which the process states coincide with the presen-
tation states. Such presentations are necess#etbrministic This means that, for any
given presentation statec V' and symbol € X there is at most one presentation state
J € V such that the transition fromto j with symbol & is possible,Ti’} # 0. Ifa
process has a finite deterministic presentation then it is cal&ehastic Deterministic
Finite Automaton(SDFA). In this case, the presentation states and process states are
similar though they may not coincide. SDFAs are an important class of processes; see
[19]. However, typical HMMs are not deterministic and the processes they represent
are not SDFAs. It is this case which this section addresses.
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We will begin with reachable states, those which result from conditioning on a finite
history suffix. Suppose is a history suffix andoe is a next word. We have

P(sw 75T
P(wl|s) = PE(S)) = T (3.34)

(If P(s) =0, thenP(w|s) is not well defined. We will ignore such throughout this

section.) Since the conditional distributid(-|s) is the object we are interested in and
w IS the argument it takes, we will rewrite this as
vl

P(w|s) = P(:]s)(w) = WTSTTWT (3.35)

Here,P(-|s) shows up as7*/xT*I, which is a distribution on the presentation states.

In fact, distributions over the presentation states are close to being process states.
If x« is such a distribution, thel(-|x) is the conditional future distribution given the
measure:, defined byP(w|u) = xT*T. We will show below that all process states
can be represented in this way. If two different history suffixegnd s, define the
same distribution over presentation statesr£¢/xT°1 = xT°/xT°1 — then clearly
P(-|s) = P(-]3), sos ands lead to the same process state.

Before we proceed, we will introduce a notational convenience. When we have
a row vectoru, we often need tomormalizeit, that is, scale it so that the sum of its
components id. We have been writing the normalization pfas % We now define
N, the normalizing functionwhich takes row vectors to row vectors, by

N(p) = L. (3.36)
wl

With this, we can writeV (x7") instead ofr7*/=xT*1.

Definition 3.4.1. A mixed stateof a presentation is a distribution over the presentation
states.

(The namemixed statecomes from thinking of mixed states as “mixtures” of
presentation states. This is similar to the use of “mixed state” in quantum mechanics. It
should be noted that Fraser and Dimitriadis have use the term “mixed state” in connection
with HMMs to mean something entirely different [12].)

Mixed states are related to process states, but they are not quite the same. First, there
can be mixed states which do not represent any process states. For example, consider
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the process presented by the HMM
V= {071}7‘)( = {071}77‘— = (%7 %)

T0:<0 1) T1:<0 0) (3.37)
0 0) 1 0)

This process has only three process states. (If we have seen any history or history suffix
of length1 or more, then we know the entire past and the entire future almost surely
— it is either...0.10101... or...1.01010.... If not, we are conditioning o\, and
we get the futureg0101... and01010 ... with probability 1 each.) The mixed states
corresponding to these process states(éré), (1,0), and (%,1). The other mixed
states do not define process states.

Second, it can happen that two or more different mixed states correspond to a single
process state. This can only happen if the presentation in question is not minimal, that is,
if it has some redundancy in its states. For example, the process presented by the HMM

V={0,1},X={01},7=(%1)

0\ .1 _ (0
0>’T_<0

) (3.38)
is an elaborate presentation of a fair coin, which has only one process state. The mixed

~
o
I
TN
N= R
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states(1,0) and (0, 1), which arise asV (z7") and N (=) respectively, represent the
same process state.

Definition 3.4.2. Fix a process and an HMM presentation for it. L&tbe a process
state and: a mixed state. If for all next words we haveA (w) = uT™7T, then we say
that 1 is a mixed state versionf the process statd.

Theorem 3.4.3. Suppose we have a process and an HMM presentation for it. Then
every process state, except possibly those in a null set, has a mixed state version.

For a reachable process state we have essentially already shown this.slis a
history suffix withP(s) > 0 which inducesA, N(x71*) is a mixed state version of.
However, for unreachable states, there is no such simple solution. Most of the rest of
this section addresses this issue. The proof of this theorem appears on page 41.

To treat this case, we need to work in a probability space which contains both pre-
sentation states and symbols. Begin with our H\IM X', {T*}, r), and its underlying
Markov Chain(V, P, ). These define the observation proc@ss- (XZ,X,P) and the
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internal procesﬁvz, \/,F), respectively. We will define thpint processof these two
to be the procesg = <(V X X)Z, J, Q) as follows. The alphabet of the joint processes
is V x X and thus its sequence space 5 x X)Z. Its o-field is theo-field generated

by the cylinder sets iV’ x ). If we have a wordd = (vi,z1), (v2, z2), - . ., (vp, 27),
we have
Qi) = m, T, ... T2, (Z Tég) . (3.39)
eV

The pair(v, x) corresponds to our original HMM leaving stateand outputting symbol
z. ThusQ(w) is the probability that the HMM traverses the sequengen, ..., v
of presentation states and, as it does this, emits the ward,, ..., z;. Specifically,
this is the probability that the HMM starts in presentation state emits =; while
making a transition ta,, and then emitsc; while going tovs, and so forth. This
ends when the HMM emits;_; during the transition fromy;_; to »; and then emits
x; during a transition to any state. This free choice of the 1th state leads to the
sum at the end of equation 3.39. The new proc@ssas the HMM presentation
(V,V x X, {U¥k €V x X}, ), where ifo € V andx € X, thenU("*) is defined by

(v,x) . Tlg; v =1
U” = {0 oy (3.40)
and we can rewrite 3.39 as
Q) = xUvm)  plenedy (3.41)

Let M : V x X — X be the projection mapV(v,z) = =, and let M?

(V x X)Z — X be the projection map on sequence spaces which applieg each
time index: MZ(... zz1...) = (... M(%)M(%41)...). Thus for any subsequence
8 = 848441 ---5p si € X when we applyM ~! to the cylinder setd, we get the set of
all sequences iV x X)Z whosez part matches,

MY (Ay) = {z e (Vx X! M(z) = siforalli € a,at 1, ... b}. (3.42)
It should be clear thatl/ is a measurable function, and that Af € X, we have
P(A) = Q(M~1(A)).

In some sense, defining joint processes is a more natural way of approaching HMMs,
than the path we have taken of defining (symbol) processes first and then introducing
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HMMs as ways of representing processes. However, the joint process approach leads
one’s intuition in a direction other than the one in which this work is going. In particular,
the joint process approach does not suggest section 3.6, and in fact could lead one to
reject it. This is because introducing HMMs and joint processes first puts presentation
states in a more fundamental role than process states. In contrast, the insight which led
to section 3.6 resulted in part from observing that process states were actually the more
fundamental objects. We will use the joint process only in part of this section.

In section 2.5 we define® to be the set of words € X™* such thatP(w) # 0. We
also defined the set of bad histori&sto be the set of all histories, and we showed that
N is a null set. A historyx™ is in AV if llir?o P(s|w;) does not exist for some € X'*,
wherew; is the length/ suffix of A". In particular, ifx~ is not in A/, we know that
every suffixw; of x~ lies in R.

Definition 3.4.4. If s is either a history suffix ir? or a good history, the mixed stajes)
is defined to be that mixed state whodk coordinate satisfieg;(s)), = Q(vo = 1|s)
for all : € V. We cally(s) the mixed statéenducedby s.

How can we compute induced mixed states?wlfis a history suffix inR, we
can calculate directly, using equation 3.41 and definition 3.4.4. The answer is far
less cumbersome than the calculations needed to produce it, and brings us back to the
material of pages 36-36.

o QU,w) Que=d,r g g =wog. . w)
Qvo = ifw) = Q(w) Qle_;...o1=w_g...w_1) (3.43)

5 (w(vz,w».,.mwl) 5 Uw»w)f)

. v_i.. v €V TeX
Q(vg = ifw) = = - (3.44)
> <7TU(v7z,w7z) N .U(”—f—)’w—1)1>
v_;..v_1EV
w< > U(”—l’w—l)> ( > U(”l’w1)> PR

Qo = ifw) = =" i et (3.45)

77( > U(vz’wz)> ( > U(vhwl))f
v EV v €V
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Note that 3> U(*) = 7% and that( D U(W)T> = ¥ U](f;f) = &;;, Which
veEV ' TeX J veViaeX
means thaty [/(4*)] = ¢;, theith standard basis vector. Thus we can write
reX
Te-r T
Q(ijw) =~ e
77;-]1:106—1 A | (346)
= = N(xT")e,.
|

Thus, the induced mixed stat¢w) is simply given byn(w) = N(xT™).
Before we address the mixed sta;t(ax‘) induced by a histork ™, we need the
following theorem, due to technical difficulties of conditioning on sets of measure zero.

Corollary B.2.4. If {F,} is an increasing sequence ®ffields andA is an event, then
P(A|F,) — P(A|F) almost surely, wheré is the smallest-field which contains all
of the F,s.

Proposition 3.4.5. For any historyx~, let s; denote the length history suffix
x_y...2—1. For almost everk™, n(s;) — n(x~) as! — oc.

Proof. For each positive integédr, let 7; C J be theo-field generated onV x X)Z
by history suffixesw € X'* of length/, and letF,, be theo-field generated by the
union of theF;s. ThusF, is the set of inverse images undér of sets in the history
o-field H of the process. Also, letA; C (V x X)Z be the set on whichy = :. Now,
applying theorem B.2.4, we get

Q(Ai|F) — Q(Ai|Fx) (3.47)

almost surely a$ — oo. For a given historxk~ ¢ A, and for each positive integér
let s; denote the length history suffixz_;...x_;. Now,

QA7) (x7) = Q(Ailst) = (n(s1)) (3.48)
since we know that; € R. Similarly,
Q(Ai|.7:oo)<x_> = Q(AZ'|X_> = (n(x_»i, (3.49)

so equation 3.47 becomess;) — n(x_> almost surely ag — oo, for almost every
x~ ¢ N, or simply for almost everx— .l
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The next result establishes thgt ) contains all the information about the past which
is contained ins and which is relevant to the future.

Proposition 3.4.6 Let «w be any word inX*. If s is a history suffix inR, then
P(wl|s) = n(s)T"I. And if x~ is a good history, the®(w|s) = n(x~)T*T almost
surely.

Proof. If s is a history suffix, we know that

P(w|s) = —=T"1 = N(xT*)T"1. (3.50)
Sincen(s) = N(xT*), we haveP(w|s) = n(s)T"1.

For a good histork ™, let s; = z_;...2_; for eachl, and letF; C X be theos-field
generated by the history suffixes of lengtHn addition, let4,, ¢ X'Z be the cylinder set
of sequences which contain. Now, if we apply theorem B.2.4, we g&( A,|F;) —
P(Aw|Fx) almost surely ag — oo, or equivalentlyP(wls;) — P (w|x™).

On the other hand, we know thats;) — 1(x~) almost surely. The function — ;7T
is continuous, s (s;) 7T — 5 (x~)1™T almost surely. And sincB (w|s;) = n(s)T*T
almost surely, we know thd(w|s;) converges almost surely to bokh(w|x~) and to
n(x7)T1, so it must be true that(x~) 7T = P(w|x~) almost surely.l

Proposition 3.4.6 directly implies that the past and the future are conditionally
independent given the mixed state induced by the past. At last, we can return to mixed
state versions of process states and prove theorem 3.4.3.

Proof of theorem 3.4.3Let A be a process state f@@ = (X,XZ,P). Then there
is either a history or a history suffix which inducéds Let s be any such history or
history suffix. For all next words», A(w) is defined to beéP(w|s) almost surely, and
we know thatP(w|s) = n(s)T%1, so A(w) = n(s)T"1. Thusp(s) is a mixed state
version ofA. W

Finally, with the remainder of this section, we will define a new presentation, called
the mixed state representatiofMSR). If we start with a presentatiofi/, X', {7}, ),
let V' be the set of all mixed stategs) which are induced by a history ¢ R or
a history suffixx~ ¢ A. Elements ofV/ are presentation states of the mixed state
representation. That is, presentation stateof the MSR are mixed states of the
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presentation V. X', {T*},x). The mixed state representation is another presentation
of the process defined by, X', {7}, ). Notably, it may have infinitely many states.
It is with this representation in mind that we use the wstatein the termmixed state

Suppose what we know of the history of our procss that the most recent output
word was the history suffixo. Then the next symbol will be € X with probability
P(z|w) = 5(w)T"T, and ifz is the next symbol, then the known history word becomes
wz. Now, we will look at this transition in terms of the mixed states. Since we know
that the history suffix isv, we are in mixed state(w). Fromn(w), the next symbol is
= with probability P(z|n(w)) = 5(w)T*1, and ifz is chosen as the next symbol, then
a transition is made to the MSR stajéwx).

In order to use mixed states as states, we need to be able to comfputefrom
n(w) without usingw. Fortunately, this is not difficult to do.

n(wz) = N(=TYT")

I e
CorTerel (3.51)
ATeTe T
xTeTsl Tl
Thus we have
w)T* -
n(wx) = 77(7)_, = N(n(w)T?) = Cy(n(w)). (3.52)
n(w)T*1

Note thatw does not appear except ifw) andn(wz).

Now we can define the mixed state representation. As we have stated, its presentation
states are elements bf, mixed states which are induced by histories or history suffixes.
We write them as row vectors = (m, . -7N|V|>- Its symbol set, clearly, will bet'.
Becausel’ may be infinite or even uncountable, we cannot define transition matrices,
but we can give equivalent information. Given a state V and a symbok ¢ X,
if the current state ig,

(i) the probability thatr is emitted iSP(x|x) = xT*71, and
(i) if = is emitted, the next state iS,(p) = N(p17).

We will not address here the issue of whether or not a stationary distributiovi on
exists. To use the mixed state presentation to compute the probability of awyord
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assume presentation starts in state- () € V and compute

l
H ,LL,'_lTWiT (3.53)
1=1

where! = |w|, po = = and p; = Cuyu,(pti=1) = N(pi—1T*) for + > 1. It can
easily be verified that the result of this calculation is equal to the probaBBility) =
1T T T assigned by V, X', {T*}, 7). The product in equation 3.53 is simply
the product of the quantities which the normalizing functiérdivides out of theu;.

Note that the mixed state representation is deterministic. That is, for any MSR
statepx € V and any symbol: € X, there is a unique MSR staté,(x) to which
a transition involving the emission of is possible. Further, the MSR states are in
one-to-one correspondence with the process states, except perhaps for a set of each of
measure zero.

In this section, we defined mixed states and showed that they are intimately related
to the process states. In fact, the significance of mixed states is that they give us a way
of representing the process states.

3.5 Examples

At this point we will digress from the formal development and present several
examples in detail. These examples are chosen in part to illustrate the variety of
behaviors which are seen in SFAs. The calculations to support the conclusions are
not presented here; the reader is encouraged to perform them.

The Golden Mean Process The first example is th&olden Mean Proces$&MP)

which we have already seen in section 2.6. This presentation is deterministic, and the
recurrent process states and the presentation states coincide, so GMP is a stochastic
deterministic finite automaton.

GMP has two symbols, and its smallest HMM presentation has two states. Its most
prominent feature is that its output sequences never contain pairs of consésutiMee
reader should be able to verify that= (2,1) from the transition matrice$® and7'!.

V={B,C}, X ={0,1}, 7 = (%, 1)

373

R
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Fig. 3.3 (a) Labeled directed graph presentation of GMP. (b) Process state graph presentation of
the process GMP. In this case, the recurrent process states coincide with the presentation states.

This process has three process states: i§ a history or history suffix which ends
in 1, it induces process stal®. The mixed state it induces 18 (z7") = (1,0). If w is
a history or history suffix which ends iy it induces process staté and mixed state
(0,1). This covers all histories and all history suffixes excepthich induces process
state A, which is transient, and mixed state= (2,%1). The probabilities associated
with the start state ar®(1|\) = #7'1 = 2 andP(0|\) = #7°T = L. Similarly, the
states to which these transitions are made are identified by comparing mixed states;
Ci(7) = (1,0) andCy(x) = (0,1). These are the mixed states associated to sktes

and C, respectively.

The Simple Nondeterministic Source Our next example is th€imple Nonde-
terministic Source (SNSyvhich we saw in section 3.2. This process can be represented
with only two presentation states, but as we will see shortly, it has infinitely many
process states. A two-state HMM presentation is

V={A B}, X ={0,1}, = = (1,1),

T0—<? 8>,T1_<

1]1/2

11172 0‘0 111/2

0|1/2

Fig. 3.4 Labeled directed graph presentation for SNS.

(3.55)

O v
[CITERNNITN
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Let w, = 01", the word consisting of & followed by »n 1s, and letA, be the
process state induced hy,. The matrix corresponding ta@,, is

" n 0 0
T = T0<T1> = (2—11—1 nQ_n_l )7 (356)
so the mixed state(w,) corresponding to,, is
N(zT¥) = N2 n27"1) = L “ (3.57)
’ n+1' nt+1)/) '

The first few of these states are listed in table 3.1. Aheare all distinct states, since
their mixed state versions are all distinct. In fact, the comprise all but one of the
process states. Also, the wobdis a synchronizing word, sincB(-|0) = P(-|w0) for
all words w such thatP(w0) > 0. We can verify this by calculating/o(x) = (1,0)
andCo(p) = (1,0) for all x. Thus all of thew,s are synchronizing words, and all of
the A, are reachable recurrent states.

SNS is also an example of a process in which reachable recurrent states are induced
by words which are not synchronizing. This precludes the possibility of a converse to
proposition 2.6.2, which said that synchronizing words induce reachable recurrent states.
The word11 induces the process stade;, a reachable recurrent state, also induced by
w3 = 0111. However,11 is not a synchronizing word, becaubBg-|011) andP(-|111)
are not equal toAs.

History or history Mixed statey(s) Process state P (symbol0|w)
suffix s
.0 (1,0) Ag 0

.-01 (5 3) A, :

011 (L,2) A, 5
...0111 (L,2) As 2
...01111 (L, %) Ay 2

o (s 1) A, Lt

infinitely many1s (0,1) A L

Table 3.1 The first few mixed and process states of the “simple nondeterministic source”.
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Fig. 3.5 An abbreviated version of the deterministic labeled directed graph presentation for
the process “simple nondeterministic source,” which has infinitely many process states.

The Cantor process Our third example is theCantor process, which has the
following HMM presentation:
V={AB}, XY ={0,1}, == (}}),

T0:<0.55 0 ) T1:<0.15 0.30) (3.58)
0.30 0.15 )’ 0 0.55

1]10.55

0]0.15

Fig. 3.6 Labeled directed graph presentation for the Cantor process.

Recall that a process state is an equivalence class of histories and history suffixes.
For the Cantor process, all of these equivalence classes are trivial: every history and
every history suffix induces a future conditional distribution which is different from that
generated by every other history and every other history suffix. (Of course, pairs of
future conditional distributions exist arbitrarily close to one another.) The result is that
the Cantor process has uncountably many elusive process states, one induced by each
history. Also, it has countably many strictly transient states, which are in one-to-one
correspondence with the history suffixes. Thus, this is an example of a process with
no synchronizing words.
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Note that

N((z.1—2)T") = ( se _595) ~ <f 1— 9 and

11— 22" 11 — 22 3’
-5 3

N((1—y,y)T°) = L Vax(1-L9).
11 —2y 11 — 2y 373

These approximations are exact (@t 1) and (1,0), and are withing; in between.

(3.59)

Thus, if ¢ is the mixed state induced by a history appending a symbol te
corresponds approximately to movingtwo-thirds of the distance to eith€d, 1) or

(1,0), respectively. The mixed states induced by histories form a set similar to the
middle-thirds Cantor set, hence the process’s name. This may be seen in figure 3.7,
which is a plot of the Cantor process’s mixed states, all of which lie on the line segment
with endpoints(0,1) and (1,0). The mixed states induced by history suffixes lie in
the middle of the intervals which are deleted to form the approximate Cantor set. (It
is possible to construct an HMM for which the mixed states induced by histories are
exactly the middle-thirds Cantor set, but it is degenerate — it is equivalent to a fair coin.)

0,1) (1,0)

+“ | “\“ - -7 o =T “\" | —+

Fig. 3.7 The mixed states for the process Cantor. Dots are mixed states corresponding to elusive process states.
The small vertical lines are the mixed states corresponding to the subset of transient process states.

The Two Biased Coins process The last example we will look at here is the
Two Biased Coins (2BQ)rocess. The process can be simulated with a pair of biased
coins. One of the biased coins is chosen by a flip of a fair coin. The chosen biased
coin is then flipped to produce a bi-infinite sequence. Like the above examples, it has
the following two-state presentation:

V={A B}, X =1{0,1}, 7 = (L, 1),

2 e (3.60)
r=(5 ) =),

2BC is a reducible process, as it consists essentially of two processes with no interaction

we O

between them; see figure 3.8.

Calculation of 2BC’s mixed states is equivalent to using Bayesian methods to infer
which of the two biased coins is being flipped. The stationary distributianthe prior
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distribution, andu(w) is simply the posterior distribution over the presentation states
given the wordw. The procedure we use for calculatipgwz) from w(w) can be

viewed as a procedure to dynamically update the posteg;ors;. isf a word of length
7w U

| 0
mixed statey(w) = N(xT") is 325 (3.37) = 57 = (3'=7,1). So the mixed state —

and the process state — induced by a word depends only on the difference between the

¢ 4+ j consisting of: 0s andy 1s in any order, thed™ = ( ), and resulting

number of0s and the number ofs in the word. Thus, there are countably infinitely
many reachable process states, one for each integer. Some of these process state are
portrayed in figure 3.8a.

With finite data, we are never sure which presentation state the process is in, so all
reachable process states are transient. Asymptotically, as the length of the word goes
to infinity, we can be sure with probability which of the presentations states we are
in. Thus, the mixed state versions of the recurrent process statés, ajeand (0, 1),

Hence there are exactly two recurrent process states, both of which are unreachable and
which correspond exactly to the presentation states.

There are also uncountably many histories in which the difference between the
number of zeros and the number of ones is bounded, for exampdk0101. These
histories induce elusive states, the total probability of which.is

a
1/5/8  1[1/2 0|1/2 0|5/8

03/10 O|3/8 1/3/8  1/3/10

(b)

0|3/4 1|1/4 0|1/4 a 1/3/4

Fig. 3.8 (a) A subset of the transient process states for 2BC. The state induced by a word is determined solely by
the number of0s minus the number aofs in the word. All of the transient states are infinitely preceded.
(b) The recurrent states of 2BC. BothandB are unreachable recurrent states. Each connected
component of the graph corresponds to a recurrent component of the underlying Markov Chain.
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3.6 When Does a Process have an HMM Presentation?

In this section we propose a characterization of when a process is an SFA —
that is, when a process has a (finite) HMM presentation — and we show that it is
a necessary condition. This characterization is a keystone of this dissertation. It leads
almost directly to the reconstruction algorithm of chapter 5. And it follows from the
following observation.

If we have a process with an HMM presentatidn X', {T*},7), then a mixed state
for that presentation is a distribution &f or equivalently, a vector dfi’| components.
This means that all the mixed states lie in th@-dimensional vector spadel’’!. This
in turn means that the dimension of the span of the mixed states is less than or equal
to |V| < co. As process states are essentially equivalent to mixed states, we can make
a similar statement about the process states.

First, we need to be able to work with process states as elements of a vector space.
Let W be the set of all signed measures on the future space. These include the process
states: ifA is a process state, theh € W. For anyA,B € W and¢,d € R, we
definecA + dB as follows. For all future words», (cA + dB)(w) is defined to be
cA(w) + dB(w), so thatW is a vector space. In addition, &, B are probability
measures and, d > 0, ¢+ d = 1, thencA + dB is a probability measure.

We now state the main result of this section.

Theorem 3.6.1Given a proces®, leti/ be the subspace d¥ spanned by the reachable
process states. If i@ has an HMM presentatiofl, X', {T* }, r), then diniz/) < |V|.

Before we can readily prove this result, we need to develop the connection between
W and RV,

Lemma 3.6.2 Suppose we hava,B € W andyx,» € RIVI such that for all future
wordsw we haveuT*T = A(w) and»T*T = B(w). Then for allc,d € R and for all
future wordsw, we have(cu + dv)T"T = (cA + dB)(w).

Proof. (cu + dl/)wa = c<,uTwT> —|—d<1/TwT> = cA(w)+dB(w) = (cA 4+ dB)(w). 1

For the next lemma, we need some additional notation. We wilDusedenote the
zero vector iRVl (Note thato is a row vector, in contrast to.) Also, we will use0 to
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denote the zero measurelin. Thus we have, for all future words, 071 = 0(w) = 0.

Lemma 3.6.3Suppose we have reachable process states.., A; € W, and vectors
@, ..., ut e RVl such thatu! is a mixed state verS|on ok, for eachi € 1., 0L If

there exist real numbers, ..., ¢;, not all zero, such thaE cipt =0, thenZ ¢iA; = 0.
=1 1=1

Proof. For all future wordsw, we have

k k
(Z c,'AZ') (w) = (Z ci,ui) s (3.61)

=1 =1
by lemma 3.6.2. However, the right hand side of equation 3.61 is zero by assumption.
Thus the left hand side is also zero for all] and we have

k
Z = (3.62)

Proof of theorem 3.6.1Choose anyV'| + 1 reachable process statas, ..., Ay,
and chooseu, ..., uy 11 € RIVI such thaty; is a mixed state version of; for each

i€1,....k. They; are a set ofV| + 1 vectors in aV'|-dimensional vector space, so
[Vi+1
they must be dependent. That is, there must exist ., ¢4, such that > ¢;u; = 0.
=1
Vi+1
Now, by lemma 3.6.3, Z c¢;A; = 0y, so theA;s are linearly dependent. Thus, we

have shown that a set of linearly independent process states has size 8t mestthe
span of the process states is at madst-dimensional. B

The following fact about SFAs follows immediately from theorem 3.6.1.

Corollary 3.6.4. Given a process, létf be the span of its process states. If it has a
(finite) HMM presentation, then diff¥) < co.

Proof. For any finite HMM (V, X', {T*}, ), we have|V| < co. Thus, using theorem
3.6.1, we have ditd/) < |V| < ool

As an illustration of the use of corollary 3.6.4, we will now prove the following
statement, which was stated without proof at the end of section 3.3.

Proposition 3.6.5. The modified nested parentheses process does not have an HMM
presentation.
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Proof. Letw, =!(" ! be the lengthn word consisting of a followed by n — 1
(s. Similarly, lets,, = )" — Iy pe the mirror image ofv,,. After the wordw,, the
counter must be: — 1. Before the words,,, the counter must be: — 1. Thuss,,
cannot followw, if m # n:

_ (%)n m=n
P<sm|wn>—{0 . (3.63)
Now let A,, be the process state induced dy,
_ B m=n
Ay(sm) = {0 - (3.64)
For every n and any for |linear combinationey,...,cy—1, We have

(c1A1+ ...cn—1Ap_1)(sn) = 0, While A, (s,) > 0. Thus,A,, is linearly independent
of Ai,...,A,_1. In this way we see that we can construct arbitrarily large, linearly
independent sets of process states. Thus we havespaq A;|: > 0}) = oo, so this
process cannot have an HMM presentatidii.

A related condition for functions of Markov chains was shown by Gilbert [20],
and variants appear in [10] and [21]. These conditions are stated in terms of a different
context of definitions and terminology, so that their exact relationship to corollary 3.6.4 is
difficult to ascertain. The author suspects that if one developed the appropriate machinery
to connect these contexts, one would find that the conditions are equivalent.

We have shown that dif¥) < cc is a necessary condition for a process to have an
HMM presentation. It is almost a sufficient condition. In order to make this precise,
however, we will need to develop a generalization of HMMs. This generalization is
the subject of the next chapter.
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4 Generalized Hidden Markov Models

At the beginning of the last chapter, we viewed a Hidden Markov Model as a Markov
chain with a stochastic output filter, and we only interpreted the presentation states as
the states of a Markov Chain. Over the course of that chapter, we used the tools of linear
algebra more and more, working with mixed states rather than directly with presentation
states. Finally, we introduced an alternative interpretation of the presentation states —
that they are basis elements for the set of mixed states, or equivalently, for the set of
process states. In this interpretation, the transformation matrices define the process by
defining linear transformations on the mixed states. As we will see, this linear algebra
interpretation is the more fundamental one.

In this chapter, we will define and use a generalization of Hidden Markov Models
in which the presentation states cannot be interpreted as states of a Markov chain, but
can only reasonably be interpreted as basis elements. The first use of Generalized
Hidden Markov appears to have been as a counter-example in [10]. Several authors
have used Generalized Hidden Markovs and similar techniques in recent years, including
connection to neural nets developed in [22 ] and the solution of the problem of HMM
equivalence in [7]. Late in this chapter, and in the next one, we will choose a linearly
independent basis for the span of the process states, and use these basis vectors as
presentation states of a new presentation we construct directly from the process.

4.1 Generalized Hidden Markov Models

When we think of a Hidden Markov Model as an object of linear algebra, it makes
sense to consider what happens when we perform a change of basis — a canonical
linear algebra operation. And so, after one convenient definition, we will work through
a change of basis for a generic HMM.

Definition 4.1.1. A unit-sumvector is a vector whose components sum to one. A
unit-sum matrix is a matrix whose row vectors are unit-sum vectors.

That is, a row vector is unit-sum row vector il = 1, and a matrix4 is a unit
sum matrix if

AT =1. (4.1)
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Note that the inverse of a unit-sum matrix must also be unit-sum. If we multiply both
sides of equation 4.1 byi~!, we get

IT= A" (4.2)

and, clearly,/1 = I. If a unit-sum vector satisfies the additional requirement that all
of its components are nonnegative, then it istachasticvector. Similarly a matrix is
stochastic if all of its rows are stochastic vectors.

Suppose we have an HMW = (V, X, {T*},x). A mixed state: = (u1,. .., uy))
for this HMM is a stochastic vector in a vector space with basis elements associated
to the states ¢ V: if x is induced by a history object, then y; = P(i|s). The
process state associated withs a linear combinatiorij ;A of the conditional future
distributionsA; = P(-|¢). If we let/ be the span of aﬁ of the HMM'’s reachable process
states, theq Ay, ..., Ay} is the basis we used fdr in section 3.6.

We will now work through a change of basis. We begin by choosing a new basis
{By,. ..,B|V|} for ¢/ as follows: choose an invertible unit-suvi| x |V| matrix M,
and for all: let

&zgy@M. (4.3)
j

Clearly, for alli, B; € ¢/, and becaus@/ is invertible,{By, ..., By} is a basis fot/.

This change of basis calculation will be facilitated by the following somewhat
nonstandard notation. We will write the vectors of the basis in a formal column vector
as if they were scalarsThat is, we define the formal column vectoksand B by

B Ay B B,
A= : andB = : (4.4)
Ay By

Thus, we may rewrite 4.3 as
B=MA. (4.5)

In this notation, ifx. € RIV! is a mixed state, then it is a row vector, and it describes the
process statp A. From equation 4.5, we ge/ !B = A, souM~'B = pA. Thus
if v =M™, thenyA = vB, sou andr describe the same process state in different
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coordinate systems. Hendé ! maps&—coordinates tdB—coordinates. Since is not
a mixed state for any HMM we have defined yet, we will call it a coordinate vector.

Our HMM’s stationary distributionr and its transition matrices are all given in
A—coordinates. What do they look like iB—coordinates?r is simply a mixed state,
so it transforms to the coordinate vector- A/~ as we have indicated above. /ffis
a coordinate vector, thenB € ¢/, andvM defines a row vector itk coordinates — a
mixed state. We can operate of/ with the operatofl*, and transform the result back
to B coordinates withi/~1. The result is that the operatign— 7% in A coordinates
becomes — vMT* M~ in B coordinates. That is, the similarity transformation which
transformsT* into B coordinates produces the matfi¥ = MT*M~!.

Now, if we define a set of formal symbols' = {12, ... |V|'}, we can construct
a quadruple(V', X', {U*}, 7). This quadruple looks like an HMM. It may fail to be
one, however, because tfi& matrices may have negative entries. Nonetheless, it
satisfies the rest of the definition of an HMM. The transition matri{:é@ } satisfy

<Zcfk>f = 1, since
k

k 17
S o

And 7 satisfiesr = 73 U* since
k
T Z UF = eyt Z MT*pr1
k k

— MM (Z Tk) Mt

= (2}; Tk> M

— oM~ =

4.7)
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Further, if we manipulatd V', X', {U*},r) as if it were an HMM, and calculate
771 for an arbitrary worcw = w; ... w;, we get

TUYT =70 ... U™T
= (eM~ Yy (MU MY (MU MDT (4.8)
= 7T TYMT,

and sinceM ! is unit-sum, this becomes
FUYT = 77T, (4.9)

Thus, for every wordo € X*, we getP(w) = 7U/*1. In spite of the fact that it is not
an HMM, (V. x, {U*},7) defines a process as if it were. We will call iGeneralized
Hidden Markov Model (GHMM)following [8].

For instance, consider the following presentation of the Golden Mean Process which

we saw in section 3.5:
V= {B,C}, X = {071}7 T = (%7 1?)

P =)

As discussed in section 3.5, the processes states for this HMM are represented by the
mixed states(2, 1), (1,0) and (0,1). Let

373
1 0
M = (2 _1>, (4.11)

which is an invertible, unit-sum matrix. Note that~' = M. Now, when we perform
the change of basis, we get

0 0qy—1 1 -3
U =MIT"M— = 5 1 , and (4.13)
1
Ut=MT*M~! = (8 8) (4.14)

The new coordinates for the process states, which are the images of the mixed states
under multiplication (on the right) by/ 1, are (3, —3%), (1,0), and(2, —1).

How can we make sense ¢F”, X, {U*},7)? If we try to think of1’ € V' as a
state in some variation on a Markov chain, it makes no sense at all — this?algfs
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in the role of a transition matrix, so we find ourselves looking at negative transition
probabilities. If we insist on this interpretation, then we must reject the whole idea of
GHMMs as absurd. But if we think of’ as an vector in a basis féf, there is no
substantial difficulty. A row of/* simply gives the coordinates of the image of some
basis element under a linear mapping, and a negative coordinate is a perfectly sensible
thing. Instead of contemplating possible meanings for negative probabilities, we simply
stop interpreting the matrix entriéé{; as probabilities. Essentially, we attribute meaning

to the entire matrix/¥ — it is a linear map — but not to individual entries in this matrix.

(We will continue to use the terrmixed statgalthough it is no longer apt.)

Definition 4.1.2. A Proto-Generalized Hidden Markov Model (Proto-GHMNS a
quadruple(V, X', {T*}, 7), whereV and X are finite sets, and eadtt is a|V| x |V|
matrix, and the following conditions are satisfied:

1. Y. 7T* is a unit-sum matrix

k
2. w is a unit-sum vector, and
T =Y T
k

We would like to have a Proto-GHMM define a process in the same way that an
HMM does, but this does not always happen, because of a complication introduced
by allowing negative entries in thg*s. Proto-GHMMs(V, X, {T*},r) and wordsw
exist such thatr7%1 < 0. An example is

11

V= {01}, X ={0,1}, 7r—<—,—>

2 2
0 —-1) S \2 0/

for which #7°T = —1. Clearly, then, a Proto-GHMM may fail to define a process. The
next two definitions address this problem.

Definition 4.1.3. A Proto-GHMM (V, X', {T*}, =) is valid if, for all words w € X'*,
it satisfiesz7%T > 0.

*The reader may wonder why we reqw @ U” to be unit-sum, when we could discard this restriction and have greater generality.

This extra generality costs us some convenlence For example, the fazctahdg T* are unit-sum guarantees t@P( )=1.

We can work around such difficulties, but there is no point — as we will see in chapter 5. Every process WhICh could possibly be
represented with this greater generality has a GHMM presentation.
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Definition 4.1.4. A Generalized Hidden Markov Model (GHMM$ a valid Proto-
GHMM.

This definition is precisely what we need in order to have GHMMs represent
processes.

Proposition 4.1.5. Every GHMM defines a process.

Proof. We prove this by applying B.1.1, whepgw) = =7%1. Thus we must verify
1. f(A\) =1, and
2. for all wordsw € X',

flw) = Zf(zw) = Zf(wz). (4.16)

2€EX zeX
Unlike previous applications of B.1.1, here we must also show fthat™ — [0, 1].

First, f(A\) = =T*I, whereT" is the identity matrix by definition and is unit-sum.
So clearly, f(A) = 1. Next, we deal withf(wz):

Z flwz) = Z TV 1

zeX 2€X

(4.17)
= 7T% (Z TZ> I.
zeX
But Y 7% is a unit-sum matrix, so this becomes
zeX
> flwz) =711 = f(w). (4.18)
zeX

The other equality in equation 4.16 may be handled by a similar calculation, using

© = x »_. T% in place of the unit-sum property.
zeX

Finally, we need to show that for an arbitrary warde X*, 0 < f(w) < 1. Half of
this is given by validity. Given the properties we have just shown, a simple induction
argument establishes that for &l

> fs)=1. (4.19)
seX!
Let / = |w|, and rewrite 4.19 as
L= fs)=fw)+ > f(s) (4.20)
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Both terms in this sum are nonnegative, so neither can be greatet .llan

We can characterize the preceding development as follows: A Proto-GHMM is an
object which would be an HMM if it didn’'t have negative entries in its matrices, and a
GHMM is a Proto-GHMM which never assigns a negative number to a word, and thus
defines a process. That is, we are allowing negative entries in transition matrices, but
only when the result works with the procedures we use for HMMs.

Testing the validity of a Proto-GHMM is nontrivial. Consider the obvious, naive
algorithm: Take the (countably infinite) list of all words .ii*, and write a loop which
computesr7¥1 for every wordw on the list. Make the loop halt if this quantity is
negative, and continue down the list if it is not. The Proto-GHMM is valid if and only
if the loop never halts. Clearly this is not a practical test. One can find improvements to
this algorithm which prune this list and thus typically reach invalid conclusions faster.
And there are some special cases in which validity can be established — for instance,
every HMM is a (valid) GHMM. Nevertheless, the essence of the test in the general
case remains the same.

We have now finished defining GHMMs, and we will present some results involving
them. The first of these is an extension of theorem 3.6.1 to GHMMs. The proof of 3.6.1
will serve as a proof of 4.1.6 without modification, so we will not give a separate proof
here. Recall thatV is the set of all signed measures on the future.

Proposition 4.1.6. Given a proces®, letl/ be the subset of¥ spanned by the reachable
process states. ® has a GHMM presentatioqV, X', {T*}, x), thendim (¢/) < |V|,

We conclude this section by restating and expanding on the basis change manipula-
tion we performed earlier in this section. We begin with the following result.

Proposition 4.1.7. If (V,X,{T*},x) is a GHMM and M is an invertible unit-sum
matrix, andV’ is any set of sizeV|, then (V', X, {MT*M~'} xM~') is a GHMM
which defines the same process(@X, {T*}, 7).

Proof. It may easily be verified thatV’, X', {MT*M =1}, #M~') is a Proto-GHMM.
And by the same arguments used above for conjugation of HMMs, we know that for
any w € X',

TUCT = 7 T"1. (4.21)
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The right side of equation 4.21 is always nonnegative, so the left side must be also.
Therefore(V', X', {MT*M~'}, #M~1) is valid, and thus it is also a GHMM

Definition 4.1.8. We say that two Proto-GHMMEV, X', {T*}, =) and(V', X, {U/*}, 7)
are conjugateto each other by an invertible unit-sum matrix if

1. V| = |V,
2. 7 =M1, and
3. forallk, UF = MT M1,

Note that this is a linear conjugacy, which is the only kind of conjugacy we will consider.

Proposition 4.1.7 tells us, then, that if a Proto-GHMM is conjugate to a GHMM,
then it is itself a GHMM.

Definition 4.1.9. When two GHMMs define the same process, we say that they are
equivalent

Thus the proof of proposition 4.1.7 also shows that if two GHMMs are conjugate,
then they are equivalent.

Lemma 4.1.10. If two GHMMs (V, X, {T*}.x) and (V', X, {U*},7), are conjugate
by an invertible unit-sum matrid/, then for allw € X,

UM = 7T". (4.22)

Note that since these two HMMs are equivalent, we know #¥&tT = 7U/*1. So
if we divide equation 4.22 by this quantity, we get

U v
M= (4.23)
TU%1 7 %1
which we may recognize as
N(UYM = N(=T"). (4.24)

That is, M takes mixed states to mixed states.
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Proof. We are given that/® = M7°M~1, U = MTIM =1, andr = =M ~1. Multiply
by M, and we haveVT° = UM, MT' = U'M, andr = 7M. Thus, for allw,
TUYM =7U" .UMM
= U U MT™
(4.25)
=7MT* ... T"
=77% N
The converse of proposition 4.1.7 does not hold — there are pairs of GHMMs

which are equivalent but not conjugate. This is caused by redundancy — extra states in
the presentation. In fact, there are pairs of such presentations which are both HMMs.

Consider 1
V =10,1,2}, & = {0,1}, :<_7_7_>
{ } { } g 3 3 3
0 5 0 7 00 (4.26)
=10 0 0o}, 7'={0 0 1],
0 3 0 1o o0
and 21 4
vi={0,1,2}, x={0,1 ::<_ ! _>
{ 0 }7 {7 }77T 97379
0 5 0 0.0 5 (4.27)
U=10 0 o), U'=[0 0 1
0 3 0 1o o

These are both presentations of the Golden Mean Process, which are redundant in
different ways. The reader may see this by noticing that statasd 2 — and (0’
and?2’ — have the same future conditional distributions. THugnd2 — and(0’ and
2! —can be merged.

To show that these presentations are not conjugate, we will show that there exists
no invertible unit-sum matrixd which takesz7* to ~U* for all w € X*. Lemma

w T U
0 (0,,0) (0,3,0)
01 (0,0, 3) (0,0, 5)
011 (£.0,0) (3,0,0)
0111 (5. 0,0) (0,0, 5)

Table 4.1 The actions of the HMMs given in equations 4.26 and 4.27 on selected words.
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4.1.10 tells us that each row of table 4.1 constrains the matrixThese constraints
are incompatible; the first three rows imply thatis the identity matrix, and the fourth
implies that it is not. Thus, no suitable matrik exists, so these presentations are not
conjugate.

4.2 Redundancy and Linear Algebra

In the last section we saw an example in which two equivalent presentations may fail
to be conjugate to one another, because they are redundant in different ways. We will
now study redundancy, and then return in the next section to GHMM equivalence. The
methods we will develop here give us a new way of describing the essential information
in a GHMM. In this new form, we will be able to identify and factor out redundancy,
which is the key to resolving the equivalence and minimization problems.

Vector SpacesWe begin by identifying two vector spacés and.F, which we will
call the history and future spaces. Given a GHMM X', {T*},x), let H be the span
of the set of all mixed states:

H =spaq N(zT")|w € X*}. (4.28)
In a complementary fashion, let
F = spar{T‘Sﬂs € X*}. (4.29)

Elements ofH are linear combinations of mixed states, which are row vectors, and
elements ofF are column vectors. Just &&(x7*) contains all the information about
the history suffixw that is relevant to the futurd;*1 contains all the information about
the future that is relevant to the past. Implicit in this is thaand I play analogous
roles which is suggested by the identitie§" 7* = = and > T*1 = I. Just as we may
usexT*" to calculate the conditional distrfbutions on théC future inducedvbyve may
useT*1 to calculate the conditional distributions on the past induced.b¥hus, we
may think of 7°T as a backward analog of a process state, and we may think of any
f € F as a linear combination of these.

Leth = N(xT%) andf = T*1. If we take the product of these, we det = P(s|w).
In considering the productf, we may think ofz as the linear functional and as the
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operand, or vice versa. In generalhife H and f € F, then we may think of. as a
maph : F — R defined byh(f) = hf, and we may think off as a mapf : H — R
given by f(h) = hf. ThusH andF are almost each other’s dual spaces.

But’H andF may not be each other’s duals. If there is redundancy in the presentation
states — that is, if there are distinct mixed states which induce the same conditional
future — then it may happen th&t and.F have different dimensions, and there may
be nonzerah € H for which hf = 0 for all f/ € F.

Let
Ky ={heH|forall feF, hf =0}, (4.30)

and similarly,
Ky ={feF|forallh € H, hf =0}. (4.31)

That is,h € H is in Kg if it is in the kernel of everyf € F. If h = x#T" is a
row vector induced by a woreb andh € K, we usually haveh = (0,...,0) and
P(w) = 0. In an HMM, this is the only way a row vector induced by a word may fall
in Kr. But differences between mixed states may liekig. Suppose two words:
andw; induce the same process std;|w;) = P(-|w2), and leth; = N(x1T*") and

ho = N(xT*?). Then for all wordss,

hT*T = P(s|wi) = P(s|wg) = hoT*1. (4.32)

Because everyf € F is a linear combination of column vectof&*T, this implies
hif =hof forall f € F, orhy —hy € Kr. If we know that the current history suffix
is eitherw; or w2, but we do not know which one, then our finding out which one
does not improve our ability to predict the future. And this works backward, too — if
hy — hy € K, thenw; andwy induce the same process stat€; contains exactly
those vectors which are irrelevant to the future of the process. For this reason we say
that A r consists of redundancy.

Similar statements are true abakiy;. If, and only if, /1, fo € F andhfi = hfo
forall » € H, thenf, — f> € Ky, and the distinction betweefy and /> is independent
of the history of the process.

Now we can eliminate this redundancy — factor it out, so to speak — by working
with the quotient space®//Kr and F/Ky in place of H and F. As the following
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lemma showsH /K r is in one-to-one correspondence withthe span of the reachable
process states, so it contains no redundancy.

Lemma 4.2.1. H/K r is isomorphic tol/.

Proof. Let > be the quotient map : H — H/Kr, and letM : H — U be defined

as follows: ifh € H, then M(h) is the signed measure on the future space given by
M(h)(s) = hT*1 for all s € X*. Now we can define our isomorphist H/K r — U.

If ¢ € H/Kz, chooseh € v~ 1(g) and defines(¢g) = M(h). The value ofs(g) does

not depend on our choice &f because ifi1, hy € v 1(g), thenhy — hy € Kz. This
implies thath,T°T = hoT*1 for all s, SO M(hy) = M(hs).

Because) and M are linear,» must be linear. To show that it is an isomorphism, we
must show that it is injective and surjective. The first of these is trivial: supp@se =
é(g2). If we chooseh; € ¢v~1(g1) andhz € ¢y "1(g2), we haveM (h1) = M(hz), which

is equivalent toh; T°1 = hoT*1 for all s. Thush; — ho € K7, SO¢1 = go.

Next we show that, is surjective. The definition o/ implies that there must exist
wordswi, . .., w, such that the process statks = P(-|w;), ..., A, = P(-|w,) form a
linearly independent basis fof. That is, there are no real numbers. . ., a,, such that

(a1A1+ ...+ a,Ay)(s) =0 for all s. (4.33)
For: =1,...,n,letg;, = ¢(N(xT"")). For all: and for all s, we have
o(gi)(s) = M(N(xT™))(s)
= P(s|w) (4.34)
= A(s),

S0 ¢(g;) = A;. Thus ifgy,..., ¢, were linearly dependeny, ..., A, would have to
be linearly dependent as well. 39, ...,¢, are a linearly independent basis for some
subspace of{/ Kr and¢ is a map which takes this basis to a basistforThis means
that ¢ is an isomorphism from this subspace obtoBut ¢ is injective and takes all of
H/K £ to U, hence this subspace is all &f/ K r.1

An element ofH/ K r is a set of row vectors, differences between which li&'in.
Similarly an element ofF/ K r is a set of column vectors which is parallel£g;. What
does a linear functional — a real valued linear function —NK r look like? It is
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simply a linear functional ori{ which is constant along directions which lie .
Every f € F is a linear functional ori{ which is zero on all ofK r, so everyf € F

is a linear functional or{/ K. Note thatf,, fo € F represent the same functional
on H — and thus orH/Kr — if and only if f; and f» differ by an element ofi'y.

So all of the column vectors in anye F/ Ky represent the same linear functional on
H/Kr. So we may say that is that functional. And ify € H/Kr, we havege = hf

for anyh € v'~!(¢) and for anyf € F taken by the quotient map to Likewise, each

g € H/K# is a unique linear functional o/ K+. SoH/K r andF /Ky like H and
F, consist of elements of each other’s dual spaces. But unlike elemeftsaoid 7,
elements ofH/Kr and F /Ky contain no redundancy.

Lemma 4.2.2. H/ Ky and F /Ky are each other’s dual spaces.

Proof. We have seen that eveeye F/K1y is a unique linear functional ot/ K r.

Thus, to show thatF/ Ky is the dual ofH/Kr, we need only show thaf /Ky
contains the entire dual space rather than a proper subspace. Similarly, we must show
that H/K r contains the entire dual of / K.

Letn be the dimension of{/ K r, and letn be the dimension of / K. Letgi, ..., g

be a linearly independent basis faf/ K+ and letey, ..., e, be a linearly independent
basis forF/Ky. Finally, let A be then x m matrix with entriesA;; = g;e;. Suppose

a linear combination gy + ...a,g, IS taken to zero by all o, ..., e,,. It must be

taken to zero by every € 7 /Ky, and hencéaig; + ...ang,)f = 0 for every f € F.

This is possible only iti1g1 + ... angn = 0, SO the rows ofd are linearly independent
and A has rankn. A similar argument shows that has rankm, son = m. Hence

H/ K7 and F/ Ky have the same dimension, so neither can be a proper subspace of
the other’s dual space. Each must be the dual space of the diher.

Bases We will now move on to more concrete and more readily manipulated forms of
these vector spaces. In particular, we will be working with bases for subspatearud

F that are isomorphic té{/ K+ and.F/ Ky, respectively. In addition, we will want to

be able to refer to our basis vectors in a way that does not depend on any basis derived
from a presentation. Thus we will choose basis vectors which are associated with words.
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Definition 4.2.3. A wordlist W of length [ is a finite list (ordered set) of words

wi,...,w; € X*.

Given a wordlist¥ of length! and a GHMM(V, X', {T*}, ), we define thé x |V/|
matrix H as follows: theith row of H is N(x7T*). We call W the history wordlist
and H the history matrix Similarly, given a wordlistS' of lengthm, which we will call
the future wordlist we define th€uture matrix /' to be the|V| x m matrix whoseith
column is7*1. Note that// and I are functions ofi’ and S, respectively. We will
sometimes write// (W) and F'(S) to avoid ambiguity. We will usé/ and ' to denote
the span of the rows off and the columns of’, respectively.

Because we wanf/ to contain a representation of every process state, we are
interested in wordlists which induce a sufficiently large basis.

Definition 4.2.4. A history wordlist W is sufficientfor a given GHMM, or simply
sufficient if the span of the rows off (W) satisfies

spaf H U K7} = H. (4.35)

Similarly, a future wordlistS is sufficient if the span of the columns of(5) satisfies
spa{ U Ky} = F.

This definition means that a history wordlist, for example, is sufficient if the rows
of H, mapped intoH/K r by the quotient mag>, form a basis forH/K r.

It is possible for a sufficient wordlist to contain words which are not needed for
sufficiency. As we will see shortly, removing such words is desirable.

Definition 4.2.5. A history wordlist is minimal if it is sufficient and it has length
[ =dim {H} — dim { Kr}. Similarly, a future wordlist is minimal if it is sufficient and
it has lengthm = dim {F} — dim {Ky}.

If W and.S are minimal history and future wordlists, théh and K » are compli-
mentary subspaces &f, and ' and K3, are complimentary subspaces Bf

Proposition 4.2.6.1f W is a minimal history wordlist, thed/ is isomorphic toH /K .
Similarly, if S is a minimal future wordlist theri” is isomorphic toF/ K. In both
cases, the restriction of the quotient map —fcand /' as appropriate — is a suitable
isomorphism.



66

Proof. If W is a wordlist of length, thendim {#} < (. But if W is sufficient, then
H and K r together spart{, so

dim {H } + dim {K#} > dim {H}. (4.36)
If W is also minimal, this implieslim {# } > /, so we havelim { H } = [ and
dim {F} +dim{Kr} = dim {H}. (4.37)

Thus the rows offf must be linearly independent. Furthéf, must be independent of
Kr, so we can write

H=HaoKr. (4.38)

Thus H is complementary td<+, and the restriction of the quotient map b is an
isomorphism betwee®/ and®/K . A similar proof holds forS, F, and.F /K1

Proposition 4.2.7. If W and S are minimal wordlists, then
(W] = |51,

rank H) = rank /'),

dim(#/) = dim(#'), and

I and I are each other’s dual spaces.

w0 D PE

Proof. H is isomorphic toH/K #, and F' is isomorphic taF/Ky. Lemma 4.2.2 tells

us thatH/ K andF/ K4 are dual to each other, and we know that these isomorphisms
preserve the products of elements. Thisand /' must be each other’s dual spaces,
which proves (4). This, in turn, implies (1), (2), and ).

We began this section by defining the vector spdg¢eend.F so that elements df
represent conditional distributions on the future, and elementsrejpresent conditional
distributions on the past. Bat and.F contain subspaces of redundanéy; and K.
Now, if W and S are sufficient, we have vector spadésand F, the elements of which
still encode the same set of conditional distributions, and we have Basasd F' for
H and F, respectively. In addition, i#¥ and S are minimal, H and F' contain no
redundancy and! and /" are linearly independent bases.

Note that we have now shown that if our history wordlist is minintalis isomorphic
to Z{. In particular, we have a natural map from one to the otheA ¥ ¢/, then there
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is a uniqueh € H such that for alls € X*, we haveA(s) = hT°I. That is, ifh is

a mixed state, it is the mixed state representationAfor(This 4~ may be found by the
techniques used in the proof of lemma 4.2.1, which involve building a basis of process
states and a corresponding basis of mixed states induced by the same wordsfy Thus
may be thought of as a version#fconsisting of tangible vectors of real numbers rather
than the more abstract signed measures on an infinite sequence space.

As the following proposition establishes Jif and.S are sufficient, then the matrices
H and F, like the vector space® and.F, can tell us whether or not a distinction is
independent of the past or of the future. AndMif and S are minimal, then// and I
contain no redundancy, in the sense that no row vector in the spAni®independent
of the future, and likewise fof'. We will work with minimal wordlists whenever we
can because the absence of redundancy makes it easier to determine whether or not two
processes states are distinct.

Proposition 4.2.8. If W and S are sufficient,f € F, andk € H, then

0
1. fe Kyifandonlyif Hf = | : ], and

0
2. h € Kgifandonly if hF = (0,...,0).
Proof. If f € Ky andh is a row of H, thenh € 'H, sohf = 0. If f & Ky, then there
is someh € ‘H such thathf # 0. Any vector inH can be written a® = cH + k, a
linear combination of the rows o/ plus somet € Kx. Thus we have

04 hf =cHf +kf, (4.39)

0
where we know that f = 0. So this become8 # ¢H f, which impliesH [ #

This proves (1), and a virtually identical argument provedli(2)

Recall that each row off is associated with a particular word: thié row of H is
the mixed statéV(z7"), wherew; is theith element ofi’. Similarly, the;jth column
of F is T*1, wheres;, is the jth element ofS. Thus H F is the matrix of conditional
probabilities given by

(HF);; = N(xT")TT = P(s|w;). (4.40)
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Also, becausél and S have the same lengttH ' is square.

Corollary 4.2.9. If W andS are minimal, therH F' is a nonsingular matrix. Conversely,
if W ands are sufficient and one or both Bf andsS is not minimal, therf/ £ is singular.

Proof. Supposev is a row vector such thatHF = (0,...,0). Then(vH)F =
(0,...,0),s00H € Kr. ButvH € H, and sincéV is minimal, F NKx = {(0,...,0)}.
Thus we havenH = (0,...,0). The rows ofH are linearly independent, so we must
havev = (0,...,0). That s, if a linear combination of the rows &fF" is the zero row,
then all of the coefficients of the linear combination are zero. Hence the rowsof
are linearly independent. And F' is square, so it is nonsingular.

Conversely, assume thHt is not minimal. The case in which is not minimal may be
treated similarly. Lef?’ be a minimal wordlist which is a subset 8f, and let/I’ be
the history matrix induced bi#’. Now we consider two cases. In the first, the rows of
H span the same space as the row$/6f This means that the dimension Bf must be
less than the number rows #. Thus the rows off must be linearly dependent, which
implies that the rows of/ I are linearly dependent. In the secoiljs larger than the
span of the rows of/’. But the span of the rows of’ is isomorphic toH /K ». Any
larger subspace oft must contain nonzero vectors which lie &y and which are sent
to zero byF'. Thus the row span off is reduced by multiplication by, which means
that the rows oft/ I' are linearly dependeill.

Wordlists In the next section, we will us& andF extensively, as they will be our
primary tools for solving the equivalence and minimization problems. In the remainder
of this section, we will discuss the construction of these matrices and the construction
of the wordlists on which they depend.

The next lemma is a minor fact which we will need in section 4.3.
Lemma 4.2.10. If S is sufficient andh € Kz, then for anyk in the alphabetY’,
KTk € Kr.

Proof. Our assumption that € K~ implies that for all words, 271 = 0. This means
that for anyk, for all wordss, hT*T = 0, simply becausés is a word. Thus we have
(RT*)T*T = 0 for all words s, which implies thath7* € K .1
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Two facts make the construction of sufficient wordlists feasible. Fifsis a vector
space spanned by the mixed states, which are vectors of Ie¢rigtiso a basis fofH
— or any subspace dff — need not have more tha#’| elements. Similarly, a basis
for F need not have more thal| elements. So wordlists never need to be longer than
|V] in order to be sufficient. Second, we have the following fact of linear algebra.

Lemma 4.2.11.1f v € spadvi,...,v,}, and A is any matrix such that the produeti
is defined, thentA € spafviA,... v, A}.

Proof. There must exist numbers. ..., ¢, such thatu = cjv; + ... + cpv,. But then
uA = cpviA4+ ... F e AR

We construct sufficient wordlists using the following algorithm, which is used for
a somewhat different purpose in [8].

Algorithm 4.2.12. Let () be a queue — a first-in, first-out list -© of words, and let
and letW be a list of words. Queu€ will store a list of words which the algorithm
has determined it must examine, avd will store the developing wordlist.

Initialize @ to contain only the word\, and initializeW to be empty.
2. Take a word: from the tail of and test whether of na¥ (#7%) lies in

spaq N(7T")|w € W} = spar{rows of H(WW)}. (4.41)

If it does, discard and skip forward to step 6. (Otherwise, continue with step 4.)
Add = to the wordlist\V.

For eachr € X', add the word:« to the head of).

If ¢) is not empty, go back to step 2.

N o g M w

Stop. @) is empty, andi’ contains the completed wordlist.

Algorithm 4.2.12 builds only history wordlists, but a virtually identical algorithm
builds future wordlists.

Proposition 4.2.13. The wordlists constructed by algorithm 4.2.12 are sufficient. In
fact, for these wordlistsH = H.

Proof. We need to show that if € H, thenk € H. Everyh € H is a linear combination
of vectors of the formV(z1'*) for somew € X'*, so it will suffice to consider vectors
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of that form. Suppose there exists a wardsuch thatN(77Y) ¢ H. Let z be the
longest prefix ofy such thatN(xT%) € H. There is at least one such prefix, namely
A. Let » be the symbol which follows in y — that is, choose: € X' so thatzx is

a prefix ofy. Thus N(zT%") is not in H.

Now, we have chosen so that N(z7%) is in H = spar{N(zT%)|w € W}, but
N(=xT#*) is not. By lemma 4.2.11, we know tha¥(x7%)7T* is in the span of
{N(#T*)T"|w € W}, or equivalently,

N(#xT**) € spaq N(#T"*)|w € W}. (4.42)

Because the algorithm added eachto W, we know that it added the words» to

the queue. Thus the vectoMs(=7"") were subsequently tested against the developing
basis and added to the basis if it did not already span them. Hence we know that for all
w € W, the vectors/ (#7%) lie in H, so N(xT*") is a linear combination of vectors
which are known to be irf7, thus it is itself in/Z. This is a contradiction, hence no
words y can existll

Sufficient future wordlists may be constructed by an essentially identical process.

Lemma 4.2.14. A GHMM (V, X, {T*},x) has sufficient wordlist§V" and S, every
word of which has length less tha#|.

Proof. The construction we have just given has the property that i§ not added to
W, then no words of the form > can be added tbl’. Thus ifw is in W, every prefix

of w is in W as well, including the length zero word This means that if a word of
length!/ is added to a wordlistV/, thenV has at least one element of each of the lengths
0,1,....1 and thus contains at least- 1 elements. Note that the wordlists constructed
here never have more thal| elements because rows &f are linearly independent
and span a subset Bf"|. Thus a word of lengthi’| or more can never be added .

A virtually identical proof holds forS.l

Once we have sufficient wordlists, we can get minimal wordlists simply by extracting
appropriate subsets. Suppose we have history and future wordlisiad S, we take
H(W)F(S) and delete every row which is linearly dependent on those which precede
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it. The words associated with the remaining rows form a new wordlist and the
remaining rows themselves fori (W) F'(S).

The rows of H(W')F(S) are now linearly independent, which means the rows of
H(W'") are independent. Moreover, because we only deleted linearly dependent rows,
the row span of (W) F'(S) is the same as that ¢f (1) F(S). The properties of” are
such that we can be suré(W') has the appropriate span. As we will show next, the
resulting wordlisti?’’ is minimal. The analogous construction, deleting columns instead
of rows, builds us a minimal future wordlist'.

Proposition 4.2.15. Let W and S be sufficient wordlists. Ifi¥’ is a subset ofi}’
such that

1. the row span of/ (W')F(S) is the same as that af (W)F(S), and
2. the rows of H(W')F(S) are linearly independent,

then W' is minimal. Similarly, if S’ is a subset of5 such that

1. the column span off (W)F(S') is the same as that df (W)F(S), and
2. the columns off/ (W) F(S’) are linearly independent,

then S’ is minimal.

Proof. As usual, we have separate statements about the past and the future, and we will
only prove the one about the past, as essentially the same argument will serve for the
future. We will not need to refer t&'(S’), and will useF” = F(S).

We will first show thati¥’ is sufficient, that is, that the rows @f (W), together with
Kr, spanH.

Let Ay,...,h, be the rows of H(W). If h € H, then there exists a vecter =
(ai,...,ay) such that
h=ath1+...+aphy,+k
(4.43)
=aHW)+k

for somek € K. Multiplying on the right by/', we havehF = « H(W)F + kF. We
know thatk F' = 0, soh F is in the span of the rows df (W) . But the rows oftf (W) F
have the same span, so there must exist some vestach thath I’ = cH(W')F. This
is equivalent to(h — cH(W'))F = 0, which means that — cH(W') is in K. Thus
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h = cH(W') + K for somek’ € Kr. Thus Kx and the rows ofd (W') spanH, so
W' is sufficient.

Showing thatW’ is minimal is now trivial. The rows ofH(W')F are linearly
independent and multiplying by' cannot eliminate any linear dependency which is
in the rows of H(W'). So the rows ofH (W’) are linearly independent, and” is
minimal A

In this section, we have studied the relationship between the past and the future in
terms of linear algebra. As part of this study, we introduced and defihead F', and
showed how to construct them and their associated wordlists. Next, we will begin to
use them to identify and eliminate redundancy from GHMM presentations.

4.3 Equivalence and Minimization of GHMMs

This section addresses two problems. The first of these, which we discussed in
section 4.1, is thedentifiability problem: When are two GHMMs equivalent? That is,
when do two GHMMs define the same process? The second msithimizationproblem:

Given a GHMM, what GHMM is as small as possible — that is, has as few presentation
states as is possible — but is equivalent to the given one? These two questions are
closely related, and have been studied for HMMs for some time. The identifiability
problem is the more famous of the two and was posed by Blackwell and Koopmans in
1957 and solved by Ito et al in 1992, by a methods similar to the one presented here.[2,7]
The minimization problem is nearly solved in the same paper, and was completed by
Vijay Balasubramanian.[8] The details of the method presented here are the work of the
author. Notably, the standard presentation, which is important here and again in chapter
5, does not appear in any previous paper, though related presentations have appeared
before beginning with [20].

Suppose we have a GHMM presentatiol, X', {7*}, =) for a processP and
wordlistsW and S such thatH and /' are invertible. (This can only happen if there is
no redundancy, that is, ik and Ky are trivial.) We are now going to define a sort
of a canonical presentation f@, which we will call thestandard presentatiofor P,
which in this case is conjugate {0/,.X, {T*}, =) by H.
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If we conjugatel'* by H, we getB* = HT*H =1, and if we writeH ! asF(HF)*,
we have

BY = HT*F(HF)™. (4.44)

We will call the matricesB* the standard transition matricefor the process® given
W and 5. As we know, eacHH F');; is simply P(s;[w;). Similarly, for all £ € X
and for allz,; € V,

<HTkF> = N(zT%)T*Ts T
iy (4.45)

= P(ksj|w;).
In words, HT*F exhibits the action of the map* in terms of the bases — the rows
of H and the columns of" — we have developed for the past and the future. And
both (HF)_1 and HHT*I" are entirely determined by probabilities of words — by the
process, rather than by the presentation. This fact is key to the algorithms of this section
and the next chapter.

The same is true of the initial vector
v=rH '=xFHF)", (4.46)

since (7 1), = P(s;). We will refer to as thestandard initial vectorfor 7 given
W and S. Thus~ and B* depend only on the wordlists and the process, and not on
the GHMMs themselves.

The following definition assembles the standard transition matrices and the standard
initial vector into a presentation. We may choose any set of diZzeas the set of
presentation states. It will be convenient to chodsébecause, as we will see shortly,
the presentation states are associated with the wortls.i\Iso, recall corollary 4.2.9,
which tells us thatH /' is invertible.

Definition 4.3.1. If (V, X, {T'*}, =) is a GHMM presentation for the proceBsand W/
and S are wordlists such that the matriX ' is invertible, then we define th&tandard
presentationfor P given W and S to be

<W, X, {Bk} , 7>, (4.47)

where B* = HT*F(HF) " andy = xH ™' = z F(HF)™".
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The following result establishes that H and /' are invertible, the standard pre-
sentation forP is in fact a presentation, and that it is a presentatiori/forin 4.3.10,
we will establish that the standard presentation is a presentatidAvitneneverH F' is
invertible, that is, whenever the standard presentation is defined.

Lemma 4.3.2.Let (V, X, {T*},~) be a GHMM presentation for the proceBsand let
W and S be wordlists such that the matricésand /' are invertible. Then the standard
presentation fof? given W and S is a GHMM presentation foP.

Proof. The standard presentatighV, X', { B¥},~) is conjugate toV, X', {T*}, =) by
H. Given this fact, proposition 4.1.7 tells us thd@, X, {B*},~) is a GHMM and
that it is equivalent toV, X, {T*}, ).l

Suppose we have a second GHMM’, X, {Uk},r) which is equivalent to our
first GHMM, (V,X,{T*}, 7). If we take its history and future matriced’ and
F' with respect to the same wordlist$ and S, then we must havel' ' = HF,
H'UFF' = HT*F, andrF"' = =F. The for both presentations generate the same
and the same set d#*s and so they generate the same standard presentation. In this
sense, the standard presentation plays a role similar to that of a canonical form. But
because the standard presentation depends on the wottliated S, there is no single,
absolute standard presentation. This is why we call itsthedardpresentation and not
the canonical presentation.

In other words, suppose we have two equivalent GHMMs, and we have wordlists
such that both GHMMs’ history and future matrices are invertible. Then they must
produce the same and B*, and therefore they must both be conjugate to the standard
presentation. We know that if two GHMMs are both conjugate to a third GHMM, then
they must be equivalent. So using standard presentations shows promise of resolving
the identifiability problem. The approach above for constructing the standard transition
matrices will not work in general, because the assumption #haind ' are invertible
may fail. However, there is a generalization of the standard presentation which we can
always construct, and so we can give a new solution to the identifiability problem using
this generalization.

Theorem 4.3.3. Suppose we are given two GHMMYV, X, {7*} r) and



75

(V' x,{U*},7), and letW and S be history and future wordlists which are sufficient
for both of them. LetP be the probability measure induced by, X', {T*}, =) and
let Q be that induced byV’, X, {U*},). The GHMMs are equivalent — that is,
P = Q — if and only if all of the following hold:

for all w; € W ands; € S, P(s;|w;) = Q(s;|ws),
for allw;, € W, s; € S, andk € X, P(ksj|w;) = Q(ks;|w;), and
3. foralls; € 5, P(s;) = Q(sy).

We will prove this by showing that the probability of any word is determined by
these few probabilities, these few conditional probabilities, and the informatiovithat
and S are sufficient. Thus the entire process is determined by these same few pieces of
information. At this point, it is worth recalling Bayes rule P{s|w) = P(ws)/P(w)

— because it tells us that we can compute the necessary conditional probabilities from
the (non-conditional) probabilities of all words;, s, w;s;, andw;ks; for all w; € W,

sj € S, andk € X'. We can ignore the possibility th&(w,) = 0 for somez, and hence

that P(s;|w;) will not be well-defined, because the row Bf corresponding to thab;

must lie in K. Such a row is never needed in the basis.

The proof itself, which begins on page 79, uses a number of lemmas, most of which
are proved by calculation and use of the propertie aind /'. These lemmas develop
a generalization of the standard presentation. Note that we are UsSiag a set of
presentation states. Recall that we concluded in chapter 3 that the role of presentation
states was to serve as basis vectors for the space containing the mixed states. Here, we
use this the other way, and having chosen a basis for the mixed states, we will use the
elements of that basis as presentation states. Arguably, the presentation states should be
labeled with the mixed states, rather than the string®/irwhich induce those mixed
states, but we will use the strings themselves for brevity and clarity.

Whenever two GHMMs share an alphahét is always possible to find wordlists
which are sufficient for both of them. I#/; and W, are sufficient for(V, X', {T*}, x)
and (V', X, {U*}, ), respectively, then the wordligt” = W U W,, with words in any
fixed order, will be sufficient for botlfV, X', {T*}, ) and (V', X, {U*}, 7).

TTwo GHMMs which have distinct alphabets always represent different processes. In some applications, however, it may be
desirable to map one alphabet onto another so as to sidestep this fact.
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WhenW and S are not minimal, and thu# /' is not invertible, we can no longer
define the standard transition matricd@§. It is still possible, however, to define a form

of the standard presentation, though we can no longer define it as simply as we can if
W and S are minimal.

Definition 4.3.4. Given a GHMM presentatiorfV, X', {T*}, ) of a processP and
sufficient wordlistsW and S, we say that( W, X', { B¥},~) is aquasi-presentatiorif

1. for eachk ¢ X, B¥ satisfiesB*HF = HT*F, and
2. v satisflesyHF = 7F.

We refer toB* and~ as aquasi-transition matrixand aquasi-initial vectorrespectively.

If HF is invertible, then there is a unique quasi-presentation for a prdeegsen
W and S, and it is the standard presentation. Otherwise, quasi-presentations are not
unique. Lemma 4.3.5 shows that quasi-presentations exist.

Lemma 4.3.5.1f W and S are sufficient, then for eachthere exists a quasi-transition
matrix B* such that

B*HF = HT*F, (4.48)

and there exists a quasi-initial vectorsuch thatyH ' = = F'.

Proof. Let h; = N(xT™) be theith row of H. Then theith row of HT* is
hT* = N(xT%)T*, which must lie in4. The rows of I and elements of\ r
span’H, so there is some € Kr and some: € R™ such thath;7* = «H + v. This
means that,T*F = «HF. Let theith row of B* be a.

Likewise, = is in H, so we can findy € R" andv € K such thatyH + v = », and
hencevHF = '

The next lemma depends on the normalization of the row# ofin fact it is the
reason we definedd — and indeed — using N(#x71™) instead of the simplex7™.

Lemma 4.3.6. The matrix 5. B* and the vector are both unit-sum.
keX

Proof. Becausel is an element ofF, there exists am € R" and anu € K such that
1= Fa+u. ThusHI = HFa, and since the rows off are mixed states and so must
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be unit-sum, we havé = H Fa. Similarly, for all k € X', we can write
HT* = HT*Fa + HT*u (4.49)

But each row of/T* is in H, so HT%u = 0 and we haveld T*1 = HT*Fa. Now,

S°T* is unit-sum, so if we sum oh, this becomed = H Y. T*Fa.
k ;

Summing 4.48 onkt gives us
(Z Bk> HF = H (Z Tk> F. (4.50)
keX keX

If we multiply on the right bya, we can substituté for / F'a and for # 3" T* Fa, and
k

we have (E Bk>f = 1.
k
Similarly, vHF = = F becomesyH F'a = = Fa, which in turn becomes! = 1.1
Lemma 4.3.6 establishes th@ltV, X', { B*},~) satisfies conditions 1 and 2 of the
three conditions of definition 4.1.2, which defines a Proto-GHMM. The next lemma tells

us that it may fail to satisfy the final condition =~>_ B* may differ from~, but only
k

by a vector inK r.
Lemma 4.3.7. For some vector such that-H F = 0, ~ satisfiesy . B¥ = ~ + r.
k

Proof. Becausey is known to satisfyyH F' = = I, there is av € Ky such that
~H = 7m + v. Thus,

’yHZTk:ﬂ'ZTk—I—vZTk
k k k

(4.51)
=7+ v
for somev’ € Kx. Similarly, 4.50 tells us that
HY Th=> B'H+A (4.52)
k k

for some matrixA, all rows of which lie in K. When we substitute the right-hand
side of equation 4.52 into equation 4.51, we haye B*H — 7+ —~ A, from which
k

the substitution ofy H — v for = gives us

’yZBkH =~H + v —~A—w. (4.53)
k
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Multiplying by F', we have

v B"HF =~HF. (4.54)
k
Thus, there is some row vectersuch that- HF = 0 andy > B* = v + r. I
k

We would like lemma 4.3.7 to have established that B* = ~, because that would

have completed the verification thgtV, X, { B}, ) ié a Proto-GHMM. However,

this is not always the case — a quasi-presentation is not always a Proto-GHMM. If
HF is invertible — that is, ifi’ and S are minimal — then(W, X', { B*},~) is the
standard presentation. In this case, we do have a Proto-GHMM, which we may prove by
multiplying equation 4.54 bYHF)_l. We will soon show that the standard presentation

is, in fact, a GHMM equivalent t¢V, X', {T*},7), and we will use this fact later in

this section when we address the minimization problem.

In the next lemma, which is the key step in the proof of theorem 4.3.3, we establish
that the quasi-initial vectoy and the quasi-presentation matride$ can reproduce the
probabilities of words given by the initial vecterand the transition matricé&*. Here,
we begin using the quasi-transition matrices as transition matrices, with the convention
that if z = z;...z, IS a word, thenB* = B* ... B¥,

Lemma 4.3.8. For all = ¢ X,

1. HT"F = B*HF,

2. #T°F = ~B*HF, and

3. #7°1 = vB*I.

Proof. We will prove by induction on the length of. If the length is one, then 1 is

equivalent toB*HF = HT*F, which B* satisfies by definition.

If « has length greater than one, then we can write- y4& for £ € X andy the
prefix of  with length || — 1. We will assume, as our induction assumption, that
HTYF = BYHF. This means that there is some matrxsuch that

HTY = BYH + A, (4.55)
and all rows ofA lie in K. Now, multiply on the right by7’* and we have

HTYT* = BYHT* + AT, (4.56)
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BecauseB* is defined to satishB*HF = HT*F, we know thatdT* = B¥H + C for
some matrix(, all rows of which lie inK 7. Making this substitution foi7* on the
right-hand side of 4.56 and writing’ = C' + AT*, we have

HTYT* = BYB*H + (. (4.57)
Note thatC’F' is a matrix of zeros. Thus, if we multiply equation 4.57 by we have
HTF = B*HF, (4.58)
which proves 1.
Note that we have shown that
HT® =B*H+ A (4.59)

for some matrixA such thatAF is a matrix of zeros. Multiplying byy and then
substitutingr + v for vH gives us

7T" + 0T = yB*H + v A, (4.60)

for somev € K. Note that bothv7* and~A lie in Kx. Now, if we multiply by
I, we get

7T"F =~yB*HF, (4.61)
thus proving 2.

And finally, if we multiply equation 4.60 by, we have
*T%T = vB*HI. (4.62)

BecauseH is a unit-sum matrix, equation 4.62 proved3.

We have now defined quasi-presentations, proven that they exist, and proven that
they determine the probabilities of all words. Having done so, we are ready to prove
theorem 4.3.3.

Proof of Theorem 4.3.3. If two GHMMs (V, X, {T*},x) and (V', X, {U*},7) are
equivalent, then they agree on the probabilities of all words, and thus an all conditional
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probabilities. The interesting part of the theorem is thatlifand S are sufficient
for both (V, X, {T*},x) and (V', X, {U*},7), and if these two GHMMs agree on
the probabilitiesP (s|w), P(ks|w), andP(s) for all w € W, s € S, andk € X, then
(V, X, {T*}, ) and(V', X, {U*},7) are equivalent. We will prove this by constructing
a quasi-presentation fg#, X', {7* }, =) and showing that it is also a quasi-presentation
for (V/, &, {U*}, 7).

Let H; and F; be the history and future matrices fov, X, {T*},x) and letH, and
%, be the history and future matrices for’, X', {U*}, 7). Let us recall the hypotheses
of this theorem.

1. For allw; € W ands; € S, P(sj|w;) = Q(sj]w;),
2. Forallw; € W, s; € S, andk € X, P(ksj|w;) = Q(ksj|w;), and
3. For alls; € S, P(s;) = Q(s)).

First, P(s;[w;) = (HiF1);, andQ(sj|w;) = (HaF3);;, so 1 is equivalent tdf I =
HyFy. Second,P(ks;lw;) = (HlTkFl)z.j, and Q(ks;|w;) = (HzUsz),»j, so 2 can
be written as follows: for alls, H\T*Fy = HoU*F,. Last, P(s;) = (vF1);, and
Q(sj) = (rt32);, so 3 becomes F; = 7F,. Thus, what we need to show is that
these three facts —H1Fy = Hyly, HiT*Fy = HURF, for all k, and 7 Fy = 7%
— together imply thatP(z) = Q(z) for any = € X*, whereP(z) = «7°1 and
Q(z) = rU*T. Let~ be any solution toy [/, I, = = F, and for allk, let B* be any
solution to B*H, Iy = H\T*Fy. Then(W, X, {B*},~) is a quasi-presentation for the
process represented by, X', {T*}, 7). Lemma 4.3.8 now tells us that for anyc A'*
*T°1 = vB*1.

But we know thatH{Fy = HoF, andxly = 1F,, so~ satisfiesyHsFy = 7F5.
Similarly, eachB* satisfiesB* H, I, = HU* Fy. Thus,(W, X', { B*},~) is also a quasi-
presentation fofV’, X', {U/*}, 7). So lemma 4.3.8 tells us that for all 7U*T = v B"1,
and therefore that for alt, 7U*1 = =7*1.1A

Corollary 4.3.9. If (V,X,{T*},x) and (V',x,{U*},r) are two GHMMSs which
assign the same probabilities to all words of length less thameither of which has
more thann states, then they are equivalent.
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Proof. Lemma 4.2.14 tells us that we can find wordligtsand .S in which all of the
words have length at most— 1. For such wordlists, all words of the formy;, s;, w;s;,
and w;ks; have lengths less thatn, so (V. X, {T*} ) and (V', X, {U*},7) must
agree on allP(s;|w;) = P(w;s;)/P(w;), P(ksjlw;) = P(w;ks;)/P(w;), andP(s;).
Thus, by theorem 4.3.3, they are equivallint.

With this machinery in hand, we can resolve the minimization problem.

Theorem 4.3.10.Given a GHMM (V, X, {T*},x), let P be the process it represents,
and leti¥ andS be minimal wordlists. Then the standard presentatién.X’, { B*}, v)

for given W and S is a GHMM, and it is equivalent t§V, X', {T*}, x). Furthermore,
no GHMM exists with fewer thai¥'| states which is equivalent @/, X', {T*}, 7).

Proof. As noted on page 78, wheH F' is invertible,y = > B*~, and the standard
k

presentation is a Proto-GHMM. We established in lemma 4.3.8that = =71 for all
@ € X'*. This proves both that it is a GHMM and that it is equivalen{to.X', { 7%}, 7).

Because the rows o /' are linearly independent, and these rows consist of conditional
future probabilities, we know that the process stdé¢gw,) are linearly independent.
Thus the span of the reachable process states has dimension gifléadn fact, if

we combine lemma 4.2.1 and proposition 4.2.6, we have proven that its dimension is
exactly|W|. If a GHMM has fewer thaniV'| states, then it induces a process for which
the span of the reachable process states has dimension les§ithaand thus it cannot

be equivalent to(V, X, {T*},r).H

We conclude this section with a result — the existence of conjugacies — which we
promised in section 4.1. This was first shown — for functions of finite Markov Chains
— by Gilbert [20].

Proposition 4.3.11. Let (V,X,{T*},x) and (V/,x,{U*},7) be two minimal,
equivalent GHMMs — that is]V| = |V'| = dim (i), wherel/ is the span of the
reachable process states. Then there exists a matrsuch that(V, X, {7*}, =) and
(V,x,{U*},7) are conjugate byM.

Proof. Let W and S be minimal wordlists for(V, X, {T*}. ), and letH; and F}
be the associated history and future matrices. Bec@éildsand .S are minimal, H; Iy
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must be invertible. We know that’| = dim(¢/), and for minimallW we know that
|W| = dim(Z{). But H; has|W| rows and|V'| columns, so it must be square. Likewise,
F1 must be square and both; and F; must be invertible.

Let H, and /> be the history and future matrices for’, X', {U*}, 7). Then the process
statesP(-|w;) form a linearly independent basis fof, hence the rows of/; must be
linearly independent. Thu#,, F1, and H, are full rank square matrices, and must be
invertible. We also know that/; 7'y = HyF, is invertible, soFy = H;H;Fy must
be invertible.

Now, we calculate. We havB,U*F, = H{T*F, andxFy = 7F, SO
UF = 07 Hy TR R (4.63)

andr = =/ F; . And if we let M = F; [y, M is a unit-sum matrix. And
Iy = HyFy implies H; VPP = 1, so M~™' = FiF;'. So equation 4.63
may be writtenl’* = MT*M~!. Moreover, we have = = F; ! = #M~!. Thus
(V,x,{T*},7) and (V', X, {U*},7) are conjugatd

We began this section by defining a GHMM to be a representation of a process
similar to an HMM, but with negative entries allowed in its transition matrices. We
studied the vector spaces of conditional distributions on the future induced by history
words and of conditional distributions on the past induced by future words. We
found bases for these vector spaces in terms of these same words. These bases were
instrumental in resolving the identifiability and minimization problems, and they led
us to the standard presentation. We have shown that the standard presentation is a
GHMM presentation for a process, and we have observed that it is determined entirely by
probabilities of words. In the next chapter, we will use this fact to construct presentations
directly from probabilities of words — that is, directly from the process.
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5 Reconstruction

The subject of this chapter is threconstruction problemwhich has two versions.
In both, the objective is to construct a presentation for some process given certain
information about that process. In the first, which we will catonstruction from
probabilities the given information is the probability the process assigns to every word
in X*. In the second, which we will calieconstruction from a samplehe given
information is a sample of the process’s output. We will use this sample data solely to
estimate probabilities of words, so reconstruction from a sample may be viewed as a form
of reconstruction from probabilities in which the probabilities are only approximately
known. Alternatively, reconstruction from probabilities may be thought of as an idealized
form of reconstruction from a sample, in which the sample is infinitely large. In
both versions, we make the assumption that the span of the process states is finite-
dimensioned. In fact, we will show how to construct a GHMM presentation for any
process which satisfies this condition.

A substantial body of research has accumulated around the problem of reconstruction
from a sample for HMMs, for example [23-26]. Most of it involves versions of an
algorithm known as forward-backward or Baum-Welsh [17,24]. These are forms of the
expectation-maximization (EM) algorithm [27]. With all of these algorithms, a number
of structural assumptions are required — the number of states and some choice about
what transitions will be allowed to occur (for example, all may be allowed). Then a
random initial presentation which satisfies the structural assumptions is chosen. The
various algorithms then implicitly assume it describes the sample to some degree, and
iteratively adjust the parameters while leaving the structure fixed.

In contrast, we will present a solution to the problem of reconstruction from
probabilities, which appears not to have been studied before. We will follow this
with an adaptation of this solution to reconstruction from a sample. The resulting
reconstruction algorithm does not require its user to choose a number of states or a
structure of allowed transitions, nor does it depend on any ability of random HMMs to
describe the sample. Instead, it operates by estimating conditional distributions (that is,
process states) from the sample and then constructs GHMM transition matrices directly
from these conditional distributions.
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This algorithm is new, and it is the work of the author. It should be noted,
however, that other elements of this algorithm have been used before. Gilbert [20]
and Dharmadhikari [10,28], consider the rank of the matrix of probabilities we call
HT*F. Given a function of a Markov chain in a certain class, Gilbert constructs a
new function of a Markov chain which is conjugate to the original. His technique,
like the one used here, derives a set of presentation states form a matrix of word
probabilities. Crutchfield [11] uses estimated probabilities to reconstruct presentations
of stochastic deterministic finite automata from samples. And the QL algorithm is a
standard technique in numerical linear algebra [29].

5.1 Constructing a Presentation for a Process

The key observation in section 4.3 was this: the matri¢ésand H7* I, for all k,
do not depend on a presentation. We can rewrite theorem 4.3.10 as follows: if a process
P = (XZ,X,P) has a presentation for which’ and S are minimal wordlists, then
(W, x,{B*},~) is a presentation foP. That is, we can construct a presentation for
P almost without referring to a preexisting presentation — if we know the probabilities
of the right words, we can compute all the component§lof.X', { B*},~) from those
probabilities using 4.3.10. But so far, we still need a preexisting presentation from which
to construct the wordlists. To solve the problem of reconstruction from probabilities,
then, we need to be able to build minimal wordlists from probabilities — that is, from
a process without referring to a presentation.

It turns out that it is possible to construct suitable wordlists from probabilities of
words, but no finite algorithm can do so correctly in every case. The reason is simple:
a finite algorithm can only examine the probability of a finite humber of words. If
we build a presentation from the probabilities of a finite number of words, then it is
always possible that there is a word, which was not examined, whose probability is not
correctly extrapolated from the words which were examined by the presentation. Thus,
the solution to the problem of reconstruction from probabilities must have an element
which is either infinitary or nonconstructive. Fortunately, there is an algorithm, built on
our theoretical framework, that works well in practice as we will see in the next section.
And we can find suitable wordlists directly given any upper bound on the maximum
word length, such as that which can be derived from the number of presentation states.
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In chapter 4, we built our history wordlists so that the set of mixed states induced by
their words spannetf/ K r. Recall that/ is defined as the span of the recurrent process
states, without reference to a presentation, andithigtisomorphic toH/ K ». To build
history wordlists without referring to presentations, we will choose words that induce
a set of process states spannirig Describing the future wordlists in an analogous
fashion is a little more difficult because we do not have a concept analogous to “state”
that refers to something induced by the futuré.we recall the definition of a reachable
process state — a conditional distribution on the future which is induced by a history
word — then the appropriate analog is clear: a conditional distribution on the past which
is induced by a future word. Such a conditional distribution would be a process state if
we were to reverse the direction of time, so we will call itewerse state The future
wordlists we wish to build, then, consist of words which induce a set of reverse states
which has the same span as the set of all reverse states. It will not be necessary to
actually write reverse states in any calculations, so we will not define notation for them.

At this point, we shift to more nearly concrete objects. We need to choose an
order onX* — the order we choose does not matter, so long as it is fixed. A natural
choice is to put shorter words before longer words, and put words of the same length in
lexicographical order by some order ah Whent' = {0,1}, and0 precedes, we have

2,0,1,00,01,10, 11,000, ... (5.1)

Let ¢; be the:th word in this ordering, then we have a one-to-one correspondence
betweenN and X'*.

We can now define the infinite matriX, whose entries are indexed by x N. Let
w = gq; S = 4y, and

Py = { 0P(8|w) ggz; 7: 8 (5.2)

For convenience and clarity, we will ugg in place of: itself in subscripts of” and
write P, s instead of#;;. Each row ofP is labeled with a history word, each column
with a future word, and each entry (except for those in all-zero rows) is a conditional
probability. The top row, with history word, contains the unconditioned probabilities
P(w|A) = P(w). So in principle the top row alone can generate the whole matrix. Each

*There is a time-symmetric development of our approach that we have chosen not to present here.
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row contains a complete description of a reachable process state, in the form of all the
conditional probabilities on future words. Each column contains a complete description
of a reverse state, although some renormalization is needed to put the column into the
right form. Thus, any wordv identifies both a unique row,,. and a unique column

P..,. We will denote the row associated with by r(w) and the column associated
with s by ¢(s).

The following definition is analogous to definition 4.2.4 of sufficient wordlists for
a GHMM.

Definition 5.1.1. A history wordlistW is sufficient for a procesg the rows identified
by the words inlW span all the rows of’. Similarly, a future wordlistS is sufficient
for a process if the columns identified by the wordsSirspan all the columns of.

Now, a pair of wordlistsiW and S identifies a submatrix of’ in a natural way:
if W = {wy,...,w,} andS = {sy,...,s;}, we define the submatrixs of P by
Glij = Pu,s,, SO thatGi; = P(sjlw;) forall: =1,...,nandyj = 1,...,1. That s,
we pick out the elements af which are both in the rows identified By and in the
columns identified bys. If we had a presentation fd? and we built the wordlist$V’
andsS and the matrice#/ and ¥ for that presentation, we would find th@t= H F' (see
equation 4.40). In the same manner, we define a subm@friaf P for eachk € X' by
picking out the rows of? corresponding to words i and the columns corresponding
to wordsks; for s; € S. That is,C* is defined byC{; = Py, ks, = P(ksj|w;). Thus,
if we had a presentation fdP, we would haveC* = HT*F.

In corollary 4.2.9, we established thatWif and.S are minimal for a GHMM, then
HF is invertible. And we know that if eithelV or S is sufficient but not minimal,
then HF' is larger in size — but not in rank — than it would belif and S were
minimal. Thus ifW and S are sufficient,/ I is invertible if and only ifiW and.S are
both minimal. We will use the analogous version of this for the following definition.

Definition 5.1.2. A pair of wordlistsiW and .S are minimal for a proces$ if they are
sufficient for’? and the matrixG they define is invertible.

The next few results establish that sufficiency and minimality for a process have the
properties we will need in theorem 5.1.8, which is the main result of this section. These
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properties are roughly analogous to the properties of sufficient and minimal wordlists
for a GHMM, though we will not attempt to draw precise analogies.

We are interested in the number of linearly independent rows and columfs of
If P were finite, we would refer to its rank. Thus we give the following definition for
rank in this infinite context.

Definition 5.1.3. The rank of P is defined to be the supremum of the ranks of the
finite submatrices ofP.

Lemma 5.1.4. The rank of P is equal to the dimension of the spaniof

Because of the close connection between the rowB ahd the reachable process
states, this is almost automatic. The only difficulties are in dealing with the infinitely
many columns in those rows.

Proof. Letn = dim(Z{), which we will assume for the moment is finite. We can choose
{w1,...,wy,} such that ifA; = P(-|w;) for« =1,...,n, the process states;,..., A,
spanl{. Then for allww € X'*, there are numbers,, ..., «, such that

P(-lw)=a1A1+ ...+ apnA,. (5.3)
so for all s, P(s|w) = > a;A;(s). This implies that the row(w) can be written as
r(w) = air(wy) + ... —I—Zanr(wn). So the rows(wy),...,r(wy,) form a basis for the

rows of P. Thus, any collection of more tham rows is linearly dependent, and the
same must be true for the rows of submatrices. This shows that/fanrk r.

Conversely, becauskq, ..., A, are linearly independent and the rew;) determines
the distributionA; = P(-|w;), r(w1),...,r(w,) must be linearly independent. So the
row space ofP has dimensiom. What remains to be shown is th&t has a finite
submatrix of rankn.

For any words, let ¢'(s) be the length: column vector consisting of those elements of

¢(s) which lie in rowsr(wi),...,r(wy); that is,
P(s|wy) Py, s
d(s) = : = : . (5.4)
P(s]|wy) Py, s
We will call ¢/(s) a subcolumnof P. Choose a wordlist such thatc(s1), ..., (s;)

is a linearly independent basis for the span of all subcolutt{rs. Let & be then x [



88

submatrix of P given by W and S. The columns ofG are exactly the subcolumns
d(s1),...,d(s1), soG has ranki. We have shown the rank @f must be less than
n, SO0l < n.

We now define the subrow in a manner analogous to the definition of a subcolumn.
The subrow’(s) is the lengthl row vector( Py, w, - - -, Ps, ). We will reserve the terms
subrow and subcolumnfor these subsets of, and we will use the termsow vector
and column vectorfor other row and column vectors, including linear combinations of
subrows and subcolumns.

Suppose that < n. Then there exists a row vecttiy, ..., a,), not all components of
which are zero, such that the proddet, . .., «,)G is a linear combination of subrows
which is the zero row vector. Now, for anyec X*, the subcolumn/(s) is a linear
combination ofc'(s1),...,c (s;), so if the subrowr'(w;) is zero, theith element of
eachd'(s;) must be zero, and so théh element of every subcolumn must be zero.
That is, if a subrow is zero, the corresponding entire row must be zero. The same
must be true for linear combinations of subrows: for anye element in column of

the infinite vectorayr(w1) + ... + anr(ws,) is a linear combination of elements of the
row vector(ai,...,a,)G. Thus, if (a1,...,a,)G is all zeros, then every element of
air(wiy) + ...+ apr(wy) is a linear combination of zeros, and so

1Py, s+ ...+ anPy, s =0, (5.5)

for all words s.

But the rowsr(wy),...,r(w,) have been shown to be linearly independent, so
air(wy) + ... + apr(wy,) cannot be equal to a row of zeros. Thus, there is a word
s such that

a1Py, s+ ...+ anPy, s # 0. (5.6)

This is a contradiction. Therefore, = [ and &G is a square submatrix aP which
has rankn.'

TWe may interpret this in the following way: the process states of the forward and time-reversed processes have span sets of the
same dimension. Thus, the minimal GHMM presentations for the forward and time-reversed processes have the same number of
presentation states.
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Lastly, if n = dim (&) is infinite, then for anym we can find linearly independent
process stated i, ..., A,,. Proceeding as above, we can construct a submatrot

P with rankm. Thus there is no upper bound to the ranks of the submatricés, of
so the rank ofP is infinite @

The first part of the following result has essentially already been proven. The second
part establishes that minimal wordlists exist.

Proposition 5.1.5. For any proces®, let n be the rank ofP. If n is finite, then

1. There exists an invertible x » submatrix of P, and
2. If G is any such matrix, then the wordlist8” and S that produce it are minimal
for P.

Proof. In the proof of lemma 5.1.4, we constructed-ar [ matrix G which had rank,
and showed thah= n. Thus( is a square matrix of full rank, and must be invertible,
which proves part 1. Note that the invertibility 6f is also part of what it means to
be minimal for a process. Thus, to prove part 2, we need only showithahd S are
sufficient, becausé' is invertible. That is, we need only show thdto,),. .., r(wy,)
span all rows ofP, and that:(s;),...c(s,) span all columns of. As in the proof of

lemma 5.1.4, we will use’(s) to denote the subcolumn df,
P, s
A(s) = : . (5.7)
P, s
Thus,d(s;) is thejth column ofG. Likewise, we will user’(w) to denote the subrow

r'(w) = (Pws, s - - -, Puws,), SO thatr'(w;) is theith row of G.

Let w be any word not if¥". The set of subrow$r’(w), »'(w1),. .., (w,)} contains
n+1 vectors of length, hence they are not linearly independent. Buty ), . .., (ws,)

are linearly independent, s¢(w) must be a linear combination of them. That is, there
is a vectora such that; = +'(w). Because~ is invertible, we have: = r'(w)G™1;
that is, there is exactly one sueh

Now let s be any word not inS, and consider thén + 1) x (n + 1) submatrix/

M = (r,iv) é(;)) (5.8)

of P given by
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We know that rankP) = n, so M must be singular. The first rows of M are linearly
independent, so the last row must be a linear combination of them. That is, there must
be a vectom such thathG = r'(w) andbd(s) = P, . Now we have just shown that
there is a unique vecter such thataG = »'(w), and thise clearly does not depend on

s. So we must have = b, andac'(s) = P, s. Furthermore, this must hold for ail

Thus the entire row-(w) of P satisfies

r(w) = ayr(wy) + ... + apr(wy), (5.9)
so we have shown that all rows &f lie in the span of-(w), ..., r(wy).
A similar argument shows that the colum#(s;), ..., ¢(s,) span all columns of’.l

The next lemma completes the development of minimal wordlists for a process.

Lemma 5.1.6. Let P be any process such that the ranlof P is finite. If W and S
are minimal wordlists forP, then bothiW and S have lengthn.

Proof. If W and S are minimal wordlists forP, then is an invertible submatrix of
P. The rank ofG is at mostn, and solW and S (which must have the same length
because invertible matrices must be square) have length atrmaésirthermore, there
are sets of. rows which are linearly independent, all of which must lie in the span of
the rows identified byW. So W must have length..ll

We need one more lemma before we are ready for theorem 5.1.8. This one is a
calculation, most of which appeared in the proof of proposition 5.1.5.

Lemma 5.1.7. Given a proces$® and a matrixG defined by minimal wordlists, for
any w,s € X*, we have

! (w)GT (s) = P(s|w). (5.10)

Proof. As in the proof of proposition 5.1.5, let

_( G C’(s)>
M(r,(w) P ) (5.11)

M must be singular in such a way that there is a veetsatisfying

1. oG = r'(w), and
2. ad(s) = Pys.
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And becausé. is invertible, we must have = r'(w)G~1. Thus we have
()G (s) = Pys = P(s|w). A (5.12)

Note that if we leto = = ands = A, lemma 5.1.7 gives us ()G~ (A) = P(A|z).
But ¢(\) = I andP(\|z) = 1 for anyz, so for allz we have

()G = 1. (5.13)

We have now completed the minor results concerning minimal wordlists for pro-
cesses, and are ready to state and prove the main result of this section. We wjll use
to represent a vector with a one in th position and zeros in all other positions. This
symbol represents a row vector when it appears to the left of a matrix and a column
vector when it appears to the right of a matrix.

Recall that we have defined® by Cf; = P, s,, and that if we have arbitrary
wordlists and any presentation f&, we have(G = HF andC* = HT*F. Note that
C* satisfies the following:

Clkj = P(ks;|w;)
= P(k|wi)P(sj]wk) (5.14)
= P(k|w;) Pyk,s,-

so the:th row of C'* satisfies
§;CF = P(kjw)r! (wik) (5.15)

Theorem 5.1.8. If P is any process for which the dimension of the spari/ofs

finite, andW and S are minimal wordlists for?, then (W, X', { B¥},+~) is a GHMM

presentation fo®, where B¥ = C*G—1 and~y = (P(sy),... P(s,))G 7.

Proof. To prove that(W, X', {B*},~) is a presentation foP, we must showy_ B is
s

unit-sum and that B*1 = P(z) for all = € X*. The first of these is a calculation. By
manipulating the definition of thé*s, we get

(zk: Bk> 1= (zk: ck> G (5.16)
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We will work with the :th row alone, and use equation 5.15:

& (Z Bk> 1= 5’(2 0k> G = ZP(ZChDi)TI(U)Z'k)G_lI\. (5.17)
k k k
Applying equation 5.13, we get
: L R :
8 (;B )1 = %:P(mw,) (5.18)
=1.

Since this is true for each we have shown that_ B* is unit-sum: (E Bk> I=T.
k

Showing that
vB*T = P(z) (5.19)
holds for all= is more involved. We will prove this by proving that for all
vB* = P(a)r'(2)G71 (5.20)

From this multiplying on the right by and applying equation 5.13 gives us equation
5.19.

We will establish equation 5.20 by inductively concatenating symbols to form an
arbitrary wordx. The base case is trivial —B" is the identity matrix,P(\) = 1,
and~ = »'G~! by definition. So what remains to be shown is the induction case:
given a wordz and a symbolk, assume that B* = P(z)r'(x)G~! and prove that
yB*BY = P(ak)r(2k)G7.

Consider thejth coordinate ofP(k|x)r'(«k): we have
P(k|x)r'(xk)8; = P(k|z) Py,
= P(k|z)P(s;|xk) (5.21)
= P(ksj|x).
Replacing the right hand side using lemma 5.17, we have

P(k|z)r'(zk)s; = rl(x)G_lcl(ij). (5.22)
Now, note thatCi’} = Py, ks, IS theith row of ¢/(ks;), so that for allz,

8ic' (ksj) = Cfy = 8;C%s;. (5.23)
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Thus, we have’'*s; = ¢/(ks;), and equation 5.22 becomes
P(k|a)r (xk)s; = ' (2)GCFs;. (5.24)
This holds for allj, so we have
P(k|z)r' (xk) = r'(z)G7LOF, (5.25)

Next we multiply both sides b¥ (=) on the left and>~! on the right and then simplify:

P(2)P(kla)r' (ak)G1 = P(a)r (z)GLor G

(5.26)
P(zk)r (2k)G! = P(a)r' ()G B
Finally, we use the induction hypothesj&” = P(z)(2)G~1 and we get
P(zk)r' (zk)G! = yB*BF, (5.27)

and the proof is complell
We summarize the constructive portion of the preceding development as follows.

Algorithm 5.1.9. Let P = (XZ,X,P) be a process satisfying the condition that the
span of its process states is finite-dimensional. A GHMM presentatiof® faray be
constructed by the following steps.

1. Construct the infinite matri¥> with entriesP,, ; = P(s|w).

2. Find a nonsingular minot of P such that no other minor of has rank greater
than the rank ofG.

3. Build the history wordlisth’ = {wy,...,w,} by definingw; to be the word
associated with theth row of P. Build the future wordlists = {sy,...,s,} by
defining s; to be the word associated with théh column of P.

For eachk ¢ X, construct the matrixC'* with entriest} = P(ksj|w;).
For each: € X, computeB* = C*G1,
6. Computey = (P(s1),...,P(s,))G71.

As we will see in section 5.2, a reconstruction program based on this theoretical
framework has been developed. When it is given a set of word probabilities produced
by a GHMM it reliably constructs a GHMM which accurately reproduces those word
probabilities.
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We conclude this section with the converse of theorem 4.16, which says that every
process that has a GHMM presentation satisfiesdim< oc. And if conjecture 6.1.1
is true, it is also a converse of theorem 3.6.1, which says the same thing for HMMs.

Corollary 5.1.10. Every process such that the dimension of the span of its reachable
process states is finite has a GHMM presentation.

Proof. Let P be any process for which the spanéfis finite dimensional. Lemma
5.1.4 tells us that” has finite rank, and proposition 5.1.5 then establishes that finite
minimal wordlists exist. Theorem 5.1.8 gives us a GHMM presentation in terms of
these wordlistdl

Together, theorem 4.16 and corollary 5.1.10 prove the following characterization of
the class of processes represented by GHMMSs.

Theorem 5.1.11.A process has a GHMM presentation if and only if the dimension of
the span of its reachable process states is finite.

5.2 Reconstruction from a Sample

Suppose we are given a finite sequence of symbols and we are told that it is a sample
of output from a proces®. How can we construct a presentation for this process? This
is the problem ofeconstruction from a sampléVe will consider samples which consist
of a single sample sequence of lendth such as

01101 .. .10, (5.28)
and also samples which consist of several sample sequences of total 1gniy
11110...11, 0111...0, and010110 ...001. (5.29)

It should be apparent to the reader that this problem is of a different character
than the problem of reconstruction from probabilities. Any given finite sample could
have been generated by any one of an infinite number of processes, so the problem
cannot be solved in any absolute sense. The best we can possibly do is to give a
presentation for a process which would be likely to generate this sample, and consider
this presentation to represent a new process that is an approximati®n Tus, we
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must heed statistical issues such as variances of parameter estimates, and how much
data is available. Further, because this is a question which can be asked for real data in
a practical setting, we will be interested in the computational issues of operation counts
and storage needs. These issues are discussed in subsections 2 and 3, following the
description of the reconstruction algorithm.

The Algorithm  Our approach to reconstruction from a sample estimates conditional
probabilities of various words from the relative frequencies of those words in the data.
It then assembles these probabilities into a truncated (finite size) estithate P.

From here we will proceed as in algorithm 5.1.9, substitufihépr P and adapting the
algorithm so that it works with the finite size and imperfect estimatiot of

Our first task, then, is to construét, for which we need an estimator and a pair of
wordlists. Letr andr’ be the lengths of the longest history and future words which we
will consider, respectively. Define eutpointto be a position between to consecutive
symbols in a sample sequence which is at leasymbols from the beginning and
symbols from the end of the sample sequence. That is, a cutpoint is a time at which we
know the immediate history and future words of lengths at leastd+’, respectively.

For any pair of wordsy ands, letb be the number of cutpoints in all sample sequences
preceded byw, and lete be the number of cutpoints preceded byand followed by

s. Our estimate foP (s|w), which we will denoter(s|w), is given byx(s|w) = a/b.

We use the conventions thats|w) = 0 if 5 = 0 and that ifw = A, b is the number

of cutpoints in the sample. This is simply a frequency substitution estimate, and it
has mearP(s|w). For any sample, and for any choice igfthe estimates (s|w) for
different pairs of wordse ands are consistent with each other. (For example, for any
w, s, andz, w(ws|z) = 7(wl|x) - 7(s]w).)

The wordlists we will use to construdt will not be minimal in any sense. We
will make them as large as possible to make sure they are sufficient. We are limited
by our data in what words we can include. (If we fixthe variance ofr(s|w) can be
shown to beP(s|w)(1 — P(s|w))/b, so the estimate is of little value ifis too small.

If « is too small, on the other hand, the standard deviation becomes large relative to
a/b even ifb is large.) Thus, we will need to select a large set of words which occur
reasonably often. The precise method by which we do this may be rather ad-hoc, as
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all reasonable methods will produce similar sets of words. This is because they will
all include short words with well estimated probabilities and will exclude long words
with poorly estimated probabilities. The essential requirement is that a balance must be
struck between making the wordlists large and making the variances of the estimates
small. For simplicity, we will use the following heuristic: Iétbe the largest natural
number such thak™ times the total number of words of length+ 1 that occur in the
sample is less than the total number of cutpoints in the sample, for some fixed constant
K. This means that those words of lengiht 1 that have at least one occurrence in the
sample occur an average of more thigrtimes. We choose both of our wordlists to be

the set of all words of lengthor less that occur in the sample. Létdenote this set.

Now, with our wordlists chosen, we construct the x |Y| matrix P from history
wordlist Y and future wordlistr” just as we constructed from the minimal wordlists
W and S in section 5.1. That is, leP consist of one row and one column for each
word in Y, so that for allw,s € ¥, P has an elemenP,, s = P, s = P(slw). P
contains those unknown true probabilities we want to estimate. We défine |Y'|
matrix P by replacing each conditional probabiliy,, s = P(s|w) with its estimate

Py s = w(s|w) for all w,s € Y. Thus, P is a stochastic matrix which may be thought
of as an estimate oP.

HopefuIIyP is large enough, by which we mean thatcontains sufficient history
and future wordlists for the proce®s If it is not, then the presentation we produce will
represent only a poor approximation/y and the available data is probably insufficient
to induce a good approximation. In this case, the estimateB imave sufficiently
small variances, but some essential behavior of the process cannot be deduced from
the probabilities we have estimated. If we makdarger, the probabilities we attempt
to estimate capture the essential behavior, but our estimates might have variance large
enough to make them meaningless. If we followed section 5.1 exactly, the next step
would be to find a minor& of P which has the same rank @& Because we have
chosenY as large as possible, we expect it to contain minimal wordlistand S as
proper subsets, and we expédttto have a rank much less than its size.

However, this is probably not the case. ¥f is big enough,P will have a rank
much less than its size; but will not. Because eact?, s is a random variable with
nonzero varianceP is a random matrix close to the singular matfx Generically,
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such a matrix will be nonsingular, but ill-conditioned. We wahntto have the same
rank asP and to be well-conditioned; because the rank’ois unknown, we will make

G as large a well-conditioned submatrix Bfas possible. For this reason, the problem
of finding a suitable” is itself an estimation problem.

We solve it as follows. We decomposgeby the QL algorithm with pivoting. The

QL decomposition is related by transposes to the more familiar QR decomposition, and
both are standard techniques in numerical linear algebra [29]. This algorithm builds a
basis for the row space df, starting with an empty basis, and adding one vector at

a time. At each step, it computes the distance from each row vector to the subspace
spanned by the developing basis. It selects the row with the greatest distance, and adds
a vector derived from it to the basis, in such a way that the basis now spans the selected
row. As the reader may deduce, each row is selected at most once and the distances for

the selected rows decrease as more rows are selected.

As a by-product, the QL algorithm lists the rows of the matrix in the order in which
they were selected, and it gives the distance computed for each row at the time it was
selected. These distances tell us how significant each row is and thus, how significant
each basis vector is. We choose a threslfofdr these distances and discard the rows
with distances less than this threshold. These discarded rows with their small distances
make P ill-conditioned rather than singular, and their contributions are likely to result
from stochastic (sample) variation rather than reflecting the true probabilities How
we choose this thresholtlis necessarily somewhat arbitrary. We use a second heuristic
that attempts to draw the threshold just above the largest distance resulting from the
variance of the estimateB,, ;.

We build our history wordlist?” by collecting the words that induce the rows we
keep. This step dictates the number= |I¥/| of presentation states in the presentation
we will reconstruct. Finally, we apply the QR algorithm (related to QL by transposes) to
this edited matrix and select the columns with th&argest distances. The result is that
we are left with a square matrix and a wordlistS. The construction ofy guarantees
that it is invertible and well-conditioned.

From here, we construct the matricé§ such thatCl»’} = 7(ks;lw;) and let
BF = C*G~! as in section 5.1. And if we lgt; = =(s;|\) for each wordk, in the future
wordlist S, we can set = (p1, ..., p,)GL. The same calculations we used in the proof
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of theorem 5.1.8 show thdt, X, { B¥},~) satisfies all the necessary conditions and
is in fact a Proto-GHMM. This finishes the construction of the presentation, which we
summarize as follows.

Algorithm 5.2.1. If we are given one or more sample sequences of output from a
processP = (X%, X,P) for which P is unknown, we may construct a Proto-GHMM
W,X{Bk}, A which approximately represent by the following steps.

1. Construct a matrix of estimated word probabilities. This may be done as follows.

a. Fix a numberk and choose the largestsuch that each word of length + 1
occurs an average df times.

b. LetY be the set of all words of lengthor less.

c. For eachw,s € Y, compute

— the number of times:s occurs

w,s

* " the number of times occurs’

(5.30)

2. Find a nonsingular, well-conditioned minGrof . One way to do this is as follows.

a. Perform a QL decomposition df to compute a significance for each row.

b. Fix a threshold? and discard all rows of with significance less thaé. Let
n be the number of rows remaining.

c. Perform a QR decomposition of the remainderfofind select the: columns
with the highest significance. These subcolumng’afomprise the matrix:.

3. Let the history wordlistV be the set of words associated with the rows-9fand
let the future wordlistS be the set of words associated with the columns;/of
For each: € X, construct the matrix’* with entriesCf; = x(ks;|w;) = Puy ks,
For each: € X, computeB* = C*G1,

For eachs; € S, compute an estimate(s;) of P(s;).

N o o bk

Computey = (x(s1),...,7(sp))G71L.

This computes all the parts of a Proto-GHMMV, X', { B¥},~). If this Proto-GHMM
is valid, it is a GHMM presentation for a process which has word probabilities close
to those ofP.

This construction is not completely satisfactory, however. We cannot assert that
(W, x,{B*},~) is a GHMM because we have not shown that it is valid. In fact it
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is possible to construct a sample from which a reconstruction yields an invalid Proto-
GHMM. As mentioned in section 4.1, determining whether or not a given presentation
is valid is quite difficult. We will address this further in section 6.2.

Statistical Considerations Algorithm 5.1.1 produces a Proto-GHMM as a func-
tion of a sample. If the sample is a random sample of the output from a prétess
the sample is a random variable, and so the Proto-GHMM is also a random variable.
Thus the reconstruction algorithm, together withand the length of the sample, induce

a distribution on the space of Proto-GHMMSs.

We would like to be able to describe this distribution, but doing so is quite
complicated. One of the difficulties is describing the distribution/of Each entry
w(slw) in P has the form%, where X appears to have a binomial distribution, with
parametef = P(s|w) andY trials, andY” is the random variable describing the number
of occurrences of the word. However, X may not be binomial, because occurrences
of s may not be independent of previous occurrences. Similarly, the distribution of
Y cannot be described easily. Moreover, entries’ofire not independent. Although
it may appear that the joint distributions of some groups of entries may be a function
of a multinomial distribution, this is not the case. Our “trials” are not independent,
as they come from examining pieces of the sample sequences, and these pieces may
overlap. For example, if the alphabetis= {0,1} and the sample consists of a single
sequence, then the numbers of occurrence8lond 10 may differ by at most one.

This complicates any description of the distribution/of In addition, even the size of
P depends on the sample. Although it may be possible to characterize the distribution
of £ in a tractable way, doing so is beyond the scope of this dissertation.

If we were able to express this distribution reasonably, we would manipulate it
further in order to derive the distribution it induces on the set of all Proto-GHMMSs.
To do this, we would look at the output of the QL algorithm as a random variable and
examine its distribution. Continuing in this way, we would derive distributionsGpr
the C*s, and eventually for and the B*s. However, we cannot proceed with this
program because we cannot describe the distributioR.oflost of the steps would be
laborious, and probably not very interesting.
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The distribution of the output of QL raises two interesting questions in mathematical
statistics. First, given a random matrixwhich is the sum of an unknown singular matrix
A and a random matrix (with zero mean and some assumptions about its variance), how
can we best estimate the rank.4? Second, how ill-conditioned ca# be — or how
small must the variance of the random matrix be — so that we can reliably estimate
the rank of A?

Computational Issues The computational issues for the reconstruction algorithm
are the numbers of operations and the storage requirements of this algorithm. As is
common practice, we will be concerned only with how these quantities scale — their
order — and not with precise estimation.

First, we need notation for the parameters of the problem. We have/useadhe
length of the sample, anth = |X| as the size of the alphabet. L&t be the large
wordlist used to construd?, and letN be the number of words i — this means that
Pis N x N. Let! be the length of the longest word In, and letn be the number of
words in the minimal wordlists we derive. These parameters are not all independent; we
must have: < N and may reasonably expect, assuming the entropy rate of the process
is close to the maximum possible, thate log,, N.

To construct the estimates, we need to count the number of occurrences of each
word of the formws for w ands in Y. To do so, we step through the sample. At
each step, and for each length up2h we identify the word of that length which
starts at our present location in the sample, and add one to that word’s count. (This
technique requires minor adjustments involving the ends of sample sequences to produce
the estimates exactly as we defined them in terms of cutpoints on page 95.) The number
of locations is essentially,, and the number of words at each locatior2is The work
to be done for each word may be organized so that it has constant time. Thus, the
number of operations required to do the estimation has affér).

The storage requirements of estimation are simple. To estifatee must store
one counter for each o¥? words. In addition, the matrices* depend on the counts
for words of the formwks, with w ands in Y andk € X. It is convenient to do the
necessary counts for words of length upte-1 at the same time. This does not change
the order of the number of operations, and it increases the storagéNGm).
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Constructing minimal wordlists, and a basis for the mixed states, is the next stage
of reconstruction. The QL algorithm we use to do this requ@é\%\ﬁ‘) operations and
O(Nz) storage. In practice, this is the most time-consuming part of the algorithm.
ComputingG~! takesO(n?) operations, which is dominated by® and so may be
ignored.

Finally, the algorithm constructs the matric€$ and performs the multiplications
C*kG=1. There arem of these multiplications, each a productofx n matrices, so
this stage require$)(n*m) operations and?(n*m) memory. This last quantity is
dominated by the storage requirements of the estimation stage, and we will ignore it.
Thus, the entire reconstruction algorithm requires

O(IL + N° 4+ n*m) (5.31)

operations and?(N?m) memory.

Of the parameters in expression 5.31, onhlyand m are known in advance. The
number of states is difficult to estimate — indeed, a good part of the work of the
reconstruction algorithm is in estimating it. However s usually small enough andis
usually sufficiently smaller thary that»>m is small compared t¢/3. Thus, the number
of operations does not scale strongly with the eventual number of presentation states.

With the heuristic we used to choo%g the remaining two parameters are related
by I ~ log N. This will necessarily be true of any method for chooskigsince the
number of possible words of lengthor less is(m/™! —1)/(m — 1) ~ m'. Thus,!
changes slowly compared 9. Because of this and because expression 5.31 depends
linearly on/ but on the cube ofV, we see thatV is far more important to the scaling
of the operation count.

The heuristic fo” (page 96) gives us a way to estima@nd/N. It chooses so that
the words of lengtl2/ + 1 occur an average df times. There are about opportunities
for such words to occur, so there must be abbUk™ such words. Assuming ath?+!
possible words of length! + 1 appear in the sample, we havet! ~ L/K, or

L 21l+1 L

l

~ [ — ~ 4 —. .32
" (K) VK (5.32)

Taking the base: of both sides gives us the approximatios log,, v/ L/ K. Assuming

all possible words of lengthoccur in the sample, the left-hand side of equation 5.32 is
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an estimate of theéV produced by the heuristic, so we haXe~ /L/K. With these
substitutions, the expression 5.31 becomes

L [L\®
O (L log, 7 + (K) + n3m> (5.33)

and we see that the reconstruction algorithm takes Qf&eoperations. Similarly, it
requires memory ofo(m/l/K).

We conclude this computational analysis a few final comments. First, recall that
there is more than one possible choice of the heuristic for selektinghe conclusion
we have just reached, that the reconstruction algorithm takes time ofb%deiepends
explicitly on the choice. Other choices may give higher or lower exponents, and may
make the algorithm as a whole better or worse. We have no reason to believe that the
heuristic we have used is a particularly good one.

Second, it is worth mentioning the time and memory required by the forward-
backward algorithm because the reconstruction algorithm will inevitably be compared to
it. The forward-backward algorithm operates by repeatedly making small adjustments
to a presentation. It need8(nL) operations per iteration and uséynL + n’m)
storage overall. There are variants that take fewer operations, but these do not appear to
be widely used [30,31]. The number of states initially selected is likely to be larger than
the n estimated by the reconstruction algorithm because this number must be ehosen
priori and because it is usually necessary to use more states than are mathematically
needed in order to get an HMM which describes the data well. Additionally, the forward-
backward algorithm requires an unspecified number of iterations to converge. The author
knows no way to estimate how this number of iterations scales with the size of the data
set or the complexity of the process.

Finally, the reconstruction algorithm, as presented here, should be thought of as a
mathematical draft, rather than a finished program. At this time it has been implemented,
but the implementation cannot be considered an optimal coding. There has not been a
systematic search either for a good heuristic Yoor for the heuristic used to choose
the threshold). And there has not been any systematic comparison of the results of this
algorithm to those of the forward-backward algorithm.

When the existing implementation is given actual probabilities (that is, we apply QL
to P instead ofP) for a process defined by a GHMM, it reliably produces a minimal
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GHMM which is, to machine precision, equivalent to the original. When it is given a
sufficiently large sample of the output from a GHMM, it typically produces a GHMM that
represents a process with word probabilities similar to those of the original GHMM. It is
prone to two types of failures, however. In one, it produces a GHMM with an excessive
number of states because the threslioisl too low. In the other, it produces an invalid
Proto-GHMM. The reconstruction algorithm needs more work on the implementation
details in order to make it widely usable, but the overall framework has a solid theoretical
grounding and may, in time, replace the forward-backward algorithm.
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6 Conclusions and Further Directions

In the preceding chapters, we have introduced process states, described the process
states of an HMM, and shown that the span of an HMM's process states is a finite-
dimensional vector space. We have introduced GHMMs, shown how to tell when pairs
of GHMM s represent the same process, and shown how to construct a minimal GHMM
equivalent to a given one. Finally, we have given procedures for constructing a GHMM
presentation for a process either from word probabilities or from a sample of output. We
will conclude this dissertation by making some observations and by suggesting some
directions for further investigation. We will discuss the viewpoint which led to this
work, the problem of GHMM validity, and the question of how to find an HMM that
is equivalent to a given GHMM. We will end by discussing the implications of this
dissertation for the broader field of modeling complex systems.

6.1 Process states and presentations

The results of this dissertation have followed from a few ideas. The first of these is
that the process is more fundamental than the presentation which represents it. This
idea is present in the dynamical systems literature; see [32,33,11]. The second is
that a process has states which are inherent to it, and distinct from the states of any
presentation. The third is a question: What are the process states for a process in terms
of a presentation that defines it? And the fourth is the observation that if a process has
an HMM presentation, then its process states lie in a finite-dimensional vector space.
Together, these ideas lead to a viewpoint that is useful for the study of the processes
generated by HMMs.

Some previous work on HMMs has defined the processes represented by HMMs,
usually in discussing the problem of HMM equivalence [2]. However, these works have
kept the focus on the HMMSs’ presentations themselves, and have worked with processes
very little. In this dissertation, on the other hand, the focus is on the processes, and
HMMs are of interest primarily as convenient representations of processes. We justify
this shift in focus, and the accompanying shift in viewpoint, with the assertion that
processes are the more fundamental objects. The process, not the presentation, is almost
always the object of the real focus. (There may be a few applications in which a
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phenomenon being studied has a known structure, and the presentation states may be
chosen so as to have some inherent reality of their own. But in any other use of HMMs,
the presentation states themselves have no meaning and the HMM is being used solely
as a representation of a process.)

A similar contrast between this dissertation and previous work on HMMs can be
made for process states and presentation states. In previous work on HMMs, the word
stateis used exclusively to refer to presentation states. Much of this work uses the
vectors we have nameadixed state$l,3] without referring to them as states of any sort.
(The termsmixed stateprocess stateand presentation statevere coined by the author
for this work, so they could not have been used in previous works. Mixed states have not
been named; process states have been cefladal state$11], and presentation states
have simply been callegtates) In some works — for example, [1] — it is clear that
the authors were aware that mixed states render the future conditionally independent
of the past.

Beginning with the process, we are led to define the process state, because process
states are inherent to the process, and presentation states are not. And later, when
we introduce HMMs, it is natural to ask what their process states look like. With
this background, the mixed states become objects with meaning — conditional future
distributions — instead of merely being intermediate results in a computation. Thus
HMMs, which we use as a convenient way to represent processes, have given us a
convenient way to represent process states. From this we see that an HMM'’s process
states lie in a finite-dimensional vector space, and we see the presentation states in their
true role as basis vectors for this space.

This viewpoint can lead us in other directions as well. Process states are useful
for calculating various statistics. The entropy of a process, for instance, may readily be
computed from an HMM presentation by use of mixed states, but not directly from the

presentation states. This was done in [1,34,35]

The author has work in progress concerning the computation of other statistics
— notably statistical complexity and excess entropy [9,11] — and a classification of
processes with HMM presentations. It appears that this perspective will be a useful one
for any research involving HMMs.
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6.2 Generalized Hidden Markov Models

Many of the results in this dissertation are stated for Generalized Hidden Markov
Models instead of Hidden Markov Models. For several reasons, however, the reader may
prefer to work with HMMs. Certainly HMMs are more familiar, and the reader is likely
to be more comfortable with them than with GHMMs because of their negative entries.
There is no question of validity with HMMs — every HMM is valid. Also, HMMs can
be interpreted by examining the transition matrices, though such interpretation may be
suspect unless equivalent HMMs receive similar interpretations. And finally, there are
guestions which make sense for HMMs but not for GHMMSs, such as, What presentation
state is the HMM most likely to be in at tim@ (The meaningfulness of the answer is
guestionable, as discussed above, unless individual states have intrinsic meanings.)

We ask the reader to work with GHMMs for the following reasons. First, when the
presentation states are correctly understood as the basis elements for the space containing
the process states, the entries in the transition matrices are understood to be coordinates
and not probabilities. With this in mind, restricting vectors to the positive cone of the
space, in which all coordinates are positive, is unnatural and arbitrary. Second, the
results of chapters 4 and 5 use the tools of linear algebra. Use of these tools becomes
much more difficult if it is necessary to stay entirely in the positive cone. Furthermore,
it is possible — though no examples are known to the author — that there are processes
which may be represented with fewer states as GHMMs than as HMMs, or that processes
exist that can be represented as GHMMs but not as HMMs.

Determining whether or not a Proto-GHMM is valid — givél, X', {7*}, x) such
that~ and>_ 7% are unit-sum, isr7*1 > 0 for all wordsz? — seems to be a hard
problem. hiC we simply generate random output, negative “probabilities” of symbols
usually show up quickly or not at all. But the absence of negative “probabilities” up to
any finite time does not prove that the Proto-GHMM is valid.

We might try the following naive algorithm for testing validity. If we order the set
of all finite words, we can compute the probability of each word in turn. When we
reach a negative probability, we conclude the Proto-GHMM is invalid and halt. But if
it is valid, the process never halts.

The question of validity can be phrased in the following way. Does the set of
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reachable process states intersect the set of veetdos which v7%1 < 0 for any
symbol £? The latter of these sets is a finite union of half-spaces, so the answer does
not change if we replace the former set with its convex hull. This suggests the following
approach: we take a queue of mixed states, initially containing only the stationary vector
7 and a convex set, initially empty. For each vectar that we remove from the queue

and for each symbat, we compute the “probability7*1 and halt if it is negative.
Then we generate the mixed state= N (v7'%) which is the result if the process is

in the process state correspondingvt@and then emits. If « is not in S, we replace

S with the convex hull ofS U {«} and addu to the queue. We continue in this way
until the queue is empty.

In essence, this algorithm constructs a subset of the set of all words such that if
none of the words in the subset has negative “probability,” then the Proto-GHMM is
valid. However, this algorithm has the same problem as the naive algorithm. For some
GHMMs it will never stop because this subset is still infinite — the queue may never
be empty. For the simple nondeterministic source we saw in section 3.5, for example,
there is an infinite sequence of words all of which lie outside the convex hull of all
the preceding words.

No finite method for generating the convex hull of the set of reachable process
states is known, though it may be possible to develop such a method based on linear
programming. The work of Heller, which gives results for functions of finite Markov
Chains in terms of convex polygonal cones, may contain part of a solution [21]. Indeed,
it is not known whether or not this set can always be finitely described. Thus, we do
not know of a practical method for testing whether or not a Proto-GHMM is valid.

6.3 Converting GHMMs to HMMs

There is another aspect of our understanding of GHMMs which is unsatisfactory.
If we have a GHMM, is there an HMM which is equivalent to it? If so, is there an
equivalent HMM that has the same number of states as the GHMM? These questions
are open, but in light of the present understanding, we offer the following conjectures.

Conjecture 6.3.1. Given a GHMM, there is an HMM that is equivalent to it.
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Conjecture 6.3.2. Given a GHMM, there is an HMM that is equivalent to it with the
same number of presentation states.

For a slightly different formulation of GHMMs — which output from states instead

of from transitions — Balasubramanian [8] has asserted that conjecture 6.3.1 holds but
conjecture 6.3.2 does not. A similar assertion is implied in [7], but neither paper gives
any proof or any counterexamples that apply to GHMMs as defined here. Darmadhikari
and Heller state results for “regular” functions of a Markov Chain that the author has
not applied to GHMMs [10,21]. One or both of these results may show that conjecture
6.3.2 is false. The author of this dissertation expects that both conjectures hold, but
has not found a proof.

Whether or not conjectures 6.3.1 and 6.3.2 hold, there are GHMMs for which
equivalent HMMs exist. We can construct such GHMMs by conjugating HMMs, or
by reconstructing from probabilities. When an equivalent HMM exists, how can we
find it? Because this is a matter of converting from a generalized HMM to an ordinary
HMM, we will call this the degeneralization problem

There is reason to believe that the degeneralization problem is nontrivial. Suppose,
for instance, we have an algorithm that will degeneralize any GHMM for which an
equivalent HMM exists. If we apply this algorithm to an invalid Proto-GHMM, it must
fail. If we apply it to an arbitrary Proto-GHMM, and it succeeds, we have shown that
the Proto-GHMM is valid. Thus, if we have a degeneralization algorithm we have a
way to establish the validity of a substantial collection of Proto-GHMMSs. Furthermore,
if conjecture 6.3.1 is true, the only way this degeneralization algorithm can falil is if the
Proto-GHMM is invalid. In this case, our degeneralization algorithm serves as a general
test which determines the validity of Proto-GHMMs.

We can give a necessary and sufficient condition for a GHMM to have a HMM
equivalent to it, but this condition is so close to restating the definition that it has little
value. Given a GHMM, there is an HMM equivalent to it if and only if there exists a
convex set” in the space containing the mixed states with a finite number of vertices
such that

1. the initial distribution= is in ¢, and
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2. for all verticesv and for all symbolsk the vectorsT* lies in the convex hull of
U {6}.
If C' exists, then the vertices @t are the presentation states of an HMM equivalent to
the given GHMM. As with validity, the problem is finding the convex set.

No degeneralization algorithm exists at present, but one possible approach is known.
If we conjugate by a carefully chosen matrix, we can make any particular entry in any
given transition matrix nonnegative, with the possible cost of making some other entry
negative. It may be possible to choose a matrix that makes all entries simultaneously
nonnegative. The task of finding such a matrix may be approached as a maximization
task: maximize the sum of the negative entries of the matricB§4~! over the space
of n x n stochastic invertible matriced.

General multidimensional maximization techniques fail to find suitable matrices even
when they are known to exist. This probably occurs because these techniques search for
local maxima and the space of invertible matrices is disconnected. However, it may be
possible to develop a global technique specialized to the form of this specific problem.

Further, and of particular interest if conjecture 6.3.1 holds but conjecture 6.3.2 fails,
it is possible to add states to a GHMM by an operation similar to conjugation.idf
a stochastic row vector of length, and % is an arbitrary column vector of length,
consider then x (n 4 1) matrix

A=(I—hv h) (6.1)

and the(n + 1) x n matrix

b= (1) 62

Note that bothA and B are stochastic and their productds? = 1. If (V, X, {T*},x)

is a GHMM and we letr = = A, and for allx we letU* = BT* A, then for any suitable
VI, (V! x, {U*}, 7) is ann + 1-state GHMM which is equivalent toV, X', {T*}, 7).
Thus, if we cannot find am—state HMM equivalent to our original GHMM, we can
search for one with more thanstates. A solution to the degeneralization problem may
well emerge from these techniques.
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6.4 Reconstruction

The reconstruction algorithm is the crowning achievement of this dissertation. The
algorithm is novel and it is not a variation on an older algorithm. It operates directly,
without requiring an initial configuration and without making iterative adjustments to
the model. The connection between the source data and the resulting Proto-GHMM
through the probability estimates is natural and clear.

The practical implementation of the reconstruction algorithm (that builds GHMMs
from samples) shows considerable promise, but needs further development in order to
be widely useful. As discussed at the end of section 5.2, this work includes looking
for better heuristics, considering other possible estimators, a proper statistical study, and
general fine-tuning.

6.5 Last remarks

The problem of HMM (or GHMM) reconstruction may be thought of as a “complex
estimation problem” or a problem of “model inversion with uncertainty.” That is, we
want to take a random sample and build a model from it. But what we have is a
class of models and a method of generating random samples from a model in this
class. However, the method of generating samples, while not complicated, is involved
enough that there is not a practical way to “invert” it. There are many model classes
to which this description applies, including a number which have applications: Hidden
Markov Models, neural networks, and a number of less well known model classes used
in pattern recognition.

In recent years, there has been a proliferation of work attempting to solve these prob-
lems by iterated improvement. Forward-backward and back propagation, for HMMs and
neural nets, respectively, are probably the oldest of these. Many of these approaches use
versions of the expectation-maximization (EM) algorithm, which is a general algorithm
that may be specialized to address many situations. Others use stochastic optimization al-
gorithms, such as simulated annealing and genetic algorithms. Most of these approaches
have similar failings: they get stuck in local optima, they may depend strongly on the
initial (random) model, and they often require larger models than is appropriate to get a
decent answer. Nonetheless, these approaches are being used because these algorithms
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provide a way to get some sort of answer to questions that previously would have been
intractable. It is not inappropriate to describe these methods as crude tools by which
one can bring a computer to bear on modelling problem.

This dissertation has taken a different approach. We began by attempting to better
understand HMMs on a theoretical level. This led to an attempt to characterize the
class of processes which could be represented by HMMs. With the better theoretical
understanding we had gained, a new approach to the reconstruction problem became
accessible. Although it remains to be seen how the reconstruction algorithm will serve
in practice, there is reason to believe that in time it may replace forward-backward as
the main method by which HMMs are constructed from the sample data.

It is the author’s contention that this experience is applicable to other problems
of model inversion with uncertainty. It is undoubtedly easier to implement an iterative
improvement algorithm than to do this sort of theoretical study, so iterative improvement
schemes may remain useful in the study of new model classes. After a model class has
proved its utility, however, it is valuable to gain the theoretical understanding necessary
to develop more direct algorithms.
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Appendix A Notation

Processes

X Alphabet (set of symbols), canonicafg, 1,...,m — 1}.

xZ The set of bi-infinite sequences of symbolsin

X—, at The history and future sequence spaces, which are sets of
semi-infinite sequences.

X A bi-infinite sequence, that is, an element.bf.

x~, xt Semi-infinite history and future sequences, which are elements of
X~ andX'T respectively.

X; ith element in sequence, x™, or x~.

X The set of all (finite-length) words of symbols ..

w, s Words inX'™* or subsequences, especially history suffixes, which
are subsequences with end timé, or next words, which are
subsequences with end time

|w] The length of a word or subsequence

Ay The set of (bi-infinite) sequences which match the weord

X The o-field on.YZ generated by the cylinder sets.

F The futurecs-field, subset o¥.

H The historys-field, subset ofX.

P A probability distribution on measureable spdce?, X).

P A process, which is a measure spdce?, X, P) in which P is
stationary.

N The set of bad histories, on which we do not condition.

R The set of non-null history suffixes — that is, the set of words
with positive probability — on which conditioning is well defined.

P(-|s) The conditional distribution on the future induced by a werdf
s € R, P(-]s) is a reachable process state.

P(-x7) The conditional distribution on the future induced by a history
x~. If s ¢ A/, P(:|x7) is an infinitely preceded process state.

A A process state, which is a conditional distribution on the future

induced by conditioning on a history, a history suffix, or both.



113

Hidden Markov Models

.
V]

s

P
2,9

Tk

ij

o
(V.4 7%}, 7)

Set of presentation states or Markov chain states.
The size — that is, number of elements —16f

The initial distribution of a Markov chain or an HMM, which we
always take to be stationary.

The transition matrix of a Markov ChaifV, P, r).
Indices which refer to specific presentation states.
An index which refers to a symbol in the alphabiét

A joint matrix of a Hidden Markov Model, also sometimes
referred to as a transition matrix. Note that the supersérigtan
index, not an exponent.

An entry in a joint matrix: if the HMM is in the presentation
stater, Ti’} is the probability that the HMM will make a transition
to presentation state and emit the symbat.

For any wordw = wy . ..wy, T is the product/™ 7" . .. T,

A Hidden Markov Model. The of matrice§7'*} contains one
matrix for each symbok € X'.

The output matrix for an HMM which emits symbols from states
rather than from transitions. Such an HMM may be converted to
joint matrix form by assigning’}; = P;; Bjy..

A column vector containing alls. Size is implied by context.

The normalization operator: if is a row vector,N(v) is v
multiplied by a scalar so that its entries sumlto

The mixed state induced by a history suffix R or a history
x~ € N. Fors, we havey(s) = N(x1%).

Mixed states of an HMM, which are row vectors satisfying
pl =1.

The space of all signed measures on the future.

The span of the reachable process states, which is a subspace of
W.
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Generalized Hidden Markov Models

M Conjugation matrix, which is an invertible unit-sum matrix.

H, F History and future vector spaces, which are spaces of row and
column vectors.

Kr The subspace off consisting of all vectors which are sent to zero
by multiplication on the right by every vector iA.

Ky The subspace af consisting of all vectors which are sent to zero
by multiplication on the left by every vector iH.

H A matrix, the rows of which are mixed states and form a basis for
H/Kr.

F A matrix, the columns of which have the fori¥T and form a
basis forF/Ky.

w, S History and future wordlists. The rows &f are the mixed states

induced by the words iV, and the columns of" are the vectors
71 for the wordss € .

BF A joint matrix for the standard presentatioR* solves
HT*F = B*HF .
vy The initial vector of the standard presentatiansolves

rl'=~HF.
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Reconstruction

qi The:th word in a fixed ordering oft’™*.

P TheN x N matrix with entriesP;; = P(q;|q¢;).

P The |W'| x |S’| truncation of P containing those rows and

columns which correspond to words in the large wordlitsand
S’ respectively.

7(s]w) The frequency-count estimate Bf s|w) estimated from sample
data.

P A [W'| x |S’| approximation toP estimated from sample data.

r(w) The row of P which corresponds to the word.

c(s) The column of which corresponds to the word

r'(w) The sub-row ofr(w) containing only those columns
corresponding to words i

d(s) The sub-column of(s) containing only those rows corresponding
to words int.

G The submatrix off containing those rows and columns which

correspond to words in the wordlists and S respectively.GG is
normally chosen to be invertible.

ol The [W| x |S| matrix with entriesC}; = P(ks;|w;).

Bk A joint matrix of the reconstructed presentation, given by
Bk — CkG—l
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Appendix B Selected Probability Theory

This appendix outlines selected elements of probability theory that are used in this
dissertation. For a thorough presentation of this material, see any text on the subject,
for example [14,13].

B.1 Kolmogorov's Extension Theorem and Process Existence

The purpose of this section is to prove the following theorem, which is our tool for
showing that processes exist.

Theorem B.1.1. Given a mapf : X* — [0, 1] statisfying

1. f(A) =1, and

2. For all wordsw € X*, f(w) = > flzw) = >, f(wz),
zeX ZEX

there is a unique (stationary) proceBs= (X2, X,P) such that for allw € X*,
P(w) = f(w).

This result is derived from Kolmogorov’s extension theorem, which appears in the
literature in several forms. None of the forms the author has seen, however, can be
transformed into the form we need without an unreasonable amount of manipulation,
thus this section. We will us®” and RN to refer to the Boreb-fields onR™ and
RN, respectively.

Theorem B.1.2. (Kolmogorov's Extension Theorenf13 p. 428]) Suppose that
we are given probability measurgs on (R", R") that are consistent; that is,

pnt1((a1, b1] X ..o X (ap, an] X R) = pu((a1, b1] X ... X (an, ay)). (B.1)
Then there is a unique probability measi#eon (RN, RN) with
P(z|z € (a;,b),1 <i < n) = pp((a1,b1] X ... x (ay, by])- (B.2)

There are three diferences between the probability medstiteR™N, P) shown to
exist by Kolmogorov's Extension Theorem and a stationary pro(:é’s?s, X,P). We
will need to surmount all three to prove theorem B.1.1. Fiét,is a product of copies
of the real numbers and? is a product of copies of the finite discrete sét We will
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deal with this by an injective map: X' — R. Second, and most troublesome, elements
of RN are semi-infinite sequences and elementstéfare bi-infinite sequences. Our
trick for working around this difficulty makes use of a bijective mapN — 7, and
involves considering the integers in the or@et, —1,2,—2..... This has an unfortunate
effect on the readability of the proofs. La®, need not be stationary nor does it need
to satisfy any similar condition. We will use Kolmogorov’s Extension Theorem to show
that P exists, and then prove separately that it is stationary.

Before we begin, we will introduce several functions and some notation. First, we
defineg to be any injective map : X — R. It will not matter what the images of
particular symbolse € X' are, as long as they are different.

Second, we define the bijective map N — Z mentioned above by

n/2 n even
hn) = {(1 —n)/2 n odd (83)

Its inverse is given by

2 >0
-1 . Y Y
W y) = { 1—2y y<0. (B4)

In effect, ~ alternately returns positive and negative integers. It maps3,4,5 to
0,1,—1,2,—2 respectively, anch=! maps—2, —1,0,1,2 to 5,3,1,2,4 in that order.
Several more functions are defined in termsfof J(n) is a set-valued function
J(n)={y € Z|h~'(y) < n}, andd(n) andc(n) are respectively the largest and smallest
values inJ(n). Because we will usg(n) primarily as an index set, we will consider

its elements in a particular order, namely increasing numerical order. These functions
can be characterized by the following equations:

c(n) = min(h(n), h(n — 1)) = { j:j " g‘é‘;” (B.5)
d(n) = maxh(n), h(n — 1)) = { %2;1 e (B.6)
J(n) ={ec(n),...,d(n)}. (B.7)

The reader may wish to verify a few facts which will be needed presently.idfeven,
we haveh(n+ 1) <0,¢(n+1) =c¢(n)—1andd(n+ 1) =d(n). If n is odd, we have
hin41) >0, c¢(n+1) =¢(n) andd(n+ 1) = d(n) + 1.
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Now we move on to sets of subsequences. We will &i¢e®! to denote the set
of all subsequences, ...x; with start timee and end time. Similarly, we will use
X7(") to denote the set of all subsequenegs,) . .. 7, With start timec(n) and end
time d(n). Becausd.J(n)| is always equal ta, X'/(") is a product of. copies of..
In fact, X'7/(") is identical to.X™ except that the coordinates af’(*) are labeled with
c(n),e(n+1),...,d(n) instead ofl, 2, ..., n. Thus, ifn is odd, X /+1) = 37 « x|
whereas ifn is even, X /(ntl) = x x x/(),

In addition, we need to define a function that takes subsequencas’i to
subsequences IR" and a closely related function that takes bi-infinite sequences in
X7 to semi-infinite sequences Y. We will denote both of these functions Y.
They will reorder their argument’s coordinates and map them fntolf = € X7/,
then there is a subsequence R" that satisfies); = g(xp(;)) foralli e 1,...,n. We
definefl : /(") — R™ by H(z) = v. For example, ift = z_jzoz122 € X’®, then

H(xz_1zoz122) = g(20)g(x1)g(z—1)g9(2). (B.8)

For an arbitraryr = (... 74, € X7, we have

H (@ o(m)o(n)41 - - Ta(m)) = 9(20)g(21) - 9 (Te(m)4d(m)41) (B.9)

Similarly, if x € XZ, then there exists € RN such that for all € Z, the coordinate

v; satisfiesv; = g(xh(i)>. We defined : X% — RN by H(x) = v. Neither version of

H is invertible, because is not invertible. However, they do have set inverses. For
instance, ifA C R” then H=1(A) — {T e XYW |H(x) e A}.

[4.0] of the form

Next, we define anndexed product set to be a subset oft
S =S, x...x S, whereS; c X. If § =5, x...x S is an index product set, and
S' c X, thenS x §' is an indexed product set contained A**+1]l. We define the

cylinder mapC'y! which takes indexed product sets to sets of sequences as follows:
Cyl(S) = {x c Xy, €S, a<i< b}. (B.10)

That is, C'yl(S) is the set of all sequences i? that match a subsequencedn We
will also define the shift maf” on indexed product sets by

T(S) = {:c el e Sy a<iHl < b}- (B.11)
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(The reader may have noticed that we are using the same notation for the shift map on
indexed product sets as we use on sequences.)

Lemma B.1.3. The following facts about'y! and7" may be easily verified, and
we will give no proof.

Cyl(S) = Cyl(S x X) = Cyl(X x 9)

TIEXX)=T(S) xX =X xT(5)

T(Cyl(S)) = Cyl(T(S5))

One special interaction is worth noting. L&tc .X'/(") be an indexed product set

= Se(n) X --- X Sy(n) and let

n

A:Om@p:&ex%@e&ﬁnm@dmgigﬂm} (B.12)
Then we have
zwﬁ:{xeXMmﬁﬂmﬁmne&ﬂ,wwg¢+1gﬂm}, (B.13)

Jumz{xexﬂwesﬁbdmgi+1gﬂm} (B.14)

andT'(A) = Cyl(T(S)) and thus by lemma B.1.3/(A) = Cyl(T(S5) x X).

Finally, notice that for any indexed product se€ X% there is a sef c X7/,
wheren = min (—2a,2b+ 1), such that“'y/(5) = Cyl(S). Since every cylinder set
can be written ag'y/(S) for someS € X[ this means that every cylinder set can
be written asCy!(S) for someS ¢ x 7,

At last, we are ready to state and prove a result. This is Kolmogorov’s extension
theorem in a form which applies to processes.

Theorem B.1.4 (Bidirectional Discrete version of Kolmogorov’'s Extension Theo-
rem). Suppose we have a sequence of measyres X' /(") which satisfy the following
conditions for alln and for all indexed product sets  X7("). If n is odd,

vn(S) = vp41(S x X) (B.15)
and if n is even,
vn(S) = vp41(X x S) and (B.16)

va(S) = v (T(S) x ). (B.17)
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Then there exists a unique stationary procgss (X2, X,P) such that, for all: and
for all 5 ¢ x/(),

P(CyI(S)) = va(S). (B.18)

The proof of this statement is in two parts. In the first, we show Ehaikists using
the awkward mapping tricks defined above, theorem B.1.2 and equations B.15 and B.16.
In the second, we use equations B.15, B.16, and B.17 to showPtlmatstationary.

Proof. We define a sequence of measurgson R" as follows: if A ¢ R", we
define i, (A) = vu (H71(A)), that is

jin( A) = un{x e XM H(2) € A} (B.19)
The following calculation establishes that thgs are consistent. By definition,
fing1(A X R) = vy1 (H7HA x R)). (B.20)

Now, H~1(A x R) can be rewritten as

_ H7Y(A)x X n odd
1 _
H7(AxR) = {X x H7Y(A) n even (B.21)
so we have
I RZES (H_I(A) X X) n odd

a1 (A X R) = {un+1()( x H7'(A)) n even (B.22)

And by applying equations B.15 and B.16 to the right-hand sides, we get
nt1(AXR) = v, (H (A
fint1( ) (H'(A)) (B.23)

= pin(A).
Thus, we can apply Kolmogorov’s Extension Theorem to the meagureshich gives
us a unique measui@ on (RN, RN) which agrees with the,,: if A; is a Borel set for
all: e 1,....nand A = A x ... x A,, then

P(x|x; € Ay, i€ 1,....n). (B.24)
Now we defineP. For all § € X,

P(S) = P(H(z)|x € 9). (B.25)
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This P is in fact an extension of the,s. For allS € X/("), we have
vn(.S) = pn(H(5))
=P(acRNar...a, € H(S)) (B.26)
_ P<X € Xt o) - Tan) € 5) — P(Cyl(S))
Thus, we have shown th& exists.

To show thatP is stationary, we need to show th®(7'(A)) = P(A) for a
sufficiently rich set ofA € X. Any collection which contains all the cylinder sets
will suffice. The collection we choose is

A= {(Jyl(S)| indexed product set§ ¢ /™ for somen}. (B.27)

Thus, everyA € A has an associated and an associatetl. (Of course, there will be
more than one suitable S pair, but there will be a smallest and a unique associated
S, and these are the and S to which we refer.)
If n is even, equation B.17 gives us
P(A) = va(5)
= v (T(S) x X) (B.28)
=P(Cyl(T(S) x X)).
And sinceCyl(T(S) x X) = Cyl(T(S)) = T(A), this become®(A) = P(T(A)).
If » is odd, we expand by one and then do a similar calculation.
P(A) = va(5)
= l/n_|_1(5 X X)
(B.29)
= vp42(T(S x X) x X)

=P(Cyl(T(S x X) x X))
Here we can again apply lemma B.1.3 to géfl/(7(S x X') x X') = T(A), and thus
P(4) = P(T(A)).1
Now we are ready to prove theorem B.1.1, which we restate here:
Theorem B.1.1. Given a mapf : X* — [0, 1] statisfying
1. f(A\) =1, and
2. For all wordsw € X'*,

flw) =" flzw) =) f(wz), (B.30)

zelX 2€X
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there is a unique stationary proce®s = (XZ,X,P) such that for allw € X,
P(w) = f(w).

The proof will proceed as follows: we will construct measurgswhich satisfy
equations B.15, B.16, and B.17, and then apply Theorem B.1.4 to get the result.

Proof. For allw € X* and|w| = n, let S = {w} and define
vn(S) = f(w). (B.31)

For a generab c X7/("), § is a disjoint union of sets of the fortfi, = {w}. Thus we
may safely define the measurg on all subsets oft /(") by

(S) =D val(Sw) = Y flw). (B.32)

weS weS

We need to show that, is a probability measure; that is, we need to show that
Vn <XJ(")> — 1. We will do this by induction om. If n = 0 then X7/(®) = {\}
and we are giverf(\) = 1, sov; is a probability measure. The induction step depends
on equation B.30, and the odd and even cases must be done separataly.otfd and
vy, 1S @ probability distribution, then we have

Vn+1<XJ(n—|—1)>: Z F(w)

weXJ(n+1)

= Z Zf(wm)

weXI(m zeX (B.33)

If » is even and,, is a probability measure, then the calculation is the same except that
we write f(zw) in place of f(wx) and we use the other half of equation B.30.

Now we must show that equations B.15, B.16, and B.17 are satisfied. We will
establish each of them using equation B.30 much as before. First equation B.15,
assumingn is odd:

va(S) =Y flw) =YY" flwr)

weS weS zelX

— Z f(2) (B.34)
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Second, equation B.16, assumings even:

)= fw)=> Y faw)

wWES weS veX
— Z f(z) (B.35)
Z€(XA%S)
= vp41(X x 5)
Lastly, equation B.17, again assumingis even:

)= fw)=> Y f(wa)

weS weS zelX

= > flz

Z€(SxX)
But this time, S x X ¢ X7("), so the expression,, (S x .X') does not make sense.
However, we do havd'(S x X) = T(S) x X c X7/ andf does not depend on

time indices, so we have
= > flz Y. f2)
2E(Sx.X) 2€(T(S)xX) (B.37)

= vn41(T(S) x X).
We have now shown that the,s satisfy all of the conditions of theorem B.1.4.

(B.36)

Thus, applying this theorem, we have shown that there exists a unique stationary process
P = (X%, X, P) such that for alk and for allS ¢ X7, we haveP(Cyl(S)) = va(S).
Therefore, if we letS = {w} for any lengthn word w, we have

F(w) = va(S) = P(CyI(S)) = P(w). (B.38)

So we are don#

B.2 Martingales

This section presents the martingale convergence results needed in chapters 2 and 3.
Let X be a random variable on a probability spafe 7, P), and letG be a subs-field
of 7. That is,G is ac-field andG C F as sets of sets.

Definition B.2.1. The conditional expectationf X with respect t@; is any random
variable Y that satisfies

1. Y is measureable with respect o and
2. forall A € G,

/ XdP = / Y dP. (B.39)

A A
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Several facts about conditional expectation are worth noting. First, conditional
expectations exist on all the probability spaces considered in this dissertation. Second,
conditional expectations are unique up to sets of measure zero — it'batidY”’ satisfy
definition B.2.1, thert” = Y’ almost everywhere. Third, a conditional expectation is a
variable, not a constant. That i5, is a function on(2. However,Y is constant almost
everywhere on atoms @f. (A setA € G is an atom if the only sets ig which are
subsets of4 are the empty set and itself.)

The connection between conditional expectation and the conditional probability of
elementary probability is as follows. I is a random variable o}, 7, P), thenZ
induces ar-field o(Z) on 2, namely the smallest-field containing all sets of the form
Z7Y(B) for Borel setsB. Let A be a set inF with indicator function (characteristic
function) 14. If we fix a constantc € R and evaluate the conditional expectation
E(14]l0(Z)) onz € Z71(¢), we find that

E(14|0(Z2))(2) =P(x € A|Z = ¢) (B.40)
for almost every such:.

A filtration is an increasing sequence effields {F} =F, C Fo C ...,

Definition B.2.2. A sequence[ X'} = Xy, Xy, ... is a martingalewith respect to

the filtration {F} if

1. for all 7, X; is measureable with respect f§, and
2. for all s,# € N such thatt > s, X, = E(Xy|F)

Martingale convergence theorems are commonly stated like thigXjf} is a
martingale andk(| X,,|) < oo for all n, then there exists a random variable such
X
establishes that the limik exists, not whatX is.

that X,, converges almost surely t& with E(

) < oo. Note that this statement

The result needed in this disseratation is this. Given a filtra{i6n, let G be the
smallesto-field that contains every;. Let A be a set inF, and defineX,, to be the
conditional expectatiol (1 4|F,). Then{X } is a martingale with respect {oF}. The
fact we need isX,, — E(14|G) almost surely.

The following result appears as theorem 4.3 in [36].

Theorem B.2.3. (Doob’s Martingale Convergence Theorem)f {F,} is an
increasing sequence offields (that is, for alln > 0, F,, is a subs-field of F,+1),
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and X is a measureable function such thgt X |) < oo, then lim E(X|F,) converges
almost surely td( X |F), whereF is the smallest-field whig;goontains all of theF,;s.

Now the result we need is simply Doob’s Martingale convergence theorem restricted
to the case in whichX is an indicator function.

Corollary B.2.4. If {F,} is an increasing sequence offields andA is an event,
thenP(A|F,) — P(A|F) almost surely, wheré is the smallest-field which contains
all of the F,s.
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